1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/filemap.h>
49 * FIXME: remove all knowledge of the buffer layer from the core VM
51 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 * Shared mappings implemented 30.11.1994. It's not fully working yet,
59 * Shared mappings now work. 15.8.1995 Bruno.
61 * finished 'unifying' the page and buffer cache and SMP-threaded the
62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
70 * ->i_mmap_rwsem (truncate_pagecache)
71 * ->private_lock (__free_pte->__set_page_dirty_buffers)
72 * ->swap_lock (exclusive_swap_page, others)
76 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
80 * ->page_table_lock or pte_lock (various, mainly in memory.c)
81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
84 * ->lock_page (access_process_vm)
86 * ->i_mutex (generic_perform_write)
87 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
90 * sb_lock (fs/fs-writeback.c)
91 * ->i_pages lock (__sync_single_inode)
94 * ->anon_vma.lock (vma_adjust)
97 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
99 * ->page_table_lock or pte_lock
100 * ->swap_lock (try_to_unmap_one)
101 * ->private_lock (try_to_unmap_one)
102 * ->i_pages lock (try_to_unmap_one)
103 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
105 * ->private_lock (page_remove_rmap->set_page_dirty)
106 * ->i_pages lock (page_remove_rmap->set_page_dirty)
107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
108 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
111 * ->inode->i_lock (zap_pte_range->set_page_dirty)
112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
115 * ->tasklist_lock (memory_failure, collect_procs_ao)
118 static void page_cache_delete(struct address_space
*mapping
,
119 struct page
*page
, void *shadow
)
121 XA_STATE(xas
, &mapping
->i_pages
, page
->index
);
124 mapping_set_update(&xas
, mapping
);
126 /* hugetlb pages are represented by a single entry in the xarray */
127 if (!PageHuge(page
)) {
128 xas_set_order(&xas
, page
->index
, compound_order(page
));
129 nr
= compound_nr(page
);
132 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
133 VM_BUG_ON_PAGE(PageTail(page
), page
);
134 VM_BUG_ON_PAGE(nr
!= 1 && shadow
, page
);
136 xas_store(&xas
, shadow
);
137 xas_init_marks(&xas
);
139 page
->mapping
= NULL
;
140 /* Leave page->index set: truncation lookup relies upon it */
143 mapping
->nrexceptional
+= nr
;
145 * Make sure the nrexceptional update is committed before
146 * the nrpages update so that final truncate racing
147 * with reclaim does not see both counters 0 at the
148 * same time and miss a shadow entry.
152 mapping
->nrpages
-= nr
;
155 static void unaccount_page_cache_page(struct address_space
*mapping
,
161 * if we're uptodate, flush out into the cleancache, otherwise
162 * invalidate any existing cleancache entries. We can't leave
163 * stale data around in the cleancache once our page is gone
165 if (PageUptodate(page
) && PageMappedToDisk(page
))
166 cleancache_put_page(page
);
168 cleancache_invalidate_page(mapping
, page
);
170 VM_BUG_ON_PAGE(PageTail(page
), page
);
171 VM_BUG_ON_PAGE(page_mapped(page
), page
);
172 if (!IS_ENABLED(CONFIG_DEBUG_VM
) && unlikely(page_mapped(page
))) {
175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
176 current
->comm
, page_to_pfn(page
));
177 dump_page(page
, "still mapped when deleted");
179 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
181 mapcount
= page_mapcount(page
);
182 if (mapping_exiting(mapping
) &&
183 page_count(page
) >= mapcount
+ 2) {
185 * All vmas have already been torn down, so it's
186 * a good bet that actually the page is unmapped,
187 * and we'd prefer not to leak it: if we're wrong,
188 * some other bad page check should catch it later.
190 page_mapcount_reset(page
);
191 page_ref_sub(page
, mapcount
);
195 /* hugetlb pages do not participate in page cache accounting. */
199 nr
= hpage_nr_pages(page
);
201 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, -nr
);
202 if (PageSwapBacked(page
)) {
203 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, -nr
);
204 if (PageTransHuge(page
))
205 __dec_node_page_state(page
, NR_SHMEM_THPS
);
206 } else if (PageTransHuge(page
)) {
207 __dec_node_page_state(page
, NR_FILE_THPS
);
208 filemap_nr_thps_dec(mapping
);
212 * At this point page must be either written or cleaned by
213 * truncate. Dirty page here signals a bug and loss of
216 * This fixes dirty accounting after removing the page entirely
217 * but leaves PageDirty set: it has no effect for truncated
218 * page and anyway will be cleared before returning page into
221 if (WARN_ON_ONCE(PageDirty(page
)))
222 account_page_cleaned(page
, mapping
, inode_to_wb(mapping
->host
));
226 * Delete a page from the page cache and free it. Caller has to make
227 * sure the page is locked and that nobody else uses it - or that usage
228 * is safe. The caller must hold the i_pages lock.
230 void __delete_from_page_cache(struct page
*page
, void *shadow
)
232 struct address_space
*mapping
= page
->mapping
;
234 trace_mm_filemap_delete_from_page_cache(page
);
236 unaccount_page_cache_page(mapping
, page
);
237 page_cache_delete(mapping
, page
, shadow
);
240 static void page_cache_free_page(struct address_space
*mapping
,
243 void (*freepage
)(struct page
*);
245 freepage
= mapping
->a_ops
->freepage
;
249 if (PageTransHuge(page
) && !PageHuge(page
)) {
250 page_ref_sub(page
, HPAGE_PMD_NR
);
251 VM_BUG_ON_PAGE(page_count(page
) <= 0, page
);
258 * delete_from_page_cache - delete page from page cache
259 * @page: the page which the kernel is trying to remove from page cache
261 * This must be called only on pages that have been verified to be in the page
262 * cache and locked. It will never put the page into the free list, the caller
263 * has a reference on the page.
265 void delete_from_page_cache(struct page
*page
)
267 struct address_space
*mapping
= page_mapping(page
);
270 BUG_ON(!PageLocked(page
));
271 xa_lock_irqsave(&mapping
->i_pages
, flags
);
272 __delete_from_page_cache(page
, NULL
);
273 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
275 page_cache_free_page(mapping
, page
);
277 EXPORT_SYMBOL(delete_from_page_cache
);
280 * page_cache_delete_batch - delete several pages from page cache
281 * @mapping: the mapping to which pages belong
282 * @pvec: pagevec with pages to delete
284 * The function walks over mapping->i_pages and removes pages passed in @pvec
285 * from the mapping. The function expects @pvec to be sorted by page index
286 * and is optimised for it to be dense.
287 * It tolerates holes in @pvec (mapping entries at those indices are not
288 * modified). The function expects only THP head pages to be present in the
291 * The function expects the i_pages lock to be held.
293 static void page_cache_delete_batch(struct address_space
*mapping
,
294 struct pagevec
*pvec
)
296 XA_STATE(xas
, &mapping
->i_pages
, pvec
->pages
[0]->index
);
301 mapping_set_update(&xas
, mapping
);
302 xas_for_each(&xas
, page
, ULONG_MAX
) {
303 if (i
>= pagevec_count(pvec
))
306 /* A swap/dax/shadow entry got inserted? Skip it. */
307 if (xa_is_value(page
))
310 * A page got inserted in our range? Skip it. We have our
311 * pages locked so they are protected from being removed.
312 * If we see a page whose index is higher than ours, it
313 * means our page has been removed, which shouldn't be
314 * possible because we're holding the PageLock.
316 if (page
!= pvec
->pages
[i
]) {
317 VM_BUG_ON_PAGE(page
->index
> pvec
->pages
[i
]->index
,
322 WARN_ON_ONCE(!PageLocked(page
));
324 if (page
->index
== xas
.xa_index
)
325 page
->mapping
= NULL
;
326 /* Leave page->index set: truncation lookup relies on it */
329 * Move to the next page in the vector if this is a regular
330 * page or the index is of the last sub-page of this compound
333 if (page
->index
+ compound_nr(page
) - 1 == xas
.xa_index
)
335 xas_store(&xas
, NULL
);
338 mapping
->nrpages
-= total_pages
;
341 void delete_from_page_cache_batch(struct address_space
*mapping
,
342 struct pagevec
*pvec
)
347 if (!pagevec_count(pvec
))
350 xa_lock_irqsave(&mapping
->i_pages
, flags
);
351 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
352 trace_mm_filemap_delete_from_page_cache(pvec
->pages
[i
]);
354 unaccount_page_cache_page(mapping
, pvec
->pages
[i
]);
356 page_cache_delete_batch(mapping
, pvec
);
357 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
359 for (i
= 0; i
< pagevec_count(pvec
); i
++)
360 page_cache_free_page(mapping
, pvec
->pages
[i
]);
363 int filemap_check_errors(struct address_space
*mapping
)
366 /* Check for outstanding write errors */
367 if (test_bit(AS_ENOSPC
, &mapping
->flags
) &&
368 test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
370 if (test_bit(AS_EIO
, &mapping
->flags
) &&
371 test_and_clear_bit(AS_EIO
, &mapping
->flags
))
375 EXPORT_SYMBOL(filemap_check_errors
);
377 static int filemap_check_and_keep_errors(struct address_space
*mapping
)
379 /* Check for outstanding write errors */
380 if (test_bit(AS_EIO
, &mapping
->flags
))
382 if (test_bit(AS_ENOSPC
, &mapping
->flags
))
388 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
389 * @mapping: address space structure to write
390 * @start: offset in bytes where the range starts
391 * @end: offset in bytes where the range ends (inclusive)
392 * @sync_mode: enable synchronous operation
394 * Start writeback against all of a mapping's dirty pages that lie
395 * within the byte offsets <start, end> inclusive.
397 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
398 * opposed to a regular memory cleansing writeback. The difference between
399 * these two operations is that if a dirty page/buffer is encountered, it must
400 * be waited upon, and not just skipped over.
402 * Return: %0 on success, negative error code otherwise.
404 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
405 loff_t end
, int sync_mode
)
408 struct writeback_control wbc
= {
409 .sync_mode
= sync_mode
,
410 .nr_to_write
= LONG_MAX
,
411 .range_start
= start
,
415 if (!mapping_cap_writeback_dirty(mapping
) ||
416 !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
419 wbc_attach_fdatawrite_inode(&wbc
, mapping
->host
);
420 ret
= do_writepages(mapping
, &wbc
);
421 wbc_detach_inode(&wbc
);
425 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
428 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
431 int filemap_fdatawrite(struct address_space
*mapping
)
433 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
435 EXPORT_SYMBOL(filemap_fdatawrite
);
437 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
440 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
442 EXPORT_SYMBOL(filemap_fdatawrite_range
);
445 * filemap_flush - mostly a non-blocking flush
446 * @mapping: target address_space
448 * This is a mostly non-blocking flush. Not suitable for data-integrity
449 * purposes - I/O may not be started against all dirty pages.
451 * Return: %0 on success, negative error code otherwise.
453 int filemap_flush(struct address_space
*mapping
)
455 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
457 EXPORT_SYMBOL(filemap_flush
);
460 * filemap_range_has_page - check if a page exists in range.
461 * @mapping: address space within which to check
462 * @start_byte: offset in bytes where the range starts
463 * @end_byte: offset in bytes where the range ends (inclusive)
465 * Find at least one page in the range supplied, usually used to check if
466 * direct writing in this range will trigger a writeback.
468 * Return: %true if at least one page exists in the specified range,
471 bool filemap_range_has_page(struct address_space
*mapping
,
472 loff_t start_byte
, loff_t end_byte
)
475 XA_STATE(xas
, &mapping
->i_pages
, start_byte
>> PAGE_SHIFT
);
476 pgoff_t max
= end_byte
>> PAGE_SHIFT
;
478 if (end_byte
< start_byte
)
483 page
= xas_find(&xas
, max
);
484 if (xas_retry(&xas
, page
))
486 /* Shadow entries don't count */
487 if (xa_is_value(page
))
490 * We don't need to try to pin this page; we're about to
491 * release the RCU lock anyway. It is enough to know that
492 * there was a page here recently.
