arm64: dts: msm8916-longcheer-l8150: Enable WCNSS for WiFi and BT
[linux/fpc-iii.git] / arch / arm64 / mm / fault.c
blob115d7a0e4b082679ed2a651c90d8393609f6d1c2
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/fault.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
8 */
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/page-flags.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/debug.h>
22 #include <linux/highmem.h>
23 #include <linux/perf_event.h>
24 #include <linux/preempt.h>
25 #include <linux/hugetlb.h>
27 #include <asm/acpi.h>
28 #include <asm/bug.h>
29 #include <asm/cmpxchg.h>
30 #include <asm/cpufeature.h>
31 #include <asm/exception.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
34 #include <asm/esr.h>
35 #include <asm/kasan.h>
36 #include <asm/sysreg.h>
37 #include <asm/system_misc.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <asm/traps.h>
42 struct fault_info {
43 int (*fn)(unsigned long addr, unsigned int esr,
44 struct pt_regs *regs);
45 int sig;
46 int code;
47 const char *name;
50 static const struct fault_info fault_info[];
51 static struct fault_info debug_fault_info[];
53 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
55 return fault_info + (esr & ESR_ELx_FSC);
58 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
60 return debug_fault_info + DBG_ESR_EVT(esr);
63 static void data_abort_decode(unsigned int esr)
65 pr_alert("Data abort info:\n");
67 if (esr & ESR_ELx_ISV) {
68 pr_alert(" Access size = %u byte(s)\n",
69 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
70 pr_alert(" SSE = %lu, SRT = %lu\n",
71 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
72 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
73 pr_alert(" SF = %lu, AR = %lu\n",
74 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
75 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
76 } else {
77 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
80 pr_alert(" CM = %lu, WnR = %lu\n",
81 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
82 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
85 static void mem_abort_decode(unsigned int esr)
87 pr_alert("Mem abort info:\n");
89 pr_alert(" ESR = 0x%08x\n", esr);
90 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
91 ESR_ELx_EC(esr), esr_get_class_string(esr),
92 (esr & ESR_ELx_IL) ? 32 : 16);
93 pr_alert(" SET = %lu, FnV = %lu\n",
94 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
95 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
96 pr_alert(" EA = %lu, S1PTW = %lu\n",
97 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
98 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
100 if (esr_is_data_abort(esr))
101 data_abort_decode(esr);
104 static inline bool is_ttbr0_addr(unsigned long addr)
106 /* entry assembly clears tags for TTBR0 addrs */
107 return addr < TASK_SIZE;
110 static inline bool is_ttbr1_addr(unsigned long addr)
112 /* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
113 return arch_kasan_reset_tag(addr) >= PAGE_OFFSET;
117 * Dump out the page tables associated with 'addr' in the currently active mm.
119 static void show_pte(unsigned long addr)
121 struct mm_struct *mm;
122 pgd_t *pgdp;
123 pgd_t pgd;
125 if (is_ttbr0_addr(addr)) {
126 /* TTBR0 */
127 mm = current->active_mm;
128 if (mm == &init_mm) {
129 pr_alert("[%016lx] user address but active_mm is swapper\n",
130 addr);
131 return;
133 } else if (is_ttbr1_addr(addr)) {
134 /* TTBR1 */
135 mm = &init_mm;
136 } else {
137 pr_alert("[%016lx] address between user and kernel address ranges\n",
138 addr);
139 return;
142 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
143 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
144 vabits_actual, (unsigned long)virt_to_phys(mm->pgd));
145 pgdp = pgd_offset(mm, addr);
146 pgd = READ_ONCE(*pgdp);
147 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
149 do {
150 pud_t *pudp, pud;
151 pmd_t *pmdp, pmd;
152 pte_t *ptep, pte;
154 if (pgd_none(pgd) || pgd_bad(pgd))
155 break;
157 pudp = pud_offset(pgdp, addr);
158 pud = READ_ONCE(*pudp);
159 pr_cont(", pud=%016llx", pud_val(pud));
160 if (pud_none(pud) || pud_bad(pud))
161 break;
163 pmdp = pmd_offset(pudp, addr);
164 pmd = READ_ONCE(*pmdp);
165 pr_cont(", pmd=%016llx", pmd_val(pmd));
166 if (pmd_none(pmd) || pmd_bad(pmd))
167 break;
169 ptep = pte_offset_map(pmdp, addr);
170 pte = READ_ONCE(*ptep);
171 pr_cont(", pte=%016llx", pte_val(pte));
172 pte_unmap(ptep);
173 } while(0);
175 pr_cont("\n");
179 * This function sets the access flags (dirty, accessed), as well as write
180 * permission, and only to a more permissive setting.
