arm64: dts: msm8916-longcheer-l8150: Enable WCNSS for WiFi and BT
[linux/fpc-iii.git] / mm / filemap.c
blob1146fcfa321511b61e5dd258c9825b6bf759426e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include "internal.h"
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/filemap.h>
49 * FIXME: remove all knowledge of the buffer layer from the core VM
51 #include <linux/buffer_head.h> /* for try_to_free_buffers */
53 #include <asm/mman.h>
56 * Shared mappings implemented 30.11.1994. It's not fully working yet,
57 * though.
59 * Shared mappings now work. 15.8.1995 Bruno.
61 * finished 'unifying' the page and buffer cache and SMP-threaded the
62 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
68 * Lock ordering:
70 * ->i_mmap_rwsem (truncate_pagecache)
71 * ->private_lock (__free_pte->__set_page_dirty_buffers)
72 * ->swap_lock (exclusive_swap_page, others)
73 * ->i_pages lock
75 * ->i_mutex
76 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
78 * ->mmap_sem
79 * ->i_mmap_rwsem
80 * ->page_table_lock or pte_lock (various, mainly in memory.c)
81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
83 * ->mmap_sem
84 * ->lock_page (access_process_vm)
86 * ->i_mutex (generic_perform_write)
87 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
89 * bdi->wb.list_lock
90 * sb_lock (fs/fs-writeback.c)
91 * ->i_pages lock (__sync_single_inode)
93 * ->i_mmap_rwsem
94 * ->anon_vma.lock (vma_adjust)
96 * ->anon_vma.lock
97 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
99 * ->page_table_lock or pte_lock
100 * ->swap_lock (try_to_unmap_one)
101 * ->private_lock (try_to_unmap_one)
102 * ->i_pages lock (try_to_unmap_one)
103 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
105 * ->private_lock (page_remove_rmap->set_page_dirty)
106 * ->i_pages lock (page_remove_rmap->set_page_dirty)
107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
108 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
111 * ->inode->i_lock (zap_pte_range->set_page_dirty)
112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
114 * ->i_mmap_rwsem
115 * ->tasklist_lock (memory_failure, collect_procs_ao)
118 static void page_cache_delete(struct address_space *mapping,
119 struct page *page, void *shadow)
121 XA_STATE(xas, &mapping->i_pages, page->index);
122 unsigned int nr = 1;
124 mapping_set_update(&xas, mapping);
126 /* hugetlb pages are represented by a single entry in the xarray */
127 if (!PageHuge(page)) {
128 xas_set_order(&xas, page->index, compound_order(page));
129 nr = compound_nr(page);
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE(PageTail(page), page);
134 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136 xas_store(&xas, shadow);
137 xas_init_marks(&xas);
139 page->mapping = NULL;
140 /* Leave page->index set: truncation lookup relies upon it */
142 if (shadow) {
143 mapping->nrexceptional += nr;
145 * Make sure the nrexceptional update is committed before
146 * the nrpages update so that final truncate racing
147 * with reclaim does not see both counters 0 at the
148 * same time and miss a shadow entry.
150 smp_wmb();
152 mapping->nrpages -= nr;
155 static void unaccount_page_cache_page(struct address_space *mapping,
156 struct page *page)
158 int nr;
161 * if we're uptodate, flush out into the cleancache, otherwise
162 * invalidate any existing cleancache entries. We can't leave
163 * stale data around in the cleancache once our page is gone
165 if (PageUptodate(page) && PageMappedToDisk(page))
166 cleancache_put_page(page);
167 else
168 cleancache_invalidate_page(mapping, page);
170 VM_BUG_ON_PAGE(PageTail(page), page);
171 VM_BUG_ON_PAGE(page_mapped(page), page);
172 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
173 int mapcount;
175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
176 current->comm, page_to_pfn(page));
177 dump_page(page, "still mapped when deleted");
178 dump_stack();
179 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181 mapcount = page_mapcount(page);
182 if (mapping_exiting(mapping) &&
183 page_count(page) >= mapcount + 2) {
185 * All vmas have already been torn down, so it's
186 * a good bet that actually the page is unmapped,
187 * and we'd prefer not to leak it: if we're wrong,
188 * some other bad page check should catch it later.
190 page_mapcount_reset(page);
191 page_ref_sub(page, mapcount);
195 /* hugetlb pages do not participate in page cache accounting. */
196 if (PageHuge(page))
197 return;
199 nr = hpage_nr_pages(page);
201 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
202 if (PageSwapBacked(page)) {
203 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
204 if (PageTransHuge(page))
205 __dec_node_page_state(page, NR_SHMEM_THPS);
206 } else if (PageTransHuge(page)) {
207 __dec_node_page_state(page, NR_FILE_THPS);
208 filemap_nr_thps_dec(mapping);
212 * At this point page must be either written or cleaned by
213 * truncate. Dirty page here signals a bug and loss of
214 * unwritten data.
216 * This fixes dirty accounting after removing the page entirely
217 * but leaves PageDirty set: it has no effect for truncated
218 * page and anyway will be cleared before returning page into
219 * buddy allocator.
221 if (WARN_ON_ONCE(PageDirty(page)))
222 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
226 * Delete a page from the page cache and free it. Caller has to make
227 * sure the page is locked and that nobody else uses it - or that usage
228 * is safe. The caller must hold the i_pages lock.
230 void __delete_from_page_cache(struct page *page, void *shadow)
232 struct address_space *mapping = page->mapping;
234 trace_mm_filemap_delete_from_page_cache(page);
236 unaccount_page_cache_page(mapping, page);
237 page_cache_delete(mapping, page, shadow);
240 static void page_cache_free_page(struct address_space *mapping,
241 struct page *page)
243 void (*freepage)(struct page *);
245 freepage = mapping->a_ops->freepage;
246 if (freepage)
247 freepage(page);
249 if (PageTransHuge(page) && !PageHuge(page)) {
250 page_ref_sub(page, HPAGE_PMD_NR);
251 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
252 } else {
253 put_page(page);
258 * delete_from_page_cache - delete page from page cache
259 * @page: the page which the kernel is trying to remove from page cache
261 * This must be called only on pages that have been verified to be in the page
262 * cache and locked. It will never put the page into the free list, the caller
263 * has a reference on the page.
265 void delete_from_page_cache(struct page *page)
267 struct address_space *mapping = page_mapping(page);
268 unsigned long flags;
270 BUG_ON(!PageLocked(page));
271 xa_lock_irqsave(&mapping->i_pages, flags);
272 __delete_from_page_cache(page, NULL);
273 xa_unlock_irqrestore(&mapping->i_pages, flags);
275 page_cache_free_page(mapping, page);
277 EXPORT_SYMBOL(delete_from_page_cache);
280 * page_cache_delete_batch - delete several pages from page cache
281 * @mapping: the mapping to which pages belong
282 * @pvec: pagevec with pages to delete
284 * The function walks over mapping->i_pages and removes pages passed in @pvec
285 * from the mapping. The function expects @pvec to be sorted by page index
286 * and is optimised for it to be dense.
287 * It tolerates holes in @pvec (mapping entries at those indices are not
288 * modified). The function expects only THP head pages to be present in the
289 * @pvec.
291 * The function expects the i_pages lock to be held.
293 static void page_cache_delete_batch(struct address_space *mapping,
294 struct pagevec *pvec)
296 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
297 int total_pages = 0;
298 int i = 0;
299 struct page *page;
301 mapping_set_update(&xas, mapping);
302 xas_for_each(&xas, page, ULONG_MAX) {
303 if (i >= pagevec_count(pvec))
304 break;
306 /* A swap/dax/shadow entry got inserted? Skip it. */
307 if (xa_is_value(page))
308 continue;
310 * A page got inserted in our range? Skip it. We have our
311 * pages locked so they are protected from being removed.
312 * If we see a page whose index is higher than ours, it
313 * means our page has been removed, which shouldn't be
314 * possible because we're holding the PageLock.
316 if (page != pvec->pages[i]) {
317 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
318 page);
319 continue;
322 WARN_ON_ONCE(!PageLocked(page));
324 if (page->index == xas.xa_index)
325 page->mapping = NULL;
326 /* Leave page->index set: truncation lookup relies on it */
329 * Move to the next page in the vector if this is a regular
330 * page or the index is of the last sub-page of this compound
331 * page.
333 if (page->index + compound_nr(page) - 1 == xas.xa_index)
334 i++;
335 xas_store(&xas, NULL);
336 total_pages++;
338 mapping->nrpages -= total_pages;
341 void delete_from_page_cache_batch(struct address_space *mapping,
342 struct pagevec *pvec)
344 int i;
345 unsigned long flags;
347 if (!pagevec_count(pvec))
348 return;
350 xa_lock_irqsave(&mapping->i_pages, flags);
351 for (i = 0; i < pagevec_count(pvec); i++) {
352 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354 unaccount_page_cache_page(mapping, pvec->pages[i]);
356 page_cache_delete_batch(mapping, pvec);
357 xa_unlock_irqrestore(&mapping->i_pages, flags);
359 for (i = 0; i < pagevec_count(pvec); i++)
360 page_cache_free_page(mapping, pvec->pages[i]);
363 int filemap_check_errors(struct address_space *mapping)
365 int ret = 0;
366 /* Check for outstanding write errors */
367 if (test_bit(AS_ENOSPC, &mapping->flags) &&
368 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
369 ret = -ENOSPC;
370 if (test_bit(AS_EIO, &mapping->flags) &&
371 test_and_clear_bit(AS_EIO, &mapping->flags))
372 ret = -EIO;
373 return ret;
375 EXPORT_SYMBOL(filemap_check_errors);
377 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 /* Check for outstanding write errors */
380 if (test_bit(AS_EIO, &mapping->flags))
381 return -EIO;
382 if (test_bit(AS_ENOSPC, &mapping->flags))
383 return -ENOSPC;
384 return 0;
388 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
389 * @mapping: address space structure to write
390 * @start: offset in bytes where the range starts
391 * @end: offset in bytes where the range ends (inclusive)
392 * @sync_mode: enable synchronous operation
394 * Start writeback against all of a mapping's dirty pages that lie
395 * within the byte offsets <start, end> inclusive.
397 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
398 * opposed to a regular memory cleansing writeback. The difference between
399 * these two operations is that if a dirty page/buffer is encountered, it must
400 * be waited upon, and not just skipped over.
402 * Return: %0 on success, negative error code otherwise.
404 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
405 loff_t end, int sync_mode)
407 int ret;
408 struct writeback_control wbc = {
409 .sync_mode = sync_mode,
410 .nr_to_write = LONG_MAX,
411 .range_start = start,
412 .range_end = end,
415 if (!mapping_cap_writeback_dirty(mapping) ||
416 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
417 return 0;
419 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
420 ret = do_writepages(mapping, &wbc);
421 wbc_detach_inode(&wbc);
422 return ret;
425 static inline int __filemap_fdatawrite(struct address_space *mapping,
426 int sync_mode)
428 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
431 int filemap_fdatawrite(struct address_space *mapping)
433 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 EXPORT_SYMBOL(filemap_fdatawrite);
437 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
438 loff_t end)
440 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 EXPORT_SYMBOL(filemap_fdatawrite_range);
445 * filemap_flush - mostly a non-blocking flush
446 * @mapping: target address_space
448 * This is a mostly non-blocking flush. Not suitable for data-integrity
449 * purposes - I/O may not be started against all dirty pages.
451 * Return: %0 on success, negative error code otherwise.
453 int filemap_flush(struct address_space *mapping)
455 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 EXPORT_SYMBOL(filemap_flush);
460 * filemap_range_has_page - check if a page exists in range.
461 * @mapping: address space within which to check
462 * @start_byte: offset in bytes where the range starts
463 * @end_byte: offset in bytes where the range ends (inclusive)
465 * Find at least one page in the range supplied, usually used to check if
466 * direct writing in this range will trigger a writeback.
468 * Return: %true if at least one page exists in the specified range,
469 * %false otherwise.
471 bool filemap_range_has_page(struct address_space *mapping,
472 loff_t start_byte, loff_t end_byte)
474 struct page *page;
475 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
476 pgoff_t max = end_byte >> PAGE_SHIFT;
478 if (end_byte < start_byte)
479 return false;
481 rcu_read_lock();
482 for (;;) {
483 page = xas_find(&xas, max);
484 if (xas_retry(&xas, page))
485 continue;
486 /* Shadow entries don't count */
487 if (xa_is_value(page))
488 continue;
490 * We don't need to try to pin this page; we're about to
491 * release the RCU lock anyway. It is enough to know that
492 * there was a page here recently.