500 EXPORT_SYMBOL(filemap_range_has_page
);
502 static void __filemap_fdatawait_range(struct address_space
*mapping
,
503 loff_t start_byte
, loff_t end_byte
)
505 pgoff_t index
= start_byte
>> PAGE_SHIFT
;
506 pgoff_t end
= end_byte
>> PAGE_SHIFT
;
510 if (end_byte
< start_byte
)
514 while (index
<= end
) {
517 nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
, &index
,
518 end
, PAGECACHE_TAG_WRITEBACK
);
522 for (i
= 0; i
< nr_pages
; i
++) {
523 struct page
*page
= pvec
.pages
[i
];
525 wait_on_page_writeback(page
);
526 ClearPageError(page
);
528 pagevec_release(&pvec
);
534 * filemap_fdatawait_range - wait for writeback to complete
535 * @mapping: address space structure to wait for
536 * @start_byte: offset in bytes where the range starts
537 * @end_byte: offset in bytes where the range ends (inclusive)
539 * Walk the list of under-writeback pages of the given address space
540 * in the given range and wait for all of them. Check error status of
541 * the address space and return it.
543 * Since the error status of the address space is cleared by this function,
544 * callers are responsible for checking the return value and handling and/or
545 * reporting the error.
547 * Return: error status of the address space.
549 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
552 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
553 return filemap_check_errors(mapping
);
555 EXPORT_SYMBOL(filemap_fdatawait_range
);
558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559 * @mapping: address space structure to wait for
560 * @start_byte: offset in bytes where the range starts
561 * @end_byte: offset in bytes where the range ends (inclusive)
563 * Walk the list of under-writeback pages of the given address space in the
564 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
565 * this function does not clear error status of the address space.
567 * Use this function if callers don't handle errors themselves. Expected
568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
571 int filemap_fdatawait_range_keep_errors(struct address_space
*mapping
,
572 loff_t start_byte
, loff_t end_byte
)
574 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
575 return filemap_check_and_keep_errors(mapping
);
577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors
);
580 * file_fdatawait_range - wait for writeback to complete
581 * @file: file pointing to address space structure to wait for
582 * @start_byte: offset in bytes where the range starts
583 * @end_byte: offset in bytes where the range ends (inclusive)
585 * Walk the list of under-writeback pages of the address space that file
586 * refers to, in the given range and wait for all of them. Check error
587 * status of the address space vs. the file->f_wb_err cursor and return it.
589 * Since the error status of the file is advanced by this function,
590 * callers are responsible for checking the return value and handling and/or
591 * reporting the error.
593 * Return: error status of the address space vs. the file->f_wb_err cursor.
595 int file_fdatawait_range(struct file
*file
, loff_t start_byte
, loff_t end_byte
)
597 struct address_space
*mapping
= file
->f_mapping
;
599 __filemap_fdatawait_range(mapping
, start_byte
, end_byte
);
600 return file_check_and_advance_wb_err(file
);
602 EXPORT_SYMBOL(file_fdatawait_range
);
605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606 * @mapping: address space structure to wait for
608 * Walk the list of under-writeback pages of the given address space
609 * and wait for all of them. Unlike filemap_fdatawait(), this function
610 * does not clear error status of the address space.
612 * Use this function if callers don't handle errors themselves. Expected
613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
616 * Return: error status of the address space.
618 int filemap_fdatawait_keep_errors(struct address_space
*mapping
)
620 __filemap_fdatawait_range(mapping
, 0, LLONG_MAX
);
621 return filemap_check_and_keep_errors(mapping
);
623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors
);
625 /* Returns true if writeback might be needed or already in progress. */
626 static bool mapping_needs_writeback(struct address_space
*mapping
)
628 if (dax_mapping(mapping
))
629 return mapping
->nrexceptional
;
631 return mapping
->nrpages
;
634 int filemap_write_and_wait(struct address_space
*mapping
)
638 if (mapping_needs_writeback(mapping
)) {
639 err
= filemap_fdatawrite(mapping
);
641 * Even if the above returned error, the pages may be
642 * written partially (e.g. -ENOSPC), so we wait for it.
643 * But the -EIO is special case, it may indicate the worst
644 * thing (e.g. bug) happened, so we avoid waiting for it.
647 int err2
= filemap_fdatawait(mapping
);
651 /* Clear any previously stored errors */
652 filemap_check_errors(mapping
);
655 err
= filemap_check_errors(mapping
);
659 EXPORT_SYMBOL(filemap_write_and_wait
);
662 * filemap_write_and_wait_range - write out & wait on a file range
663 * @mapping: the address_space for the pages
664 * @lstart: offset in bytes where the range starts
665 * @lend: offset in bytes where the range ends (inclusive)
667 * Write out and wait upon file offsets lstart->lend, inclusive.
669 * Note that @lend is inclusive (describes the last byte to be written) so
670 * that this function can be used to write to the very end-of-file (end = -1).
672 * Return: error status of the address space.
674 int filemap_write_and_wait_range(struct address_space
*mapping
,
675 loff_t lstart
, loff_t lend
)
679 if (mapping_needs_writeback(mapping
)) {
680 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
682 /* See comment of filemap_write_and_wait() */
684 int err2
= filemap_fdatawait_range(mapping
,
689 /* Clear any previously stored errors */
690 filemap_check_errors(mapping
);
693 err
= filemap_check_errors(mapping
);
697 EXPORT_SYMBOL(filemap_write_and_wait_range
);
699 void __filemap_set_wb_err(struct address_space
*mapping
, int err
)
701 errseq_t eseq
= errseq_set(&mapping
->wb_err
, err
);
703 trace_filemap_set_wb_err(mapping
, eseq
);
705 EXPORT_SYMBOL(__filemap_set_wb_err
);
708 * file_check_and_advance_wb_err - report wb error (if any) that was previously
709 * and advance wb_err to current one
710 * @file: struct file on which the error is being reported
712 * When userland calls fsync (or something like nfsd does the equivalent), we
713 * want to report any writeback errors that occurred since the last fsync (or
714 * since the file was opened if there haven't been any).
716 * Grab the wb_err from the mapping. If it matches what we have in the file,
717 * then just quickly return 0. The file is all caught up.
719 * If it doesn't match, then take the mapping value, set the "seen" flag in
720 * it and try to swap it into place. If it works, or another task beat us
721 * to it with the new value, then update the f_wb_err and return the error
722 * portion. The error at this point must be reported via proper channels
723 * (a'la fsync, or NFS COMMIT operation, etc.).
725 * While we handle mapping->wb_err with atomic operations, the f_wb_err
726 * value is protected by the f_lock since we must ensure that it reflects
727 * the latest value swapped in for this file descriptor.
729 * Return: %0 on success, negative error code otherwise.
731 int file_check_and_advance_wb_err(struct file
*file
)
734 errseq_t old
= READ_ONCE(file
->f_wb_err
);
735 struct address_space
*mapping
= file
->f_mapping
;
737 /* Locklessly handle the common case where nothing has changed */
738 if (errseq_check(&mapping
->wb_err
, old
)) {
739 /* Something changed, must use slow path */
740 spin_lock(&file
->f_lock
);
741 old
= file
->f_wb_err
;
742 err
= errseq_check_and_advance(&mapping
->wb_err
,
744 trace_file_check_and_advance_wb_err(file
, old
);
745 spin_unlock(&file
->f_lock
);
749 * We're mostly using this function as a drop in replacement for
750 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
751 * that the legacy code would have had on these flags.
753 clear_bit(AS_EIO
, &mapping
->flags
);
754 clear_bit(AS_ENOSPC
, &mapping
->flags
);
757 EXPORT_SYMBOL(file_check_and_advance_wb_err
);
760 * file_write_and_wait_range - write out & wait on a file range
761 * @file: file pointing to address_space with pages
762 * @lstart: offset in bytes where the range starts
763 * @lend: offset in bytes where the range ends (inclusive)
765 * Write out and wait upon file offsets lstart->lend, inclusive.
767 * Note that @lend is inclusive (describes the last byte to be written) so
768 * that this function can be used to write to the very end-of-file (end = -1).
770 * After writing out and waiting on the data, we check and advance the
771 * f_wb_err cursor to the latest value, and return any errors detected there.
773 * Return: %0 on success, negative error code otherwise.
775 int file_write_and_wait_range(struct file
*file
, loff_t lstart
, loff_t lend
)
778 struct address_space
*mapping
= file
->f_mapping
;
780 if (mapping_needs_writeback(mapping
)) {
781 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
783 /* See comment of filemap_write_and_wait() */
785 __filemap_fdatawait_range(mapping
, lstart
, lend
);
787 err2
= file_check_and_advance_wb_err(file
);
792 EXPORT_SYMBOL(file_write_and_wait_range
);
795 * replace_page_cache_page - replace a pagecache page with a new one
796 * @old: page to be replaced
797 * @new: page to replace with
798 * @gfp_mask: allocation mode
800 * This function replaces a page in the pagecache with a new one. On
801 * success it acquires the pagecache reference for the new page and
802 * drops it for the old page. Both the old and new pages must be
803 * locked. This function does not add the new page to the LRU, the
804 * caller must do that.
806 * The remove + add is atomic. This function cannot fail.
810 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
812 struct address_space
*mapping
= old
->mapping
;
813 void (*freepage
)(struct page
*) = mapping
->a_ops
->freepage
;
814 pgoff_t offset
= old
->index
;
815 XA_STATE(xas
, &mapping
->i_pages
, offset
);
818 VM_BUG_ON_PAGE(!PageLocked(old
), old
);
819 VM_BUG_ON_PAGE(!PageLocked(new), new);
820 VM_BUG_ON_PAGE(new->mapping
, new);
823 new->mapping
= mapping
;
826 xas_lock_irqsave(&xas
, flags
);
827 xas_store(&xas
, new);
830 /* hugetlb pages do not participate in page cache accounting. */
832 __dec_node_page_state(new, NR_FILE_PAGES
);
834 __inc_node_page_state(new, NR_FILE_PAGES
);
835 if (PageSwapBacked(old
))
836 __dec_node_page_state(new, NR_SHMEM
);
837 if (PageSwapBacked(new))
838 __inc_node_page_state(new, NR_SHMEM
);
839 xas_unlock_irqrestore(&xas
, flags
);
840 mem_cgroup_migrate(old
, new);
847 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
849 static int __add_to_page_cache_locked(struct page
*page
,
850 struct address_space
*mapping
,
851 pgoff_t offset
, gfp_t gfp_mask
,
854 XA_STATE(xas
, &mapping
->i_pages
, offset
);
855 int huge
= PageHuge(page
);
856 struct mem_cgroup
*memcg
;
860 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
861 VM_BUG_ON_PAGE(PageSwapBacked(page
), page
);
862 mapping_set_update(&xas
, mapping
);
865 error
= mem_cgroup_try_charge(page
, current
->mm
,
866 gfp_mask
, &memcg
, false);
872 page
->mapping
= mapping
;
873 page
->index
= offset
;
877 old
= xas_load(&xas
);
878 if (old
&& !xa_is_value(old
))
879 xas_set_err(&xas
, -EEXIST
);
880 xas_store(&xas
, page
);
884 if (xa_is_value(old
)) {
885 mapping
->nrexceptional
--;
891 /* hugetlb pages do not participate in page cache accounting */
893 __inc_node_page_state(page
, NR_FILE_PAGES
);
895 xas_unlock_irq(&xas
);
896 } while (xas_nomem(&xas
, gfp_mask
& GFP_RECLAIM_MASK
));
902 mem_cgroup_commit_charge(page
, memcg
, false, false);
903 trace_mm_filemap_add_to_page_cache(page
);
906 page
->mapping
= NULL
;
907 /* Leave page->index set: truncation relies upon it */
909 mem_cgroup_cancel_charge(page
, memcg
, false);
911 return xas_error(&xas
);
913 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked
, ERRNO
);
916 * add_to_page_cache_locked - add a locked page to the pagecache
918 * @mapping: the page's address_space
919 * @offset: page index
920 * @gfp_mask: page allocation mode
922 * This function is used to add a page to the pagecache. It must be locked.
