Merge tag 'nios2-v3.20-rc1' of git://git.rocketboards.org/linux-socfpga-next
[linux/fpc-iii.git] / crypto / asymmetric_keys / x509_public_key.c
bloba6c42031628e94172a112700f6cdb5cd01da9789
1 /* Instantiate a public key crypto key from an X.509 Certificate
3 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
12 #define pr_fmt(fmt) "X.509: "fmt
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/mpi.h>
18 #include <linux/asn1_decoder.h>
19 #include <keys/asymmetric-subtype.h>
20 #include <keys/asymmetric-parser.h>
21 #include <keys/system_keyring.h>
22 #include <crypto/hash.h>
23 #include "asymmetric_keys.h"
24 #include "public_key.h"
25 #include "x509_parser.h"
27 static bool use_builtin_keys;
28 static struct asymmetric_key_id *ca_keyid;
30 #ifndef MODULE
31 static int __init ca_keys_setup(char *str)
33 if (!str) /* default system keyring */
34 return 1;
36 if (strncmp(str, "id:", 3) == 0) {
37 struct asymmetric_key_id *p;
38 p = asymmetric_key_hex_to_key_id(str + 3);
39 if (p == ERR_PTR(-EINVAL))
40 pr_err("Unparsable hex string in ca_keys\n");
41 else if (!IS_ERR(p))
42 ca_keyid = p; /* owner key 'id:xxxxxx' */
43 } else if (strcmp(str, "builtin") == 0) {
44 use_builtin_keys = true;
47 return 1;
49 __setup("ca_keys=", ca_keys_setup);
50 #endif
52 /**
53 * x509_request_asymmetric_key - Request a key by X.509 certificate params.
54 * @keyring: The keys to search.
55 * @kid: The key ID.
56 * @partial: Use partial match if true, exact if false.
58 * Find a key in the given keyring by subject name and key ID. These might,
59 * for instance, be the issuer name and the authority key ID of an X.509
60 * certificate that needs to be verified.
62 struct key *x509_request_asymmetric_key(struct key *keyring,
63 const struct asymmetric_key_id *kid,
64 bool partial)
66 key_ref_t key;
67 char *id, *p;
69 /* Construct an identifier "id:<keyid>". */
70 p = id = kmalloc(2 + 1 + kid->len * 2 + 1, GFP_KERNEL);
71 if (!id)
72 return ERR_PTR(-ENOMEM);
74 if (partial) {
75 *p++ = 'i';
76 *p++ = 'd';
77 } else {
78 *p++ = 'e';
79 *p++ = 'x';
81 *p++ = ':';
82 p = bin2hex(p, kid->data, kid->len);
83 *p = 0;
85 pr_debug("Look up: \"%s\"\n", id);
87 key = keyring_search(make_key_ref(keyring, 1),
88 &key_type_asymmetric, id);
89 if (IS_ERR(key))
90 pr_debug("Request for key '%s' err %ld\n", id, PTR_ERR(key));
91 kfree(id);
93 if (IS_ERR(key)) {
94 switch (PTR_ERR(key)) {
95 /* Hide some search errors */
96 case -EACCES:
97 case -ENOTDIR:
98 case -EAGAIN:
99 return ERR_PTR(-ENOKEY);
100 default:
101 return ERR_CAST(key);
105 pr_devel("<==%s() = 0 [%x]\n", __func__,
106 key_serial(key_ref_to_ptr(key)));
107 return key_ref_to_ptr(key);
109 EXPORT_SYMBOL_GPL(x509_request_asymmetric_key);
112 * Set up the signature parameters in an X.509 certificate. This involves
113 * digesting the signed data and extracting the signature.
115 int x509_get_sig_params(struct x509_certificate *cert)
117 struct crypto_shash *tfm;
118 struct shash_desc *desc;
119 size_t digest_size, desc_size;
120 void *digest;
121 int ret;
123 pr_devel("==>%s()\n", __func__);
125 if (cert->unsupported_crypto)
126 return -ENOPKG;
127 if (cert->sig.rsa.s)
128 return 0;
130 cert->sig.rsa.s = mpi_read_raw_data(cert->raw_sig, cert->raw_sig_size);
131 if (!cert->sig.rsa.s)
132 return -ENOMEM;
133 cert->sig.nr_mpi = 1;
135 /* Allocate the hashing algorithm we're going to need and find out how
136 * big the hash operational data will be.