494 break;
496 rcu_read_unlock();
498 return page != NULL;
500 EXPORT_SYMBOL(filemap_range_has_page);
502 static void __filemap_fdatawait_range(struct address_space *mapping,
503 loff_t start_byte, loff_t end_byte)
505 pgoff_t index = start_byte >> PAGE_SHIFT;
506 pgoff_t end = end_byte >> PAGE_SHIFT;
507 struct pagevec pvec;
508 int nr_pages;
510 if (end_byte < start_byte)
511 return;
513 pagevec_init(&pvec);
514 while (index <= end) {
515 unsigned i;
517 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
518 end, PAGECACHE_TAG_WRITEBACK);
519 if (!nr_pages)
520 break;
522 for (i = 0; i < nr_pages; i++) {
523 struct page *page = pvec.pages[i];
525 wait_on_page_writeback(page);
526 ClearPageError(page);
528 pagevec_release(&pvec);
529 cond_resched();
534 * filemap_fdatawait_range - wait for writeback to complete
535 * @mapping: address space structure to wait for
536 * @start_byte: offset in bytes where the range starts
537 * @end_byte: offset in bytes where the range ends (inclusive)
539 * Walk the list of under-writeback pages of the given address space
540 * in the given range and wait for all of them. Check error status of
541 * the address space and return it.
543 * Since the error status of the address space is cleared by this function,
544 * callers are responsible for checking the return value and handling and/or
545 * reporting the error.
547 * Return: error status of the address space.
549 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 loff_t end_byte)
552 __filemap_fdatawait_range(mapping, start_byte, end_byte);
553 return filemap_check_errors(mapping);
555 EXPORT_SYMBOL(filemap_fdatawait_range);
558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559 * @mapping: address space structure to wait for
560 * @start_byte: offset in bytes where the range starts
561 * @end_byte: offset in bytes where the range ends (inclusive)
563 * Walk the list of under-writeback pages of the given address space in the
564 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
565 * this function does not clear error status of the address space.
567 * Use this function if callers don't handle errors themselves. Expected
568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569 * fsfreeze(8)
571 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 loff_t start_byte, loff_t end_byte)
574 __filemap_fdatawait_range(mapping, start_byte, end_byte);
575 return filemap_check_and_keep_errors(mapping);
577 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
580 * file_fdatawait_range - wait for writeback to complete
581 * @file: file pointing to address space structure to wait for
582 * @start_byte: offset in bytes where the range starts
583 * @end_byte: offset in bytes where the range ends (inclusive)
585 * Walk the list of under-writeback pages of the address space that file
586 * refers to, in the given range and wait for all of them. Check error
587 * status of the address space vs. the file->f_wb_err cursor and return it.
589 * Since the error status of the file is advanced by this function,
590 * callers are responsible for checking the return value and handling and/or
591 * reporting the error.
593 * Return: error status of the address space vs. the file->f_wb_err cursor.
595 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597 struct address_space *mapping = file->f_mapping;
599 __filemap_fdatawait_range(mapping, start_byte, end_byte);
600 return file_check_and_advance_wb_err(file);
602 EXPORT_SYMBOL(file_fdatawait_range);
605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606 * @mapping: address space structure to wait for
608 * Walk the list of under-writeback pages of the given address space
609 * and wait for all of them. Unlike filemap_fdatawait(), this function
610 * does not clear error status of the address space.
612 * Use this function if callers don't handle errors themselves. Expected
613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614 * fsfreeze(8)
616 * Return: error status of the address space.
618 int filemap_fdatawait_keep_errors(struct address_space *mapping)
620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
621 return filemap_check_and_keep_errors(mapping);
623 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625 /* Returns true if writeback might be needed or already in progress. */
626 static bool mapping_needs_writeback(struct address_space *mapping)
628 if (dax_mapping(mapping))
629 return mapping->nrexceptional;
631 return mapping->nrpages;
634 int filemap_write_and_wait(struct address_space *mapping)
636 int err = 0;
638 if (mapping_needs_writeback(mapping)) {
639 err = filemap_fdatawrite(mapping);
641 * Even if the above returned error, the pages may be
642 * written partially (e.g. -ENOSPC), so we wait for it.
643 * But the -EIO is special case, it may indicate the worst
644 * thing (e.g. bug) happened, so we avoid waiting for it.
646 if (err != -EIO) {
647 int err2 = filemap_fdatawait(mapping);
648 if (!err)
649 err = err2;
650 } else {
651 /* Clear any previously stored errors */
652 filemap_check_errors(mapping);
654 } else {
655 err = filemap_check_errors(mapping);
657 return err;
659 EXPORT_SYMBOL(filemap_write_and_wait);
662 * filemap_write_and_wait_range - write out & wait on a file range
663 * @mapping: the address_space for the pages
664 * @lstart: offset in bytes where the range starts
665 * @lend: offset in bytes where the range ends (inclusive)
667 * Write out and wait upon file offsets lstart->lend, inclusive.
669 * Note that @lend is inclusive (describes the last byte to be written) so
670 * that this function can be used to write to the very end-of-file (end = -1).
672 * Return: error status of the address space.
674 int filemap_write_and_wait_range(struct address_space *mapping,
675 loff_t lstart, loff_t lend)
677 int err = 0;
679 if (mapping_needs_writeback(mapping)) {
680 err = __filemap_fdatawrite_range(mapping, lstart, lend,
681 WB_SYNC_ALL);
682 /* See comment of filemap_write_and_wait() */
683 if (err != -EIO) {
684 int err2 = filemap_fdatawait_range(mapping,
685 lstart, lend);
686 if (!err)
687 err = err2;
688 } else {
689 /* Clear any previously stored errors */
690 filemap_check_errors(mapping);
692 } else {
693 err = filemap_check_errors(mapping);
695 return err;
697 EXPORT_SYMBOL(filemap_write_and_wait_range);
699 void __filemap_set_wb_err(struct address_space *mapping, int err)
701 errseq_t eseq = errseq_set(&mapping->wb_err, err);
703 trace_filemap_set_wb_err(mapping, eseq);
705 EXPORT_SYMBOL(__filemap_set_wb_err);
708 * file_check_and_advance_wb_err - report wb error (if any) that was previously
709 * and advance wb_err to current one
710 * @file: struct file on which the error is being reported
712 * When userland calls fsync (or something like nfsd does the equivalent), we
713 * want to report any writeback errors that occurred since the last fsync (or
714 * since the file was opened if there haven't been any).
716 * Grab the wb_err from the mapping. If it matches what we have in the file,
717 * then just quickly return 0. The file is all caught up.
719 * If it doesn't match, then take the mapping value, set the "seen" flag in
720 * it and try to swap it into place. If it works, or another task beat us
721 * to it with the new value, then update the f_wb_err and return the error
722 * portion. The error at this point must be reported via proper channels
723 * (a'la fsync, or NFS COMMIT operation, etc.).
725 * While we handle mapping->wb_err with atomic operations, the f_wb_err
726 * value is protected by the f_lock since we must ensure that it reflects
727 * the latest value swapped in for this file descriptor.
729 * Return: %0 on success, negative error code otherwise.
731 int file_check_and_advance_wb_err(struct file *file)
733 int err = 0;
734 errseq_t old = READ_ONCE(file->f_wb_err);
735 struct address_space *mapping = file->f_mapping;
737 /* Locklessly handle the common case where nothing has changed */
738 if (errseq_check(&mapping->wb_err, old)) {
739 /* Something changed, must use slow path */
740 spin_lock(&file->f_lock);
741 old = file->f_wb_err;
742 err = errseq_check_and_advance(&mapping->wb_err,
743 &file->f_wb_err);
744 trace_file_check_and_advance_wb_err(file, old);
745 spin_unlock(&file->f_lock);
749 * We're mostly using this function as a drop in replacement for
750 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
751 * that the legacy code would have had on these flags.
753 clear_bit(AS_EIO, &mapping->flags);
754 clear_bit(AS_ENOSPC, &mapping->flags);
755 return err;
757 EXPORT_SYMBOL(file_check_and_advance_wb_err);
760 * file_write_and_wait_range - write out & wait on a file range
761 * @file: file pointing to address_space with pages
762 * @lstart: offset in bytes where the range starts
763 * @lend: offset in bytes where the range ends (inclusive)
765 * Write out and wait upon file offsets lstart->lend, inclusive.
767 * Note that @lend is inclusive (describes the last byte to be written) so
768 * that this function can be used to write to the very end-of-file (end = -1).
770 * After writing out and waiting on the data, we check and advance the
771 * f_wb_err cursor to the latest value, and return any errors detected there.
773 * Return: %0 on success, negative error code otherwise.
775 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
777 int err = 0, err2;
778 struct address_space *mapping = file->f_mapping;
780 if (mapping_needs_writeback(mapping)) {
781 err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 WB_SYNC_ALL);
783 /* See comment of filemap_write_and_wait() */
784 if (err != -EIO)
785 __filemap_fdatawait_range(mapping, lstart, lend);
787 err2 = file_check_and_advance_wb_err(file);
788 if (!err)
789 err = err2;
790 return err;
792 EXPORT_SYMBOL(file_write_and_wait_range);
795 * replace_page_cache_page - replace a pagecache page with a new one
796 * @old: page to be replaced
797 * @new: page to replace with
798 * @gfp_mask: allocation mode
800 * This function replaces a page in the pagecache with a new one. On
801 * success it acquires the pagecache reference for the new page and
802 * drops it for the old page. Both the old and new pages must be
803 * locked. This function does not add the new page to the LRU, the
804 * caller must do that.
806 * The remove + add is atomic. This function cannot fail.
808 * Return: %0
810 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
812 struct address_space *mapping = old->mapping;
813 void (*freepage)(struct page *) = mapping->a_ops->freepage;
814 pgoff_t offset = old->index;
815 XA_STATE(xas, &mapping->i_pages, offset);
816 unsigned long flags;
818 VM_BUG_ON_PAGE(!PageLocked(old), old);
819 VM_BUG_ON_PAGE(!PageLocked(new), new);
820 VM_BUG_ON_PAGE(new->mapping, new);
822 get_page(new);
823 new->mapping = mapping;
824 new->index = offset;
826 xas_lock_irqsave(&xas, flags);
827 xas_store(&xas, new);
829 old->mapping = NULL;
830 /* hugetlb pages do not participate in page cache accounting. */
831 if (!PageHuge(old))
832 __dec_node_page_state(new, NR_FILE_PAGES);
833 if (!PageHuge(new))
834 __inc_node_page_state(new, NR_FILE_PAGES);
835 if (PageSwapBacked(old))
836 __dec_node_page_state(new, NR_SHMEM);
837 if (PageSwapBacked(new))
838 __inc_node_page_state(new, NR_SHMEM);
839 xas_unlock_irqrestore(&xas, flags);
840 mem_cgroup_migrate(old, new);
841 if (freepage)
842 freepage(old);
843 put_page(old);
845 return 0;
847 EXPORT_SYMBOL_GPL(replace_page_cache_page);
849 static int __add_to_page_cache_locked(struct page *page,
850 struct address_space *mapping,
851 pgoff_t offset, gfp_t gfp_mask,
852 void **shadowp)
854 XA_STATE(xas, &mapping->i_pages, offset);
855 int huge = PageHuge(page);
856 struct mem_cgroup *memcg;
857 int error;
858 void *old;
860 VM_BUG_ON_PAGE(!PageLocked(page), page);
861 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
862 mapping_set_update(&xas, mapping);
864 if (!huge) {
865 error = mem_cgroup_try_charge(page, current->mm,
866 gfp_mask, &memcg, false);
867 if (error)
868 return error;
871 get_page(page);
872 page->mapping = mapping;
873 page->index = offset;
875 do {
876 xas_lock_irq(&xas);
877 old = xas_load(&xas);
878 if (old && !xa_is_value(old))
879 xas_set_err(&xas, -EEXIST);
880 xas_store(&xas, page);
881 if (xas_error(&xas))
882 goto unlock;
884 if (xa_is_value(old)) {
885 mapping->nrexceptional--;
886 if (shadowp)
887 *shadowp = old;
889 mapping->nrpages++;
891 /* hugetlb pages do not participate in page cache accounting */
892 if (!huge)
893 __inc_node_page_state(page, NR_FILE_PAGES);
894 unlock:
895 xas_unlock_irq(&xas);
896 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
898 if (xas_error(&xas))
899 goto error;
901 if (!huge)
902 mem_cgroup_commit_charge(page, memcg, false, false);
903 trace_mm_filemap_add_to_page_cache(page);
904 return 0;
905 error:
906 page->mapping = NULL;
907 /* Leave page->index set: truncation relies upon it */
908 if (!huge)
909 mem_cgroup_cancel_charge(page, memcg, false);
910 put_page(page);
911 return xas_error(&xas);
913 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
916 * add_to_page_cache_locked - add a locked page to the pagecache
917 * @page: page to add
918 * @mapping: the page's address_space
919 * @offset: page index
920 * @gfp_mask: page allocation mode
922 * This function is used to add a page to the pagecache. It must be locked.
