2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
17 unsigned long blk_max_low_pfn
;
18 EXPORT_SYMBOL(blk_max_low_pfn
);
20 unsigned long blk_max_pfn
;
23 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
37 EXPORT_SYMBOL(blk_queue_prep_rq
);
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue
*q
, unprep_rq_fn
*ufn
)
52 q
->unprep_rq_fn
= ufn
;
54 EXPORT_SYMBOL(blk_queue_unprep_rq
);
56 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
58 q
->softirq_done_fn
= fn
;
60 EXPORT_SYMBOL(blk_queue_softirq_done
);
62 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
64 q
->rq_timeout
= timeout
;
66 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
68 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
70 q
->rq_timed_out_fn
= fn
;
72 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
74 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
78 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
81 * blk_set_default_limits - reset limits to default values
82 * @lim: the queue_limits structure to reset
85 * Returns a queue_limit struct to its default state.
87 void blk_set_default_limits(struct queue_limits
*lim
)
89 lim
->max_segments
= BLK_MAX_SEGMENTS
;
90 lim
->max_integrity_segments
= 0;
91 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
92 lim
->virt_boundary_mask
= 0;
93 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
94 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
95 lim
->chunk_sectors
= 0;
96 lim
->max_write_same_sectors
= 0;
97 lim
->max_discard_sectors
= 0;
98 lim
->max_hw_discard_sectors
= 0;
99 lim
->discard_granularity
= 0;
100 lim
->discard_alignment
= 0;
101 lim
->discard_misaligned
= 0;
102 lim
->discard_zeroes_data
= 0;
103 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
104 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
105 lim
->alignment_offset
= 0;
110 EXPORT_SYMBOL(blk_set_default_limits
);
113 * blk_set_stacking_limits - set default limits for stacking devices
114 * @lim: the queue_limits structure to reset
117 * Returns a queue_limit struct to its default state. Should be used
118 * by stacking drivers like DM that have no internal limits.
120 void blk_set_stacking_limits(struct queue_limits
*lim
)
122 blk_set_default_limits(lim
);
124 /* Inherit limits from component devices */
125 lim
->discard_zeroes_data
= 1;
126 lim
->max_segments
= USHRT_MAX
;
127 lim
->max_hw_sectors
= UINT_MAX
;
128 lim
->max_segment_size
= UINT_MAX
;
129 lim
->max_sectors
= UINT_MAX
;
130 lim
->max_write_same_sectors
= UINT_MAX
;
132 EXPORT_SYMBOL(blk_set_stacking_limits
);
135 * blk_queue_make_request - define an alternate make_request function for a device
136 * @q: the request queue for the device to be affected
137 * @mfn: the alternate make_request function
140 * The normal way for &struct bios to be passed to a device
141 * driver is for them to be collected into requests on a request
142 * queue, and then to allow the device driver to select requests
143 * off that queue when it is ready. This works well for many block
144 * devices. However some block devices (typically virtual devices
145 * such as md or lvm) do not benefit from the processing on the
146 * request queue, and are served best by having the requests passed
147 * directly to them. This can be achieved by providing a function
148 * to blk_queue_make_request().
151 * The driver that does this *must* be able to deal appropriately
152 * with buffers in "highmemory". This can be accomplished by either calling
153 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
154 * blk_queue_bounce() to create a buffer in normal memory.
156 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
161 q
->nr_requests
= BLKDEV_MAX_RQ
;
163 q
->make_request_fn
= mfn
;
164 blk_queue_dma_alignment(q
, 511);
165 blk_queue_congestion_threshold(q
);
166 q
->nr_batching
= BLK_BATCH_REQ
;
168 blk_set_default_limits(&q
->limits
);
171 * by default assume old behaviour and bounce for any highmem page
173 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
175 EXPORT_SYMBOL(blk_queue_make_request
);
178 * blk_queue_bounce_limit - set bounce buffer limit for queue
179 * @q: the request queue for the device
180 * @max_addr: the maximum address the device can handle
183 * Different hardware can have different requirements as to what pages
184 * it can do I/O directly to. A low level driver can call
185 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
186 * buffers for doing I/O to pages residing above @max_addr.
188 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
190 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
193 q
->bounce_gfp
= GFP_NOIO
;
194 #if BITS_PER_LONG == 64
196 * Assume anything <= 4GB can be handled by IOMMU. Actually
197 * some IOMMUs can handle everything, but I don't know of a
198 * way to test this here.