182 * It needs to cope with hardware update of the accessed/dirty state by other
183 * agents in the system and can safely skip the __sync_icache_dcache() call as,
184 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
186 * Returns whether or not the PTE actually changed.
188 int ptep_set_access_flags(struct vm_area_struct *vma,
189 unsigned long address, pte_t *ptep,
190 pte_t entry, int dirty)
192 pteval_t old_pteval, pteval;
193 pte_t pte = READ_ONCE(*ptep);
195 if (pte_same(pte, entry))
196 return 0;
198 /* only preserve the access flags and write permission */
199 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
202 * Setting the flags must be done atomically to avoid racing with the
203 * hardware update of the access/dirty state. The PTE_RDONLY bit must
204 * be set to the most permissive (lowest value) of *ptep and entry
205 * (calculated as: a & b == ~(~a | ~b)).
207 pte_val(entry) ^= PTE_RDONLY;
208 pteval = pte_val(pte);
209 do {
210 old_pteval = pteval;
211 pteval ^= PTE_RDONLY;
212 pteval |= pte_val(entry);
213 pteval ^= PTE_RDONLY;
214 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
215 } while (pteval != old_pteval);
217 flush_tlb_fix_spurious_fault(vma, address);
218 return 1;
221 static bool is_el1_instruction_abort(unsigned int esr)
223 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
226 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
227 struct pt_regs *regs)
229 unsigned int ec = ESR_ELx_EC(esr);
230 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
232 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
233 return false;
235 if (fsc_type == ESR_ELx_FSC_PERM)
236 return true;
238 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
239 return fsc_type == ESR_ELx_FSC_FAULT &&
240 (regs->pstate & PSR_PAN_BIT);
242 return false;
245 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
246 unsigned int esr,
247 struct pt_regs *regs)
249 unsigned long flags;
250 u64 par, dfsc;
252 if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
253 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
254 return false;
256 local_irq_save(flags);
257 asm volatile("at s1e1r, %0" :: "r" (addr));
258 isb();
259 par = read_sysreg(par_el1);
260 local_irq_restore(flags);
262 if (!(par & SYS_PAR_EL1_F))
263 return false;
266 * If we got a different type of fault from the AT instruction,
267 * treat the translation fault as spurious.
269 dfsc = FIELD_PREP(SYS_PAR_EL1_FST, par);
270 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
273 static void die_kernel_fault(const char *msg, unsigned long addr,
274 unsigned int esr, struct pt_regs *regs)
276 bust_spinlocks(1);
278 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
279 addr);
281 mem_abort_decode(esr);
283 show_pte(addr);
284 die("Oops", regs, esr);
285 bust_spinlocks(0);
286 do_exit(SIGKILL);
289 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
290 struct pt_regs *regs)
292 const char *msg;
295 * Are we prepared to handle this kernel fault?
296 * We are almost certainly not prepared to handle instruction faults.
298 if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
299 return;
301 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
302 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
303 return;
305 if (is_el1_permission_fault(addr, esr, regs)) {
306 if (esr & ESR_ELx_WNR)
307 msg = "write to read-only memory";
308 else
309 msg = "read from unreadable memory";
310 } else if (addr < PAGE_SIZE) {
311 msg = "NULL pointer dereference";
312 } else {
313 msg = "paging request";
316 die_kernel_fault(msg, addr, esr, regs);
319 static void set_thread_esr(unsigned long address, unsigned int esr)
321 current->thread.fault_address = address;
324 * If the faulting address is in the kernel, we must sanitize the ESR.
325 * From userspace's point of view, kernel-only mappings don't exist
326 * at all, so we report them as level 0 translation faults.
327 * (This is not quite the way that "no mapping there at all" behaves:
328 * an alignment fault not caused by the memory type would take
329 * precedence over translation fault for a real access to empty
330 * space. Unfortunately we can't easily distinguish "alignment fault
331 * not caused by memory type" from "alignment fault caused by memory
332 * type", so we ignore this wrinkle and just return the translation
333 * fault.)
335 if (!is_ttbr0_addr(current->thread.fault_address)) {
336 switch (ESR_ELx_EC(esr)) {
337 case ESR_ELx_EC_DABT_LOW:
339 * These bits provide only information about the
340 * faulting instruction, which userspace knows already.