138 tfm = crypto_alloc_shash(hash_algo_name[cert->sig.pkey_hash_algo], 0, 0);
139 if (IS_ERR(tfm)) {
140 if (PTR_ERR(tfm) == -ENOENT) {
141 cert->unsupported_crypto = true;
142 return -ENOPKG;
144 return PTR_ERR(tfm);
147 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
148 digest_size = crypto_shash_digestsize(tfm);
150 /* We allocate the hash operational data storage on the end of the
151 * digest storage space.
153 ret = -ENOMEM;
154 digest = kzalloc(digest_size + desc_size, GFP_KERNEL);
155 if (!digest)
156 goto error;
158 cert->sig.digest = digest;
159 cert->sig.digest_size = digest_size;
161 desc = digest + digest_size;
162 desc->tfm = tfm;
163 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
165 ret = crypto_shash_init(desc);
166 if (ret < 0)
167 goto error;
168 might_sleep();
169 ret = crypto_shash_finup(desc, cert->tbs, cert->tbs_size, digest);
170 error:
171 crypto_free_shash(tfm);
172 pr_devel("<==%s() = %d\n", __func__, ret);
173 return ret;
175 EXPORT_SYMBOL_GPL(x509_get_sig_params);
178 * Check the signature on a certificate using the provided public key
180 int x509_check_signature(const struct public_key *pub,
181 struct x509_certificate *cert)
183 int ret;
185 pr_devel("==>%s()\n", __func__);
187 ret = x509_get_sig_params(cert);
188 if (ret < 0)
189 return ret;
191 ret = public_key_verify_signature(pub, &cert->sig);
192 if (ret == -ENOPKG)
193 cert->unsupported_crypto = true;
194 pr_debug("Cert Verification: %d\n", ret);
195 return ret;
197 EXPORT_SYMBOL_GPL(x509_check_signature);
200 * Check the new certificate against the ones in the trust keyring. If one of
201 * those is the signing key and validates the new certificate, then mark the
202 * new certificate as being trusted.
204 * Return 0 if the new certificate was successfully validated, 1 if we couldn't
205 * find a matching parent certificate in the trusted list and an error if there
206 * is a matching certificate but the signature check fails.
208 static int x509_validate_trust(struct x509_certificate *cert,
209 struct key *trust_keyring)
211 struct key *key;
212 int ret = 1;
214 if (!trust_keyring)
215 return -EOPNOTSUPP;
217 if (ca_keyid && !asymmetric_key_id_partial(cert->authority, ca_keyid))
218 return -EPERM;
220 key = x509_request_asymmetric_key(trust_keyring, cert->authority,
221 false);
222 if (!IS_ERR(key)) {
223 if (!use_builtin_keys
224 || test_bit(KEY_FLAG_BUILTIN, &key->flags))
225 ret = x509_check_signature(key->payload.data, cert);
226 key_put(key);
228 return ret;
232 * Attempt to parse a data blob for a key as an X509 certificate.