923 * This function does not add the page to the LRU. The caller must do that.
925 * Return: %0 on success, negative error code otherwise.
927 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
928 pgoff_t offset, gfp_t gfp_mask)
930 return __add_to_page_cache_locked(page, mapping, offset,
931 gfp_mask, NULL);
933 EXPORT_SYMBOL(add_to_page_cache_locked);
935 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
936 pgoff_t offset, gfp_t gfp_mask)
938 void *shadow = NULL;
939 int ret;
941 __SetPageLocked(page);
942 ret = __add_to_page_cache_locked(page, mapping, offset,
943 gfp_mask, &shadow);
944 if (unlikely(ret))
945 __ClearPageLocked(page);
946 else {
948 * The page might have been evicted from cache only
949 * recently, in which case it should be activated like
950 * any other repeatedly accessed page.
951 * The exception is pages getting rewritten; evicting other
952 * data from the working set, only to cache data that will
953 * get overwritten with something else, is a waste of memory.
955 WARN_ON_ONCE(PageActive(page));
956 if (!(gfp_mask & __GFP_WRITE) && shadow)
957 workingset_refault(page, shadow);
958 lru_cache_add(page);
960 return ret;
962 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
964 #ifdef CONFIG_NUMA
965 struct page *__page_cache_alloc(gfp_t gfp)
967 int n;
968 struct page *page;
970 if (cpuset_do_page_mem_spread()) {
971 unsigned int cpuset_mems_cookie;
972 do {
973 cpuset_mems_cookie = read_mems_allowed_begin();
974 n = cpuset_mem_spread_node();
975 page = __alloc_pages_node(n, gfp, 0);
976 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
978 return page;
980 return alloc_pages(gfp, 0);
982 EXPORT_SYMBOL(__page_cache_alloc);
983 #endif
986 * In order to wait for pages to become available there must be
987 * waitqueues associated with pages. By using a hash table of
988 * waitqueues where the bucket discipline is to maintain all
989 * waiters on the same queue and wake all when any of the pages
990 * become available, and for the woken contexts to check to be
991 * sure the appropriate page became available, this saves space
992 * at a cost of "thundering herd" phenomena during rare hash
993 * collisions.
995 #define PAGE_WAIT_TABLE_BITS 8
996 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
997 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
999 static wait_queue_head_t *page_waitqueue(struct page *page)
1001 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1004 void __init pagecache_init(void)
1006 int i;
1008 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1009 init_waitqueue_head(&page_wait_table[i]);
1011 page_writeback_init();
1014 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1015 struct wait_page_key {
1016 struct page *page;
1017 int bit_nr;
1018 int page_match;
1021 struct wait_page_queue {
1022 struct page *page;
1023 int bit_nr;
1024 wait_queue_entry_t wait;
1027 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1029 struct wait_page_key *key = arg;
1030 struct wait_page_queue *wait_page
1031 = container_of(wait, struct wait_page_queue, wait);
1033 if (wait_page->page != key->page)
1034 return 0;
1035 key->page_match = 1;
1037 if (wait_page->bit_nr != key->bit_nr)
1038 return 0;
1041 * Stop walking if it's locked.
1042 * Is this safe if put_and_wait_on_page_locked() is in use?
1043 * Yes: the waker must hold a reference to this page, and if PG_locked
1044 * has now already been set by another task, that task must also hold
1045 * a reference to the *same usage* of this page; so there is no need
1046 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1048 if (test_bit(key->bit_nr, &key->page->flags))
1049 return -1;
1051 return autoremove_wake_function(wait, mode, sync, key);
1054 static void wake_up_page_bit(struct page *page, int bit_nr)
1056 wait_queue_head_t *q = page_waitqueue(page);
1057 struct wait_page_key key;
1058 unsigned long flags;
1059 wait_queue_entry_t bookmark;
1061 key.page = page;
1062 key.bit_nr = bit_nr;
1063 key.page_match = 0;
1065 bookmark.flags = 0;
1066 bookmark.private = NULL;
1067 bookmark.func = NULL;
1068 INIT_LIST_HEAD(&bookmark.entry);
1070 spin_lock_irqsave(&q->lock, flags);
1071 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1073 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1075 * Take a breather from holding the lock,
1076 * allow pages that finish wake up asynchronously
1077 * to acquire the lock and remove themselves
1078 * from wait queue
1080 spin_unlock_irqrestore(&q->lock, flags);
1081 cpu_relax();
1082 spin_lock_irqsave(&q->lock, flags);
1083 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1087 * It is possible for other pages to have collided on the waitqueue
1088 * hash, so in that case check for a page match. That prevents a long-
1089 * term waiter
1091 * It is still possible to miss a case here, when we woke page waiters
1092 * and removed them from the waitqueue, but there are still other
1093 * page waiters.
1095 if (!waitqueue_active(q) || !key.page_match) {
1096 ClearPageWaiters(page);
1098 * It's possible to miss clearing Waiters here, when we woke
1099 * our page waiters, but the hashed waitqueue has waiters for
1100 * other pages on it.
1102 * That's okay, it's a rare case. The next waker will clear it.
1105 spin_unlock_irqrestore(&q->lock, flags);
1108 static void wake_up_page(struct page *page, int bit)
1110 if (!PageWaiters(page))
1111 return;
1112 wake_up_page_bit(page, bit);
1116 * A choice of three behaviors for wait_on_page_bit_common():
1118 enum behavior {
1119 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1120 * __lock_page() waiting on then setting PG_locked.
1122 SHARED, /* Hold ref to page and check the bit when woken, like
1123 * wait_on_page_writeback() waiting on PG_writeback.
1125 DROP, /* Drop ref to page before wait, no check when woken,
1126 * like put_and_wait_on_page_locked() on PG_locked.
1130 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1131 struct page *page, int bit_nr, int state, enum behavior behavior)
1133 struct wait_page_queue wait_page;
1134 wait_queue_entry_t *wait = &wait_page.wait;
1135 bool bit_is_set;
1136 bool thrashing = false;
1137 bool delayacct = false;
1138 unsigned long pflags;
1139 int ret = 0;
1141 if (bit_nr == PG_locked &&
1142 !PageUptodate(page) && PageWorkingset(page)) {
1143 if (!PageSwapBacked(page)) {
1144 delayacct_thrashing_start();
1145 delayacct = true;
1147 psi_memstall_enter(&pflags);
1148 thrashing = true;
1151 init_wait(wait);
1152 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1153 wait->func = wake_page_function;
1154 wait_page.page = page;
1155 wait_page.bit_nr = bit_nr;
1157 for (;;) {
1158 spin_lock_irq(&q->lock);
1160 if (likely(list_empty(&wait->entry))) {
1161 __add_wait_queue_entry_tail(q, wait);
1162 SetPageWaiters(page);
1165 set_current_state(state);
1167 spin_unlock_irq(&q->lock);
1169 bit_is_set = test_bit(bit_nr, &page->flags);
1170 if (behavior == DROP)
1171 put_page(page);
1173 if (likely(bit_is_set))
1174 io_schedule();
1176 if (behavior == EXCLUSIVE) {
1177 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1178 break;
1179 } else if (behavior == SHARED) {
1180 if (!test_bit(bit_nr, &page->flags))
1181 break;
1184 if (signal_pending_state(state, current)) {
1185 ret = -EINTR;
1186 break;
1189 if (behavior == DROP) {
1191 * We can no longer safely access page->flags:
1192 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1193 * there is a risk of waiting forever on a page reused
1194 * for something that keeps it locked indefinitely.
1195 * But best check for -EINTR above before breaking.
1197 break;
1201 finish_wait(q, wait);
1203 if (thrashing) {
1204 if (delayacct)
1205 delayacct_thrashing_end();
1206 psi_memstall_leave(&pflags);
1210 * A signal could leave PageWaiters set. Clearing it here if
1211 * !waitqueue_active would be possible (by open-coding finish_wait),
1212 * but still fail to catch it in the case of wait hash collision. We
1213 * already can fail to clear wait hash collision cases, so don't
1214 * bother with signals either.
1217 return ret;
1220 void wait_on_page_bit(struct page *page, int bit_nr)
1222 wait_queue_head_t *q = page_waitqueue(page);
1223 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1225 EXPORT_SYMBOL(wait_on_page_bit);
1227 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1229 wait_queue_head_t *q = page_waitqueue(page);
1230 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1232 EXPORT_SYMBOL(wait_on_page_bit_killable);
1235 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1236 * @page: The page to wait for.
1238 * The caller should hold a reference on @page. They expect the page to
1239 * become unlocked relatively soon, but do not wish to hold up migration
1240 * (for example) by holding the reference while waiting for the page to
1241 * come unlocked. After this function returns, the caller should not
1242 * dereference @page.
1244 void put_and_wait_on_page_locked(struct page *page)
1246 wait_queue_head_t *q;
1248 page = compound_head(page);
1249 q = page_waitqueue(page);
1250 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1254 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1255 * @page: Page defining the wait queue of interest
1256 * @waiter: Waiter to add to the queue
1258 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1260 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1262 wait_queue_head_t *q = page_waitqueue(page);
1263 unsigned long flags;
1265 spin_lock_irqsave(&q->lock, flags);
1266 __add_wait_queue_entry_tail(q, waiter);
1267 SetPageWaiters(page);
1268 spin_unlock_irqrestore(&q->lock, flags);
1270 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1272 #ifndef clear_bit_unlock_is_negative_byte
1275 * PG_waiters is the high bit in the same byte as PG_lock.
1277 * On x86 (and on many other architectures), we can clear PG_lock and
1278 * test the sign bit at the same time. But if the architecture does
1279 * not support that special operation, we just do this all by hand
1280 * instead.
1282 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1283 * being cleared, but a memory barrier should be unneccssary since it is
1284 * in the same byte as PG_locked.
1286 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1288 clear_bit_unlock(nr, mem);
1289 /* smp_mb__after_atomic(); */
1290 return test_bit(PG_waiters, mem);
1293 #endif
1296 * unlock_page - unlock a locked page
1297 * @page: the page
1299 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1300 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1301 * mechanism between PageLocked pages and PageWriteback pages is shared.
1302 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1304 * Note that this depends on PG_waiters being the sign bit in the byte
1305 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1306 * clear the PG_locked bit and test PG_waiters at the same time fairly
1307 * portably (architectures that do LL/SC can test any bit, while x86 can
1308 * test the sign bit).
1310 void unlock_page(struct page *page)
1312 BUILD_BUG_ON(PG_waiters != 7);
1313 page = compound_head(page);
1314 VM_BUG_ON_PAGE(!PageLocked(page), page);
1315 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1316 wake_up_page_bit(page, PG_locked);
1318 EXPORT_SYMBOL(unlock_page);
1321 * end_page_writeback - end writeback against a page
1322 * @page: the page
1324 void end_page_writeback(struct page *page)
1327 * TestClearPageReclaim could be used here but it is an atomic
1328 * operation and overkill in this particular case. Failing to
1329 * shuffle a page marked for immediate reclaim is too mild to
1330 * justify taking an atomic operation penalty at the end of
1331 * ever page writeback.
