2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
26 #include <linux/mutex.h>
27 #include <linux/pmem.h>
28 #include <linux/sched.h>
29 #include <linux/uio.h>
30 #include <linux/vmstat.h>
33 * dax_clear_blocks() is called from within transaction context from XFS,
34 * and hence this means the stack from this point must follow GFP_NOFS
35 * semantics for all operations.
37 int dax_clear_blocks(struct inode
*inode
, sector_t block
, long size
)
39 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
40 sector_t sector
= block
<< (inode
->i_blkbits
- 9);
48 count
= bdev_direct_access(bdev
, sector
, &addr
, &pfn
, size
);
53 unsigned pgsz
= PAGE_SIZE
- offset_in_page(addr
);
56 clear_pmem(addr
, pgsz
);
69 EXPORT_SYMBOL_GPL(dax_clear_blocks
);
71 static long dax_get_addr(struct buffer_head
*bh
, void __pmem
**addr
,
75 sector_t sector
= bh
->b_blocknr
<< (blkbits
- 9);
76 return bdev_direct_access(bh
->b_bdev
, sector
, addr
, &pfn
, bh
->b_size
);
79 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
80 static void dax_new_buf(void __pmem
*addr
, unsigned size
, unsigned first
,
81 loff_t pos
, loff_t end
)
83 loff_t final
= end
- pos
+ first
; /* The final byte of the buffer */
86 clear_pmem(addr
, first
);
88 clear_pmem(addr
+ final
, size
- final
);
91 static bool buffer_written(struct buffer_head
*bh
)
93 return buffer_mapped(bh
) && !buffer_unwritten(bh
);
97 * When ext4 encounters a hole, it returns without modifying the buffer_head
98 * which means that we can't trust b_size. To cope with this, we set b_state
99 * to 0 before calling get_block and, if any bit is set, we know we can trust
100 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
101 * and would save us time calling get_block repeatedly.
103 static bool buffer_size_valid(struct buffer_head
*bh
)
105 return bh
->b_state
!= 0;
108 static ssize_t
dax_io(struct inode
*inode
, struct iov_iter
*iter
,
109 loff_t start
, loff_t end
, get_block_t get_block
,
110 struct buffer_head
*bh
)
115 loff_t bh_max
= start
;
118 bool need_wmb
= false;
120 if (iov_iter_rw(iter
) != WRITE
)
121 end
= min(end
, i_size_read(inode
));
126 unsigned blkbits
= inode
->i_blkbits
;
127 long page
= pos
>> PAGE_SHIFT
;
128 sector_t block
= page
<< (PAGE_SHIFT
- blkbits
);
129 unsigned first
= pos
- (block
<< blkbits
);
133 bh
->b_size
= PAGE_ALIGN(end
- pos
);
135 retval
= get_block(inode
, block
, bh
,
136 iov_iter_rw(iter
) == WRITE
);
139 if (!buffer_size_valid(bh
))
140 bh
->b_size
= 1 << blkbits
;
141 bh_max
= pos
- first
+ bh
->b_size
;
143 unsigned done
= bh
->b_size
-
144 (bh_max
- (pos
- first
));
145 bh
->b_blocknr
+= done
>> blkbits
;
149 hole
= iov_iter_rw(iter
) != WRITE
&& !buffer_written(bh
);
152 size
= bh
->b_size
- first
;
154 retval
= dax_get_addr(bh
, &addr
, blkbits
);
157 if (buffer_unwritten(bh
) || buffer_new(bh
)) {
158 dax_new_buf(addr
, retval
, first
, pos
,
163 size
= retval
- first
;
165 max
= min(pos
+ size
, end
);
168 if (iov_iter_rw(iter
) == WRITE
) {
169 len
= copy_from_iter_pmem(addr
, max
- pos
, iter
);
172 len
= copy_to_iter((void __force
*)addr
, max
- pos
,
175 len
= iov_iter_zero(max
- pos
, iter
);
189 return (pos
== start
) ? retval
: pos
- start
;
193 * dax_do_io - Perform I/O to a DAX file
194 * @iocb: The control block for this I/O
195 * @inode: The file which the I/O is directed at
196 * @iter: The addresses to do I/O from or to
197 * @pos: The file offset where the I/O starts
198 * @get_block: The filesystem method used to translate file offsets to blocks
199 * @end_io: A filesystem callback for I/O completion
202 * This function uses the same locking scheme as do_blockdev_direct_IO:
203 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
204 * caller for writes. For reads, we take and release the i_mutex ourselves.