200 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
202 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
204 if (b_pfn
< blk_max_low_pfn
)
206 q
->limits
.bounce_pfn
= b_pfn
;
209 init_emergency_isa_pool();
210 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
211 q
->limits
.bounce_pfn
= b_pfn
;
214 EXPORT_SYMBOL(blk_queue_bounce_limit
);
217 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
218 * @limits: the queue limits
219 * @max_hw_sectors: max hardware sectors in the usual 512b unit
222 * Enables a low level driver to set a hard upper limit,
223 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
224 * the device driver based upon the capabilities of the I/O
227 * max_sectors is a soft limit imposed by the block layer for
228 * filesystem type requests. This value can be overridden on a
229 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
230 * The soft limit can not exceed max_hw_sectors.
232 void blk_limits_max_hw_sectors(struct queue_limits
*limits
, unsigned int max_hw_sectors
)
234 if ((max_hw_sectors
<< 9) < PAGE_CACHE_SIZE
) {
235 max_hw_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
236 printk(KERN_INFO
"%s: set to minimum %d\n",
237 __func__
, max_hw_sectors
);
240 limits
->max_hw_sectors
= max_hw_sectors
;
241 limits
->max_sectors
= min_t(unsigned int, max_hw_sectors
,
242 BLK_DEF_MAX_SECTORS
);
244 EXPORT_SYMBOL(blk_limits_max_hw_sectors
);
247 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
248 * @q: the request queue for the device
249 * @max_hw_sectors: max hardware sectors in the usual 512b unit
252 * See description for blk_limits_max_hw_sectors().
254 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
256 blk_limits_max_hw_sectors(&q
->limits
, max_hw_sectors
);
258 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
261 * blk_queue_chunk_sectors - set size of the chunk for this queue
262 * @q: the request queue for the device
263 * @chunk_sectors: chunk sectors in the usual 512b unit
266 * If a driver doesn't want IOs to cross a given chunk size, it can set
267 * this limit and prevent merging across chunks. Note that the chunk size
268 * must currently be a power-of-2 in sectors. Also note that the block
269 * layer must accept a page worth of data at any offset. So if the
270 * crossing of chunks is a hard limitation in the driver, it must still be
271 * prepared to split single page bios.
273 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
275 BUG_ON(!is_power_of_2(chunk_sectors
));
276 q
->limits
.chunk_sectors
= chunk_sectors
;
278 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
281 * blk_queue_max_discard_sectors - set max sectors for a single discard
282 * @q: the request queue for the device
283 * @max_discard_sectors: maximum number of sectors to discard
285 void blk_queue_max_discard_sectors(struct request_queue
*q
,
286 unsigned int max_discard_sectors
)
288 q
->limits
.max_hw_discard_sectors
= max_discard_sectors
;
289 q
->limits
.max_discard_sectors
= max_discard_sectors
;
291 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
294 * blk_queue_max_write_same_sectors - set max sectors for a single write same
295 * @q: the request queue for the device
296 * @max_write_same_sectors: maximum number of sectors to write per command
298 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
299 unsigned int max_write_same_sectors
)
301 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
303 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
306 * blk_queue_max_segments - set max hw segments for a request for this queue
307 * @q: the request queue for the device
308 * @max_segments: max number of segments
311 * Enables a low level driver to set an upper limit on the number of
312 * hw data segments in a request.
314 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
318 printk(KERN_INFO
"%s: set to minimum %d\n",
319 __func__
, max_segments
);
322 q
->limits
.max_segments
= max_segments
;
324 EXPORT_SYMBOL(blk_queue_max_segments
);
327 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
328 * @q: the request queue for the device
329 * @max_size: max size of segment in bytes
332 * Enables a low level driver to set an upper limit on the size of a
335 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
337 if (max_size
< PAGE_CACHE_SIZE
) {
338 max_size
= PAGE_CACHE_SIZE
;
339 printk(KERN_INFO
"%s: set to minimum %d\n",
343 q
->limits
.max_segment_size
= max_size
;
345 EXPORT_SYMBOL(blk_queue_max_segment_size
);
348 * blk_queue_logical_block_size - set logical block size for the queue
349 * @q: the request queue for the device
350 * @size: the logical block size, in bytes
353 * This should be set to the lowest possible block size that the
354 * storage device can address. The default of 512 covers most
357 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
359 q
->limits
.logical_block_size
= size
;
361 if (q
->limits
.physical_block_size
< size
)
362 q
->limits
.physical_block_size
= size
;
364 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
365 q
->limits
.io_min
= q
->limits
.physical_block_size
;
367 EXPORT_SYMBOL(blk_queue_logical_block_size
);
370 * blk_queue_physical_block_size - set physical block size for the queue
371 * @q: the request queue for the device