1333 if (PageReclaim(page)) {
1334 ClearPageReclaim(page);
1335 rotate_reclaimable_page(page);
1338 if (!test_clear_page_writeback(page))
1339 BUG();
1341 smp_mb__after_atomic();
1342 wake_up_page(page, PG_writeback);
1344 EXPORT_SYMBOL(end_page_writeback);
1347 * After completing I/O on a page, call this routine to update the page
1348 * flags appropriately
1350 void page_endio(struct page *page, bool is_write, int err)
1352 if (!is_write) {
1353 if (!err) {
1354 SetPageUptodate(page);
1355 } else {
1356 ClearPageUptodate(page);
1357 SetPageError(page);
1359 unlock_page(page);
1360 } else {
1361 if (err) {
1362 struct address_space *mapping;
1364 SetPageError(page);
1365 mapping = page_mapping(page);
1366 if (mapping)
1367 mapping_set_error(mapping, err);
1369 end_page_writeback(page);
1372 EXPORT_SYMBOL_GPL(page_endio);
1375 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1376 * @__page: the page to lock
1378 void __lock_page(struct page *__page)
1380 struct page *page = compound_head(__page);
1381 wait_queue_head_t *q = page_waitqueue(page);
1382 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1383 EXCLUSIVE);
1385 EXPORT_SYMBOL(__lock_page);
1387 int __lock_page_killable(struct page *__page)
1389 struct page *page = compound_head(__page);
1390 wait_queue_head_t *q = page_waitqueue(page);
1391 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1392 EXCLUSIVE);
1394 EXPORT_SYMBOL_GPL(__lock_page_killable);
1397 * Return values:
1398 * 1 - page is locked; mmap_sem is still held.
1399 * 0 - page is not locked.
1400 * mmap_sem has been released (up_read()), unless flags had both
1401 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1402 * which case mmap_sem is still held.
1404 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1405 * with the page locked and the mmap_sem unperturbed.
1407 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1408 unsigned int flags)
1410 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1412 * CAUTION! In this case, mmap_sem is not released
1413 * even though return 0.
1415 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1416 return 0;
1418 up_read(&mm->mmap_sem);
1419 if (flags & FAULT_FLAG_KILLABLE)
1420 wait_on_page_locked_killable(page);
1421 else
1422 wait_on_page_locked(page);
1423 return 0;
1424 } else {
1425 if (flags & FAULT_FLAG_KILLABLE) {
1426 int ret;
1428 ret = __lock_page_killable(page);
1429 if (ret) {
1430 up_read(&mm->mmap_sem);
1431 return 0;
1433 } else
1434 __lock_page(page);
1435 return 1;
1440 * page_cache_next_miss() - Find the next gap in the page cache.
1441 * @mapping: Mapping.
1442 * @index: Index.
1443 * @max_scan: Maximum range to search.
1445 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1446 * gap with the lowest index.
1448 * This function may be called under the rcu_read_lock. However, this will
1449 * not atomically search a snapshot of the cache at a single point in time.
1450 * For example, if a gap is created at index 5, then subsequently a gap is
1451 * created at index 10, page_cache_next_miss covering both indices may
1452 * return 10 if called under the rcu_read_lock.
1454 * Return: The index of the gap if found, otherwise an index outside the
1455 * range specified (in which case 'return - index >= max_scan' will be true).
1456 * In the rare case of index wrap-around, 0 will be returned.
1458 pgoff_t page_cache_next_miss(struct address_space *mapping,
1459 pgoff_t index, unsigned long max_scan)
1461 XA_STATE(xas, &mapping->i_pages, index);
1463 while (max_scan--) {
1464 void *entry = xas_next(&xas);
1465 if (!entry || xa_is_value(entry))
1466 break;
1467 if (xas.xa_index == 0)
1468 break;
1471 return xas.xa_index;
1473 EXPORT_SYMBOL(page_cache_next_miss);
1476 * page_cache_prev_miss() - Find the previous gap in the page cache.
1477 * @mapping: Mapping.
1478 * @index: Index.
1479 * @max_scan: Maximum range to search.
1481 * Search the range [max(index - max_scan + 1, 0), index] for the
1482 * gap with the highest index.
1484 * This function may be called under the rcu_read_lock. However, this will
1485 * not atomically search a snapshot of the cache at a single point in time.
1486 * For example, if a gap is created at index 10, then subsequently a gap is
1487 * created at index 5, page_cache_prev_miss() covering both indices may
1488 * return 5 if called under the rcu_read_lock.
1490 * Return: The index of the gap if found, otherwise an index outside the
1491 * range specified (in which case 'index - return >= max_scan' will be true).
1492 * In the rare case of wrap-around, ULONG_MAX will be returned.
1494 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1495 pgoff_t index, unsigned long max_scan)
1497 XA_STATE(xas, &mapping->i_pages, index);
1499 while (max_scan--) {
1500 void *entry = xas_prev(&xas);
1501 if (!entry || xa_is_value(entry))
1502 break;
1503 if (xas.xa_index == ULONG_MAX)
1504 break;
1507 return xas.xa_index;
1509 EXPORT_SYMBOL(page_cache_prev_miss);
1512 * find_get_entry - find and get a page cache entry
1513 * @mapping: the address_space to search
1514 * @offset: the page cache index
1516 * Looks up the page cache slot at @mapping & @offset. If there is a
1517 * page cache page, it is returned with an increased refcount.
1519 * If the slot holds a shadow entry of a previously evicted page, or a
1520 * swap entry from shmem/tmpfs, it is returned.
1522 * Return: the found page or shadow entry, %NULL if nothing is found.
1524 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1526 XA_STATE(xas, &mapping->i_pages, offset);
1527 struct page *page;
1529 rcu_read_lock();
1530 repeat:
1531 xas_reset(&xas);
1532 page = xas_load(&xas);
1533 if (xas_retry(&xas, page))
1534 goto repeat;
1536 * A shadow entry of a recently evicted page, or a swap entry from
1537 * shmem/tmpfs. Return it without attempting to raise page count.
1539 if (!page || xa_is_value(page))
1540 goto out;
1542 if (!page_cache_get_speculative(page))
1543 goto repeat;
1546 * Has the page moved or been split?
1547 * This is part of the lockless pagecache protocol. See
1548 * include/linux/pagemap.h for details.
1550 if (unlikely(page != xas_reload(&xas))) {
1551 put_page(page);
1552 goto repeat;
1554 page = find_subpage(page, offset);
1555 out:
1556 rcu_read_unlock();
1558 return page;
1560 EXPORT_SYMBOL(find_get_entry);
1563 * find_lock_entry - locate, pin and lock a page cache entry
1564 * @mapping: the address_space to search
1565 * @offset: the page cache index
1567 * Looks up the page cache slot at @mapping & @offset. If there is a
1568 * page cache page, it is returned locked and with an increased
1569 * refcount.
1571 * If the slot holds a shadow entry of a previously evicted page, or a
1572 * swap entry from shmem/tmpfs, it is returned.
1574 * find_lock_entry() may sleep.
1576 * Return: the found page or shadow entry, %NULL if nothing is found.
1578 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1580 struct page *page;
1582 repeat:
1583 page = find_get_entry(mapping, offset);
1584 if (page && !xa_is_value(page)) {
1585 lock_page(page);
1586 /* Has the page been truncated? */
1587 if (unlikely(page_mapping(page) != mapping)) {
1588 unlock_page(page);
1589 put_page(page);
1590 goto repeat;
1592 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1594 return page;
1596 EXPORT_SYMBOL(find_lock_entry);
1599 * pagecache_get_page - find and get a page reference
1600 * @mapping: the address_space to search
1601 * @offset: the page index
1602 * @fgp_flags: PCG flags
1603 * @gfp_mask: gfp mask to use for the page cache data page allocation
1605 * Looks up the page cache slot at @mapping & @offset.
1607 * PCG flags modify how the page is returned.
1609 * @fgp_flags can be:
1611 * - FGP_ACCESSED: the page will be marked accessed
1612 * - FGP_LOCK: Page is return locked
1613 * - FGP_CREAT: If page is not present then a new page is allocated using
1614 * @gfp_mask and added to the page cache and the VM's LRU
1615 * list. The page is returned locked and with an increased
1616 * refcount.
1617 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1618 * its own locking dance if the page is already in cache, or unlock the page
1619 * before returning if we had to add the page to pagecache.
1621 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1622 * if the GFP flags specified for FGP_CREAT are atomic.
1624 * If there is a page cache page, it is returned with an increased refcount.
1626 * Return: the found page or %NULL otherwise.
1628 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1629 int fgp_flags, gfp_t gfp_mask)
1631 struct page *page;
1633 repeat:
1634 page = find_get_entry(mapping, offset);
1635 if (xa_is_value(page))
1636 page = NULL;
1637 if (!page)
1638 goto no_page;
1640 if (fgp_flags & FGP_LOCK) {
1641 if (fgp_flags & FGP_NOWAIT) {
1642 if (!trylock_page(page)) {
1643 put_page(page);
1644 return NULL;
1646 } else {
1647 lock_page(page);
1650 /* Has the page been truncated? */
1651 if (unlikely(compound_head(page)->mapping != mapping)) {
1652 unlock_page(page);
1653 put_page(page);
1654 goto repeat;
1656 VM_BUG_ON_PAGE(page->index != offset, page);
1659 if (fgp_flags & FGP_ACCESSED)
1660 mark_page_accessed(page);
1662 no_page:
1663 if (!page && (fgp_flags & FGP_CREAT)) {
1664 int err;
1665 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1666 gfp_mask |= __GFP_WRITE;
1667 if (fgp_flags & FGP_NOFS)
1668 gfp_mask &= ~__GFP_FS;
1670 page = __page_cache_alloc(gfp_mask);
1671 if (!page)
1672 return NULL;
1674 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1675 fgp_flags |= FGP_LOCK;
1677 /* Init accessed so avoid atomic mark_page_accessed later */
1678 if (fgp_flags & FGP_ACCESSED)
1679 __SetPageReferenced(page);
1681 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1682 if (unlikely(err)) {
1683 put_page(page);
1684 page = NULL;
1685 if (err == -EEXIST)
1686 goto repeat;
1690 * add_to_page_cache_lru locks the page, and for mmap we expect
1691 * an unlocked page.
1693 if (page && (fgp_flags & FGP_FOR_MMAP))
1694 unlock_page(page);
1697 return page;
1699 EXPORT_SYMBOL(pagecache_get_page);
1702 * find_get_entries - gang pagecache lookup
1703 * @mapping: The address_space to search
1704 * @start: The starting page cache index
1705 * @nr_entries: The maximum number of entries
1706 * @entries: Where the resulting entries are placed
1707 * @indices: The cache indices corresponding to the entries in @entries
1709 * find_get_entries() will search for and return a group of up to
1710 * @nr_entries entries in the mapping. The entries are placed at
1711 * @entries. find_get_entries() takes a reference against any actual
1712 * pages it returns.
1714 * The search returns a group of mapping-contiguous page cache entries
1715 * with ascending indexes. There may be holes in the indices due to
1716 * not-present pages.
1718 * Any shadow entries of evicted pages, or swap entries from
1719 * shmem/tmpfs, are included in the returned array.
1721 * Return: the number of pages and shadow entries which were found.
1723 unsigned find_get_entries(struct address_space *mapping,
1724 pgoff_t start, unsigned int nr_entries,
1725 struct page **entries, pgoff_t *indices)
1727 XA_STATE(xas, &mapping->i_pages, start);
1728 struct page *page;
1729 unsigned int ret = 0;
1731 if (!nr_entries)
1732 return 0;
1734 rcu_read_lock();
1735 xas_for_each(&xas, page, ULONG_MAX) {
1736 if (xas_retry(&xas, page))
1737 continue;
1739 * A shadow entry of a recently evicted page, a swap
1740 * entry from shmem/tmpfs or a DAX entry. Return it
1741 * without attempting to raise page count.
1743 if (xa_is_value(page))
1744 goto export;
1746 if (!page_cache_get_speculative(page))
1747 goto retry;
1749 /* Has the page moved or been split? */
1750 if (unlikely(page != xas_reload(&xas)))
1751 goto put_page;
1752 page = find_subpage(page, xas.xa_index);
1754 export:
1755 indices[ret] = xas.xa_index;
1756 entries[ret] = page;
1757 if (++ret == nr_entries)
1758 break;
1759 continue;
1760 put_page:
1761 put_page(page);
1762 retry:
1763 xas_reset(&xas);
1765 rcu_read_unlock();
1766 return ret;
1770 * find_get_pages_range - gang pagecache lookup
1771 * @mapping: The address_space to search
1772 * @start: The starting page index
1773 * @end: The final page index (inclusive)
1774 * @nr_pages: The maximum number of pages
1775 * @pages: Where the resulting pages are placed
1777 * find_get_pages_range() will search for and return a group of up to @nr_pages
1778 * pages in the mapping starting at index @start and up to index @end
1779 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1780 * a reference against the returned pages.