923 * This function does not add the page to the LRU. The caller must do that.
925 * Return: %0 on success, negative error code otherwise.
927 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
928 pgoff_t offset
, gfp_t gfp_mask
)
930 return __add_to_page_cache_locked(page
, mapping
, offset
,
933 EXPORT_SYMBOL(add_to_page_cache_locked
);
935 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
936 pgoff_t offset
, gfp_t gfp_mask
)
941 __SetPageLocked(page
);
942 ret
= __add_to_page_cache_locked(page
, mapping
, offset
,
945 __ClearPageLocked(page
);
948 * The page might have been evicted from cache only
949 * recently, in which case it should be activated like
950 * any other repeatedly accessed page.
951 * The exception is pages getting rewritten; evicting other
952 * data from the working set, only to cache data that will
953 * get overwritten with something else, is a waste of memory.
955 WARN_ON_ONCE(PageActive(page
));
956 if (!(gfp_mask
& __GFP_WRITE
) && shadow
)
957 workingset_refault(page
, shadow
);
962 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
965 struct page
*__page_cache_alloc(gfp_t gfp
)
970 if (cpuset_do_page_mem_spread()) {
971 unsigned int cpuset_mems_cookie
;
973 cpuset_mems_cookie
= read_mems_allowed_begin();
974 n
= cpuset_mem_spread_node();
975 page
= __alloc_pages_node(n
, gfp
, 0);
976 } while (!page
&& read_mems_allowed_retry(cpuset_mems_cookie
));
980 return alloc_pages(gfp
, 0);
982 EXPORT_SYMBOL(__page_cache_alloc
);
986 * In order to wait for pages to become available there must be
987 * waitqueues associated with pages. By using a hash table of
988 * waitqueues where the bucket discipline is to maintain all
989 * waiters on the same queue and wake all when any of the pages
990 * become available, and for the woken contexts to check to be
991 * sure the appropriate page became available, this saves space
992 * at a cost of "thundering herd" phenomena during rare hash
995 #define PAGE_WAIT_TABLE_BITS 8
996 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
997 static wait_queue_head_t page_wait_table
[PAGE_WAIT_TABLE_SIZE
] __cacheline_aligned
;
999 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
1001 return &page_wait_table
[hash_ptr(page
, PAGE_WAIT_TABLE_BITS
)];
1004 void __init
pagecache_init(void)
1008 for (i
= 0; i
< PAGE_WAIT_TABLE_SIZE
; i
++)
1009 init_waitqueue_head(&page_wait_table
[i
]);
1011 page_writeback_init();
1014 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1015 struct wait_page_key
{
1021 struct wait_page_queue
{
1024 wait_queue_entry_t wait
;
1027 static int wake_page_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *arg
)
1029 struct wait_page_key
*key
= arg
;
1030 struct wait_page_queue
*wait_page
1031 = container_of(wait
, struct wait_page_queue
, wait
);
1033 if (wait_page
->page
!= key
->page
)
1035 key
->page_match
= 1;
1037 if (wait_page
->bit_nr
!= key
->bit_nr
)
1041 * Stop walking if it's locked.
1042 * Is this safe if put_and_wait_on_page_locked() is in use?
1043 * Yes: the waker must hold a reference to this page, and if PG_locked
1044 * has now already been set by another task, that task must also hold
1045 * a reference to the *same usage* of this page; so there is no need
1046 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1048 if (test_bit(key
->bit_nr
, &key
->page
->flags
))
1051 return autoremove_wake_function(wait
, mode
, sync
, key
);
1054 static void wake_up_page_bit(struct page
*page
, int bit_nr
)
1056 wait_queue_head_t
*q
= page_waitqueue(page
);
1057 struct wait_page_key key
;
1058 unsigned long flags
;
1059 wait_queue_entry_t bookmark
;
1062 key
.bit_nr
= bit_nr
;
1066 bookmark
.private = NULL
;
1067 bookmark
.func
= NULL
;
1068 INIT_LIST_HEAD(&bookmark
.entry
);
1070 spin_lock_irqsave(&q
->lock
, flags
);
1071 __wake_up_locked_key_bookmark(q
, TASK_NORMAL
, &key
, &bookmark
);
1073 while (bookmark
.flags
& WQ_FLAG_BOOKMARK
) {
1075 * Take a breather from holding the lock,
1076 * allow pages that finish wake up asynchronously
1077 * to acquire the lock and remove themselves
1080 spin_unlock_irqrestore(&q
->lock
, flags
);
1082 spin_lock_irqsave(&q
->lock
, flags
);
1083 __wake_up_locked_key_bookmark(q
, TASK_NORMAL
, &key
, &bookmark
);
1087 * It is possible for other pages to have collided on the waitqueue
1088 * hash, so in that case check for a page match. That prevents a long-
1091 * It is still possible to miss a case here, when we woke page waiters
1092 * and removed them from the waitqueue, but there are still other
1095 if (!waitqueue_active(q
) || !key
.page_match
) {
1096 ClearPageWaiters(page
);
1098 * It's possible to miss clearing Waiters here, when we woke
1099 * our page waiters, but the hashed waitqueue has waiters for
1100 * other pages on it.
1102 * That's okay, it's a rare case. The next waker will clear it.
1105 spin_unlock_irqrestore(&q
->lock
, flags
);
1108 static void wake_up_page(struct page
*page
, int bit
)
1110 if (!PageWaiters(page
))
1112 wake_up_page_bit(page
, bit
);
1116 * A choice of three behaviors for wait_on_page_bit_common():
1119 EXCLUSIVE
, /* Hold ref to page and take the bit when woken, like
1120 * __lock_page() waiting on then setting PG_locked.
1122 SHARED
, /* Hold ref to page and check the bit when woken, like
1123 * wait_on_page_writeback() waiting on PG_writeback.
1125 DROP
, /* Drop ref to page before wait, no check when woken,
1126 * like put_and_wait_on_page_locked() on PG_locked.
1130 static inline int wait_on_page_bit_common(wait_queue_head_t
*q
,
1131 struct page
*page
, int bit_nr
, int state
, enum behavior behavior
)
1133 struct wait_page_queue wait_page
;
1134 wait_queue_entry_t
*wait
= &wait_page
.wait
;
1136 bool thrashing
= false;
1137 bool delayacct
= false;
1138 unsigned long pflags
;
1141 if (bit_nr
== PG_locked
&&
1142 !PageUptodate(page
) && PageWorkingset(page
)) {
1143 if (!PageSwapBacked(page
)) {
1144 delayacct_thrashing_start();
1147 psi_memstall_enter(&pflags
);
1152 wait
->flags
= behavior
== EXCLUSIVE
? WQ_FLAG_EXCLUSIVE
: 0;
1153 wait
->func
= wake_page_function
;
1154 wait_page
.page
= page
;
1155 wait_page
.bit_nr
= bit_nr
;
1158 spin_lock_irq(&q
->lock
);
1160 if (likely(list_empty(&wait
->entry
))) {
1161 __add_wait_queue_entry_tail(q
, wait
);
1162 SetPageWaiters(page
);
1165 set_current_state(state
);
1167 spin_unlock_irq(&q
->lock
);
1169 bit_is_set
= test_bit(bit_nr
, &page
->flags
);
1170 if (behavior
== DROP
)
1173 if (likely(bit_is_set
))
1176 if (behavior
== EXCLUSIVE
) {
1177 if (!test_and_set_bit_lock(bit_nr
, &page
->flags
))
1179 } else if (behavior
== SHARED
) {
1180 if (!test_bit(bit_nr
, &page
->flags
))
1184 if (signal_pending_state(state
, current
)) {
1189 if (behavior
== DROP
) {
1191 * We can no longer safely access page->flags:
1192 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1193 * there is a risk of waiting forever on a page reused
1194 * for something that keeps it locked indefinitely.
1195 * But best check for -EINTR above before breaking.
1201 finish_wait(q
, wait
);
1205 delayacct_thrashing_end();
1206 psi_memstall_leave(&pflags
);
1210 * A signal could leave PageWaiters set. Clearing it here if
1211 * !waitqueue_active would be possible (by open-coding finish_wait),
1212 * but still fail to catch it in the case of wait hash collision. We
1213 * already can fail to clear wait hash collision cases, so don't
1214 * bother with signals either.
1220 void wait_on_page_bit(struct page
*page
, int bit_nr
)
1222 wait_queue_head_t
*q
= page_waitqueue(page
);
1223 wait_on_page_bit_common(q
, page
, bit_nr
, TASK_UNINTERRUPTIBLE
, SHARED
);
1225 EXPORT_SYMBOL(wait_on_page_bit
);
1227 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
1229 wait_queue_head_t
*q
= page_waitqueue(page
);
1230 return wait_on_page_bit_common(q
, page
, bit_nr
, TASK_KILLABLE
, SHARED
);
1232 EXPORT_SYMBOL(wait_on_page_bit_killable
);
1235 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1236 * @page: The page to wait for.
1238 * The caller should hold a reference on @page. They expect the page to
1239 * become unlocked relatively soon, but do not wish to hold up migration
1240 * (for example) by holding the reference while waiting for the page to
1241 * come unlocked. After this function returns, the caller should not
1242 * dereference @page.
1244 void put_and_wait_on_page_locked(struct page
*page
)
1246 wait_queue_head_t
*q
;
1248 page
= compound_head(page
);
1249 q
= page_waitqueue(page
);
1250 wait_on_page_bit_common(q
, page
, PG_locked
, TASK_UNINTERRUPTIBLE
, DROP
);
1254 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1255 * @page: Page defining the wait queue of interest
1256 * @waiter: Waiter to add to the queue
1258 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1260 void add_page_wait_queue(struct page
*page
, wait_queue_entry_t
*waiter
)
1262 wait_queue_head_t
*q
= page_waitqueue(page
);
1263 unsigned long flags
;
1265 spin_lock_irqsave(&q
->lock
, flags
);
1266 __add_wait_queue_entry_tail(q
, waiter
);
1267 SetPageWaiters(page
);
1268 spin_unlock_irqrestore(&q
->lock
, flags
);
1270 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
1272 #ifndef clear_bit_unlock_is_negative_byte
1275 * PG_waiters is the high bit in the same byte as PG_lock.
1277 * On x86 (and on many other architectures), we can clear PG_lock and
1278 * test the sign bit at the same time. But if the architecture does
1279 * not support that special operation, we just do this all by hand
1282 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1283 * being cleared, but a memory barrier should be unneccssary since it is
1284 * in the same byte as PG_locked.
1286 static inline bool clear_bit_unlock_is_negative_byte(long nr
, volatile void *mem
)
1288 clear_bit_unlock(nr
, mem
);
1289 /* smp_mb__after_atomic(); */
1290 return test_bit(PG_waiters
, mem
);
1296 * unlock_page - unlock a locked page
1299 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1300 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1301 * mechanism between PageLocked pages and PageWriteback pages is shared.
1302 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1304 * Note that this depends on PG_waiters being the sign bit in the byte
1305 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1306 * clear the PG_locked bit and test PG_waiters at the same time fairly
1307 * portably (architectures that do LL/SC can test any bit, while x86 can
1308 * test the sign bit).
