net: phy: fixed-phy: Make the error path simpler
[linux/fpc-iii.git] / crypto / twofish_common.c
blobf3a0dd25f8715828de617243bf0ac92080c2c174
1 /*
2 * Common Twofish algorithm parts shared between the c and assembler
3 * implementations
5 * Originally Twofish for GPG
6 * By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
7 * 256-bit key length added March 20, 1999
8 * Some modifications to reduce the text size by Werner Koch, April, 1998
9 * Ported to the kerneli patch by Marc Mutz <Marc@Mutz.com>
10 * Ported to CryptoAPI by Colin Slater <hoho@tacomeat.net>
12 * The original author has disclaimed all copyright interest in this
13 * code and thus put it in the public domain. The subsequent authors
14 * have put this under the GNU General Public License.
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 * GNU General Public License for more details.
26 * You should have received a copy of the GNU General Public License
27 * along with this program. If not, see <http://www.gnu.org/licenses/>.
30 * This code is a "clean room" implementation, written from the paper
31 * _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
32 * Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
33 * through http://www.counterpane.com/twofish.html
35 * For background information on multiplication in finite fields, used for
36 * the matrix operations in the key schedule, see the book _Contemporary
37 * Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
38 * Third Edition.
41 #include <crypto/twofish.h>
42 #include <linux/bitops.h>
43 #include <linux/crypto.h>
44 #include <linux/errno.h>
45 #include <linux/init.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
51 /* The large precomputed tables for the Twofish cipher (twofish.c)
52 * Taken from the same source as twofish.c
53 * Marc Mutz <Marc@Mutz.com>
56 /* These two tables are the q0 and q1 permutations, exactly as described in
57 * the Twofish paper. */
59 static const u8 q0[256] = {
60 0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78,
61 0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
62 0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30,
63 0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
64 0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE,
65 0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
66 0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45,
67 0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
68 0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF,
69 0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
70 0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED,
71 0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
72 0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B,
73 0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
74 0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F,
75 0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
76 0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17,
77 0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
78 0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68,
79 0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
80 0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42,
81 0x4A, 0x5E, 0xC1, 0xE0
84 static const u8 q1[256] = {
85 0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B,
86 0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
87 0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B,
88 0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
89 0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54,
90 0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
91 0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7,
92 0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
93 0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF,
94 0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
95 0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D,
96 0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
97 0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21,
98 0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
99 0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E,
100 0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
101 0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44,
102 0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
103 0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B,
104 0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
105 0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56,
106 0x55, 0x09, 0xBE, 0x91
109 /* These MDS tables are actually tables of MDS composed with q0 and q1,
110 * because it is only ever used that way and we can save some time by
111 * precomputing. Of course the main saving comes from precomputing the
112 * GF(2^8) multiplication involved in the MDS matrix multiply; by looking
113 * things up in these tables we reduce the matrix multiply to four lookups
114 * and three XORs. Semi-formally, the definition of these tables is:
115 * mds[0][i] = MDS (q1[i] 0 0 0)^T mds[1][i] = MDS (0 q0[i] 0 0)^T
116 * mds[2][i] = MDS (0 0 q1[i] 0)^T mds[3][i] = MDS (0 0 0 q0[i])^T
117 * where ^T means "transpose", the matrix multiply is performed in GF(2^8)
118 * represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described
119 * by Schneier et al, and I'm casually glossing over the byte/word
120 * conversion issues. */
122 static const u32 mds[4][256] = {
124 0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B,
125 0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B,
126 0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32,
127 0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1,
128 0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA,
129 0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B,
130 0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1,
131 0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5,
132 0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490,
133 0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154,
134 0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0,
135 0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796,
136 0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228,
137 0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7,
138 0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3,
139 0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8,
140 0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477,
141 0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF,
142 0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C,
143 0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9,
144 0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA,
145 0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D,
146 0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72,
147 0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E,
148 0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76,
149 0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321,
150 0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39,
151 0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01,
152 0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D,
153 0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E,
154 0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5,
155 0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64,
156 0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7,
157 0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544,
158 0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E,
159 0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E,
160 0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A,
161 0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B,
162 0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2,
163 0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9,
164 0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504,
165 0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756,
166 0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91},
169 0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252,
170 0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A,
171 0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020,
172 0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141,
173 0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444,
174 0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424,
175 0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A,
176 0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757,
177 0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383,
178 0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A,
179 0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9,
180 0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656,
181 0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1,
182 0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898,
183 0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414,