1782 * The search returns a group of mapping-contiguous pages with ascending
1783 * indexes. There may be holes in the indices due to not-present pages.
1784 * We also update @start to index the next page for the traversal.
1786 * Return: the number of pages which were found. If this number is
1787 * smaller than @nr_pages, the end of specified range has been
1788 * reached.
1790 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1791 pgoff_t end, unsigned int nr_pages,
1792 struct page **pages)
1794 XA_STATE(xas, &mapping->i_pages, *start);
1795 struct page *page;
1796 unsigned ret = 0;
1798 if (unlikely(!nr_pages))
1799 return 0;
1801 rcu_read_lock();
1802 xas_for_each(&xas, page, end) {
1803 if (xas_retry(&xas, page))
1804 continue;
1805 /* Skip over shadow, swap and DAX entries */
1806 if (xa_is_value(page))
1807 continue;
1809 if (!page_cache_get_speculative(page))
1810 goto retry;
1812 /* Has the page moved or been split? */
1813 if (unlikely(page != xas_reload(&xas)))
1814 goto put_page;
1816 pages[ret] = find_subpage(page, xas.xa_index);
1817 if (++ret == nr_pages) {
1818 *start = xas.xa_index + 1;
1819 goto out;
1821 continue;
1822 put_page:
1823 put_page(page);
1824 retry:
1825 xas_reset(&xas);
1829 * We come here when there is no page beyond @end. We take care to not
1830 * overflow the index @start as it confuses some of the callers. This
1831 * breaks the iteration when there is a page at index -1 but that is
1832 * already broken anyway.
1834 if (end == (pgoff_t)-1)
1835 *start = (pgoff_t)-1;
1836 else
1837 *start = end + 1;
1838 out:
1839 rcu_read_unlock();
1841 return ret;
1845 * find_get_pages_contig - gang contiguous pagecache lookup
1846 * @mapping: The address_space to search
1847 * @index: The starting page index
1848 * @nr_pages: The maximum number of pages
1849 * @pages: Where the resulting pages are placed
1851 * find_get_pages_contig() works exactly like find_get_pages(), except
1852 * that the returned number of pages are guaranteed to be contiguous.
1854 * Return: the number of pages which were found.
1856 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1857 unsigned int nr_pages, struct page **pages)
1859 XA_STATE(xas, &mapping->i_pages, index);
1860 struct page *page;
1861 unsigned int ret = 0;
1863 if (unlikely(!nr_pages))
1864 return 0;
1866 rcu_read_lock();
1867 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1868 if (xas_retry(&xas, page))
1869 continue;
1871 * If the entry has been swapped out, we can stop looking.
1872 * No current caller is looking for DAX entries.
1874 if (xa_is_value(page))
1875 break;
1877 if (!page_cache_get_speculative(page))
1878 goto retry;
1880 /* Has the page moved or been split? */
1881 if (unlikely(page != xas_reload(&xas)))
1882 goto put_page;
1884 pages[ret] = find_subpage(page, xas.xa_index);
1885 if (++ret == nr_pages)
1886 break;
1887 continue;
1888 put_page:
1889 put_page(page);
1890 retry:
1891 xas_reset(&xas);
1893 rcu_read_unlock();
1894 return ret;
1896 EXPORT_SYMBOL(find_get_pages_contig);
1899 * find_get_pages_range_tag - find and return pages in given range matching @tag
1900 * @mapping: the address_space to search
1901 * @index: the starting page index
1902 * @end: The final page index (inclusive)
1903 * @tag: the tag index
1904 * @nr_pages: the maximum number of pages
1905 * @pages: where the resulting pages are placed
1907 * Like find_get_pages, except we only return pages which are tagged with
1908 * @tag. We update @index to index the next page for the traversal.
1910 * Return: the number of pages which were found.
1912 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1913 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1914 struct page **pages)
1916 XA_STATE(xas, &mapping->i_pages, *index);
1917 struct page *page;
1918 unsigned ret = 0;
1920 if (unlikely(!nr_pages))
1921 return 0;
1923 rcu_read_lock();
1924 xas_for_each_marked(&xas, page, end, tag) {
1925 if (xas_retry(&xas, page))
1926 continue;
1928 * Shadow entries should never be tagged, but this iteration
1929 * is lockless so there is a window for page reclaim to evict
1930 * a page we saw tagged. Skip over it.
1932 if (xa_is_value(page))
1933 continue;
1935 if (!page_cache_get_speculative(page))
1936 goto retry;
1938 /* Has the page moved or been split? */
1939 if (unlikely(page != xas_reload(&xas)))
1940 goto put_page;
1942 pages[ret] = find_subpage(page, xas.xa_index);
1943 if (++ret == nr_pages) {
1944 *index = xas.xa_index + 1;
1945 goto out;
1947 continue;
1948 put_page:
1949 put_page(page);
1950 retry:
1951 xas_reset(&xas);
1955 * We come here when we got to @end. We take care to not overflow the
1956 * index @index as it confuses some of the callers. This breaks the
1957 * iteration when there is a page at index -1 but that is already
1958 * broken anyway.
1960 if (end == (pgoff_t)-1)
1961 *index = (pgoff_t)-1;
1962 else
1963 *index = end + 1;
1964 out:
1965 rcu_read_unlock();
1967 return ret;
1969 EXPORT_SYMBOL(find_get_pages_range_tag);
1972 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1973 * a _large_ part of the i/o request. Imagine the worst scenario:
1975 * ---R__________________________________________B__________
1976 * ^ reading here ^ bad block(assume 4k)
1978 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1979 * => failing the whole request => read(R) => read(R+1) =>
1980 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1981 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1982 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1984 * It is going insane. Fix it by quickly scaling down the readahead size.
1986 static void shrink_readahead_size_eio(struct file *filp,
1987 struct file_ra_state *ra)
1989 ra->ra_pages /= 4;
1993 * generic_file_buffered_read - generic file read routine
1994 * @iocb: the iocb to read
1995 * @iter: data destination
1996 * @written: already copied
1998 * This is a generic file read routine, and uses the
1999 * mapping->a_ops->readpage() function for the actual low-level stuff.
2001 * This is really ugly. But the goto's actually try to clarify some
2002 * of the logic when it comes to error handling etc.
2004 * Return:
2005 * * total number of bytes copied, including those the were already @written
2006 * * negative error code if nothing was copied
2008 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2009 struct iov_iter *iter, ssize_t written)
2011 struct file *filp = iocb->ki_filp;
2012 struct address_space *mapping = filp->f_mapping;
2013 struct inode *inode = mapping->host;
2014 struct file_ra_state *ra = &filp->f_ra;
2015 loff_t *ppos = &iocb->ki_pos;
2016 pgoff_t index;
2017 pgoff_t last_index;
2018 pgoff_t prev_index;
2019 unsigned long offset; /* offset into pagecache page */
2020 unsigned int prev_offset;
2021 int error = 0;
2023 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2024 return 0;
2025 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2027 index = *ppos >> PAGE_SHIFT;
2028 prev_index = ra->prev_pos >> PAGE_SHIFT;
2029 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2030 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2031 offset = *ppos & ~PAGE_MASK;
2033 for (;;) {
2034 struct page *page;
2035 pgoff_t end_index;
2036 loff_t isize;
2037 unsigned long nr, ret;
2039 cond_resched();
2040 find_page:
2041 if (fatal_signal_pending(current)) {
2042 error = -EINTR;
2043 goto out;
2046 page = find_get_page(mapping, index);
2047 if (!page) {
2048 if (iocb->ki_flags & IOCB_NOWAIT)
2049 goto would_block;
2050 page_cache_sync_readahead(mapping,
2051 ra, filp,
2052 index, last_index - index);
2053 page = find_get_page(mapping, index);
2054 if (unlikely(page == NULL))
2055 goto no_cached_page;
2057 if (PageReadahead(page)) {
2058 page_cache_async_readahead(mapping,
2059 ra, filp, page,
2060 index, last_index - index);
2062 if (!PageUptodate(page)) {
2063 if (iocb->ki_flags & IOCB_NOWAIT) {
2064 put_page(page);
2065 goto would_block;
2069 * See comment in do_read_cache_page on why
2070 * wait_on_page_locked is used to avoid unnecessarily
2071 * serialisations and why it's safe.
2073 error = wait_on_page_locked_killable(page);
2074 if (unlikely(error))
2075 goto readpage_error;
2076 if (PageUptodate(page))
2077 goto page_ok;
2079 if (inode->i_blkbits == PAGE_SHIFT ||
2080 !mapping->a_ops->is_partially_uptodate)
2081 goto page_not_up_to_date;
2082 /* pipes can't handle partially uptodate pages */
2083 if (unlikely(iov_iter_is_pipe(iter)))
2084 goto page_not_up_to_date;
2085 if (!trylock_page(page))
2086 goto page_not_up_to_date;
2087 /* Did it get truncated before we got the lock? */
2088 if (!page->mapping)
2089 goto page_not_up_to_date_locked;
2090 if (!mapping->a_ops->is_partially_uptodate(page,
2091 offset, iter->count))
2092 goto page_not_up_to_date_locked;
2093 unlock_page(page);
2095 page_ok:
2097 * i_size must be checked after we know the page is Uptodate.
2099 * Checking i_size after the check allows us to calculate
2100 * the correct value for "nr", which means the zero-filled
2101 * part of the page is not copied back to userspace (unless
2102 * another truncate extends the file - this is desired though).
2105 isize = i_size_read(inode);
2106 end_index = (isize - 1) >> PAGE_SHIFT;
2107 if (unlikely(!isize || index > end_index)) {
2108 put_page(page);
2109 goto out;
2112 /* nr is the maximum number of bytes to copy from this page */
2113 nr = PAGE_SIZE;
2114 if (index == end_index) {
2115 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2116 if (nr <= offset) {
2117 put_page(page);
2118 goto out;
2121 nr = nr - offset;
2123 /* If users can be writing to this page using arbitrary
2124 * virtual addresses, take care about potential aliasing
2125 * before reading the page on the kernel side.
2127 if (mapping_writably_mapped(mapping))
2128 flush_dcache_page(page);
2131 * When a sequential read accesses a page several times,
2132 * only mark it as accessed the first time.
2134 if (prev_index != index || offset != prev_offset)
2135 mark_page_accessed(page);
2136 prev_index = index;
2139 * Ok, we have the page, and it's up-to-date, so
2140 * now we can copy it to user space...
2143 ret = copy_page_to_iter(page, offset, nr, iter);
2144 offset += ret;
2145 index += offset >> PAGE_SHIFT;
2146 offset &= ~PAGE_MASK;
2147 prev_offset = offset;
2149 put_page(page);
2150 written += ret;
2151 if (!iov_iter_count(iter))
2152 goto out;
2153 if (ret < nr) {
2154 error = -EFAULT;
2155 goto out;
2157 continue;
2159 page_not_up_to_date:
2160 /* Get exclusive access to the page ... */
2161 error = lock_page_killable(page);
2162 if (unlikely(error))
2163 goto readpage_error;
2165 page_not_up_to_date_locked:
2166 /* Did it get truncated before we got the lock? */
2167 if (!page->mapping) {
2168 unlock_page(page);
2169 put_page(page);
2170 continue;
2173 /* Did somebody else fill it already? */
2174 if (PageUptodate(page)) {
2175 unlock_page(page);
2176 goto page_ok;
2179 readpage:
2181 * A previous I/O error may have been due to temporary
2182 * failures, eg. multipath errors.
2183 * PG_error will be set again if readpage fails.
2185 ClearPageError(page);
2186 /* Start the actual read. The read will unlock the page. */
2187 error = mapping->a_ops->readpage(filp, page);
2189 if (unlikely(error)) {
2190 if (error == AOP_TRUNCATED_PAGE) {
2191 put_page(page);
2192 error = 0;
2193 goto find_page;
2195 goto readpage_error;
2198 if (!PageUptodate(page)) {
2199 error = lock_page_killable(page);
2200 if (unlikely(error))
2201 goto readpage_error;
2202 if (!PageUptodate(page)) {
2203 if (page->mapping == NULL) {
2205 * invalidate_mapping_pages got it
2207 unlock_page(page);
2208 put_page(page);
2209 goto find_page;
2211 unlock_page(page);
2212 shrink_readahead_size_eio(filp, ra);
2213 error = -EIO;
2214 goto readpage_error;
2216 unlock_page(page);
2219 goto page_ok;
2221 readpage_error:
2222 /* UHHUH! A synchronous read error occurred. Report it */
2223 put_page(page);
2224 goto out;
2226 no_cached_page:
2228 * Ok, it wasn't cached, so we need to create a new
2229 * page..