372 * @size: the physical block size, in bytes
375 * This should be set to the lowest possible sector size that the
376 * hardware can operate on without reverting to read-modify-write
379 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
381 q
->limits
.physical_block_size
= size
;
383 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
384 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
386 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
387 q
->limits
.io_min
= q
->limits
.physical_block_size
;
389 EXPORT_SYMBOL(blk_queue_physical_block_size
);
392 * blk_queue_alignment_offset - set physical block alignment offset
393 * @q: the request queue for the device
394 * @offset: alignment offset in bytes
397 * Some devices are naturally misaligned to compensate for things like
398 * the legacy DOS partition table 63-sector offset. Low-level drivers
399 * should call this function for devices whose first sector is not
402 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
404 q
->limits
.alignment_offset
=
405 offset
& (q
->limits
.physical_block_size
- 1);
406 q
->limits
.misaligned
= 0;
408 EXPORT_SYMBOL(blk_queue_alignment_offset
);
411 * blk_limits_io_min - set minimum request size for a device
412 * @limits: the queue limits
413 * @min: smallest I/O size in bytes
416 * Some devices have an internal block size bigger than the reported
417 * hardware sector size. This function can be used to signal the
418 * smallest I/O the device can perform without incurring a performance
421 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
423 limits
->io_min
= min
;
425 if (limits
->io_min
< limits
->logical_block_size
)
426 limits
->io_min
= limits
->logical_block_size
;
428 if (limits
->io_min
< limits
->physical_block_size
)
429 limits
->io_min
= limits
->physical_block_size
;
431 EXPORT_SYMBOL(blk_limits_io_min
);
434 * blk_queue_io_min - set minimum request size for the queue
435 * @q: the request queue for the device
436 * @min: smallest I/O size in bytes
439 * Storage devices may report a granularity or preferred minimum I/O
440 * size which is the smallest request the device can perform without
441 * incurring a performance penalty. For disk drives this is often the
442 * physical block size. For RAID arrays it is often the stripe chunk
443 * size. A properly aligned multiple of minimum_io_size is the
444 * preferred request size for workloads where a high number of I/O
445 * operations is desired.
447 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
449 blk_limits_io_min(&q
->limits
, min
);
451 EXPORT_SYMBOL(blk_queue_io_min
);
454 * blk_limits_io_opt - set optimal request size for a device
455 * @limits: the queue limits
456 * @opt: smallest I/O size in bytes
459 * Storage devices may report an optimal I/O size, which is the
460 * device's preferred unit for sustained I/O. This is rarely reported
461 * for disk drives. For RAID arrays it is usually the stripe width or
462 * the internal track size. A properly aligned multiple of
463 * optimal_io_size is the preferred request size for workloads where
464 * sustained throughput is desired.
466 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
468 limits
->io_opt
= opt
;
470 EXPORT_SYMBOL(blk_limits_io_opt
);
473 * blk_queue_io_opt - set optimal request size for the queue
474 * @q: the request queue for the device
475 * @opt: optimal request size in bytes
478 * Storage devices may report an optimal I/O size, which is the
479 * device's preferred unit for sustained I/O. This is rarely reported
480 * for disk drives. For RAID arrays it is usually the stripe width or
481 * the internal track size. A properly aligned multiple of
482 * optimal_io_size is the preferred request size for workloads where
483 * sustained throughput is desired.
485 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
487 blk_limits_io_opt(&q
->limits
, opt
);
489 EXPORT_SYMBOL(blk_queue_io_opt
);
492 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
493 * @t: the stacking driver (top)
494 * @b: the underlying device (bottom)
496 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
498 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
500 EXPORT_SYMBOL(blk_queue_stack_limits
);
503 * blk_stack_limits - adjust queue_limits for stacked devices
504 * @t: the stacking driver limits (top device)
505 * @b: the underlying queue limits (bottom, component device)
506 * @start: first data sector within component device
509 * This function is used by stacking drivers like MD and DM to ensure
510 * that all component devices have compatible block sizes and
511 * alignments. The stacking driver must provide a queue_limits
512 * struct (top) and then iteratively call the stacking function for
513 * all component (bottom) devices. The stacking function will
514 * attempt to combine the values and ensure proper alignment.
516 * Returns 0 if the top and bottom queue_limits are compatible. The
517 * top device's block sizes and alignment offsets may be adjusted to
518 * ensure alignment with the bottom device. If no compatible sizes
519 * and alignments exist, -1 is returned and the resulting top
520 * queue_limits will have the misaligned flag set to indicate that
521 * the alignment_offset is undefined.