341 * We explicitly clear bits which are architecturally
342 * RES0 in case they are given meanings in future.
343 * We always report the ESR as if the fault was taken
344 * to EL1 and so ISV and the bits in ISS[23:14] are
345 * clear. (In fact it always will be a fault to EL1.)
347 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
348 ESR_ELx_CM | ESR_ELx_WNR;
349 esr |= ESR_ELx_FSC_FAULT;
350 break;
351 case ESR_ELx_EC_IABT_LOW:
353 * Claim a level 0 translation fault.
354 * All other bits are architecturally RES0 for faults
355 * reported with that DFSC value, so we clear them.
357 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
358 esr |= ESR_ELx_FSC_FAULT;
359 break;
360 default:
362 * This should never happen (entry.S only brings us
363 * into this code for insn and data aborts from a lower
364 * exception level). Fail safe by not providing an ESR
365 * context record at all.
367 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
368 esr = 0;
369 break;
373 current->thread.fault_code = esr;
376 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
379 * If we are in kernel mode at this point, we have no context to
380 * handle this fault with.
382 if (user_mode(regs)) {
383 const struct fault_info *inf = esr_to_fault_info(esr);
385 set_thread_esr(addr, esr);
386 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
387 inf->name);
388 } else {
389 __do_kernel_fault(addr, esr, regs);
393 #define VM_FAULT_BADMAP 0x010000
394 #define VM_FAULT_BADACCESS 0x020000
396 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
397 unsigned int mm_flags, unsigned long vm_flags)
399 struct vm_area_struct *vma = find_vma(mm, addr);
401 if (unlikely(!vma))
402 return VM_FAULT_BADMAP;
405 * Ok, we have a good vm_area for this memory access, so we can handle
406 * it.
408 if (unlikely(vma->vm_start > addr)) {
409 if (!(vma->vm_flags & VM_GROWSDOWN))
410 return VM_FAULT_BADMAP;
411 if (expand_stack(vma, addr))
412 return VM_FAULT_BADMAP;
416 * Check that the permissions on the VMA allow for the fault which
417 * occurred.
419 if (!(vma->vm_flags & vm_flags))
420 return VM_FAULT_BADACCESS;
421 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
424 static bool is_el0_instruction_abort(unsigned int esr)
426 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
430 * Note: not valid for EL1 DC IVAC, but we never use that such that it
431 * should fault. EL0 cannot issue DC IVAC (undef).
433 static bool is_write_abort(unsigned int esr)
435 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
438 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
439 struct pt_regs *regs)
441 const struct fault_info *inf;
442 struct mm_struct *mm = current->mm;
443 vm_fault_t fault, major = 0;
444 unsigned long vm_flags = VM_READ | VM_WRITE;
445 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
447 if (kprobe_page_fault(regs, esr))
448 return 0;
451 * If we're in an interrupt or have no user context, we must not take
452 * the fault.
454 if (faulthandler_disabled() || !mm)
455 goto no_context;
457 if (user_mode(regs))
458 mm_flags |= FAULT_FLAG_USER;
460 if (is_el0_instruction_abort(esr)) {
461 vm_flags = VM_EXEC;
462 mm_flags |= FAULT_FLAG_INSTRUCTION;
463 } else if (is_write_abort(esr)) {
464 vm_flags = VM_WRITE;
465 mm_flags |= FAULT_FLAG_WRITE;
468 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
469 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
470 if (regs->orig_addr_limit == KERNEL_DS)
471 die_kernel_fault("access to user memory with fs=KERNEL_DS",
472 addr, esr, regs);
474 if (is_el1_instruction_abort(esr))
475 die_kernel_fault("execution of user memory",
476 addr, esr, regs);
478 if (!search_exception_tables(regs->pc))
479 die_kernel_fault("access to user memory outside uaccess routines",
480 addr, esr, regs);
483 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
486 * As per x86, we may deadlock here. However, since the kernel only
487 * validly references user space from well defined areas of the code,
488 * we can bug out early if this is from code which shouldn't.
490 if (!down_read_trylock(&mm->mmap_sem)) {
491 if (!user_mode(regs) && !search_exception_tables(regs->pc))
492 goto no_context;
493 retry:
494 down_read(&mm->mmap_sem);
495 } else {
497 * The above down_read_trylock() might have succeeded in which
498 * case, we'll have missed the might_sleep() from down_read().