2231 page = page_cache_alloc(mapping);
2232 if (!page) {
2233 error = -ENOMEM;
2234 goto out;
2236 error = add_to_page_cache_lru(page, mapping, index,
2237 mapping_gfp_constraint(mapping, GFP_KERNEL));
2238 if (error) {
2239 put_page(page);
2240 if (error == -EEXIST) {
2241 error = 0;
2242 goto find_page;
2244 goto out;
2246 goto readpage;
2249 would_block:
2250 error = -EAGAIN;
2251 out:
2252 ra->prev_pos = prev_index;
2253 ra->prev_pos <<= PAGE_SHIFT;
2254 ra->prev_pos |= prev_offset;
2256 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2257 file_accessed(filp);
2258 return written ? written : error;
2262 * generic_file_read_iter - generic filesystem read routine
2263 * @iocb: kernel I/O control block
2264 * @iter: destination for the data read
2266 * This is the "read_iter()" routine for all filesystems
2267 * that can use the page cache directly.
2268 * Return:
2269 * * number of bytes copied, even for partial reads
2270 * * negative error code if nothing was read
2272 ssize_t
2273 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2275 size_t count = iov_iter_count(iter);
2276 ssize_t retval = 0;
2278 if (!count)
2279 goto out; /* skip atime */
2281 if (iocb->ki_flags & IOCB_DIRECT) {
2282 struct file *file = iocb->ki_filp;
2283 struct address_space *mapping = file->f_mapping;
2284 struct inode *inode = mapping->host;
2285 loff_t size;
2287 size = i_size_read(inode);
2288 if (iocb->ki_flags & IOCB_NOWAIT) {
2289 if (filemap_range_has_page(mapping, iocb->ki_pos,
2290 iocb->ki_pos + count - 1))
2291 return -EAGAIN;
2292 } else {
2293 retval = filemap_write_and_wait_range(mapping,
2294 iocb->ki_pos,
2295 iocb->ki_pos + count - 1);
2296 if (retval < 0)
2297 goto out;
2300 file_accessed(file);
2302 retval = mapping->a_ops->direct_IO(iocb, iter);
2303 if (retval >= 0) {
2304 iocb->ki_pos += retval;
2305 count -= retval;
2307 iov_iter_revert(iter, count - iov_iter_count(iter));
2310 * Btrfs can have a short DIO read if we encounter
2311 * compressed extents, so if there was an error, or if
2312 * we've already read everything we wanted to, or if
2313 * there was a short read because we hit EOF, go ahead
2314 * and return. Otherwise fallthrough to buffered io for
2315 * the rest of the read. Buffered reads will not work for
2316 * DAX files, so don't bother trying.
2318 if (retval < 0 || !count || iocb->ki_pos >= size ||
2319 IS_DAX(inode))
2320 goto out;
2323 retval = generic_file_buffered_read(iocb, iter, retval);
2324 out:
2325 return retval;
2327 EXPORT_SYMBOL(generic_file_read_iter);
2329 #ifdef CONFIG_MMU
2330 #define MMAP_LOTSAMISS (100)
2331 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2332 struct file *fpin)
2334 int flags = vmf->flags;
2336 if (fpin)
2337 return fpin;
2340 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2341 * anything, so we only pin the file and drop the mmap_sem if only
2342 * FAULT_FLAG_ALLOW_RETRY is set.
2344 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2345 FAULT_FLAG_ALLOW_RETRY) {
2346 fpin = get_file(vmf->vma->vm_file);
2347 up_read(&vmf->vma->vm_mm->mmap_sem);
2349 return fpin;
2353 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2354 * @vmf - the vm_fault for this fault.
2355 * @page - the page to lock.
2356 * @fpin - the pointer to the file we may pin (or is already pinned).
2358 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2359 * It differs in that it actually returns the page locked if it returns 1 and 0
2360 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2361 * will point to the pinned file and needs to be fput()'ed at a later point.
2363 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2364 struct file **fpin)
2366 if (trylock_page(page))
2367 return 1;
2370 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2371 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2372 * is supposed to work. We have way too many special cases..
2374 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2375 return 0;
2377 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2378 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2379 if (__lock_page_killable(page)) {
2381 * We didn't have the right flags to drop the mmap_sem,
2382 * but all fault_handlers only check for fatal signals
2383 * if we return VM_FAULT_RETRY, so we need to drop the
2384 * mmap_sem here and return 0 if we don't have a fpin.
2386 if (*fpin == NULL)
2387 up_read(&vmf->vma->vm_mm->mmap_sem);
2388 return 0;
2390 } else
2391 __lock_page(page);
2392 return 1;
2397 * Synchronous readahead happens when we don't even find a page in the page
2398 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2399 * to drop the mmap sem we return the file that was pinned in order for us to do
2400 * that. If we didn't pin a file then we return NULL. The file that is
2401 * returned needs to be fput()'ed when we're done with it.
2403 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2405 struct file *file = vmf->vma->vm_file;
2406 struct file_ra_state *ra = &file->f_ra;
2407 struct address_space *mapping = file->f_mapping;
2408 struct file *fpin = NULL;
2409 pgoff_t offset = vmf->pgoff;
2411 /* If we don't want any read-ahead, don't bother */
2412 if (vmf->vma->vm_flags & VM_RAND_READ)
2413 return fpin;
2414 if (!ra->ra_pages)
2415 return fpin;
2417 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2418 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2419 page_cache_sync_readahead(mapping, ra, file, offset,
2420 ra->ra_pages);
2421 return fpin;
2424 /* Avoid banging the cache line if not needed */
2425 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2426 ra->mmap_miss++;
2429 * Do we miss much more than hit in this file? If so,
2430 * stop bothering with read-ahead. It will only hurt.
2432 if (ra->mmap_miss > MMAP_LOTSAMISS)
2433 return fpin;
2436 * mmap read-around
2438 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2439 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2440 ra->size = ra->ra_pages;
2441 ra->async_size = ra->ra_pages / 4;
2442 ra_submit(ra, mapping, file);
2443 return fpin;
2447 * Asynchronous readahead happens when we find the page and PG_readahead,
2448 * so we want to possibly extend the readahead further. We return the file that
2449 * was pinned if we have to drop the mmap_sem in order to do IO.
2451 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2452 struct page *page)
2454 struct file *file = vmf->vma->vm_file;
2455 struct file_ra_state *ra = &file->f_ra;
2456 struct address_space *mapping = file->f_mapping;
2457 struct file *fpin = NULL;
2458 pgoff_t offset = vmf->pgoff;
2460 /* If we don't want any read-ahead, don't bother */
2461 if (vmf->vma->vm_flags & VM_RAND_READ)
2462 return fpin;
2463 if (ra->mmap_miss > 0)
2464 ra->mmap_miss--;
2465 if (PageReadahead(page)) {
2466 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2467 page_cache_async_readahead(mapping, ra, file,
2468 page, offset, ra->ra_pages);
2470 return fpin;
2474 * filemap_fault - read in file data for page fault handling
2475 * @vmf: struct vm_fault containing details of the fault
2477 * filemap_fault() is invoked via the vma operations vector for a
2478 * mapped memory region to read in file data during a page fault.
2480 * The goto's are kind of ugly, but this streamlines the normal case of having
2481 * it in the page cache, and handles the special cases reasonably without
2482 * having a lot of duplicated code.
2484 * vma->vm_mm->mmap_sem must be held on entry.
2486 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2487 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2489 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2490 * has not been released.
2492 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2494 * Return: bitwise-OR of %VM_FAULT_ codes.
2496 vm_fault_t filemap_fault(struct vm_fault *vmf)
2498 int error;
2499 struct file *file = vmf->vma->vm_file;
2500 struct file *fpin = NULL;
2501 struct address_space *mapping = file->f_mapping;
2502 struct file_ra_state *ra = &file->f_ra;
2503 struct inode *inode = mapping->host;
2504 pgoff_t offset = vmf->pgoff;
2505 pgoff_t max_off;
2506 struct page *page;
2507 vm_fault_t ret = 0;
2509 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2510 if (unlikely(offset >= max_off))
2511 return VM_FAULT_SIGBUS;
2514 * Do we have something in the page cache already?
2516 page = find_get_page(mapping, offset);
2517 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2519 * We found the page, so try async readahead before
2520 * waiting for the lock.
2522 fpin = do_async_mmap_readahead(vmf, page);
2523 } else if (!page) {
2524 /* No page in the page cache at all */
2525 count_vm_event(PGMAJFAULT);
2526 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2527 ret = VM_FAULT_MAJOR;
2528 fpin = do_sync_mmap_readahead(vmf);
2529 retry_find:
2530 page = pagecache_get_page(mapping, offset,
2531 FGP_CREAT|FGP_FOR_MMAP,
2532 vmf->gfp_mask);
2533 if (!page) {
2534 if (fpin)
2535 goto out_retry;
2536 return vmf_error(-ENOMEM);
2540 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2541 goto out_retry;
2543 /* Did it get truncated? */
2544 if (unlikely(compound_head(page)->mapping != mapping)) {
2545 unlock_page(page);
2546 put_page(page);
2547 goto retry_find;
2549 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2552 * We have a locked page in the page cache, now we need to check
2553 * that it's up-to-date. If not, it is going to be due to an error.
2555 if (unlikely(!PageUptodate(page)))
2556 goto page_not_uptodate;
2559 * We've made it this far and we had to drop our mmap_sem, now is the
2560 * time to return to the upper layer and have it re-find the vma and
2561 * redo the fault.
2563 if (fpin) {
2564 unlock_page(page);
2565 goto out_retry;
2569 * Found the page and have a reference on it.
2570 * We must recheck i_size under page lock.
2572 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2573 if (unlikely(offset >= max_off)) {
2574 unlock_page(page);
2575 put_page(page);
2576 return VM_FAULT_SIGBUS;
2579 vmf->page = page;
2580 return ret | VM_FAULT_LOCKED;
2582 page_not_uptodate:
2584 * Umm, take care of errors if the page isn't up-to-date.
2585 * Try to re-read it _once_. We do this synchronously,
2586 * because there really aren't any performance issues here
2587 * and we need to check for errors.
2589 ClearPageError(page);
2590 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2591 error = mapping->a_ops->readpage(file, page);
2592 if (!error) {
2593 wait_on_page_locked(page);
2594 if (!PageUptodate(page))
2595 error = -EIO;
2597 if (fpin)
2598 goto out_retry;
2599 put_page(page);
2601 if (!error || error == AOP_TRUNCATED_PAGE)
2602 goto retry_find;
2604 /* Things didn't work out. Return zero to tell the mm layer so. */
2605 shrink_readahead_size_eio(file, ra);
2606 return VM_FAULT_SIGBUS;
2608 out_retry:
2610 * We dropped the mmap_sem, we need to return to the fault handler to
2611 * re-find the vma and come back and find our hopefully still populated
2612 * page.
2614 if (page)
2615 put_page(page);
2616 if (fpin)
2617 fput(fpin);
2618 return ret | VM_FAULT_RETRY;
2620 EXPORT_SYMBOL(filemap_fault);
2622 void filemap_map_pages(struct vm_fault *vmf,
2623 pgoff_t start_pgoff, pgoff_t end_pgoff)
2625 struct file *file = vmf->vma->vm_file;
2626 struct address_space *mapping = file->f_mapping;
2627 pgoff_t last_pgoff = start_pgoff;
2628 unsigned long max_idx;
2629 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2630 struct page *page;
2632 rcu_read_lock();
2633 xas_for_each(&xas, page, end_pgoff) {
2634 if (xas_retry(&xas, page))
2635 continue;
2636 if (xa_is_value(page))
2637 goto next;
2640 * Check for a locked page first, as a speculative
2641 * reference may adversely influence page migration.