184 0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3,
185 0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1,
186 0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989,
187 0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5,
188 0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282,
189 0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E,
190 0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E,
191 0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202,
192 0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC,
193 0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565,
194 0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A,
195 0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808,
196 0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272,
197 0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A,
198 0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969,
199 0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505,
200 0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5,
201 0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D,
202 0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343,
203 0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF,
204 0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3,
205 0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F,
206 0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646,
207 0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6,
208 0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF,
209 0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A,
210 0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7,
211 0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8},
214 0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B,
215 0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F,
216 0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A,
217 0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783,
218 0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70,
219 0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3,
220 0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB,
221 0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA,
222 0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4,
223 0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41,
224 0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C,
225 0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07,
226 0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622,
227 0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18,
228 0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035,
229 0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96,
230 0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84,
231 0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E,
232 0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F,
233 0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD,
234 0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558,
235 0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40,
236 0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA,
237 0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85,
238 0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF,
239 0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773,
240 0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D,
241 0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B,
242 0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C,
243 0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19,
244 0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086,
245 0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D,
246 0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74,
247 0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755,
248 0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691,
249 0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D,
250 0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4,
251 0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53,
252 0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E,
253 0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9,
254 0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705,
255 0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7,
256 0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF},
259 0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98,
260 0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866,
261 0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643,
262 0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77,
263 0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9,
264 0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C,
265 0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3,
266 0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216,
267 0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F,
268 0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25,
269 0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF,
270 0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7,
271 0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4,
272 0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E,
273 0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA,
274 0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C,
275 0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12,
276 0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A,
277 0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D,
278 0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE,
279 0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A,
280 0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C,
281 0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B,
282 0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4,
283 0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B,
284 0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3,
285 0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE,
286 0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB,
287 0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85,
288 0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA,
289 0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E,
290 0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8,
291 0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33,
292 0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC,
293 0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718,
294 0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA,
295 0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8,
296 0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872,
297 0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882,
298 0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D,
299 0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10,
300 0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6,
301 0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8}
304 /* The exp_to_poly and poly_to_exp tables are used to perform efficient
305 * operations in GF(2^8) represented as GF(2)[x]/w(x) where
306 * w(x)=x^8+x^6+x^3+x^2+1. We care about doing that because it's part of the
307 * definition of the RS matrix in the key schedule. Elements of that field
308 * are polynomials of degree not greater than 7 and all coefficients 0 or 1,
309 * which can be represented naturally by bytes (just substitute x=2). In that
310 * form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8)
311 * multiplication is inefficient without hardware support. To multiply
312 * faster, I make use of the fact x is a generator for the nonzero elements,
313 * so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for
314 * some n in 0..254. Note that that caret is exponentiation in GF(2^8),
315 * *not* polynomial notation. So if I want to compute pq where p and q are
316 * in GF(2^8), I can just say:
317 * 1. if p=0 or q=0 then pq=0
318 * 2. otherwise, find m and n such that p=x^m and q=x^n
319 * 3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq
320 * The translations in steps 2 and 3 are looked up in the tables
321 * poly_to_exp (for step 2) and exp_to_poly (for step 3). To see this
322 * in action, look at the CALC_S macro. As additional wrinkles, note that
323 * one of my operands is always a constant, so the poly_to_exp lookup on it
324 * is done in advance; I included the original values in the comments so
325 * readers can have some chance of recognizing that this *is* the RS matrix
326 * from the Twofish paper. I've only included the table entries I actually
327 * need; I never do a lookup on a variable input of zero and the biggest
328 * exponents I'll ever see are 254 (variable) and 237 (constant), so they'll
329 * never sum to more than 491. I'm repeating part of the exp_to_poly table
330 * so that I don't have to do mod-255 reduction in the exponent arithmetic.