205 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
206 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
209 ssize_t
dax_do_io(struct kiocb
*iocb
, struct inode
*inode
,
210 struct iov_iter
*iter
, loff_t pos
, get_block_t get_block
,
211 dio_iodone_t end_io
, int flags
)
213 struct buffer_head bh
;
214 ssize_t retval
= -EINVAL
;
215 loff_t end
= pos
+ iov_iter_count(iter
);
217 memset(&bh
, 0, sizeof(bh
));
219 if ((flags
& DIO_LOCKING
) && iov_iter_rw(iter
) == READ
) {
220 struct address_space
*mapping
= inode
->i_mapping
;
221 mutex_lock(&inode
->i_mutex
);
222 retval
= filemap_write_and_wait_range(mapping
, pos
, end
- 1);
224 mutex_unlock(&inode
->i_mutex
);
229 /* Protects against truncate */
230 if (!(flags
& DIO_SKIP_DIO_COUNT
))
231 inode_dio_begin(inode
);
233 retval
= dax_io(inode
, iter
, pos
, end
, get_block
, &bh
);
235 if ((flags
& DIO_LOCKING
) && iov_iter_rw(iter
) == READ
)
236 mutex_unlock(&inode
->i_mutex
);
238 if ((retval
> 0) && end_io
)
239 end_io(iocb
, pos
, retval
, bh
.b_private
);
241 if (!(flags
& DIO_SKIP_DIO_COUNT
))
242 inode_dio_end(inode
);
246 EXPORT_SYMBOL_GPL(dax_do_io
);
249 * The user has performed a load from a hole in the file. Allocating
250 * a new page in the file would cause excessive storage usage for
251 * workloads with sparse files. We allocate a page cache page instead.
252 * We'll kick it out of the page cache if it's ever written to,
253 * otherwise it will simply fall out of the page cache under memory
254 * pressure without ever having been dirtied.
256 static int dax_load_hole(struct address_space
*mapping
, struct page
*page
,
257 struct vm_fault
*vmf
)
260 struct inode
*inode
= mapping
->host
;
262 page
= find_or_create_page(mapping
, vmf
->pgoff
,
263 GFP_KERNEL
| __GFP_ZERO
);
266 /* Recheck i_size under page lock to avoid truncate race */
267 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
268 if (vmf
->pgoff
>= size
) {
270 page_cache_release(page
);
271 return VM_FAULT_SIGBUS
;
275 return VM_FAULT_LOCKED
;
278 static int copy_user_bh(struct page
*to
, struct buffer_head
*bh
,
279 unsigned blkbits
, unsigned long vaddr
)
284 if (dax_get_addr(bh
, &vfrom
, blkbits
) < 0)
286 vto
= kmap_atomic(to
);
287 copy_user_page(vto
, (void __force
*)vfrom
, vaddr
, to
);
292 static int dax_insert_mapping(struct inode
*inode
, struct buffer_head
*bh
,
293 struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
295 struct address_space
*mapping
= inode
->i_mapping
;
296 sector_t sector
= bh
->b_blocknr
<< (inode
->i_blkbits
- 9);
297 unsigned long vaddr
= (unsigned long)vmf
->virtual_address
;
303 i_mmap_lock_read(mapping
);
306 * Check truncate didn't happen while we were allocating a block.
307 * If it did, this block may or may not be still allocated to the
308 * file. We can't tell the filesystem to free it because we can't
309 * take i_mutex here. In the worst case, the file still has blocks
310 * allocated past the end of the file.
312 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
313 if (unlikely(vmf
->pgoff
>= size
)) {
318 error
= bdev_direct_access(bh
->b_bdev
, sector
, &addr
, &pfn
, bh
->b_size
);
321 if (error
< PAGE_SIZE
) {
326 if (buffer_unwritten(bh
) || buffer_new(bh
)) {
327 clear_pmem(addr
, PAGE_SIZE
);
331 error
= vm_insert_mixed(vma
, vaddr
, pfn
);
334 i_mmap_unlock_read(mapping
);
340 * __dax_fault - handle a page fault on a DAX file
341 * @vma: The virtual memory area where the fault occurred
342 * @vmf: The description of the fault
343 * @get_block: The filesystem method used to translate file offsets to blocks
344 * @complete_unwritten: The filesystem method used to convert unwritten blocks
345 * to written so the data written to them is exposed. This is required for
346 * required by write faults for filesystems that will return unwritten
347 * extent mappings from @get_block, but it is optional for reads as
348 * dax_insert_mapping() will always zero unwritten blocks. If the fs does
349 * not support unwritten extents, the it should pass NULL.