2643 if (PageLocked(page))
2644 goto next;
2645 if (!page_cache_get_speculative(page))
2646 goto next;
2648 /* Has the page moved or been split? */
2649 if (unlikely(page != xas_reload(&xas)))
2650 goto skip;
2651 page = find_subpage(page, xas.xa_index);
2653 if (!PageUptodate(page) ||
2654 PageReadahead(page) ||
2655 PageHWPoison(page))
2656 goto skip;
2657 if (!trylock_page(page))
2658 goto skip;
2660 if (page->mapping != mapping || !PageUptodate(page))
2661 goto unlock;
2663 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2664 if (page->index >= max_idx)
2665 goto unlock;
2667 if (file->f_ra.mmap_miss > 0)
2668 file->f_ra.mmap_miss--;
2670 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2671 if (vmf->pte)
2672 vmf->pte += xas.xa_index - last_pgoff;
2673 last_pgoff = xas.xa_index;
2674 if (alloc_set_pte(vmf, NULL, page))
2675 goto unlock;
2676 unlock_page(page);
2677 goto next;
2678 unlock:
2679 unlock_page(page);
2680 skip:
2681 put_page(page);
2682 next:
2683 /* Huge page is mapped? No need to proceed. */
2684 if (pmd_trans_huge(*vmf->pmd))
2685 break;
2687 rcu_read_unlock();
2689 EXPORT_SYMBOL(filemap_map_pages);
2691 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2693 struct page *page = vmf->page;
2694 struct inode *inode = file_inode(vmf->vma->vm_file);
2695 vm_fault_t ret = VM_FAULT_LOCKED;
2697 sb_start_pagefault(inode->i_sb);
2698 file_update_time(vmf->vma->vm_file);
2699 lock_page(page);
2700 if (page->mapping != inode->i_mapping) {
2701 unlock_page(page);
2702 ret = VM_FAULT_NOPAGE;
2703 goto out;
2706 * We mark the page dirty already here so that when freeze is in
2707 * progress, we are guaranteed that writeback during freezing will
2708 * see the dirty page and writeprotect it again.
2710 set_page_dirty(page);
2711 wait_for_stable_page(page);
2712 out:
2713 sb_end_pagefault(inode->i_sb);
2714 return ret;
2717 const struct vm_operations_struct generic_file_vm_ops = {
2718 .fault = filemap_fault,
2719 .map_pages = filemap_map_pages,
2720 .page_mkwrite = filemap_page_mkwrite,
2723 /* This is used for a general mmap of a disk file */
2725 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2727 struct address_space *mapping = file->f_mapping;
2729 if (!mapping->a_ops->readpage)
2730 return -ENOEXEC;
2731 file_accessed(file);
2732 vma->vm_ops = &generic_file_vm_ops;
2733 return 0;
2737 * This is for filesystems which do not implement ->writepage.
2739 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2741 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2742 return -EINVAL;
2743 return generic_file_mmap(file, vma);
2745 #else
2746 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2748 return VM_FAULT_SIGBUS;
2750 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2752 return -ENOSYS;
2754 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2756 return -ENOSYS;
2758 #endif /* CONFIG_MMU */
2760 EXPORT_SYMBOL(filemap_page_mkwrite);
2761 EXPORT_SYMBOL(generic_file_mmap);
2762 EXPORT_SYMBOL(generic_file_readonly_mmap);
2764 static struct page *wait_on_page_read(struct page *page)
2766 if (!IS_ERR(page)) {
2767 wait_on_page_locked(page);
2768 if (!PageUptodate(page)) {
2769 put_page(page);
2770 page = ERR_PTR(-EIO);
2773 return page;
2776 static struct page *do_read_cache_page(struct address_space *mapping,
2777 pgoff_t index,
2778 int (*filler)(void *, struct page *),
2779 void *data,
2780 gfp_t gfp)
2782 struct page *page;
2783 int err;
2784 repeat:
2785 page = find_get_page(mapping, index);
2786 if (!page) {
2787 page = __page_cache_alloc(gfp);
2788 if (!page)
2789 return ERR_PTR(-ENOMEM);
2790 err = add_to_page_cache_lru(page, mapping, index, gfp);
2791 if (unlikely(err)) {
2792 put_page(page);
2793 if (err == -EEXIST)
2794 goto repeat;
2795 /* Presumably ENOMEM for xarray node */
2796 return ERR_PTR(err);
2799 filler:
2800 if (filler)
2801 err = filler(data, page);
2802 else
2803 err = mapping->a_ops->readpage(data, page);
2805 if (err < 0) {
2806 put_page(page);
2807 return ERR_PTR(err);
2810 page = wait_on_page_read(page);
2811 if (IS_ERR(page))
2812 return page;
2813 goto out;
2815 if (PageUptodate(page))
2816 goto out;
2819 * Page is not up to date and may be locked due one of the following
2820 * case a: Page is being filled and the page lock is held
2821 * case b: Read/write error clearing the page uptodate status
2822 * case c: Truncation in progress (page locked)
2823 * case d: Reclaim in progress
2825 * Case a, the page will be up to date when the page is unlocked.
2826 * There is no need to serialise on the page lock here as the page
2827 * is pinned so the lock gives no additional protection. Even if the
2828 * the page is truncated, the data is still valid if PageUptodate as
2829 * it's a race vs truncate race.
2830 * Case b, the page will not be up to date
2831 * Case c, the page may be truncated but in itself, the data may still
2832 * be valid after IO completes as it's a read vs truncate race. The
2833 * operation must restart if the page is not uptodate on unlock but
2834 * otherwise serialising on page lock to stabilise the mapping gives
2835 * no additional guarantees to the caller as the page lock is
2836 * released before return.
2837 * Case d, similar to truncation. If reclaim holds the page lock, it
2838 * will be a race with remove_mapping that determines if the mapping
2839 * is valid on unlock but otherwise the data is valid and there is
2840 * no need to serialise with page lock.
2842 * As the page lock gives no additional guarantee, we optimistically
2843 * wait on the page to be unlocked and check if it's up to date and
2844 * use the page if it is. Otherwise, the page lock is required to
2845 * distinguish between the different cases. The motivation is that we
2846 * avoid spurious serialisations and wakeups when multiple processes
2847 * wait on the same page for IO to complete.
2849 wait_on_page_locked(page);
2850 if (PageUptodate(page))
2851 goto out;
2853 /* Distinguish between all the cases under the safety of the lock */
2854 lock_page(page);
2856 /* Case c or d, restart the operation */
2857 if (!page->mapping) {
2858 unlock_page(page);
2859 put_page(page);
2860 goto repeat;
2863 /* Someone else locked and filled the page in a very small window */
2864 if (PageUptodate(page)) {
2865 unlock_page(page);
2866 goto out;
2868 goto filler;
2870 out:
2871 mark_page_accessed(page);
2872 return page;
2876 * read_cache_page - read into page cache, fill it if needed
2877 * @mapping: the page's address_space
2878 * @index: the page index
2879 * @filler: function to perform the read
2880 * @data: first arg to filler(data, page) function, often left as NULL
2882 * Read into the page cache. If a page already exists, and PageUptodate() is
2883 * not set, try to fill the page and wait for it to become unlocked.
2885 * If the page does not get brought uptodate, return -EIO.
2887 * Return: up to date page on success, ERR_PTR() on failure.
2889 struct page *read_cache_page(struct address_space *mapping,
2890 pgoff_t index,
2891 int (*filler)(void *, struct page *),
2892 void *data)
2894 return do_read_cache_page(mapping, index, filler, data,
2895 mapping_gfp_mask(mapping));
2897 EXPORT_SYMBOL(read_cache_page);
2900 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2901 * @mapping: the page's address_space
2902 * @index: the page index
2903 * @gfp: the page allocator flags to use if allocating
2905 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2906 * any new page allocations done using the specified allocation flags.
2908 * If the page does not get brought uptodate, return -EIO.
2910 * Return: up to date page on success, ERR_PTR() on failure.
2912 struct page *read_cache_page_gfp(struct address_space *mapping,
2913 pgoff_t index,
2914 gfp_t gfp)
2916 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2918 EXPORT_SYMBOL(read_cache_page_gfp);
2921 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2922 * LFS limits. If pos is under the limit it becomes a short access. If it
2923 * exceeds the limit we return -EFBIG.
2925 static int generic_write_check_limits(struct file *file, loff_t pos,
2926 loff_t *count)
2928 struct inode *inode = file->f_mapping->host;
2929 loff_t max_size = inode->i_sb->s_maxbytes;
2930 loff_t limit = rlimit(RLIMIT_FSIZE);
2932 if (limit != RLIM_INFINITY) {
2933 if (pos >= limit) {
2934 send_sig(SIGXFSZ, current, 0);
2935 return -EFBIG;
2937 *count = min(*count, limit - pos);
2940 if (!(file->f_flags & O_LARGEFILE))
2941 max_size = MAX_NON_LFS;
2943 if (unlikely(pos >= max_size))
2944 return -EFBIG;
2946 *count = min(*count, max_size - pos);
2948 return 0;
2952 * Performs necessary checks before doing a write
2954 * Can adjust writing position or amount of bytes to write.
2955 * Returns appropriate error code that caller should return or
2956 * zero in case that write should be allowed.
2958 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2960 struct file *file = iocb->ki_filp;
2961 struct inode *inode = file->f_mapping->host;
2962 loff_t count;
2963 int ret;
2965 if (IS_SWAPFILE(inode))
2966 return -ETXTBSY;
2968 if (!iov_iter_count(from))
2969 return 0;
2971 /* FIXME: this is for backwards compatibility with 2.4 */
2972 if (iocb->ki_flags & IOCB_APPEND)
2973 iocb->ki_pos = i_size_read(inode);
2975 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2976 return -EINVAL;
2978 count = iov_iter_count(from);
2979 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2980 if (ret)
2981 return ret;
2983 iov_iter_truncate(from, count);
2984 return iov_iter_count(from);
2986 EXPORT_SYMBOL(generic_write_checks);
2989 * Performs necessary checks before doing a clone.
2991 * Can adjust amount of bytes to clone via @req_count argument.
2992 * Returns appropriate error code that caller should return or
2993 * zero in case the clone should be allowed.
2995 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2996 struct file *file_out, loff_t pos_out,
2997 loff_t *req_count, unsigned int remap_flags)
2999 struct inode *inode_in = file_in->f_mapping->host;
3000 struct inode *inode_out = file_out->f_mapping->host;
3001 uint64_t count = *req_count;
3002 uint64_t bcount;
3003 loff_t size_in, size_out;
3004 loff_t bs = inode_out->i_sb->s_blocksize;
3005 int ret;
3007 /* The start of both ranges must be aligned to an fs block. */
3008 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3009 return -EINVAL;
3011 /* Ensure offsets don't wrap. */
3012 if (pos_in + count < pos_in || pos_out + count < pos_out)
3013 return -EINVAL;
3015 size_in = i_size_read(inode_in);
3016 size_out = i_size_read(inode_out);
3018 /* Dedupe requires both ranges to be within EOF. */
3019 if ((remap_flags & REMAP_FILE_DEDUP) &&
3020 (pos_in >= size_in || pos_in + count > size_in ||
3021 pos_out >= size_out || pos_out + count > size_out))
3022 return -EINVAL;
3024 /* Ensure the infile range is within the infile. */
3025 if (pos_in >= size_in)
3026 return -EINVAL;
3027 count = min(count, size_in - (uint64_t)pos_in);
3029 ret = generic_write_check_limits(file_out, pos_out, &count);
3030 if (ret)
3031 return ret;
3034 * If the user wanted us to link to the infile's EOF, round up to the
3035 * next block boundary for this check.
3037 * Otherwise, make sure the count is also block-aligned, having
3038 * already confirmed the starting offsets' block alignment.
3040 if (pos_in + count == size_in) {
3041 bcount = ALIGN(size_in, bs) - pos_in;
3042 } else {
3043 if (!IS_ALIGNED(count, bs))
3044 count = ALIGN_DOWN(count, bs);
3045 bcount = count;
3048 /* Don't allow overlapped cloning within the same file. */
3049 if (inode_in == inode_out &&
3050 pos_out + bcount > pos_in &&
3051 pos_out < pos_in + bcount)
3052 return -EINVAL;
3055 * We shortened the request but the caller can't deal with that, so
3056 * bounce the request back to userspace.
3058 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3059 return -EINVAL;
3061 *req_count = count;
3062 return 0;
3067 * Performs common checks before doing a file copy/clone
3068 * from @file_in to @file_out.
3070 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3072 struct inode *inode_in = file_inode(file_in);
3073 struct inode *inode_out = file_inode(file_out);
3075 /* Don't copy dirs, pipes, sockets... */
3076 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3077 return -EISDIR;
3078 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3079 return -EINVAL;
3081 if (!(file_in->f_mode & FMODE_READ) ||
3082 !(file_out->f_mode & FMODE_WRITE) ||
3083 (file_out->f_flags & O_APPEND))
3084 return -EBADF;
3086 return 0;
3090 * Performs necessary checks before doing a file copy
3092 * Can adjust amount of bytes to copy via @req_count argument.