331 * Since I know my constant operands are never zero, I only have to worry
332 * about zero values in the variable operand, and I do it with a simple
333 * conditional branch. I know conditionals are expensive, but I couldn't
334 * see a non-horrible way of avoiding them, and I did manage to group the
335 * statements so that each if covers four group multiplications. */
337 static const u8 poly_to_exp[255] = {
338 0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19,
339 0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A,
340 0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C,
341 0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B,
342 0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47,
343 0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D,
344 0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8,
345 0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C,
346 0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83,
347 0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48,
348 0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26,
349 0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E,
350 0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3,
351 0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9,
352 0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A,
353 0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D,
354 0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75,
355 0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84,
356 0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64,
357 0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49,
358 0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF,
359 0x85, 0xC8, 0xA1
362 static const u8 exp_to_poly[492] = {
363 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2,
364 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03,
365 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6,
366 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A,
367 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63,
368 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C,
369 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07,
370 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88,
371 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12,
372 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7,
373 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C,
374 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8,
375 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25,
376 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A,
377 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE,
378 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC,
379 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E,
380 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92,
381 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89,
382 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB,
383 0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1,
384 0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D,
385 0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC,
386 0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3,
387 0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52,
388 0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0,
389 0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1,
390 0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A,
391 0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11,
392 0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51,
393 0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66,
394 0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB,
395 0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19,
396 0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D,
397 0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56,
398 0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE,
399 0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9,
400 0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE,
401 0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41,
402 0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E,
403 0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB
407 /* The table constants are indices of
408 * S-box entries, preprocessed through q0 and q1. */
409 static const u8 calc_sb_tbl[512] = {
410 0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4,
411 0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8,
412 0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B,
413 0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B,
414 0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD,
415 0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1,
416 0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B,
417 0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F,
418 0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B,
419 0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D,
420 0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E,
421 0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5,
422 0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14,
423 0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3,
424 0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54,
425 0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51,
426 0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A,
427 0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96,
428 0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10,
429 0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C,
430 0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7,
431 0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70,
432 0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB,
433 0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8,
434 0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF,
435 0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC,
436 0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF,
437 0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2,
438 0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82,
439 0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9,
440 0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97,
441 0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17,
442 0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D,
443 0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3,
444 0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C,
445 0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E,
446 0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F,
447 0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49,
448 0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21,
449 0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9,
450 0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD,
451 0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01,
452 0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F,
453 0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48,
454 0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E,
455 0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19,
456 0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57,
457 0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64,
458 0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE,
459 0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5,
460 0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44,
461 0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69,
462 0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15,
463 0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E,
464 0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34,
465 0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC,
466 0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B,
467 0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB,
468 0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52,
469 0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9,
470 0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4,
471 0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2,
472 0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56,
473 0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91
476 /* Macro to perform one column of the RS matrix multiplication. The
477 * parameters a, b, c, and d are the four bytes of output; i is the index
478 * of the key bytes, and w, x, y, and z, are the column of constants from
479 * the RS matrix, preprocessed through the poly_to_exp table. */
481 #define CALC_S(a, b, c, d, i, w, x, y, z) \
482 if (key[i]) { \
483 tmp = poly_to_exp[key[i] - 1]; \
484 (a) ^= exp_to_poly[tmp + (w)]; \
485 (b) ^= exp_to_poly[tmp + (x)]; \
486 (c) ^= exp_to_poly[tmp + (y)]; \
487 (d) ^= exp_to_poly[tmp + (z)]; \
490 /* Macros to calculate the key-dependent S-boxes for a 128-bit key using
491 * the S vector from CALC_S. CALC_SB_2 computes a single entry in all
492 * four S-boxes, where i is the index of the entry to compute, and a and b
493 * are the index numbers preprocessed through the q0 and q1 tables
494 * respectively. */
496 #define CALC_SB_2(i, a, b) \
497 ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \
498 ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \
499 ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \
500 ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh]
502 /* Macro exactly like CALC_SB_2, but for 192-bit keys. */
504 #define CALC_SB192_2(i, a, b) \
505 ctx->s[0][i] = mds[0][q0[q0[(b) ^ sa] ^ se] ^ si]; \
506 ctx->s[1][i] = mds[1][q0[q1[(b) ^ sb] ^ sf] ^ sj]; \
507 ctx->s[2][i] = mds[2][q1[q0[(a) ^ sc] ^ sg] ^ sk]; \
508 ctx->s[3][i] = mds[3][q1[q1[(a) ^ sd] ^ sh] ^ sl];
510 /* Macro exactly like CALC_SB_2, but for 256-bit keys. */
512 #define CALC_SB256_2(i, a, b) \
513 ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \
514 ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \
515 ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \
516 ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp];
518 /* Macros to calculate the whitening and round subkeys. CALC_K_2 computes the
519 * last two stages of the h() function for a given index (either 2i or 2i+1).