351 * When a page fault occurs, filesystems may call this helper in their
352 * fault handler for DAX files. __dax_fault() assumes the caller has done all
353 * the necessary locking for the page fault to proceed successfully.
355 int __dax_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
356 get_block_t get_block
, dax_iodone_t complete_unwritten
)
358 struct file
*file
= vma
->vm_file
;
359 struct address_space
*mapping
= file
->f_mapping
;
360 struct inode
*inode
= mapping
->host
;
362 struct buffer_head bh
;
363 unsigned long vaddr
= (unsigned long)vmf
->virtual_address
;
364 unsigned blkbits
= inode
->i_blkbits
;
370 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
371 if (vmf
->pgoff
>= size
)
372 return VM_FAULT_SIGBUS
;
374 memset(&bh
, 0, sizeof(bh
));
375 block
= (sector_t
)vmf
->pgoff
<< (PAGE_SHIFT
- blkbits
);
376 bh
.b_size
= PAGE_SIZE
;
379 page
= find_get_page(mapping
, vmf
->pgoff
);
381 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
382 page_cache_release(page
);
383 return VM_FAULT_RETRY
;
385 if (unlikely(page
->mapping
!= mapping
)) {
387 page_cache_release(page
);
390 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
391 if (unlikely(vmf
->pgoff
>= size
)) {
393 * We have a struct page covering a hole in the file
394 * from a read fault and we've raced with a truncate
401 error
= get_block(inode
, block
, &bh
, 0);
402 if (!error
&& (bh
.b_size
< PAGE_SIZE
))
403 error
= -EIO
; /* fs corruption? */
407 if (!buffer_mapped(&bh
) && !buffer_unwritten(&bh
) && !vmf
->cow_page
) {
408 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
409 error
= get_block(inode
, block
, &bh
, 1);
410 count_vm_event(PGMAJFAULT
);
411 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
412 major
= VM_FAULT_MAJOR
;
413 if (!error
&& (bh
.b_size
< PAGE_SIZE
))
418 return dax_load_hole(mapping
, page
, vmf
);
423 struct page
*new_page
= vmf
->cow_page
;
424 if (buffer_written(&bh
))
425 error
= copy_user_bh(new_page
, &bh
, blkbits
, vaddr
);
427 clear_user_highpage(new_page
, vaddr
);
432 i_mmap_lock_read(mapping
);
433 /* Check we didn't race with truncate */
434 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >>
436 if (vmf
->pgoff
>= size
) {
437 i_mmap_unlock_read(mapping
);
442 return VM_FAULT_LOCKED
;
445 /* Check we didn't race with a read fault installing a new page */
447 page
= find_lock_page(mapping
, vmf
->pgoff
);
450 unmap_mapping_range(mapping
, vmf
->pgoff
<< PAGE_SHIFT
,
452 delete_from_page_cache(page
);
454 page_cache_release(page
);
458 * If we successfully insert the new mapping over an unwritten extent,
459 * we need to ensure we convert the unwritten extent. If there is an
460 * error inserting the mapping, the filesystem needs to leave it as
461 * unwritten to prevent exposure of the stale underlying data to
462 * userspace, but we still need to call the completion function so
463 * the private resources on the mapping buffer can be released. We
464 * indicate what the callback should do via the uptodate variable, same
465 * as for normal BH based IO completions.
467 error
= dax_insert_mapping(inode
, &bh
, vma
, vmf
);
468 if (buffer_unwritten(&bh
)) {
469 if (complete_unwritten
)
470 complete_unwritten(&bh
, !error
);
472 WARN_ON_ONCE(!(vmf
->flags
& FAULT_FLAG_WRITE
));
476 if (error
== -ENOMEM
)
477 return VM_FAULT_OOM
| major
;
478 /* -EBUSY is fine, somebody else faulted on the same PTE */
479 if ((error
< 0) && (error
!= -EBUSY
))
480 return VM_FAULT_SIGBUS
| major
;
481 return VM_FAULT_NOPAGE
| major
;
486 page_cache_release(page
);
490 EXPORT_SYMBOL(__dax_fault
);
493 * dax_fault - handle a page fault on a DAX file
494 * @vma: The virtual memory area where the fault occurred
495 * @vmf: The description of the fault
496 * @get_block: The filesystem method used to translate file offsets to blocks
498 * When a page fault occurs, filesystems may call this helper in their
499 * fault handler for DAX files.