3093 * Returns appropriate error code that caller should return or
3094 * zero in case the copy should be allowed.
3096 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3097 struct file *file_out, loff_t pos_out,
3098 size_t *req_count, unsigned int flags)
3100 struct inode *inode_in = file_inode(file_in);
3101 struct inode *inode_out = file_inode(file_out);
3102 uint64_t count = *req_count;
3103 loff_t size_in;
3104 int ret;
3106 ret = generic_file_rw_checks(file_in, file_out);
3107 if (ret)
3108 return ret;
3110 /* Don't touch certain kinds of inodes */
3111 if (IS_IMMUTABLE(inode_out))
3112 return -EPERM;
3114 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3115 return -ETXTBSY;
3117 /* Ensure offsets don't wrap. */
3118 if (pos_in + count < pos_in || pos_out + count < pos_out)
3119 return -EOVERFLOW;
3121 /* Shorten the copy to EOF */
3122 size_in = i_size_read(inode_in);
3123 if (pos_in >= size_in)
3124 count = 0;
3125 else
3126 count = min(count, size_in - (uint64_t)pos_in);
3128 ret = generic_write_check_limits(file_out, pos_out, &count);
3129 if (ret)
3130 return ret;
3132 /* Don't allow overlapped copying within the same file. */
3133 if (inode_in == inode_out &&
3134 pos_out + count > pos_in &&
3135 pos_out < pos_in + count)
3136 return -EINVAL;
3138 *req_count = count;
3139 return 0;
3142 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3143 loff_t pos, unsigned len, unsigned flags,
3144 struct page **pagep, void **fsdata)
3146 const struct address_space_operations *aops = mapping->a_ops;
3148 return aops->write_begin(file, mapping, pos, len, flags,
3149 pagep, fsdata);
3151 EXPORT_SYMBOL(pagecache_write_begin);
3153 int pagecache_write_end(struct file *file, struct address_space *mapping,
3154 loff_t pos, unsigned len, unsigned copied,
3155 struct page *page, void *fsdata)
3157 const struct address_space_operations *aops = mapping->a_ops;
3159 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3161 EXPORT_SYMBOL(pagecache_write_end);
3163 ssize_t
3164 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3166 struct file *file = iocb->ki_filp;
3167 struct address_space *mapping = file->f_mapping;
3168 struct inode *inode = mapping->host;
3169 loff_t pos = iocb->ki_pos;
3170 ssize_t written;
3171 size_t write_len;
3172 pgoff_t end;
3174 write_len = iov_iter_count(from);
3175 end = (pos + write_len - 1) >> PAGE_SHIFT;
3177 if (iocb->ki_flags & IOCB_NOWAIT) {
3178 /* If there are pages to writeback, return */
3179 if (filemap_range_has_page(inode->i_mapping, pos,
3180 pos + write_len - 1))
3181 return -EAGAIN;
3182 } else {
3183 written = filemap_write_and_wait_range(mapping, pos,
3184 pos + write_len - 1);
3185 if (written)
3186 goto out;
3190 * After a write we want buffered reads to be sure to go to disk to get
3191 * the new data. We invalidate clean cached page from the region we're
3192 * about to write. We do this *before* the write so that we can return
3193 * without clobbering -EIOCBQUEUED from ->direct_IO().
3195 written = invalidate_inode_pages2_range(mapping,
3196 pos >> PAGE_SHIFT, end);
3198 * If a page can not be invalidated, return 0 to fall back
3199 * to buffered write.
3201 if (written) {
3202 if (written == -EBUSY)
3203 return 0;
3204 goto out;
3207 written = mapping->a_ops->direct_IO(iocb, from);
3210 * Finally, try again to invalidate clean pages which might have been
3211 * cached by non-direct readahead, or faulted in by get_user_pages()
3212 * if the source of the write was an mmap'ed region of the file
3213 * we're writing. Either one is a pretty crazy thing to do,
3214 * so we don't support it 100%. If this invalidation
3215 * fails, tough, the write still worked...
3217 * Most of the time we do not need this since dio_complete() will do
3218 * the invalidation for us. However there are some file systems that
3219 * do not end up with dio_complete() being called, so let's not break
3220 * them by removing it completely
3222 if (mapping->nrpages)
3223 invalidate_inode_pages2_range(mapping,
3224 pos >> PAGE_SHIFT, end);
3226 if (written > 0) {
3227 pos += written;
3228 write_len -= written;
3229 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3230 i_size_write(inode, pos);
3231 mark_inode_dirty(inode);
3233 iocb->ki_pos = pos;
3235 iov_iter_revert(from, write_len - iov_iter_count(from));
3236 out:
3237 return written;
3239 EXPORT_SYMBOL(generic_file_direct_write);
3242 * Find or create a page at the given pagecache position. Return the locked
3243 * page. This function is specifically for buffered writes.
3245 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3246 pgoff_t index, unsigned flags)
3248 struct page *page;
3249 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3251 if (flags & AOP_FLAG_NOFS)
3252 fgp_flags |= FGP_NOFS;
3254 page = pagecache_get_page(mapping, index, fgp_flags,
3255 mapping_gfp_mask(mapping));
3256 if (page)
3257 wait_for_stable_page(page);
3259 return page;
3261 EXPORT_SYMBOL(grab_cache_page_write_begin);
3263 ssize_t generic_perform_write(struct file *file,
3264 struct iov_iter *i, loff_t pos)
3266 struct address_space *mapping = file->f_mapping;
3267 const struct address_space_operations *a_ops = mapping->a_ops;
3268 long status = 0;
3269 ssize_t written = 0;
3270 unsigned int flags = 0;
3272 do {
3273 struct page *page;
3274 unsigned long offset; /* Offset into pagecache page */
3275 unsigned long bytes; /* Bytes to write to page */
3276 size_t copied; /* Bytes copied from user */
3277 void *fsdata;
3279 offset = (pos & (PAGE_SIZE - 1));
3280 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3281 iov_iter_count(i));
3283 again:
3285 * Bring in the user page that we will copy from _first_.
3286 * Otherwise there's a nasty deadlock on copying from the
3287 * same page as we're writing to, without it being marked
3288 * up-to-date.
3290 * Not only is this an optimisation, but it is also required
3291 * to check that the address is actually valid, when atomic
3292 * usercopies are used, below.
3294 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3295 status = -EFAULT;
3296 break;
3299 if (fatal_signal_pending(current)) {
3300 status = -EINTR;
3301 break;
3304 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3305 &page, &fsdata);
3306 if (unlikely(status < 0))
3307 break;
3309 if (mapping_writably_mapped(mapping))
3310 flush_dcache_page(page);
3312 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3313 flush_dcache_page(page);
3315 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3316 page, fsdata);
3317 if (unlikely(status < 0))
3318 break;
3319 copied = status;
3321 cond_resched();
3323 iov_iter_advance(i, copied);
3324 if (unlikely(copied == 0)) {
3326 * If we were unable to copy any data at all, we must
3327 * fall back to a single segment length write.
3329 * If we didn't fallback here, we could livelock
3330 * because not all segments in the iov can be copied at
3331 * once without a pagefault.
3333 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3334 iov_iter_single_seg_count(i));
3335 goto again;
3337 pos += copied;
3338 written += copied;
3340 balance_dirty_pages_ratelimited(mapping);
3341 } while (iov_iter_count(i));
3343 return written ? written : status;
3345 EXPORT_SYMBOL(generic_perform_write);
3348 * __generic_file_write_iter - write data to a file
3349 * @iocb: IO state structure (file, offset, etc.)
3350 * @from: iov_iter with data to write
3352 * This function does all the work needed for actually writing data to a
3353 * file. It does all basic checks, removes SUID from the file, updates
3354 * modification times and calls proper subroutines depending on whether we
3355 * do direct IO or a standard buffered write.
3357 * It expects i_mutex to be grabbed unless we work on a block device or similar
3358 * object which does not need locking at all.
3360 * This function does *not* take care of syncing data in case of O_SYNC write.
3361 * A caller has to handle it. This is mainly due to the fact that we want to
3362 * avoid syncing under i_mutex.
3364 * Return:
3365 * * number of bytes written, even for truncated writes
3366 * * negative error code if no data has been written at all
3368 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3370 struct file *file = iocb->ki_filp;
3371 struct address_space * mapping = file->f_mapping;
3372 struct inode *inode = mapping->host;
3373 ssize_t written = 0;
3374 ssize_t err;
3375 ssize_t status;
3377 /* We can write back this queue in page reclaim */
3378 current->backing_dev_info = inode_to_bdi(inode);
3379 err = file_remove_privs(file);
3380 if (err)
3381 goto out;
3383 err = file_update_time(file);
3384 if (err)
3385 goto out;
3387 if (iocb->ki_flags & IOCB_DIRECT) {
3388 loff_t pos, endbyte;
3390 written = generic_file_direct_write(iocb, from);
3392 * If the write stopped short of completing, fall back to
3393 * buffered writes. Some filesystems do this for writes to
3394 * holes, for example. For DAX files, a buffered write will
3395 * not succeed (even if it did, DAX does not handle dirty
3396 * page-cache pages correctly).
3398 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3399 goto out;
3401 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3403 * If generic_perform_write() returned a synchronous error
3404 * then we want to return the number of bytes which were
3405 * direct-written, or the error code if that was zero. Note
3406 * that this differs from normal direct-io semantics, which
3407 * will return -EFOO even if some bytes were written.
3409 if (unlikely(status < 0)) {
3410 err = status;
3411 goto out;
3414 * We need to ensure that the page cache pages are written to
3415 * disk and invalidated to preserve the expected O_DIRECT
3416 * semantics.
3418 endbyte = pos + status - 1;
3419 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3420 if (err == 0) {
3421 iocb->ki_pos = endbyte + 1;
3422 written += status;
3423 invalidate_mapping_pages(mapping,
3424 pos >> PAGE_SHIFT,
3425 endbyte >> PAGE_SHIFT);
3426 } else {
3428 * We don't know how much we wrote, so just return
3429 * the number of bytes which were direct-written
3432 } else {
3433 written = generic_perform_write(file, from, iocb->ki_pos);
3434 if (likely(written > 0))
3435 iocb->ki_pos += written;
3437 out:
3438 current->backing_dev_info = NULL;
3439 return written ? written : err;
3441 EXPORT_SYMBOL(__generic_file_write_iter);
3444 * generic_file_write_iter - write data to a file
3445 * @iocb: IO state structure
3446 * @from: iov_iter with data to write
3448 * This is a wrapper around __generic_file_write_iter() to be used by most
3449 * filesystems. It takes care of syncing the file in case of O_SYNC file
3450 * and acquires i_mutex as needed.
3451 * Return:
3452 * * negative error code if no data has been written at all of
3453 * vfs_fsync_range() failed for a synchronous write
3454 * * number of bytes written, even for truncated writes
3456 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3458 struct file *file = iocb->ki_filp;
3459 struct inode *inode = file->f_mapping->host;
3460 ssize_t ret;
3462 inode_lock(inode);
3463 ret = generic_write_checks(iocb, from);
3464 if (ret > 0)
3465 ret = __generic_file_write_iter(iocb, from);
3466 inode_unlock(inode);
3468 if (ret > 0)
3469 ret = generic_write_sync(iocb, ret);
3470 return ret;
3472 EXPORT_SYMBOL(generic_file_write_iter);
3475 * try_to_release_page() - release old fs-specific metadata on a page
3477 * @page: the page which the kernel is trying to free
3478 * @gfp_mask: memory allocation flags (and I/O mode)
3480 * The address_space is to try to release any data against the page
3481 * (presumably at page->private).
3483 * This may also be called if PG_fscache is set on a page, indicating that the
3484 * page is known to the local caching routines.
3486 * The @gfp_mask argument specifies whether I/O may be performed to release
3487 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3489 * Return: %1 if the release was successful, otherwise return zero.
3491 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3493 struct address_space * const mapping = page->mapping;
3495 BUG_ON(!PageLocked(page));
3496 if (PageWriteback(page))
3497 return 0;
3499 if (mapping && mapping->a_ops->releasepage)
3500 return mapping->a_ops->releasepage(page, gfp_mask);
3501 return try_to_free_buffers(page);
3504 EXPORT_SYMBOL(try_to_release_page);