1310 void unlock_page(struct page
*page
)
1312 BUILD_BUG_ON(PG_waiters
!= 7);
1313 page
= compound_head(page
);
1314 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1315 if (clear_bit_unlock_is_negative_byte(PG_locked
, &page
->flags
))
1316 wake_up_page_bit(page
, PG_locked
);
1318 EXPORT_SYMBOL(unlock_page
);
1321 * end_page_writeback - end writeback against a page
1324 void end_page_writeback(struct page
*page
)
1327 * TestClearPageReclaim could be used here but it is an atomic
1328 * operation and overkill in this particular case. Failing to
1329 * shuffle a page marked for immediate reclaim is too mild to
1330 * justify taking an atomic operation penalty at the end of
1331 * ever page writeback.
1333 if (PageReclaim(page
)) {
1334 ClearPageReclaim(page
);
1335 rotate_reclaimable_page(page
);
1338 if (!test_clear_page_writeback(page
))
1341 smp_mb__after_atomic();
1342 wake_up_page(page
, PG_writeback
);
1344 EXPORT_SYMBOL(end_page_writeback
);
1347 * After completing I/O on a page, call this routine to update the page
1348 * flags appropriately
1350 void page_endio(struct page
*page
, bool is_write
, int err
)
1354 SetPageUptodate(page
);
1356 ClearPageUptodate(page
);
1362 struct address_space
*mapping
;
1365 mapping
= page_mapping(page
);
1367 mapping_set_error(mapping
, err
);
1369 end_page_writeback(page
);
1372 EXPORT_SYMBOL_GPL(page_endio
);
1375 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1376 * @__page: the page to lock
1378 void __lock_page(struct page
*__page
)
1380 struct page
*page
= compound_head(__page
);
1381 wait_queue_head_t
*q
= page_waitqueue(page
);
1382 wait_on_page_bit_common(q
, page
, PG_locked
, TASK_UNINTERRUPTIBLE
,
1385 EXPORT_SYMBOL(__lock_page
);
1387 int __lock_page_killable(struct page
*__page
)
1389 struct page
*page
= compound_head(__page
);
1390 wait_queue_head_t
*q
= page_waitqueue(page
);
1391 return wait_on_page_bit_common(q
, page
, PG_locked
, TASK_KILLABLE
,
1394 EXPORT_SYMBOL_GPL(__lock_page_killable
);
1398 * 1 - page is locked; mmap_sem is still held.
1399 * 0 - page is not locked.
1400 * mmap_sem has been released (up_read()), unless flags had both
1401 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1402 * which case mmap_sem is still held.
1404 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1405 * with the page locked and the mmap_sem unperturbed.
1407 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
1410 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1412 * CAUTION! In this case, mmap_sem is not released
1413 * even though return 0.
1415 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
1418 up_read(&mm
->mmap_sem
);
1419 if (flags
& FAULT_FLAG_KILLABLE
)
1420 wait_on_page_locked_killable(page
);
1422 wait_on_page_locked(page
);
1425 if (flags
& FAULT_FLAG_KILLABLE
) {
1428 ret
= __lock_page_killable(page
);
1430 up_read(&mm
->mmap_sem
);
1440 * page_cache_next_miss() - Find the next gap in the page cache.
1441 * @mapping: Mapping.
1443 * @max_scan: Maximum range to search.
1445 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1446 * gap with the lowest index.
1448 * This function may be called under the rcu_read_lock. However, this will
1449 * not atomically search a snapshot of the cache at a single point in time.
1450 * For example, if a gap is created at index 5, then subsequently a gap is
1451 * created at index 10, page_cache_next_miss covering both indices may
1452 * return 10 if called under the rcu_read_lock.
1454 * Return: The index of the gap if found, otherwise an index outside the
1455 * range specified (in which case 'return - index >= max_scan' will be true).
1456 * In the rare case of index wrap-around, 0 will be returned.
1458 pgoff_t
page_cache_next_miss(struct address_space
*mapping
,
1459 pgoff_t index
, unsigned long max_scan
)
1461 XA_STATE(xas
, &mapping
->i_pages
, index
);
1463 while (max_scan
--) {
1464 void *entry
= xas_next(&xas
);
1465 if (!entry
|| xa_is_value(entry
))
1467 if (xas
.xa_index
== 0)
1471 return xas
.xa_index
;
1473 EXPORT_SYMBOL(page_cache_next_miss
);
1476 * page_cache_prev_miss() - Find the previous gap in the page cache.
1477 * @mapping: Mapping.
1479 * @max_scan: Maximum range to search.
1481 * Search the range [max(index - max_scan + 1, 0), index] for the
1482 * gap with the highest index.
1484 * This function may be called under the rcu_read_lock. However, this will
1485 * not atomically search a snapshot of the cache at a single point in time.
1486 * For example, if a gap is created at index 10, then subsequently a gap is
1487 * created at index 5, page_cache_prev_miss() covering both indices may
1488 * return 5 if called under the rcu_read_lock.
1490 * Return: The index of the gap if found, otherwise an index outside the
1491 * range specified (in which case 'index - return >= max_scan' will be true).
1492 * In the rare case of wrap-around, ULONG_MAX will be returned.
1494 pgoff_t
page_cache_prev_miss(struct address_space
*mapping
,
1495 pgoff_t index
, unsigned long max_scan
)
1497 XA_STATE(xas
, &mapping
->i_pages
, index
);
1499 while (max_scan
--) {
1500 void *entry
= xas_prev(&xas
);
1501 if (!entry
|| xa_is_value(entry
))
1503 if (xas
.xa_index
== ULONG_MAX
)
1507 return xas
.xa_index
;
1509 EXPORT_SYMBOL(page_cache_prev_miss
);
1512 * find_get_entry - find and get a page cache entry
1513 * @mapping: the address_space to search
1514 * @offset: the page cache index
1516 * Looks up the page cache slot at @mapping & @offset. If there is a
1517 * page cache page, it is returned with an increased refcount.
1519 * If the slot holds a shadow entry of a previously evicted page, or a
1520 * swap entry from shmem/tmpfs, it is returned.
1522 * Return: the found page or shadow entry, %NULL if nothing is found.
1524 struct page
*find_get_entry(struct address_space
*mapping
, pgoff_t offset
)
1526 XA_STATE(xas
, &mapping
->i_pages
, offset
);
1532 page
= xas_load(&xas
);
1533 if (xas_retry(&xas
, page
))
1536 * A shadow entry of a recently evicted page, or a swap entry from
1537 * shmem/tmpfs. Return it without attempting to raise page count.
1539 if (!page
|| xa_is_value(page
))
1542 if (!page_cache_get_speculative(page
))
1546 * Has the page moved or been split?
1547 * This is part of the lockless pagecache protocol. See
1548 * include/linux/pagemap.h for details.
1550 if (unlikely(page
!= xas_reload(&xas
))) {
1554 page
= find_subpage(page
, offset
);
1560 EXPORT_SYMBOL(find_get_entry
);
1563 * find_lock_entry - locate, pin and lock a page cache entry
1564 * @mapping: the address_space to search
1565 * @offset: the page cache index
1567 * Looks up the page cache slot at @mapping & @offset. If there is a
1568 * page cache page, it is returned locked and with an increased
1571 * If the slot holds a shadow entry of a previously evicted page, or a
1572 * swap entry from shmem/tmpfs, it is returned.
1574 * find_lock_entry() may sleep.
1576 * Return: the found page or shadow entry, %NULL if nothing is found.
1578 struct page
*find_lock_entry(struct address_space
*mapping
, pgoff_t offset
)
1583 page
= find_get_entry(mapping
, offset
);
1584 if (page
&& !xa_is_value(page
)) {
1586 /* Has the page been truncated? */
1587 if (unlikely(page_mapping(page
) != mapping
)) {
1592 VM_BUG_ON_PAGE(page_to_pgoff(page
) != offset
, page
);
1596 EXPORT_SYMBOL(find_lock_entry
);
1599 * pagecache_get_page - find and get a page reference
1600 * @mapping: the address_space to search
1601 * @offset: the page index
1602 * @fgp_flags: PCG flags
1603 * @gfp_mask: gfp mask to use for the page cache data page allocation
1605 * Looks up the page cache slot at @mapping & @offset.
1607 * PCG flags modify how the page is returned.
1609 * @fgp_flags can be:
1611 * - FGP_ACCESSED: the page will be marked accessed
1612 * - FGP_LOCK: Page is return locked
1613 * - FGP_CREAT: If page is not present then a new page is allocated using
1614 * @gfp_mask and added to the page cache and the VM's LRU
1615 * list. The page is returned locked and with an increased
1617 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1618 * its own locking dance if the page is already in cache, or unlock the page
1619 * before returning if we had to add the page to pagecache.
1621 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1622 * if the GFP flags specified for FGP_CREAT are atomic.
1624 * If there is a page cache page, it is returned with an increased refcount.
1626 * Return: the found page or %NULL otherwise.
1628 struct page
*pagecache_get_page(struct address_space
*mapping
, pgoff_t offset
,
1629 int fgp_flags
, gfp_t gfp_mask
)
1634 page
= find_get_entry(mapping
, offset
);
1635 if (xa_is_value(page
))
1640 if (fgp_flags
& FGP_LOCK
) {
1641 if (fgp_flags
& FGP_NOWAIT
) {
1642 if (!trylock_page(page
)) {
1650 /* Has the page been truncated? */
1651 if (unlikely(compound_head(page
)->mapping
!= mapping
)) {
1656 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1659 if (fgp_flags
& FGP_ACCESSED
)
1660 mark_page_accessed(page
);
1663 if (!page
&& (fgp_flags
& FGP_CREAT
)) {
1665 if ((fgp_flags
& FGP_WRITE
) && mapping_cap_account_dirty(mapping
))
1666 gfp_mask
|= __GFP_WRITE
;
1667 if (fgp_flags
& FGP_NOFS
)
1668 gfp_mask
&= ~__GFP_FS
;
1670 page
= __page_cache_alloc(gfp_mask
);
1674 if (WARN_ON_ONCE(!(fgp_flags
& (FGP_LOCK
| FGP_FOR_MMAP
))))
1675 fgp_flags
|= FGP_LOCK
;
1677 /* Init accessed so avoid atomic mark_page_accessed later */
1678 if (fgp_flags
& FGP_ACCESSED
)
1679 __SetPageReferenced(page
);
1681 err
= add_to_page_cache_lru(page
, mapping
, offset
, gfp_mask
);
1682 if (unlikely(err
)) {
1690 * add_to_page_cache_lru locks the page, and for mmap we expect
1693 if (page
&& (fgp_flags
& FGP_FOR_MMAP
))
1699 EXPORT_SYMBOL(pagecache_get_page
);
1702 * find_get_entries - gang pagecache lookup
1703 * @mapping: The address_space to search
1704 * @start: The starting page cache index
1705 * @nr_entries: The maximum number of entries
1706 * @entries: Where the resulting entries are placed
1707 * @indices: The cache indices corresponding to the entries in @entries
1709 * find_get_entries() will search for and return a group of up to
1710 * @nr_entries entries in the mapping. The entries are placed at
1711 * @entries. find_get_entries() takes a reference against any actual
1714 * The search returns a group of mapping-contiguous page cache entries
1715 * with ascending indexes. There may be holes in the indices due to
1716 * not-present pages.
1718 * Any shadow entries of evicted pages, or swap entries from
1719 * shmem/tmpfs, are included in the returned array.
1721 * Return: the number of pages and shadow entries which were found.
1723 unsigned find_get_entries(struct address_space
*mapping
,
1724 pgoff_t start
, unsigned int nr_entries
,
1725 struct page
**entries
, pgoff_t
*indices
)
1727 XA_STATE(xas
, &mapping
->i_pages
, start
);
1729 unsigned int ret
= 0;
1735 xas_for_each(&xas
, page
, ULONG_MAX
) {
1736 if (xas_retry(&xas
, page
))
1739 * A shadow entry of a recently evicted page, a swap
1740 * entry from shmem/tmpfs or a DAX entry. Return it
1741 * without attempting to raise page count.
