cgroup: Limit event generation frequency
[linux/fpc-iii.git] / arch / nds32 / mm / fault.c
blob3a246fb8098ca727da099096f0301472eb1ba537
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2005-2017 Andes Technology Corporation
4 #include <linux/extable.h>
5 #include <linux/module.h>
6 #include <linux/signal.h>
7 #include <linux/ptrace.h>
8 #include <linux/mm.h>
9 #include <linux/init.h>
10 #include <linux/hardirq.h>
11 #include <linux/uaccess.h>
13 #include <asm/pgtable.h>
14 #include <asm/tlbflush.h>
16 extern void die(const char *str, struct pt_regs *regs, long err);
19 * This is useful to dump out the page tables associated with
20 * 'addr' in mm 'mm'.
22 void show_pte(struct mm_struct *mm, unsigned long addr)
24 pgd_t *pgd;
25 if (!mm)
26 mm = &init_mm;
28 pr_alert("pgd = %p\n", mm->pgd);
29 pgd = pgd_offset(mm, addr);
30 pr_alert("[%08lx] *pgd=%08lx", addr, pgd_val(*pgd));
32 do {
33 pmd_t *pmd;
35 if (pgd_none(*pgd))
36 break;
38 if (pgd_bad(*pgd)) {
39 pr_alert("(bad)");
40 break;
43 pmd = pmd_offset(pgd, addr);
44 #if PTRS_PER_PMD != 1
45 pr_alert(", *pmd=%08lx", pmd_val(*pmd));
46 #endif
48 if (pmd_none(*pmd))
49 break;
51 if (pmd_bad(*pmd)) {
52 pr_alert("(bad)");
53 break;
56 if (IS_ENABLED(CONFIG_HIGHMEM))
58 pte_t *pte;
59 /* We must not map this if we have highmem enabled */
60 pte = pte_offset_map(pmd, addr);
61 pr_alert(", *pte=%08lx", pte_val(*pte));
62 pte_unmap(pte);
64 } while (0);
66 pr_alert("\n");
69 void do_page_fault(unsigned long entry, unsigned long addr,
70 unsigned int error_code, struct pt_regs *regs)
72 struct task_struct *tsk;
73 struct mm_struct *mm;
74 struct vm_area_struct *vma;
75 siginfo_t info;
76 int fault;
77 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
78 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
80 error_code = error_code & (ITYPE_mskINST | ITYPE_mskETYPE);
81 tsk = current;
82 mm = tsk->mm;
83 info.si_code = SEGV_MAPERR;
85 * We fault-in kernel-space virtual memory on-demand. The
86 * 'reference' page table is init_mm.pgd.
88 * NOTE! We MUST NOT take any locks for this case. We may
89 * be in an interrupt or a critical region, and should
90 * only copy the information from the master page table,
91 * nothing more.
93 if (addr >= TASK_SIZE) {
94 if (user_mode(regs))
95 goto bad_area_nosemaphore;
97 if (addr >= TASK_SIZE && addr < VMALLOC_END
98 && (entry == ENTRY_PTE_NOT_PRESENT))
99 goto vmalloc_fault;
100 else
101 goto no_context;
104 /* Send a signal to the task for handling the unalignment access. */
105 if (entry == ENTRY_GENERAL_EXCPETION
106 && error_code == ETYPE_ALIGNMENT_CHECK) {
107 if (user_mode(regs))
108 goto bad_area_nosemaphore;
109 else
110 goto no_context;
114 * If we're in an interrupt or have no user
115 * context, we must not take the fault..
117 if (unlikely(faulthandler_disabled() || !mm))
118 goto no_context;
121 * As per x86, we may deadlock here. However, since the kernel only
122 * validly references user space from well defined areas of the code,
123 * we can bug out early if this is from code which shouldn't.
125 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
126 if (!user_mode(regs) &&
127 !search_exception_tables(instruction_pointer(regs)))
128 goto no_context;
129 retry:
130 down_read(&mm->mmap_sem);
131 } else {
133 * The above down_read_trylock() might have succeeded in which
134 * case, we'll have missed the might_sleep() from down_read().
136 might_sleep();
137 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
138 if (!user_mode(regs) &&
139 !search_exception_tables(instruction_pointer(regs)))
140 goto no_context;
144 vma = find_vma(mm, addr);
146 if (unlikely(!vma))
147 goto bad_area;
149 if (vma->vm_start <= addr)
150 goto good_area;
152 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
153 goto bad_area;
155 if (unlikely(expand_stack(vma, addr)))
156 goto bad_area;
159 * Ok, we have a good vm_area for this memory access, so
160 * we can handle it..
163 good_area:
164 info.si_code = SEGV_ACCERR;
166 /* first do some preliminary protection checks */
167 if (entry == ENTRY_PTE_NOT_PRESENT) {
168 if (error_code & ITYPE_mskINST)
169 mask = VM_EXEC;
170 else {
171 mask = VM_READ | VM_WRITE;
172 if (vma->vm_flags & VM_WRITE)
173 flags |= FAULT_FLAG_WRITE;
175 } else if (entry == ENTRY_TLB_MISC) {
176 switch (error_code & ITYPE_mskETYPE) {
177 case RD_PROT:
178 mask = VM_READ;
179 break;
180 case WRT_PROT:
181 mask = VM_WRITE;
182 flags |= FAULT_FLAG_WRITE;
183 break;
184 case NOEXEC:
185 mask = VM_EXEC;
186 break;
187 case PAGE_MODIFY:
188 mask = VM_WRITE;
189 flags |= FAULT_FLAG_WRITE;
190 break;
191 case ACC_BIT:
192 BUG();
193 default:
194 break;
198 if (!(vma->vm_flags & mask))
199 goto bad_area;
202 * If for any reason at all we couldn't handle the fault,
203 * make sure we exit gracefully rather than endlessly redo
204 * the fault.