523 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
526 unsigned int top
, bottom
, alignment
, ret
= 0;
528 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
529 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
530 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
531 b
->max_write_same_sectors
);
532 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
534 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
535 b
->seg_boundary_mask
);
536 t
->virt_boundary_mask
= min_not_zero(t
->virt_boundary_mask
,
537 b
->virt_boundary_mask
);
539 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
540 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
541 b
->max_integrity_segments
);
543 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
544 b
->max_segment_size
);
546 t
->misaligned
|= b
->misaligned
;
548 alignment
= queue_limit_alignment_offset(b
, start
);
550 /* Bottom device has different alignment. Check that it is
551 * compatible with the current top alignment.
553 if (t
->alignment_offset
!= alignment
) {
555 top
= max(t
->physical_block_size
, t
->io_min
)
556 + t
->alignment_offset
;
557 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
559 /* Verify that top and bottom intervals line up */
560 if (max(top
, bottom
) % min(top
, bottom
)) {
566 t
->logical_block_size
= max(t
->logical_block_size
,
567 b
->logical_block_size
);
569 t
->physical_block_size
= max(t
->physical_block_size
,
570 b
->physical_block_size
);
572 t
->io_min
= max(t
->io_min
, b
->io_min
);
573 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
575 t
->cluster
&= b
->cluster
;
576 t
->discard_zeroes_data
&= b
->discard_zeroes_data
;
578 /* Physical block size a multiple of the logical block size? */
579 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
580 t
->physical_block_size
= t
->logical_block_size
;
585 /* Minimum I/O a multiple of the physical block size? */
586 if (t
->io_min
& (t
->physical_block_size
- 1)) {
587 t
->io_min
= t
->physical_block_size
;
592 /* Optimal I/O a multiple of the physical block size? */
593 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
599 t
->raid_partial_stripes_expensive
=
600 max(t
->raid_partial_stripes_expensive
,
601 b
->raid_partial_stripes_expensive
);
603 /* Find lowest common alignment_offset */
604 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
605 % max(t
->physical_block_size
, t
->io_min
);
607 /* Verify that new alignment_offset is on a logical block boundary */
608 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
613 /* Discard alignment and granularity */
614 if (b
->discard_granularity
) {
615 alignment
= queue_limit_discard_alignment(b
, start
);
617 if (t
->discard_granularity
!= 0 &&
618 t
->discard_alignment
!= alignment
) {
619 top
= t
->discard_granularity
+ t
->discard_alignment
;
620 bottom
= b
->discard_granularity
+ alignment
;
622 /* Verify that top and bottom intervals line up */
623 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
624 t
->discard_misaligned
= 1;
627 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
628 b
->max_discard_sectors
);
629 t
->max_hw_discard_sectors
= min_not_zero(t
->max_hw_discard_sectors
,
630 b
->max_hw_discard_sectors
);
631 t
->discard_granularity
= max(t
->discard_granularity
,
632 b
->discard_granularity
);
633 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
634 t
->discard_granularity
;
639 EXPORT_SYMBOL(blk_stack_limits
);
642 * bdev_stack_limits - adjust queue limits for stacked drivers
643 * @t: the stacking driver limits (top device)
644 * @bdev: the component block_device (bottom)
645 * @start: first data sector within component device
648 * Merges queue limits for a top device and a block_device. Returns
649 * 0 if alignment didn't change. Returns -1 if adding the bottom
650 * device caused misalignment.
652 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
655 struct request_queue
*bq
= bdev_get_queue(bdev
);
657 start
+= get_start_sect(bdev
);
659 return blk_stack_limits(t
, &bq
->limits
, start
);
661 EXPORT_SYMBOL(bdev_stack_limits
);
664 * disk_stack_limits - adjust queue limits for stacked drivers
665 * @disk: MD/DM gendisk (top)
666 * @bdev: the underlying block device (bottom)
667 * @offset: offset to beginning of data within component device
670 * Merges the limits for a top level gendisk and a bottom level
673 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
676 struct request_queue
*t
= disk
->queue
;
678 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
679 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
681 disk_name(disk
, 0, top
);
682 bdevname(bdev
, bottom
);
684 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
688 EXPORT_SYMBOL(disk_stack_limits
);
691 * blk_queue_dma_pad - set pad mask
692 * @q: the request queue for the device
697 * Appending pad buffer to a request modifies the last entry of a
698 * scatter list such that it includes the pad buffer.
700 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
702 q
->dma_pad_mask
= mask
;
704 EXPORT_SYMBOL(blk_queue_dma_pad
);
707 * blk_queue_update_dma_pad - update pad mask
708 * @q: the request queue for the device
711 * Update dma pad mask.