1743 if (xa_is_value(page
))
1746 if (!page_cache_get_speculative(page
))
1749 /* Has the page moved or been split? */
1750 if (unlikely(page
!= xas_reload(&xas
)))
1752 page
= find_subpage(page
, xas
.xa_index
);
1755 indices
[ret
] = xas
.xa_index
;
1756 entries
[ret
] = page
;
1757 if (++ret
== nr_entries
)
1770 * find_get_pages_range - gang pagecache lookup
1771 * @mapping: The address_space to search
1772 * @start: The starting page index
1773 * @end: The final page index (inclusive)
1774 * @nr_pages: The maximum number of pages
1775 * @pages: Where the resulting pages are placed
1777 * find_get_pages_range() will search for and return a group of up to @nr_pages
1778 * pages in the mapping starting at index @start and up to index @end
1779 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1780 * a reference against the returned pages.
1782 * The search returns a group of mapping-contiguous pages with ascending
1783 * indexes. There may be holes in the indices due to not-present pages.
1784 * We also update @start to index the next page for the traversal.
1786 * Return: the number of pages which were found. If this number is
1787 * smaller than @nr_pages, the end of specified range has been
1790 unsigned find_get_pages_range(struct address_space
*mapping
, pgoff_t
*start
,
1791 pgoff_t end
, unsigned int nr_pages
,
1792 struct page
**pages
)
1794 XA_STATE(xas
, &mapping
->i_pages
, *start
);
1798 if (unlikely(!nr_pages
))
1802 xas_for_each(&xas
, page
, end
) {
1803 if (xas_retry(&xas
, page
))
1805 /* Skip over shadow, swap and DAX entries */
1806 if (xa_is_value(page
))
1809 if (!page_cache_get_speculative(page
))
1812 /* Has the page moved or been split? */
1813 if (unlikely(page
!= xas_reload(&xas
)))
1816 pages
[ret
] = find_subpage(page
, xas
.xa_index
);
1817 if (++ret
== nr_pages
) {
1818 *start
= xas
.xa_index
+ 1;
1829 * We come here when there is no page beyond @end. We take care to not
1830 * overflow the index @start as it confuses some of the callers. This
1831 * breaks the iteration when there is a page at index -1 but that is
1832 * already broken anyway.
1834 if (end
== (pgoff_t
)-1)
1835 *start
= (pgoff_t
)-1;
1845 * find_get_pages_contig - gang contiguous pagecache lookup
1846 * @mapping: The address_space to search
1847 * @index: The starting page index
1848 * @nr_pages: The maximum number of pages
1849 * @pages: Where the resulting pages are placed
1851 * find_get_pages_contig() works exactly like find_get_pages(), except
1852 * that the returned number of pages are guaranteed to be contiguous.
1854 * Return: the number of pages which were found.
1856 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
1857 unsigned int nr_pages
, struct page
**pages
)
1859 XA_STATE(xas
, &mapping
->i_pages
, index
);
1861 unsigned int ret
= 0;
1863 if (unlikely(!nr_pages
))
1867 for (page
= xas_load(&xas
); page
; page
= xas_next(&xas
)) {
1868 if (xas_retry(&xas
, page
))
1871 * If the entry has been swapped out, we can stop looking.
1872 * No current caller is looking for DAX entries.
1874 if (xa_is_value(page
))
1877 if (!page_cache_get_speculative(page
))
1880 /* Has the page moved or been split? */
1881 if (unlikely(page
!= xas_reload(&xas
)))
1884 pages
[ret
] = find_subpage(page
, xas
.xa_index
);
1885 if (++ret
== nr_pages
)
1896 EXPORT_SYMBOL(find_get_pages_contig
);
1899 * find_get_pages_range_tag - find and return pages in given range matching @tag
1900 * @mapping: the address_space to search
1901 * @index: the starting page index
1902 * @end: The final page index (inclusive)
1903 * @tag: the tag index
1904 * @nr_pages: the maximum number of pages
1905 * @pages: where the resulting pages are placed
1907 * Like find_get_pages, except we only return pages which are tagged with
1908 * @tag. We update @index to index the next page for the traversal.
1910 * Return: the number of pages which were found.
1912 unsigned find_get_pages_range_tag(struct address_space
*mapping
, pgoff_t
*index
,
1913 pgoff_t end
, xa_mark_t tag
, unsigned int nr_pages
,
1914 struct page
**pages
)
1916 XA_STATE(xas
, &mapping
->i_pages
, *index
);
1920 if (unlikely(!nr_pages
))
1924 xas_for_each_marked(&xas
, page
, end
, tag
) {
1925 if (xas_retry(&xas
, page
))
1928 * Shadow entries should never be tagged, but this iteration
1929 * is lockless so there is a window for page reclaim to evict
1930 * a page we saw tagged. Skip over it.
1932 if (xa_is_value(page
))
1935 if (!page_cache_get_speculative(page
))
1938 /* Has the page moved or been split? */
1939 if (unlikely(page
!= xas_reload(&xas
)))
1942 pages
[ret
] = find_subpage(page
, xas
.xa_index
);
1943 if (++ret
== nr_pages
) {
1944 *index
= xas
.xa_index
+ 1;
1955 * We come here when we got to @end. We take care to not overflow the
1956 * index @index as it confuses some of the callers. This breaks the
1957 * iteration when there is a page at index -1 but that is already
1960 if (end
== (pgoff_t
)-1)
1961 *index
= (pgoff_t
)-1;
1969 EXPORT_SYMBOL(find_get_pages_range_tag
);
1972 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1973 * a _large_ part of the i/o request. Imagine the worst scenario:
1975 * ---R__________________________________________B__________
1976 * ^ reading here ^ bad block(assume 4k)
1978 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1979 * => failing the whole request => read(R) => read(R+1) =>
1980 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1981 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1982 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1984 * It is going insane. Fix it by quickly scaling down the readahead size.
1986 static void shrink_readahead_size_eio(struct file
*filp
,
1987 struct file_ra_state
*ra
)
1993 * generic_file_buffered_read - generic file read routine
1994 * @iocb: the iocb to read
1995 * @iter: data destination
1996 * @written: already copied
1998 * This is a generic file read routine, and uses the
1999 * mapping->a_ops->readpage() function for the actual low-level stuff.
2001 * This is really ugly. But the goto's actually try to clarify some
2002 * of the logic when it comes to error handling etc.
2005 * * total number of bytes copied, including those the were already @written
2006 * * negative error code if nothing was copied
2008 static ssize_t
generic_file_buffered_read(struct kiocb
*iocb
,
2009 struct iov_iter
*iter
, ssize_t written
)
2011 struct file
*filp
= iocb
->ki_filp
;
2012 struct address_space
*mapping
= filp
->f_mapping
;
2013 struct inode
*inode
= mapping
->host
;
2014 struct file_ra_state
*ra
= &filp
->f_ra
;
2015 loff_t
*ppos
= &iocb
->ki_pos
;
2019 unsigned long offset
; /* offset into pagecache page */
2020 unsigned int prev_offset
;
2023 if (unlikely(*ppos
>= inode
->i_sb
->s_maxbytes
))
2025 iov_iter_truncate(iter
, inode
->i_sb
->s_maxbytes
);
2027 index
= *ppos
>> PAGE_SHIFT
;
2028 prev_index
= ra
->prev_pos
>> PAGE_SHIFT
;
2029 prev_offset
= ra
->prev_pos
& (PAGE_SIZE
-1);
2030 last_index
= (*ppos
+ iter
->count
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
2031 offset
= *ppos
& ~PAGE_MASK
;
2037 unsigned long nr
, ret
;
2041 if (fatal_signal_pending(current
)) {
2046 page
= find_get_page(mapping
, index
);
2048 if (iocb
->ki_flags
& IOCB_NOWAIT
)
2050 page_cache_sync_readahead(mapping
,
2052 index
, last_index
- index
);
2053 page
= find_get_page(mapping
, index
);
2054 if (unlikely(page
== NULL
))
2055 goto no_cached_page
;
2057 if (PageReadahead(page
)) {
2058 page_cache_async_readahead(mapping
,
2060 index
, last_index
- index
);
2062 if (!PageUptodate(page
)) {
2063 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2069 * See comment in do_read_cache_page on why
2070 * wait_on_page_locked is used to avoid unnecessarily
2071 * serialisations and why it's safe.
2073 error
= wait_on_page_locked_killable(page
);
2074 if (unlikely(error
))
2075 goto readpage_error
;
2076 if (PageUptodate(page
))
2079 if (inode
->i_blkbits
== PAGE_SHIFT
||
2080 !mapping
->a_ops
->is_partially_uptodate
)
2081 goto page_not_up_to_date
;
2082 /* pipes can't handle partially uptodate pages */
2083 if (unlikely(iov_iter_is_pipe(iter
)))
2084 goto page_not_up_to_date
;
2085 if (!trylock_page(page
))
2086 goto page_not_up_to_date
;
2087 /* Did it get truncated before we got the lock? */
2089 goto page_not_up_to_date_locked
;
2090 if (!mapping
->a_ops
->is_partially_uptodate(page
,
2091 offset
, iter
->count
))
2092 goto page_not_up_to_date_locked
;
2097 * i_size must be checked after we know the page is Uptodate.
2099 * Checking i_size after the check allows us to calculate
2100 * the correct value for "nr", which means the zero-filled
2101 * part of the page is not copied back to userspace (unless
2102 * another truncate extends the file - this is desired though).
2105 isize
= i_size_read(inode
);
2106 end_index
= (isize
- 1) >> PAGE_SHIFT
;
2107 if (unlikely(!isize
|| index
> end_index
)) {
2112 /* nr is the maximum number of bytes to copy from this page */
2114 if (index
== end_index
) {
2115 nr
= ((isize
- 1) & ~PAGE_MASK
) + 1;
2123 /* If users can be writing to this page using arbitrary
2124 * virtual addresses, take care about potential aliasing
2125 * before reading the page on the kernel side.
2127 if (mapping_writably_mapped(mapping
))
2128 flush_dcache_page(page
);
2131 * When a sequential read accesses a page several times,
2132 * only mark it as accessed the first time.
2134 if (prev_index
!= index
|| offset
!= prev_offset
)
2135 mark_page_accessed(page
);
2139 * Ok, we have the page, and it's up-to-date, so
2140 * now we can copy it to user space...
2143 ret
= copy_page_to_iter(page
, offset
, nr
, iter
);
2145 index
+= offset
>> PAGE_SHIFT
;
2146 offset
&= ~PAGE_MASK
;
2147 prev_offset
= offset
;
2151 if (!iov_iter_count(iter
))
2159 page_not_up_to_date
:
2160 /* Get exclusive access to the page ... */
2161 error
= lock_page_killable(page
);
2162 if (unlikely(error
))
2163 goto readpage_error
;
2165 page_not_up_to_date_locked
:
2166 /* Did it get truncated before we got the lock? */
2167 if (!page
->mapping
) {
2173 /* Did somebody else fill it already? */
2174 if (PageUptodate(page
)) {
2181 * A previous I/O error may have been due to temporary
2182 * failures, eg. multipath errors.
2183 * PG_error will be set again if readpage fails.