207 fault = handle_mm_fault(vma, addr, flags);
210 * If we need to retry but a fatal signal is pending, handle the
211 * signal first. We do not need to release the mmap_sem because it
212 * would already be released in __lock_page_or_retry in mm/filemap.c.
214 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
215 if (!user_mode(regs))
216 goto no_context;
217 return;
220 if (unlikely(fault & VM_FAULT_ERROR)) {
221 if (fault & VM_FAULT_OOM)
222 goto out_of_memory;
223 else if (fault & VM_FAULT_SIGBUS)
224 goto do_sigbus;
225 else
226 goto bad_area;
230 * Major/minor page fault accounting is only done on the initial
231 * attempt. If we go through a retry, it is extremely likely that the
232 * page will be found in page cache at that point.
234 if (flags & FAULT_FLAG_ALLOW_RETRY) {
235 if (fault & VM_FAULT_MAJOR)
236 tsk->maj_flt++;
237 else
238 tsk->min_flt++;
239 if (fault & VM_FAULT_RETRY) {
240 flags &= ~FAULT_FLAG_ALLOW_RETRY;
241 flags |= FAULT_FLAG_TRIED;
243 /* No need to up_read(&mm->mmap_sem) as we would
244 * have already released it in __lock_page_or_retry
245 * in mm/filemap.c.
247 goto retry;
251 up_read(&mm->mmap_sem);
252 return;
255 * Something tried to access memory that isn't in our memory map..
256 * Fix it, but check if it's kernel or user first..
258 bad_area:
259 up_read(&mm->mmap_sem);
261 bad_area_nosemaphore:
263 /* User mode accesses just cause a SIGSEGV */
265 if (user_mode(regs)) {
266 tsk->thread.address = addr;
267 tsk->thread.error_code = error_code;
268 tsk->thread.trap_no = entry;
269 info.si_signo = SIGSEGV;
270 info.si_errno = 0;
271 /* info.si_code has been set above */
272 info.si_addr = (void *)addr;
273 force_sig_info(SIGSEGV, &info, tsk);
274 return;
277 no_context:
279 /* Are we prepared to handle this kernel fault?
281 * (The kernel has valid exception-points in the source
282 * when it acesses user-memory. When it fails in one
283 * of those points, we find it in a table and do a jump
284 * to some fixup code that loads an appropriate error
285 * code)
289 const struct exception_table_entry *entry;
291 if ((entry =
292 search_exception_tables(instruction_pointer(regs))) !=
293 NULL) {
294 /* Adjust the instruction pointer in the stackframe */
295 instruction_pointer(regs) = entry->fixup;
296 return;
301 * Oops. The kernel tried to access some bad page. We'll have to
302 * terminate things with extreme prejudice.
305 bust_spinlocks(1);
306 pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
307 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
308 "paging request", addr);
310 show_pte(mm, addr);
311 die("Oops", regs, error_code);
312 bust_spinlocks(0);
313 do_exit(SIGKILL);
315 return;
318 * We ran out of memory, or some other thing happened to us that made
319 * us unable to handle the page fault gracefully.
322 out_of_memory:
323 up_read(&mm->mmap_sem);
324 if (!user_mode(regs))
325 goto no_context;
326 pagefault_out_of_memory();
327 return;
329 do_sigbus:
330 up_read(&mm->mmap_sem);
332 /* Kernel mode? Handle exceptions or die */
333 if (!user_mode(regs))
334 goto no_context;
337 * Send a sigbus
339 tsk->thread.address = addr;
340 tsk->thread.error_code = error_code;
341 tsk->thread.trap_no = entry;
342 info.si_signo = SIGBUS;
343 info.si_errno = 0;
344 info.si_code = BUS_ADRERR;
345 info.si_addr = (void *)addr;
346 force_sig_info(SIGBUS, &info, tsk);
348 return;
350 vmalloc_fault:
353 * Synchronize this task's top level page-table
354 * with the 'reference' page table.
356 * Use current_pgd instead of tsk->active_mm->pgd
357 * since the latter might be unavailable if this
358 * code is executed in a misfortunately run irq
359 * (like inside schedule() between switch_mm and
360 * switch_to...).
363 unsigned int index = pgd_index(addr);
364 pgd_t *pgd, *pgd_k;
365 pud_t *pud, *pud_k;
366 pmd_t *pmd, *pmd_k;
367 pte_t *pte_k;
369 pgd = (pgd_t *) __va(__nds32__mfsr(NDS32_SR_L1_PPTB)) + index;
370 pgd_k = init_mm.pgd + index;
372 if (!pgd_present(*pgd_k))
373 goto no_context;
375 pud = pud_offset(pgd, addr);
376 pud_k = pud_offset(pgd_k, addr);
377 if (!pud_present(*pud_k))
378 goto no_context;
380 pmd = pmd_offset(pud, addr);
381 pmd_k = pmd_offset(pud_k, addr);
382 if (!pmd_present(*pmd_k))
383 goto no_context;
385 if (!pmd_present(*pmd))
386 set_pmd(pmd, *pmd_k);
387 else
388 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
391 * Since the vmalloc area is global, we don't
392 * need to copy individual PTE's, it is enough to
393 * copy the pgd pointer into the pte page of the
394 * root task. If that is there, we'll find our pte if
395 * it exists.
398 /* Make sure the actual PTE exists as well to
399 * catch kernel vmalloc-area accesses to non-mapped
400 * addres. If we don't do this, this will just
401 * silently loop forever.
404 pte_k = pte_offset_kernel(pmd_k, addr);
405 if (!pte_present(*pte_k))
406 goto no_context;
408 return;