501 int dax_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
502 get_block_t get_block
, dax_iodone_t complete_unwritten
)
505 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
507 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
508 sb_start_pagefault(sb
);
509 file_update_time(vma
->vm_file
);
511 result
= __dax_fault(vma
, vmf
, get_block
, complete_unwritten
);
512 if (vmf
->flags
& FAULT_FLAG_WRITE
)
513 sb_end_pagefault(sb
);
517 EXPORT_SYMBOL_GPL(dax_fault
);
519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
521 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
522 * more often than one might expect in the below function.
524 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
526 int __dax_pmd_fault(struct vm_area_struct
*vma
, unsigned long address
,
527 pmd_t
*pmd
, unsigned int flags
, get_block_t get_block
,
528 dax_iodone_t complete_unwritten
)
530 struct file
*file
= vma
->vm_file
;
531 struct address_space
*mapping
= file
->f_mapping
;
532 struct inode
*inode
= mapping
->host
;
533 struct buffer_head bh
;
534 unsigned blkbits
= inode
->i_blkbits
;
535 unsigned long pmd_addr
= address
& PMD_MASK
;
536 bool write
= flags
& FAULT_FLAG_WRITE
;
540 sector_t block
, sector
;
544 /* dax pmd mappings are broken wrt gup and fork */
545 if (!IS_ENABLED(CONFIG_FS_DAX_PMD
))
546 return VM_FAULT_FALLBACK
;
548 /* Fall back to PTEs if we're going to COW */
549 if (write
&& !(vma
->vm_flags
& VM_SHARED
))
550 return VM_FAULT_FALLBACK
;
551 /* If the PMD would extend outside the VMA */
552 if (pmd_addr
< vma
->vm_start
)
553 return VM_FAULT_FALLBACK
;
554 if ((pmd_addr
+ PMD_SIZE
) > vma
->vm_end
)
555 return VM_FAULT_FALLBACK
;
557 pgoff
= linear_page_index(vma
, pmd_addr
);
558 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
560 return VM_FAULT_SIGBUS
;
561 /* If the PMD would cover blocks out of the file */
562 if ((pgoff
| PG_PMD_COLOUR
) >= size
)
563 return VM_FAULT_FALLBACK
;
565 memset(&bh
, 0, sizeof(bh
));
566 block
= (sector_t
)pgoff
<< (PAGE_SHIFT
- blkbits
);
568 bh
.b_size
= PMD_SIZE
;
569 length
= get_block(inode
, block
, &bh
, write
);
571 return VM_FAULT_SIGBUS
;
572 i_mmap_lock_read(mapping
);
575 * If the filesystem isn't willing to tell us the length of a hole,
576 * just fall back to PTEs. Calling get_block 512 times in a loop
579 if (!buffer_size_valid(&bh
) || bh
.b_size
< PMD_SIZE
)
583 * If we allocated new storage, make sure no process has any
584 * zero pages covering this hole
586 if (buffer_new(&bh
)) {
587 i_mmap_unlock_read(mapping
);
588 unmap_mapping_range(mapping
, pgoff
<< PAGE_SHIFT
, PMD_SIZE
, 0);
589 i_mmap_lock_read(mapping
);
593 * If a truncate happened while we were allocating blocks, we may
594 * leave blocks allocated to the file that are beyond EOF. We can't
595 * take i_mutex here, so just leave them hanging; they'll be freed
596 * when the file is deleted.
598 size
= (i_size_read(inode
) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
600 result
= VM_FAULT_SIGBUS
;
603 if ((pgoff
| PG_PMD_COLOUR
) >= size
)
606 if (!write
&& !buffer_mapped(&bh
) && buffer_uptodate(&bh
)) {
609 struct page
*zero_page
= get_huge_zero_page();
611 if (unlikely(!zero_page
))
614 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
615 if (!pmd_none(*pmd
)) {
620 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
621 entry
= pmd_mkhuge(entry
);
622 set_pmd_at(vma
->vm_mm
, pmd_addr
, pmd
, entry
);
623 result
= VM_FAULT_NOPAGE
;
626 sector
= bh
.b_blocknr
<< (blkbits
- 9);
627 length
= bdev_direct_access(bh
.b_bdev
, sector
, &kaddr
, &pfn
,
630 result
= VM_FAULT_SIGBUS
;
633 if ((length
< PMD_SIZE
) || (pfn
& PG_PMD_COLOUR
))
637 * TODO: teach vmf_insert_pfn_pmd() to support
638 * 'pte_special' for pmds
643 if (buffer_unwritten(&bh
) || buffer_new(&bh
)) {
645 for (i
= 0; i
< PTRS_PER_PMD
; i
++)
646 clear_pmem(kaddr
+ i
* PAGE_SIZE
, PAGE_SIZE
);
648 count_vm_event(PGMAJFAULT
);
649 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
650 result
|= VM_FAULT_MAJOR
;
653 result
|= vmf_insert_pfn_pmd(vma
, address
, pmd
, pfn
, write
);
657 i_mmap_unlock_read(mapping
);
659 if (buffer_unwritten(&bh
))
660 complete_unwritten(&bh
, !(result
& VM_FAULT_ERROR
));
665 count_vm_event(THP_FAULT_FALLBACK
);
666 result
= VM_FAULT_FALLBACK
;
669 EXPORT_SYMBOL_GPL(__dax_pmd_fault
);
672 * dax_pmd_fault - handle a PMD fault on a DAX file
673 * @vma: The virtual memory area where the fault occurred
674 * @vmf: The description of the fault
675 * @get_block: The filesystem method used to translate file offsets to blocks
677 * When a page fault occurs, filesystems may call this helper in their
678 * pmd_fault handler for DAX files.