500 might_sleep();
501 #ifdef CONFIG_DEBUG_VM
502 if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
503 up_read(&mm->mmap_sem);
504 goto no_context;
506 #endif
509 fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
510 major |= fault & VM_FAULT_MAJOR;
512 if (fault & VM_FAULT_RETRY) {
514 * If we need to retry but a fatal signal is pending,
515 * handle the signal first. We do not need to release
516 * the mmap_sem because it would already be released
517 * in __lock_page_or_retry in mm/filemap.c.
519 if (fatal_signal_pending(current)) {
520 if (!user_mode(regs))
521 goto no_context;
522 return 0;
526 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
527 * starvation.
529 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
530 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
531 mm_flags |= FAULT_FLAG_TRIED;
532 goto retry;
535 up_read(&mm->mmap_sem);
538 * Handle the "normal" (no error) case first.
540 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
541 VM_FAULT_BADACCESS)))) {
543 * Major/minor page fault accounting is only done
544 * once. If we go through a retry, it is extremely
545 * likely that the page will be found in page cache at
546 * that point.
548 if (major) {
549 current->maj_flt++;
550 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
551 addr);
552 } else {
553 current->min_flt++;
554 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
555 addr);
558 return 0;
562 * If we are in kernel mode at this point, we have no context to
563 * handle this fault with.
565 if (!user_mode(regs))
566 goto no_context;
568 if (fault & VM_FAULT_OOM) {
570 * We ran out of memory, call the OOM killer, and return to
571 * userspace (which will retry the fault, or kill us if we got
572 * oom-killed).
574 pagefault_out_of_memory();
575 return 0;
578 inf = esr_to_fault_info(esr);
579 set_thread_esr(addr, esr);
580 if (fault & VM_FAULT_SIGBUS) {
582 * We had some memory, but were unable to successfully fix up
583 * this page fault.
585 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
586 inf->name);
587 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
588 unsigned int lsb;
590 lsb = PAGE_SHIFT;
591 if (fault & VM_FAULT_HWPOISON_LARGE)
592 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
594 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
595 inf->name);
596 } else {
598 * Something tried to access memory that isn't in our memory
599 * map.
601 arm64_force_sig_fault(SIGSEGV,
602 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
603 (void __user *)addr,
604 inf->name);
607 return 0;
609 no_context:
610 __do_kernel_fault(addr, esr, regs);
611 return 0;
614 static int __kprobes do_translation_fault(unsigned long addr,
615 unsigned int esr,
616 struct pt_regs *regs)
618 if (is_ttbr0_addr(addr))
619 return do_page_fault(addr, esr, regs);
621 do_bad_area(addr, esr, regs);
622 return 0;
625 static int do_alignment_fault(unsigned long addr, unsigned int esr,
626 struct pt_regs *regs)
628 do_bad_area(addr, esr, regs);
629 return 0;
632 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
634 return 1; /* "fault" */
637 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
639 const struct fault_info *inf;
640 void __user *siaddr;
642 inf = esr_to_fault_info(esr);
645 * Return value ignored as we rely on signal merging.
646 * Future patches will make this more robust.
648 apei_claim_sea(regs);
650 if (esr & ESR_ELx_FnV)
651 siaddr = NULL;
652 else
653 siaddr = (void __user *)addr;
654 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
656 return 0;
659 static const struct fault_info fault_info[] = {
660 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
661 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
662 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
663 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
664 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
665 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
666 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
667 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
668 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
669 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
670 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
671 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
672 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
673 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
674 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
675 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
676 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
677 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" },
678 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
679 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
680 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
681 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
682 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
683 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
684 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
685 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
686 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
687 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
688 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
689 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
690 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
691 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
692 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
693 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
694 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
695 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
696 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
697 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
698 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
699 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
700 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
701 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
702 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
703 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
704 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
705 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
706 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
707 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
708 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
709 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
710 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
711 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
712 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
713 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
714 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
715 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
716 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
717 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
718 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
719 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
720 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
721 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
722 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
723 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
726 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
727 struct pt_regs *regs)
729 const struct fault_info *inf = esr_to_fault_info(esr);
731 if (!inf->fn(addr, esr, regs))
732 return;
734 if (!user_mode(regs)) {
735 pr_alert("Unhandled fault at 0x%016lx\n", addr);
736 mem_abort_decode(esr);
737 show_pte(addr);
740 arm64_notify_die(inf->name, regs,
741 inf->sig, inf->code, (void __user *)addr, esr);
744 asmlinkage void __exception do_el0_irq_bp_hardening(void)
746 /* PC has already been checked in entry.S */
747 arm64_apply_bp_hardening();
750 asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
751 unsigned int esr,
752 struct pt_regs *regs)
755 * We've taken an instruction abort from userspace and not yet
756 * re-enabled IRQs. If the address is a kernel address, apply
757 * BP hardening prior to enabling IRQs and pre-emption.