520 * a, b, c, and d are the four bytes going into the last two stages. For
521 * 128-bit keys, this is the entire h() function and a and c are the index
522 * preprocessed through q0 and q1 respectively; for longer keys they are the
523 * output of previous stages. j is the index of the first key byte to use.
524 * CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2
525 * twice, doing the Pseudo-Hadamard Transform, and doing the necessary
526 * rotations. Its parameters are: a, the array to write the results into,
527 * j, the index of the first output entry, k and l, the preprocessed indices
528 * for index 2i, and m and n, the preprocessed indices for index 2i+1.
529 * CALC_K192_2 expands CALC_K_2 to handle 192-bit keys, by doing an
530 * additional lookup-and-XOR stage. The parameters a, b, c and d are the
531 * four bytes going into the last three stages. For 192-bit keys, c = d
532 * are the index preprocessed through q0, and a = b are the index
533 * preprocessed through q1; j is the index of the first key byte to use.
534 * CALC_K192 is identical to CALC_K but for using the CALC_K192_2 macro
535 * instead of CALC_K_2.
536 * CALC_K256_2 expands CALC_K192_2 to handle 256-bit keys, by doing an
537 * additional lookup-and-XOR stage. The parameters a and b are the index
538 * preprocessed through q0 and q1 respectively; j is the index of the first
539 * key byte to use. CALC_K256 is identical to CALC_K but for using the
540 * CALC_K256_2 macro instead of CALC_K_2. */
542 #define CALC_K_2(a, b, c, d, j) \
543 mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \
544 ^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \
545 ^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \
546 ^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]]
548 #define CALC_K(a, j, k, l, m, n) \
549 x = CALC_K_2 (k, l, k, l, 0); \
550 y = CALC_K_2 (m, n, m, n, 4); \
551 y = rol32(y, 8); \
552 x += y; y += x; ctx->a[j] = x; \
553 ctx->a[(j) + 1] = rol32(y, 9)
555 #define CALC_K192_2(a, b, c, d, j) \
556 CALC_K_2 (q0[a ^ key[(j) + 16]], \
557 q1[b ^ key[(j) + 17]], \
558 q0[c ^ key[(j) + 18]], \
559 q1[d ^ key[(j) + 19]], j)
561 #define CALC_K192(a, j, k, l, m, n) \
562 x = CALC_K192_2 (l, l, k, k, 0); \
563 y = CALC_K192_2 (n, n, m, m, 4); \
564 y = rol32(y, 8); \
565 x += y; y += x; ctx->a[j] = x; \
566 ctx->a[(j) + 1] = rol32(y, 9)
568 #define CALC_K256_2(a, b, j) \
569 CALC_K192_2 (q1[b ^ key[(j) + 24]], \
570 q1[a ^ key[(j) + 25]], \
571 q0[a ^ key[(j) + 26]], \
572 q0[b ^ key[(j) + 27]], j)
574 #define CALC_K256(a, j, k, l, m, n) \
575 x = CALC_K256_2 (k, l, 0); \
576 y = CALC_K256_2 (m, n, 4); \
577 y = rol32(y, 8); \
578 x += y; y += x; ctx->a[j] = x; \
579 ctx->a[(j) + 1] = rol32(y, 9)
581 /* Perform the key setup. */
582 int __twofish_setkey(struct twofish_ctx *ctx, const u8 *key,
583 unsigned int key_len, u32 *flags)
585 int i, j, k;
587 /* Temporaries for CALC_K. */
588 u32 x, y;
590 /* The S vector used to key the S-boxes, split up into individual bytes.