234 static int x509_key_preparse(struct key_preparsed_payload *prep)
236 struct asymmetric_key_ids *kids;
237 struct x509_certificate *cert;
238 const char *q;
239 size_t srlen, sulen;
240 char *desc = NULL, *p;
241 int ret;
243 cert = x509_cert_parse(prep->data, prep->datalen);
244 if (IS_ERR(cert))
245 return PTR_ERR(cert);
247 pr_devel("Cert Issuer: %s\n", cert->issuer);
248 pr_devel("Cert Subject: %s\n", cert->subject);
250 if (cert->pub->pkey_algo >= PKEY_ALGO__LAST ||
251 cert->sig.pkey_algo >= PKEY_ALGO__LAST ||
252 cert->sig.pkey_hash_algo >= PKEY_HASH__LAST ||
253 !pkey_algo[cert->pub->pkey_algo] ||
254 !pkey_algo[cert->sig.pkey_algo] ||
255 !hash_algo_name[cert->sig.pkey_hash_algo]) {
256 ret = -ENOPKG;
257 goto error_free_cert;
260 pr_devel("Cert Key Algo: %s\n", pkey_algo_name[cert->pub->pkey_algo]);
261 pr_devel("Cert Valid From: %04ld-%02d-%02d %02d:%02d:%02d\n",
262 cert->valid_from.tm_year + 1900, cert->valid_from.tm_mon + 1,
263 cert->valid_from.tm_mday, cert->valid_from.tm_hour,
264 cert->valid_from.tm_min, cert->valid_from.tm_sec);
265 pr_devel("Cert Valid To: %04ld-%02d-%02d %02d:%02d:%02d\n",
266 cert->valid_to.tm_year + 1900, cert->valid_to.tm_mon + 1,
267 cert->valid_to.tm_mday, cert->valid_to.tm_hour,
268 cert->valid_to.tm_min, cert->valid_to.tm_sec);
269 pr_devel("Cert Signature: %s + %s\n",
270 pkey_algo_name[cert->sig.pkey_algo],
271 hash_algo_name[cert->sig.pkey_hash_algo]);
273 cert->pub->algo = pkey_algo[cert->pub->pkey_algo];
274 cert->pub->id_type = PKEY_ID_X509;
276 /* Check the signature on the key if it appears to be self-signed */
277 if (!cert->authority ||
278 asymmetric_key_id_same(cert->skid, cert->authority)) {
279 ret = x509_check_signature(cert->pub, cert); /* self-signed */
280 if (ret < 0)
281 goto error_free_cert;
282 } else if (!prep->trusted) {
283 ret = x509_validate_trust(cert, get_system_trusted_keyring());
284 if (!ret)
285 prep->trusted = 1;
288 /* Propose a description */
289 sulen = strlen(cert->subject);
290 if (cert->raw_skid) {
291 srlen = cert->raw_skid_size;
292 q = cert->raw_skid;
293 } else {
294 srlen = cert->raw_serial_size;
295 q = cert->raw_serial;
297 if (srlen > 1 && *q == 0) {
298 srlen--;
299 q++;
302 ret = -ENOMEM;
303 desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
304 if (!desc)
305 goto error_free_cert;
306 p = memcpy(desc, cert->subject, sulen);
307 p += sulen;
308 *p++ = ':';
309 *p++ = ' ';
310 p = bin2hex(p, q, srlen);
311 *p = 0;
313 kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
314 if (!kids)
315 goto error_free_desc;
316 kids->id[0] = cert->id;
317 kids->id[1] = cert->skid;
319 /* We're pinning the module by being linked against it */
320 __module_get(public_key_subtype.owner);
321 prep->type_data[0] = &public_key_subtype;
322 prep->type_data[1] = kids;
323 prep->payload[0] = cert->pub;
324 prep->description = desc;
325 prep->quotalen = 100;
327 /* We've finished with the certificate */
328 cert->pub = NULL;
329 cert->id = NULL;
330 cert->skid = NULL;
331 desc = NULL;
332 ret = 0;
334 error_free_desc:
335 kfree(desc);
336 error_free_cert:
337 x509_free_certificate(cert);
338 return ret;
341 static struct asymmetric_key_parser x509_key_parser = {
342 .owner = THIS_MODULE,
343 .name = "x509",
344 .parse = x509_key_preparse,
348 * Module stuff
350 static int __init x509_key_init(void)
352 return register_asymmetric_key_parser(&x509_key_parser);
355 static void __exit x509_key_exit(void)
357 unregister_asymmetric_key_parser(&x509_key_parser);
360 module_init(x509_key_init);
361 module_exit(x509_key_exit);
363 MODULE_DESCRIPTION("X.509 certificate parser");
364 MODULE_LICENSE("GPL");