2185 ClearPageError(page
);
2186 /* Start the actual read. The read will unlock the page. */
2187 error
= mapping
->a_ops
->readpage(filp
, page
);
2189 if (unlikely(error
)) {
2190 if (error
== AOP_TRUNCATED_PAGE
) {
2195 goto readpage_error
;
2198 if (!PageUptodate(page
)) {
2199 error
= lock_page_killable(page
);
2200 if (unlikely(error
))
2201 goto readpage_error
;
2202 if (!PageUptodate(page
)) {
2203 if (page
->mapping
== NULL
) {
2205 * invalidate_mapping_pages got it
2212 shrink_readahead_size_eio(filp
, ra
);
2214 goto readpage_error
;
2222 /* UHHUH! A synchronous read error occurred. Report it */
2228 * Ok, it wasn't cached, so we need to create a new
2231 page
= page_cache_alloc(mapping
);
2236 error
= add_to_page_cache_lru(page
, mapping
, index
,
2237 mapping_gfp_constraint(mapping
, GFP_KERNEL
));
2240 if (error
== -EEXIST
) {
2252 ra
->prev_pos
= prev_index
;
2253 ra
->prev_pos
<<= PAGE_SHIFT
;
2254 ra
->prev_pos
|= prev_offset
;
2256 *ppos
= ((loff_t
)index
<< PAGE_SHIFT
) + offset
;
2257 file_accessed(filp
);
2258 return written
? written
: error
;
2262 * generic_file_read_iter - generic filesystem read routine
2263 * @iocb: kernel I/O control block
2264 * @iter: destination for the data read
2266 * This is the "read_iter()" routine for all filesystems
2267 * that can use the page cache directly.
2269 * * number of bytes copied, even for partial reads
2270 * * negative error code if nothing was read
2273 generic_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
2275 size_t count
= iov_iter_count(iter
);
2279 goto out
; /* skip atime */
2281 if (iocb
->ki_flags
& IOCB_DIRECT
) {
2282 struct file
*file
= iocb
->ki_filp
;
2283 struct address_space
*mapping
= file
->f_mapping
;
2284 struct inode
*inode
= mapping
->host
;
2287 size
= i_size_read(inode
);
2288 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
2289 if (filemap_range_has_page(mapping
, iocb
->ki_pos
,
2290 iocb
->ki_pos
+ count
- 1))
2293 retval
= filemap_write_and_wait_range(mapping
,
2295 iocb
->ki_pos
+ count
- 1);
2300 file_accessed(file
);
2302 retval
= mapping
->a_ops
->direct_IO(iocb
, iter
);
2304 iocb
->ki_pos
+= retval
;
2307 iov_iter_revert(iter
, count
- iov_iter_count(iter
));
2310 * Btrfs can have a short DIO read if we encounter
2311 * compressed extents, so if there was an error, or if
2312 * we've already read everything we wanted to, or if
2313 * there was a short read because we hit EOF, go ahead
2314 * and return. Otherwise fallthrough to buffered io for
2315 * the rest of the read. Buffered reads will not work for
2316 * DAX files, so don't bother trying.
2318 if (retval
< 0 || !count
|| iocb
->ki_pos
>= size
||
2323 retval
= generic_file_buffered_read(iocb
, iter
, retval
);
2327 EXPORT_SYMBOL(generic_file_read_iter
);
2330 #define MMAP_LOTSAMISS (100)
2331 static struct file
*maybe_unlock_mmap_for_io(struct vm_fault
*vmf
,
2334 int flags
= vmf
->flags
;
2340 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2341 * anything, so we only pin the file and drop the mmap_sem if only
2342 * FAULT_FLAG_ALLOW_RETRY is set.
2344 if ((flags
& (FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
)) ==
2345 FAULT_FLAG_ALLOW_RETRY
) {
2346 fpin
= get_file(vmf
->vma
->vm_file
);
2347 up_read(&vmf
->vma
->vm_mm
->mmap_sem
);
2353 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2354 * @vmf - the vm_fault for this fault.
2355 * @page - the page to lock.
2356 * @fpin - the pointer to the file we may pin (or is already pinned).
2358 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2359 * It differs in that it actually returns the page locked if it returns 1 and 0
2360 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2361 * will point to the pinned file and needs to be fput()'ed at a later point.
2363 static int lock_page_maybe_drop_mmap(struct vm_fault
*vmf
, struct page
*page
,
2366 if (trylock_page(page
))
2370 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2371 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2372 * is supposed to work. We have way too many special cases..
2374 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
2377 *fpin
= maybe_unlock_mmap_for_io(vmf
, *fpin
);
2378 if (vmf
->flags
& FAULT_FLAG_KILLABLE
) {
2379 if (__lock_page_killable(page
)) {
2381 * We didn't have the right flags to drop the mmap_sem,
2382 * but all fault_handlers only check for fatal signals
2383 * if we return VM_FAULT_RETRY, so we need to drop the
2384 * mmap_sem here and return 0 if we don't have a fpin.
2387 up_read(&vmf
->vma
->vm_mm
->mmap_sem
);
2397 * Synchronous readahead happens when we don't even find a page in the page
2398 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2399 * to drop the mmap sem we return the file that was pinned in order for us to do
2400 * that. If we didn't pin a file then we return NULL. The file that is
2401 * returned needs to be fput()'ed when we're done with it.
2403 static struct file
*do_sync_mmap_readahead(struct vm_fault
*vmf
)
2405 struct file
*file
= vmf
->vma
->vm_file
;
2406 struct file_ra_state
*ra
= &file
->f_ra
;
2407 struct address_space
*mapping
= file
->f_mapping
;
2408 struct file
*fpin
= NULL
;
2409 pgoff_t offset
= vmf
->pgoff
;
2411 /* If we don't want any read-ahead, don't bother */
2412 if (vmf
->vma
->vm_flags
& VM_RAND_READ
)
2417 if (vmf
->vma
->vm_flags
& VM_SEQ_READ
) {
2418 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2419 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
2424 /* Avoid banging the cache line if not needed */
2425 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
2429 * Do we miss much more than hit in this file? If so,
2430 * stop bothering with read-ahead. It will only hurt.
2432 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
2438 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2439 ra
->start
= max_t(long, 0, offset
- ra
->ra_pages
/ 2);
2440 ra
->size
= ra
->ra_pages
;
2441 ra
->async_size
= ra
->ra_pages
/ 4;
2442 ra_submit(ra
, mapping
, file
);
2447 * Asynchronous readahead happens when we find the page and PG_readahead,
2448 * so we want to possibly extend the readahead further. We return the file that
2449 * was pinned if we have to drop the mmap_sem in order to do IO.
2451 static struct file
*do_async_mmap_readahead(struct vm_fault
*vmf
,
2454 struct file
*file
= vmf
->vma
->vm_file
;
2455 struct file_ra_state
*ra
= &file
->f_ra
;
2456 struct address_space
*mapping
= file
->f_mapping
;
2457 struct file
*fpin
= NULL
;
2458 pgoff_t offset
= vmf
->pgoff
;
2460 /* If we don't want any read-ahead, don't bother */
2461 if (vmf
->vma
->vm_flags
& VM_RAND_READ
)
2463 if (ra
->mmap_miss
> 0)
2465 if (PageReadahead(page
)) {
2466 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2467 page_cache_async_readahead(mapping
, ra
, file
,
2468 page
, offset
, ra
->ra_pages
);
2474 * filemap_fault - read in file data for page fault handling
2475 * @vmf: struct vm_fault containing details of the fault
2477 * filemap_fault() is invoked via the vma operations vector for a
2478 * mapped memory region to read in file data during a page fault.
2480 * The goto's are kind of ugly, but this streamlines the normal case of having
2481 * it in the page cache, and handles the special cases reasonably without
2482 * having a lot of duplicated code.
2484 * vma->vm_mm->mmap_sem must be held on entry.
2486 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2487 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2489 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2490 * has not been released.
2492 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2494 * Return: bitwise-OR of %VM_FAULT_ codes.
2496 vm_fault_t
filemap_fault(struct vm_fault
*vmf
)
2499 struct file
*file
= vmf
->vma
->vm_file
;
2500 struct file
*fpin
= NULL
;
2501 struct address_space
*mapping
= file
->f_mapping
;
2502 struct file_ra_state
*ra
= &file
->f_ra
;
2503 struct inode
*inode
= mapping
->host
;
2504 pgoff_t offset
= vmf
->pgoff
;
2509 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2510 if (unlikely(offset
>= max_off
))
2511 return VM_FAULT_SIGBUS
;
2514 * Do we have something in the page cache already?
2516 page
= find_get_page(mapping
, offset
);
2517 if (likely(page
) && !(vmf
->flags
& FAULT_FLAG_TRIED
)) {
2519 * We found the page, so try async readahead before
2520 * waiting for the lock.
2522 fpin
= do_async_mmap_readahead(vmf
, page
);
2524 /* No page in the page cache at all */
2525 count_vm_event(PGMAJFAULT
);
2526 count_memcg_event_mm(vmf
->vma
->vm_mm
, PGMAJFAULT
);
2527 ret
= VM_FAULT_MAJOR
;
2528 fpin
= do_sync_mmap_readahead(vmf
);
2530 page
= pagecache_get_page(mapping
, offset
,
2531 FGP_CREAT
|FGP_FOR_MMAP
,
2536 return vmf_error(-ENOMEM
);
2540 if (!lock_page_maybe_drop_mmap(vmf
, page
, &fpin
))
2543 /* Did it get truncated? */
2544 if (unlikely(compound_head(page
)->mapping
!= mapping
)) {
2549 VM_BUG_ON_PAGE(page_to_pgoff(page
) != offset
, page
);
2552 * We have a locked page in the page cache, now we need to check
2553 * that it's up-to-date. If not, it is going to be due to an error.
2555 if (unlikely(!PageUptodate(page
)))
2556 goto page_not_uptodate
;
2559 * We've made it this far and we had to drop our mmap_sem, now is the
2560 * time to return to the upper layer and have it re-find the vma and
2569 * Found the page and have a reference on it.
2570 * We must recheck i_size under page lock.
2572 max_off
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
2573 if (unlikely(offset
>= max_off
)) {
2576 return VM_FAULT_SIGBUS
;
2580 return ret
| VM_FAULT_LOCKED
;
2584 * Umm, take care of errors if the page isn't up-to-date.
2585 * Try to re-read it _once_. We do this synchronously,
2586 * because there really aren't any performance issues here
2587 * and we need to check for errors.
2589 ClearPageError(page
);
2590 fpin
= maybe_unlock_mmap_for_io(vmf
, fpin
);
2591 error
= mapping
->a_ops
->readpage(file
, page
);
2593 wait_on_page_locked(page
);
2594 if (!PageUptodate(page
))
2601 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
2604 /* Things didn't work out. Return zero to tell the mm layer so. */
2605 shrink_readahead_size_eio(file
, ra
);
2606 return VM_FAULT_SIGBUS
;
2610 * We dropped the mmap_sem, we need to return to the fault handler to
2611 * re-find the vma and come back and find our hopefully still populated
2618 return ret
| VM_FAULT_RETRY
;
2620 EXPORT_SYMBOL(filemap_fault
);
2622 void filemap_map_pages(struct vm_fault
*vmf
,
2623 pgoff_t start_pgoff
, pgoff_t end_pgoff
)
2625 struct file
*file
= vmf
->vma
->vm_file
;
2626 struct address_space
*mapping
= file
->f_mapping
;
2627 pgoff_t last_pgoff
= start_pgoff
;
2628 unsigned long max_idx
;
2629 XA_STATE(xas
, &mapping
->i_pages
, start_pgoff
);
2633 xas_for_each(&xas
, page
, end_pgoff
) {
2634 if (xas_retry(&xas
, page
))
2636 if (xa_is_value(page
))
2640 * Check for a locked page first, as a speculative
2641 * reference may adversely influence page migration.