759 if (!is_ttbr0_addr(addr))
760 arm64_apply_bp_hardening();
762 local_daif_restore(DAIF_PROCCTX);
763 do_mem_abort(addr, esr, regs);
767 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
768 unsigned int esr,
769 struct pt_regs *regs)
771 if (user_mode(regs)) {
772 if (!is_ttbr0_addr(instruction_pointer(regs)))
773 arm64_apply_bp_hardening();
774 local_daif_restore(DAIF_PROCCTX);
777 arm64_notify_die("SP/PC alignment exception", regs,
778 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
781 int __init early_brk64(unsigned long addr, unsigned int esr,
782 struct pt_regs *regs);
785 * __refdata because early_brk64 is __init, but the reference to it is
786 * clobbered at arch_initcall time.
787 * See traps.c and debug-monitors.c:debug_traps_init().
789 static struct fault_info __refdata debug_fault_info[] = {
790 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
791 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
792 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
793 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
794 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
795 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
796 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
797 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
800 void __init hook_debug_fault_code(int nr,
801 int (*fn)(unsigned long, unsigned int, struct pt_regs *),
802 int sig, int code, const char *name)
804 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
806 debug_fault_info[nr].fn = fn;
807 debug_fault_info[nr].sig = sig;
808 debug_fault_info[nr].code = code;
809 debug_fault_info[nr].name = name;
813 * In debug exception context, we explicitly disable preemption despite
814 * having interrupts disabled.
815 * This serves two purposes: it makes it much less likely that we would
816 * accidentally schedule in exception context and it will force a warning
817 * if we somehow manage to schedule by accident.
819 static void debug_exception_enter(struct pt_regs *regs)
822 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
823 * already disabled to preserve the last enabled/disabled addresses.
825 if (interrupts_enabled(regs))
826 trace_hardirqs_off();
828 if (user_mode(regs)) {
829 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
830 } else {
832 * We might have interrupted pretty much anything. In
833 * fact, if we're a debug exception, we can even interrupt
834 * NMI processing. We don't want this code makes in_nmi()
835 * to return true, but we need to notify RCU.
837 rcu_nmi_enter();
840 preempt_disable();
842 /* This code is a bit fragile. Test it. */
843 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
845 NOKPROBE_SYMBOL(debug_exception_enter);
847 static void debug_exception_exit(struct pt_regs *regs)
849 preempt_enable_no_resched();
851 if (!user_mode(regs))
852 rcu_nmi_exit();
854 if (interrupts_enabled(regs))
855 trace_hardirqs_on();
857 NOKPROBE_SYMBOL(debug_exception_exit);
859 #ifdef CONFIG_ARM64_ERRATUM_1463225
860 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
862 static int __exception
863 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
865 if (user_mode(regs))
866 return 0;
868 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
869 return 0;
872 * We've taken a dummy step exception from the kernel to ensure
873 * that interrupts are re-enabled on the syscall path. Return back
874 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
875 * masked so that we can safely restore the mdscr and get on with
876 * handling the syscall.
878 regs->pstate |= PSR_D_BIT;
879 return 1;
881 #else
882 static int __exception
883 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
885 return 0;
887 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
889 asmlinkage void __exception do_debug_exception(unsigned long addr_if_watchpoint,
890 unsigned int esr,
891 struct pt_regs *regs)
893 const struct fault_info *inf = esr_to_debug_fault_info(esr);
894 unsigned long pc = instruction_pointer(regs);
896 if (cortex_a76_erratum_1463225_debug_handler(regs))
897 return;
899 debug_exception_enter(regs);
901 if (user_mode(regs) && !is_ttbr0_addr(pc))
902 arm64_apply_bp_hardening();
904 if (inf->fn(addr_if_watchpoint, esr, regs)) {
905 arm64_notify_die(inf->name, regs,
906 inf->sig, inf->code, (void __user *)pc, esr);
909 debug_exception_exit(regs);
911 NOKPROBE_SYMBOL(do_debug_exception);