591 * 128-bit keys use only sa through sh; 256-bit use all of them. */
592 u8 sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0;
593 u8 si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0;
595 /* Temporary for CALC_S. */
596 u8 tmp;
598 /* Check key length. */
599 if (key_len % 8)
601 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
602 return -EINVAL; /* unsupported key length */
605 /* Compute the first two words of the S vector. The magic numbers are
606 * the entries of the RS matrix, preprocessed through poly_to_exp. The
607 * numbers in the comments are the original (polynomial form) matrix
608 * entries. */
609 CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
610 CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
611 CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
612 CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
613 CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
614 CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
615 CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
616 CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
617 CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
618 CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
619 CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
620 CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
621 CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
622 CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
623 CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
624 CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
626 if (key_len == 24 || key_len == 32) { /* 192- or 256-bit key */
627 /* Calculate the third word of the S vector */
628 CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
629 CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
630 CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
631 CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
632 CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
633 CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
634 CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
635 CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
638 if (key_len == 32) { /* 256-bit key */
639 /* Calculate the fourth word of the S vector */
640 CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
641 CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
642 CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
643 CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
644 CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
645 CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
646 CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
647 CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
649 /* Compute the S-boxes. */
650 for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
651 CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
654 /* CALC_K256/CALC_K192/CALC_K loops were unrolled.
655 * Unrolling produced x2.5 more code (+18k on i386),
656 * and speeded up key setup by 7%:
657 * unrolled: twofish_setkey/sec: 41128
658 * loop: twofish_setkey/sec: 38148
659 * CALC_K256: ~100 insns each
660 * CALC_K192: ~90 insns
661 * CALC_K: ~70 insns
663 /* Calculate whitening and round subkeys */
664 for ( i = 0; i < 8; i += 2 ) {
665 CALC_K256 (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
667 for ( i = 0; i < 32; i += 2 ) {
668 CALC_K256 (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
670 } else if (key_len == 24) { /* 192-bit key */
671 /* Compute the S-boxes. */
672 for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
673 CALC_SB192_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
676 /* Calculate whitening and round subkeys */
677 for ( i = 0; i < 8; i += 2 ) {
678 CALC_K192 (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
680 for ( i = 0; i < 32; i += 2 ) {
681 CALC_K192 (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
683 } else { /* 128-bit key */
684 /* Compute the S-boxes. */
685 for ( i = j = 0, k = 1; i < 256; i++, j += 2, k += 2 ) {
686 CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
689 /* Calculate whitening and round subkeys */
690 for ( i = 0; i < 8; i += 2 ) {
691 CALC_K (w, i, q0[i], q1[i], q0[i+1], q1[i+1]);
693 for ( i = 0; i < 32; i += 2 ) {
694 CALC_K (k, i, q0[i+8], q1[i+8], q0[i+9], q1[i+9]);
698 return 0;
700 EXPORT_SYMBOL_GPL(__twofish_setkey);
702 int twofish_setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int key_len)
704 return __twofish_setkey(crypto_tfm_ctx(tfm), key, key_len,
705 &tfm->crt_flags);
707 EXPORT_SYMBOL_GPL(twofish_setkey);
709 MODULE_LICENSE("GPL");
710 MODULE_DESCRIPTION("Twofish cipher common functions");