2643 if (PageLocked(page
))
2645 if (!page_cache_get_speculative(page
))
2648 /* Has the page moved or been split? */
2649 if (unlikely(page
!= xas_reload(&xas
)))
2651 page
= find_subpage(page
, xas
.xa_index
);
2653 if (!PageUptodate(page
) ||
2654 PageReadahead(page
) ||
2657 if (!trylock_page(page
))
2660 if (page
->mapping
!= mapping
|| !PageUptodate(page
))
2663 max_idx
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2664 if (page
->index
>= max_idx
)
2667 if (file
->f_ra
.mmap_miss
> 0)
2668 file
->f_ra
.mmap_miss
--;
2670 vmf
->address
+= (xas
.xa_index
- last_pgoff
) << PAGE_SHIFT
;
2672 vmf
->pte
+= xas
.xa_index
- last_pgoff
;
2673 last_pgoff
= xas
.xa_index
;
2674 if (alloc_set_pte(vmf
, NULL
, page
))
2683 /* Huge page is mapped? No need to proceed. */
2684 if (pmd_trans_huge(*vmf
->pmd
))
2689 EXPORT_SYMBOL(filemap_map_pages
);
2691 vm_fault_t
filemap_page_mkwrite(struct vm_fault
*vmf
)
2693 struct page
*page
= vmf
->page
;
2694 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
2695 vm_fault_t ret
= VM_FAULT_LOCKED
;
2697 sb_start_pagefault(inode
->i_sb
);
2698 file_update_time(vmf
->vma
->vm_file
);
2700 if (page
->mapping
!= inode
->i_mapping
) {
2702 ret
= VM_FAULT_NOPAGE
;
2706 * We mark the page dirty already here so that when freeze is in
2707 * progress, we are guaranteed that writeback during freezing will
2708 * see the dirty page and writeprotect it again.
2710 set_page_dirty(page
);
2711 wait_for_stable_page(page
);
2713 sb_end_pagefault(inode
->i_sb
);
2717 const struct vm_operations_struct generic_file_vm_ops
= {
2718 .fault
= filemap_fault
,
2719 .map_pages
= filemap_map_pages
,
2720 .page_mkwrite
= filemap_page_mkwrite
,
2723 /* This is used for a general mmap of a disk file */
2725 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2727 struct address_space
*mapping
= file
->f_mapping
;
2729 if (!mapping
->a_ops
->readpage
)
2731 file_accessed(file
);
2732 vma
->vm_ops
= &generic_file_vm_ops
;
2737 * This is for filesystems which do not implement ->writepage.
2739 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2741 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
2743 return generic_file_mmap(file
, vma
);
2746 vm_fault_t
filemap_page_mkwrite(struct vm_fault
*vmf
)
2748 return VM_FAULT_SIGBUS
;
2750 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2754 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2758 #endif /* CONFIG_MMU */
2760 EXPORT_SYMBOL(filemap_page_mkwrite
);
2761 EXPORT_SYMBOL(generic_file_mmap
);
2762 EXPORT_SYMBOL(generic_file_readonly_mmap
);
2764 static struct page
*wait_on_page_read(struct page
*page
)
2766 if (!IS_ERR(page
)) {
2767 wait_on_page_locked(page
);
2768 if (!PageUptodate(page
)) {
2770 page
= ERR_PTR(-EIO
);
2776 static struct page
*do_read_cache_page(struct address_space
*mapping
,
2778 int (*filler
)(void *, struct page
*),
2785 page
= find_get_page(mapping
, index
);
2787 page
= __page_cache_alloc(gfp
);
2789 return ERR_PTR(-ENOMEM
);
2790 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
2791 if (unlikely(err
)) {
2795 /* Presumably ENOMEM for xarray node */
2796 return ERR_PTR(err
);
2801 err
= filler(data
, page
);
2803 err
= mapping
->a_ops
->readpage(data
, page
);
2807 return ERR_PTR(err
);
2810 page
= wait_on_page_read(page
);
2815 if (PageUptodate(page
))
2819 * Page is not up to date and may be locked due one of the following
2820 * case a: Page is being filled and the page lock is held
2821 * case b: Read/write error clearing the page uptodate status
2822 * case c: Truncation in progress (page locked)
2823 * case d: Reclaim in progress
2825 * Case a, the page will be up to date when the page is unlocked.
2826 * There is no need to serialise on the page lock here as the page
2827 * is pinned so the lock gives no additional protection. Even if the
2828 * the page is truncated, the data is still valid if PageUptodate as
2829 * it's a race vs truncate race.
2830 * Case b, the page will not be up to date
2831 * Case c, the page may be truncated but in itself, the data may still
2832 * be valid after IO completes as it's a read vs truncate race. The
2833 * operation must restart if the page is not uptodate on unlock but
2834 * otherwise serialising on page lock to stabilise the mapping gives
2835 * no additional guarantees to the caller as the page lock is
2836 * released before return.
2837 * Case d, similar to truncation. If reclaim holds the page lock, it
2838 * will be a race with remove_mapping that determines if the mapping
2839 * is valid on unlock but otherwise the data is valid and there is
2840 * no need to serialise with page lock.
2842 * As the page lock gives no additional guarantee, we optimistically
2843 * wait on the page to be unlocked and check if it's up to date and
2844 * use the page if it is. Otherwise, the page lock is required to
2845 * distinguish between the different cases. The motivation is that we
2846 * avoid spurious serialisations and wakeups when multiple processes
2847 * wait on the same page for IO to complete.
2849 wait_on_page_locked(page
);
2850 if (PageUptodate(page
))
2853 /* Distinguish between all the cases under the safety of the lock */
2856 /* Case c or d, restart the operation */
2857 if (!page
->mapping
) {
2863 /* Someone else locked and filled the page in a very small window */
2864 if (PageUptodate(page
)) {
2871 mark_page_accessed(page
);
2876 * read_cache_page - read into page cache, fill it if needed
2877 * @mapping: the page's address_space
2878 * @index: the page index
2879 * @filler: function to perform the read
2880 * @data: first arg to filler(data, page) function, often left as NULL
2882 * Read into the page cache. If a page already exists, and PageUptodate() is
2883 * not set, try to fill the page and wait for it to become unlocked.
2885 * If the page does not get brought uptodate, return -EIO.
2887 * Return: up to date page on success, ERR_PTR() on failure.
2889 struct page
*read_cache_page(struct address_space
*mapping
,
2891 int (*filler
)(void *, struct page
*),
2894 return do_read_cache_page(mapping
, index
, filler
, data
,
2895 mapping_gfp_mask(mapping
));
2897 EXPORT_SYMBOL(read_cache_page
);
2900 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2901 * @mapping: the page's address_space
2902 * @index: the page index
2903 * @gfp: the page allocator flags to use if allocating
2905 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2906 * any new page allocations done using the specified allocation flags.
2908 * If the page does not get brought uptodate, return -EIO.
2910 * Return: up to date page on success, ERR_PTR() on failure.
2912 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
2916 return do_read_cache_page(mapping
, index
, NULL
, NULL
, gfp
);
2918 EXPORT_SYMBOL(read_cache_page_gfp
);
2921 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2922 * LFS limits. If pos is under the limit it becomes a short access. If it
2923 * exceeds the limit we return -EFBIG.
2925 static int generic_write_check_limits(struct file
*file
, loff_t pos
,
2928 struct inode
*inode
= file
->f_mapping
->host
;
2929 loff_t max_size
= inode
->i_sb
->s_maxbytes
;
2930 loff_t limit
= rlimit(RLIMIT_FSIZE
);
2932 if (limit
!= RLIM_INFINITY
) {
2934 send_sig(SIGXFSZ
, current
, 0);
2937 *count
= min(*count
, limit
- pos
);
2940 if (!(file
->f_flags
& O_LARGEFILE
))
2941 max_size
= MAX_NON_LFS
;
2943 if (unlikely(pos
>= max_size
))
2946 *count
= min(*count
, max_size
- pos
);
2952 * Performs necessary checks before doing a write
2954 * Can adjust writing position or amount of bytes to write.
2955 * Returns appropriate error code that caller should return or
2956 * zero in case that write should be allowed.
2958 inline ssize_t
generic_write_checks(struct kiocb
*iocb
, struct iov_iter
*from
)
2960 struct file
*file
= iocb
->ki_filp
;
2961 struct inode
*inode
= file
->f_mapping
->host
;
2965 if (IS_SWAPFILE(inode
))
2968 if (!iov_iter_count(from
))
2971 /* FIXME: this is for backwards compatibility with 2.4 */
2972 if (iocb
->ki_flags
& IOCB_APPEND
)
2973 iocb
->ki_pos
= i_size_read(inode
);
2975 if ((iocb
->ki_flags
& IOCB_NOWAIT
) && !(iocb
->ki_flags
& IOCB_DIRECT
))
2978 count
= iov_iter_count(from
);
2979 ret
= generic_write_check_limits(file
, iocb
->ki_pos
, &count
);
2983 iov_iter_truncate(from
, count
);
2984 return iov_iter_count(from
);
2986 EXPORT_SYMBOL(generic_write_checks
);
2989 * Performs necessary checks before doing a clone.
2991 * Can adjust amount of bytes to clone via @req_count argument.
2992 * Returns appropriate error code that caller should return or
2993 * zero in case the clone should be allowed.
2995 int generic_remap_checks(struct file
*file_in
, loff_t pos_in
,
2996 struct file
*file_out
, loff_t pos_out
,
2997 loff_t
*req_count
, unsigned int remap_flags
)
2999 struct inode
*inode_in
= file_in
->f_mapping
->host
;
3000 struct inode
*inode_out
= file_out
->f_mapping
->host
;
3001 uint64_t count
= *req_count
;
3003 loff_t size_in
, size_out
;
3004 loff_t bs
= inode_out
->i_sb
->s_blocksize
;
3007 /* The start of both ranges must be aligned to an fs block. */
3008 if (!IS_ALIGNED(pos_in
, bs
) || !IS_ALIGNED(pos_out
, bs
))
3011 /* Ensure offsets don't wrap. */
3012 if (pos_in
+ count
< pos_in
|| pos_out
+ count
< pos_out
)
3015 size_in
= i_size_read(inode_in
);
3016 size_out
= i_size_read(inode_out
);
3018 /* Dedupe requires both ranges to be within EOF. */
3019 if ((remap_flags
& REMAP_FILE_DEDUP
) &&
3020 (pos_in
>= size_in
|| pos_in
+ count
> size_in
||
3021 pos_out
>= size_out
|| pos_out
+ count
> size_out
))
3024 /* Ensure the infile range is within the infile. */
3025 if (pos_in
>= size_in
)
3027 count
= min(count
, size_in
- (uint64_t)pos_in
);
3029 ret
= generic_write_check_limits(file_out
, pos_out
, &count
);
3034 * If the user wanted us to link to the infile's EOF, round up to the
3035 * next block boundary for this check.
3037 * Otherwise, make sure the count is also block-aligned, having
3038 * already confirmed the starting offsets' block alignment.
3040 if (pos_in
+ count
== size_in
) {
3041 bcount
= ALIGN(size_in
, bs
) - pos_in
;
3043 if (!IS_ALIGNED(count
, bs
))
3044 count
= ALIGN_DOWN(count
, bs
);
3048 /* Don't allow overlapped cloning within the same file. */
3049 if (inode_in
== inode_out
&&
3050 pos_out
+ bcount
> pos_in
&&
3051 pos_out
< pos_in
+ bcount
)
3055 * We shortened the request but the caller can't deal with that, so
3056 * bounce the request back to userspace.
3058 if (*req_count
!= count
&& !(remap_flags
& REMAP_FILE_CAN_SHORTEN
))
3067 * Performs common checks before doing a file copy/clone
3068 * from @file_in to @file_out.
3070 int generic_file_rw_checks(struct file
*file_in
, struct file
*file_out
)
3072 struct inode
*inode_in
= file_inode(file_in
);
3073 struct inode
*inode_out
= file_inode(file_out
);
3075 /* Don't copy dirs, pipes, sockets... */
3076 if (S_ISDIR(inode_in
->i_mode
) || S_ISDIR(inode_out
->i_mode
))
3078 if (!S_ISREG(inode_in
->i_mode
) || !S_ISREG(inode_out
->i_mode
))
3081 if (!(file_in
->f_mode
& FMODE_READ
) ||
3082 !(file_out
->f_mode
& FMODE_WRITE
) ||
3083 (file_out
->f_flags
& O_APPEND
))
3090 * Performs necessary checks before doing a file copy
3092 * Can adjust amount of bytes to copy via @req_count argument.