680 int dax_pmd_fault(struct vm_area_struct
*vma
, unsigned long address
,
681 pmd_t
*pmd
, unsigned int flags
, get_block_t get_block
,
682 dax_iodone_t complete_unwritten
)
685 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
687 if (flags
& FAULT_FLAG_WRITE
) {
688 sb_start_pagefault(sb
);
689 file_update_time(vma
->vm_file
);
691 result
= __dax_pmd_fault(vma
, address
, pmd
, flags
, get_block
,
693 if (flags
& FAULT_FLAG_WRITE
)
694 sb_end_pagefault(sb
);
698 EXPORT_SYMBOL_GPL(dax_pmd_fault
);
699 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
702 * dax_pfn_mkwrite - handle first write to DAX page
703 * @vma: The virtual memory area where the fault occurred
704 * @vmf: The description of the fault
707 int dax_pfn_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
709 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
711 sb_start_pagefault(sb
);
712 file_update_time(vma
->vm_file
);
713 sb_end_pagefault(sb
);
714 return VM_FAULT_NOPAGE
;
716 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite
);
719 * dax_zero_page_range - zero a range within a page of a DAX file
720 * @inode: The file being truncated
721 * @from: The file offset that is being truncated to
722 * @length: The number of bytes to zero
723 * @get_block: The filesystem method used to translate file offsets to blocks
725 * This function can be called by a filesystem when it is zeroing part of a
726 * page in a DAX file. This is intended for hole-punch operations. If
727 * you are truncating a file, the helper function dax_truncate_page() may be
730 * We work in terms of PAGE_CACHE_SIZE here for commonality with
731 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
732 * took care of disposing of the unnecessary blocks. Even if the filesystem
733 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
734 * since the file might be mmapped.
736 int dax_zero_page_range(struct inode
*inode
, loff_t from
, unsigned length
,
737 get_block_t get_block
)
739 struct buffer_head bh
;
740 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
741 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
744 /* Block boundary? Nothing to do */
747 BUG_ON((offset
+ length
) > PAGE_CACHE_SIZE
);
749 memset(&bh
, 0, sizeof(bh
));
750 bh
.b_size
= PAGE_CACHE_SIZE
;
751 err
= get_block(inode
, index
, &bh
, 0);
754 if (buffer_written(&bh
)) {
756 err
= dax_get_addr(&bh
, &addr
, inode
->i_blkbits
);
759 clear_pmem(addr
+ offset
, length
);
765 EXPORT_SYMBOL_GPL(dax_zero_page_range
);
768 * dax_truncate_page - handle a partial page being truncated in a DAX file
769 * @inode: The file being truncated
770 * @from: The file offset that is being truncated to
771 * @get_block: The filesystem method used to translate file offsets to blocks
773 * Similar to block_truncate_page(), this function can be called by a
774 * filesystem when it is truncating a DAX file to handle the partial page.
776 * We work in terms of PAGE_CACHE_SIZE here for commonality with
777 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
778 * took care of disposing of the unnecessary blocks. Even if the filesystem
779 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
780 * since the file might be mmapped.
782 int dax_truncate_page(struct inode
*inode
, loff_t from
, get_block_t get_block
)
784 unsigned length
= PAGE_CACHE_ALIGN(from
) - from
;
785 return dax_zero_page_range(inode
, from
, length
, get_block
);
787 EXPORT_SYMBOL_GPL(dax_truncate_page
);