713 * Appending pad buffer to a request modifies the last entry of a
714 * scatter list such that it includes the pad buffer.
716 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
718 if (mask
> q
->dma_pad_mask
)
719 q
->dma_pad_mask
= mask
;
721 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
724 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
725 * @q: the request queue for the device
726 * @dma_drain_needed: fn which returns non-zero if drain is necessary
727 * @buf: physically contiguous buffer
728 * @size: size of the buffer in bytes
730 * Some devices have excess DMA problems and can't simply discard (or
731 * zero fill) the unwanted piece of the transfer. They have to have a
732 * real area of memory to transfer it into. The use case for this is
733 * ATAPI devices in DMA mode. If the packet command causes a transfer
734 * bigger than the transfer size some HBAs will lock up if there
735 * aren't DMA elements to contain the excess transfer. What this API
736 * does is adjust the queue so that the buf is always appended
737 * silently to the scatterlist.
739 * Note: This routine adjusts max_hw_segments to make room for appending
740 * the drain buffer. If you call blk_queue_max_segments() after calling
741 * this routine, you must set the limit to one fewer than your device
742 * can support otherwise there won't be room for the drain buffer.
744 int blk_queue_dma_drain(struct request_queue
*q
,
745 dma_drain_needed_fn
*dma_drain_needed
,
746 void *buf
, unsigned int size
)
748 if (queue_max_segments(q
) < 2)
750 /* make room for appending the drain */
751 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
752 q
->dma_drain_needed
= dma_drain_needed
;
753 q
->dma_drain_buffer
= buf
;
754 q
->dma_drain_size
= size
;
758 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
761 * blk_queue_segment_boundary - set boundary rules for segment merging
762 * @q: the request queue for the device
763 * @mask: the memory boundary mask
765 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
767 if (mask
< PAGE_CACHE_SIZE
- 1) {
768 mask
= PAGE_CACHE_SIZE
- 1;
769 printk(KERN_INFO
"%s: set to minimum %lx\n",
773 q
->limits
.seg_boundary_mask
= mask
;
775 EXPORT_SYMBOL(blk_queue_segment_boundary
);
778 * blk_queue_virt_boundary - set boundary rules for bio merging
779 * @q: the request queue for the device
780 * @mask: the memory boundary mask
782 void blk_queue_virt_boundary(struct request_queue
*q
, unsigned long mask
)
784 q
->limits
.virt_boundary_mask
= mask
;
786 EXPORT_SYMBOL(blk_queue_virt_boundary
);
789 * blk_queue_dma_alignment - set dma length and memory alignment
790 * @q: the request queue for the device
791 * @mask: alignment mask
794 * set required memory and length alignment for direct dma transactions.
795 * this is used when building direct io requests for the queue.
798 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
800 q
->dma_alignment
= mask
;
802 EXPORT_SYMBOL(blk_queue_dma_alignment
);
805 * blk_queue_update_dma_alignment - update dma length and memory alignment
806 * @q: the request queue for the device
807 * @mask: alignment mask
810 * update required memory and length alignment for direct dma transactions.
811 * If the requested alignment is larger than the current alignment, then
812 * the current queue alignment is updated to the new value, otherwise it
813 * is left alone. The design of this is to allow multiple objects
814 * (driver, device, transport etc) to set their respective
815 * alignments without having them interfere.
818 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
820 BUG_ON(mask
> PAGE_SIZE
);
822 if (mask
> q
->dma_alignment
)
823 q
->dma_alignment
= mask
;
825 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
828 * blk_queue_flush - configure queue's cache flush capability
829 * @q: the request queue for the device
830 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
832 * Tell block layer cache flush capability of @q. If it supports
833 * flushing, REQ_FLUSH should be set. If it supports bypassing
834 * write cache for individual writes, REQ_FUA should be set.
836 void blk_queue_flush(struct request_queue
*q
, unsigned int flush
)
838 WARN_ON_ONCE(flush
& ~(REQ_FLUSH
| REQ_FUA
));
840 if (WARN_ON_ONCE(!(flush
& REQ_FLUSH
) && (flush
& REQ_FUA
)))
843 q
->flush_flags
= flush
& (REQ_FLUSH
| REQ_FUA
);
845 EXPORT_SYMBOL_GPL(blk_queue_flush
);
847 void blk_queue_flush_queueable(struct request_queue
*q
, bool queueable
)
849 q
->flush_not_queueable
= !queueable
;
851 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable
);
853 static int __init
blk_settings_init(void)
855 blk_max_low_pfn
= max_low_pfn
- 1;
856 blk_max_pfn
= max_pfn
- 1;
859 subsys_initcall(blk_settings_init
);