3093 * Returns appropriate error code that caller should return or
3094 * zero in case the copy should be allowed.
3096 int generic_copy_file_checks(struct file
*file_in
, loff_t pos_in
,
3097 struct file
*file_out
, loff_t pos_out
,
3098 size_t *req_count
, unsigned int flags
)
3100 struct inode
*inode_in
= file_inode(file_in
);
3101 struct inode
*inode_out
= file_inode(file_out
);
3102 uint64_t count
= *req_count
;
3106 ret
= generic_file_rw_checks(file_in
, file_out
);
3110 /* Don't touch certain kinds of inodes */
3111 if (IS_IMMUTABLE(inode_out
))
3114 if (IS_SWAPFILE(inode_in
) || IS_SWAPFILE(inode_out
))
3117 /* Ensure offsets don't wrap. */
3118 if (pos_in
+ count
< pos_in
|| pos_out
+ count
< pos_out
)
3121 /* Shorten the copy to EOF */
3122 size_in
= i_size_read(inode_in
);
3123 if (pos_in
>= size_in
)
3126 count
= min(count
, size_in
- (uint64_t)pos_in
);
3128 ret
= generic_write_check_limits(file_out
, pos_out
, &count
);
3132 /* Don't allow overlapped copying within the same file. */
3133 if (inode_in
== inode_out
&&
3134 pos_out
+ count
> pos_in
&&
3135 pos_out
< pos_in
+ count
)
3142 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
3143 loff_t pos
, unsigned len
, unsigned flags
,
3144 struct page
**pagep
, void **fsdata
)
3146 const struct address_space_operations
*aops
= mapping
->a_ops
;
3148 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
3151 EXPORT_SYMBOL(pagecache_write_begin
);
3153 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
3154 loff_t pos
, unsigned len
, unsigned copied
,
3155 struct page
*page
, void *fsdata
)
3157 const struct address_space_operations
*aops
= mapping
->a_ops
;
3159 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
3161 EXPORT_SYMBOL(pagecache_write_end
);
3164 generic_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
3166 struct file
*file
= iocb
->ki_filp
;
3167 struct address_space
*mapping
= file
->f_mapping
;
3168 struct inode
*inode
= mapping
->host
;
3169 loff_t pos
= iocb
->ki_pos
;
3174 write_len
= iov_iter_count(from
);
3175 end
= (pos
+ write_len
- 1) >> PAGE_SHIFT
;
3177 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
3178 /* If there are pages to writeback, return */
3179 if (filemap_range_has_page(inode
->i_mapping
, pos
,
3180 pos
+ write_len
- 1))
3183 written
= filemap_write_and_wait_range(mapping
, pos
,
3184 pos
+ write_len
- 1);
3190 * After a write we want buffered reads to be sure to go to disk to get
3191 * the new data. We invalidate clean cached page from the region we're
3192 * about to write. We do this *before* the write so that we can return
3193 * without clobbering -EIOCBQUEUED from ->direct_IO().
3195 written
= invalidate_inode_pages2_range(mapping
,
3196 pos
>> PAGE_SHIFT
, end
);
3198 * If a page can not be invalidated, return 0 to fall back
3199 * to buffered write.
3202 if (written
== -EBUSY
)
3207 written
= mapping
->a_ops
->direct_IO(iocb
, from
);
3210 * Finally, try again to invalidate clean pages which might have been
3211 * cached by non-direct readahead, or faulted in by get_user_pages()
3212 * if the source of the write was an mmap'ed region of the file
3213 * we're writing. Either one is a pretty crazy thing to do,
3214 * so we don't support it 100%. If this invalidation
3215 * fails, tough, the write still worked...
3217 * Most of the time we do not need this since dio_complete() will do
3218 * the invalidation for us. However there are some file systems that
3219 * do not end up with dio_complete() being called, so let's not break
3220 * them by removing it completely
3222 if (mapping
->nrpages
)
3223 invalidate_inode_pages2_range(mapping
,
3224 pos
>> PAGE_SHIFT
, end
);
3228 write_len
-= written
;
3229 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
3230 i_size_write(inode
, pos
);
3231 mark_inode_dirty(inode
);
3235 iov_iter_revert(from
, write_len
- iov_iter_count(from
));
3239 EXPORT_SYMBOL(generic_file_direct_write
);
3242 * Find or create a page at the given pagecache position. Return the locked
3243 * page. This function is specifically for buffered writes.
3245 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
3246 pgoff_t index
, unsigned flags
)
3249 int fgp_flags
= FGP_LOCK
|FGP_WRITE
|FGP_CREAT
;
3251 if (flags
& AOP_FLAG_NOFS
)
3252 fgp_flags
|= FGP_NOFS
;
3254 page
= pagecache_get_page(mapping
, index
, fgp_flags
,
3255 mapping_gfp_mask(mapping
));
3257 wait_for_stable_page(page
);
3261 EXPORT_SYMBOL(grab_cache_page_write_begin
);
3263 ssize_t
generic_perform_write(struct file
*file
,
3264 struct iov_iter
*i
, loff_t pos
)
3266 struct address_space
*mapping
= file
->f_mapping
;
3267 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
3269 ssize_t written
= 0;
3270 unsigned int flags
= 0;
3274 unsigned long offset
; /* Offset into pagecache page */
3275 unsigned long bytes
; /* Bytes to write to page */
3276 size_t copied
; /* Bytes copied from user */
3279 offset
= (pos
& (PAGE_SIZE
- 1));
3280 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
3285 * Bring in the user page that we will copy from _first_.
3286 * Otherwise there's a nasty deadlock on copying from the
3287 * same page as we're writing to, without it being marked
3290 * Not only is this an optimisation, but it is also required
3291 * to check that the address is actually valid, when atomic
3292 * usercopies are used, below.
3294 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
3299 if (fatal_signal_pending(current
)) {
3304 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
3306 if (unlikely(status
< 0))
3309 if (mapping_writably_mapped(mapping
))
3310 flush_dcache_page(page
);
3312 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
3313 flush_dcache_page(page
);
3315 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
3317 if (unlikely(status
< 0))
3323 iov_iter_advance(i
, copied
);
3324 if (unlikely(copied
== 0)) {
3326 * If we were unable to copy any data at all, we must
3327 * fall back to a single segment length write.
3329 * If we didn't fallback here, we could livelock
3330 * because not all segments in the iov can be copied at
3331 * once without a pagefault.
3333 bytes
= min_t(unsigned long, PAGE_SIZE
- offset
,
3334 iov_iter_single_seg_count(i
));
3340 balance_dirty_pages_ratelimited(mapping
);
3341 } while (iov_iter_count(i
));
3343 return written
? written
: status
;
3345 EXPORT_SYMBOL(generic_perform_write
);
3348 * __generic_file_write_iter - write data to a file
3349 * @iocb: IO state structure (file, offset, etc.)
3350 * @from: iov_iter with data to write
3352 * This function does all the work needed for actually writing data to a
3353 * file. It does all basic checks, removes SUID from the file, updates
3354 * modification times and calls proper subroutines depending on whether we
3355 * do direct IO or a standard buffered write.
3357 * It expects i_mutex to be grabbed unless we work on a block device or similar
3358 * object which does not need locking at all.
3360 * This function does *not* take care of syncing data in case of O_SYNC write.
3361 * A caller has to handle it. This is mainly due to the fact that we want to
3362 * avoid syncing under i_mutex.
3365 * * number of bytes written, even for truncated writes
3366 * * negative error code if no data has been written at all
3368 ssize_t
__generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
3370 struct file
*file
= iocb
->ki_filp
;
3371 struct address_space
* mapping
= file
->f_mapping
;
3372 struct inode
*inode
= mapping
->host
;
3373 ssize_t written
= 0;
3377 /* We can write back this queue in page reclaim */
3378 current
->backing_dev_info
= inode_to_bdi(inode
);
3379 err
= file_remove_privs(file
);
3383 err
= file_update_time(file
);
3387 if (iocb
->ki_flags
& IOCB_DIRECT
) {
3388 loff_t pos
, endbyte
;
3390 written
= generic_file_direct_write(iocb
, from
);
3392 * If the write stopped short of completing, fall back to
3393 * buffered writes. Some filesystems do this for writes to
3394 * holes, for example. For DAX files, a buffered write will
3395 * not succeed (even if it did, DAX does not handle dirty
3396 * page-cache pages correctly).
3398 if (written
< 0 || !iov_iter_count(from
) || IS_DAX(inode
))
3401 status
= generic_perform_write(file
, from
, pos
= iocb
->ki_pos
);
3403 * If generic_perform_write() returned a synchronous error
3404 * then we want to return the number of bytes which were
3405 * direct-written, or the error code if that was zero. Note
3406 * that this differs from normal direct-io semantics, which
3407 * will return -EFOO even if some bytes were written.
3409 if (unlikely(status
< 0)) {
3414 * We need to ensure that the page cache pages are written to
3415 * disk and invalidated to preserve the expected O_DIRECT
3418 endbyte
= pos
+ status
- 1;
3419 err
= filemap_write_and_wait_range(mapping
, pos
, endbyte
);
3421 iocb
->ki_pos
= endbyte
+ 1;
3423 invalidate_mapping_pages(mapping
,
3425 endbyte
>> PAGE_SHIFT
);
3428 * We don't know how much we wrote, so just return
3429 * the number of bytes which were direct-written
3433 written
= generic_perform_write(file
, from
, iocb
->ki_pos
);
3434 if (likely(written
> 0))
3435 iocb
->ki_pos
+= written
;
3438 current
->backing_dev_info
= NULL
;
3439 return written
? written
: err
;
3441 EXPORT_SYMBOL(__generic_file_write_iter
);
3444 * generic_file_write_iter - write data to a file
3445 * @iocb: IO state structure
3446 * @from: iov_iter with data to write
3448 * This is a wrapper around __generic_file_write_iter() to be used by most
3449 * filesystems. It takes care of syncing the file in case of O_SYNC file
3450 * and acquires i_mutex as needed.
3452 * * negative error code if no data has been written at all of
3453 * vfs_fsync_range() failed for a synchronous write
3454 * * number of bytes written, even for truncated writes
3456 ssize_t
generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
3458 struct file
*file
= iocb
->ki_filp
;
3459 struct inode
*inode
= file
->f_mapping
->host
;
3463 ret
= generic_write_checks(iocb
, from
);
3465 ret
= __generic_file_write_iter(iocb
, from
);
3466 inode_unlock(inode
);
3469 ret
= generic_write_sync(iocb
, ret
);
3472 EXPORT_SYMBOL(generic_file_write_iter
);
3475 * try_to_release_page() - release old fs-specific metadata on a page
3477 * @page: the page which the kernel is trying to free
3478 * @gfp_mask: memory allocation flags (and I/O mode)
3480 * The address_space is to try to release any data against the page
3481 * (presumably at page->private).
3483 * This may also be called if PG_fscache is set on a page, indicating that the
3484 * page is known to the local caching routines.
3486 * The @gfp_mask argument specifies whether I/O may be performed to release
3487 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3489 * Return: %1 if the release was successful, otherwise return zero.
3491 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
3493 struct address_space
* const mapping
= page
->mapping
;
3495 BUG_ON(!PageLocked(page
));
3496 if (PageWriteback(page
))
3499 if (mapping
&& mapping
->a_ops
->releasepage
)
3500 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
3501 return try_to_free_buffers(page
);
3504 EXPORT_SYMBOL(try_to_release_page
);