1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * super.c contains code to handle: - mount structures
9 * - filesystem drivers list
11 * - umount system call
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <uapi/linux/mount.h>
41 static int thaw_super_locked(struct super_block
*sb
);
43 static LIST_HEAD(super_blocks
);
44 static DEFINE_SPINLOCK(sb_lock
);
46 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
53 * One thing we have to be careful of with a per-sb shrinker is that we don't
54 * drop the last active reference to the superblock from within the shrinker.
55 * If that happens we could trigger unregistering the shrinker from within the
56 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
57 * take a passive reference to the superblock to avoid this from occurring.
59 static unsigned long super_cache_scan(struct shrinker
*shrink
,
60 struct shrink_control
*sc
)
62 struct super_block
*sb
;
69 sb
= container_of(shrink
, struct super_block
, s_shrink
);
72 * Deadlock avoidance. We may hold various FS locks, and we don't want
73 * to recurse into the FS that called us in clear_inode() and friends..
75 if (!(sc
->gfp_mask
& __GFP_FS
))
78 if (!trylock_super(sb
))
81 if (sb
->s_op
->nr_cached_objects
)
82 fs_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
84 inodes
= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
85 dentries
= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
86 total_objects
= dentries
+ inodes
+ fs_objects
+ 1;
90 /* proportion the scan between the caches */
91 dentries
= mult_frac(sc
->nr_to_scan
, dentries
, total_objects
);
92 inodes
= mult_frac(sc
->nr_to_scan
, inodes
, total_objects
);
93 fs_objects
= mult_frac(sc
->nr_to_scan
, fs_objects
, total_objects
);
96 * prune the dcache first as the icache is pinned by it, then
97 * prune the icache, followed by the filesystem specific caches
99 * Ensure that we always scan at least one object - memcg kmem
100 * accounting uses this to fully empty the caches.
102 sc
->nr_to_scan
= dentries
+ 1;
103 freed
= prune_dcache_sb(sb
, sc
);
104 sc
->nr_to_scan
= inodes
+ 1;
105 freed
+= prune_icache_sb(sb
, sc
);
108 sc
->nr_to_scan
= fs_objects
+ 1;
109 freed
+= sb
->s_op
->free_cached_objects(sb
, sc
);
112 up_read(&sb
->s_umount
);
116 static unsigned long super_cache_count(struct shrinker
*shrink
,
117 struct shrink_control
*sc
)
119 struct super_block
*sb
;
120 long total_objects
= 0;
122 sb
= container_of(shrink
, struct super_block
, s_shrink
);
125 * We don't call trylock_super() here as it is a scalability bottleneck,
126 * so we're exposed to partial setup state. The shrinker rwsem does not
127 * protect filesystem operations backing list_lru_shrink_count() or
128 * s_op->nr_cached_objects(). Counts can change between
129 * super_cache_count and super_cache_scan, so we really don't need locks
132 * However, if we are currently mounting the superblock, the underlying
133 * filesystem might be in a state of partial construction and hence it
134 * is dangerous to access it. trylock_super() uses a SB_BORN check to
135 * avoid this situation, so do the same here. The memory barrier is
136 * matched with the one in mount_fs() as we don't hold locks here.
138 if (!(sb
->s_flags
& SB_BORN
))
142 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
143 total_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
145 total_objects
+= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
146 total_objects
+= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
151 total_objects
= vfs_pressure_ratio(total_objects
);
152 return total_objects
;
155 static void destroy_super_work(struct work_struct
*work
)
157 struct super_block
*s
= container_of(work
, struct super_block
,
161 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
162 percpu_free_rwsem(&s
->s_writers
.rw_sem
[i
]);
166 static void destroy_super_rcu(struct rcu_head
*head
)
168 struct super_block
*s
= container_of(head
, struct super_block
, rcu
);
169 INIT_WORK(&s
->destroy_work
, destroy_super_work
);
170 schedule_work(&s
->destroy_work
);
173 /* Free a superblock that has never been seen by anyone */
174 static void destroy_unused_super(struct super_block
*s
)
178 up_write(&s
->s_umount
);
179 list_lru_destroy(&s
->s_dentry_lru
);
180 list_lru_destroy(&s
->s_inode_lru
);
182 put_user_ns(s
->s_user_ns
);
184 free_prealloced_shrinker(&s
->s_shrink
);
185 /* no delays needed */
186 destroy_super_work(&s
->destroy_work
);
190 * alloc_super - create new superblock
191 * @type: filesystem type superblock should belong to
192 * @flags: the mount flags
193 * @user_ns: User namespace for the super_block
195 * Allocates and initializes a new &struct super_block. alloc_super()
196 * returns a pointer new superblock or %NULL if allocation had failed.
198 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
,
199 struct user_namespace
*user_ns
)
201 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
202 static const struct super_operations default_op
;
208 INIT_LIST_HEAD(&s
->s_mounts
);
209 s
->s_user_ns
= get_user_ns(user_ns
);
210 init_rwsem(&s
->s_umount
);
211 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
213 * sget() can have s_umount recursion.
215 * When it cannot find a suitable sb, it allocates a new
216 * one (this one), and tries again to find a suitable old
219 * In case that succeeds, it will acquire the s_umount
220 * lock of the old one. Since these are clearly distrinct
221 * locks, and this object isn't exposed yet, there's no
224 * Annotate this by putting this lock in a different
227 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
229 if (security_sb_alloc(s
))
232 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
233 if (__percpu_init_rwsem(&s
->s_writers
.rw_sem
[i
],
235 &type
->s_writers_key
[i
]))
238 init_waitqueue_head(&s
->s_writers
.wait_unfrozen
);
239 s
->s_bdi
= &noop_backing_dev_info
;
241 if (s
->s_user_ns
!= &init_user_ns
)
242 s
->s_iflags
|= SB_I_NODEV
;
243 INIT_HLIST_NODE(&s
->s_instances
);
244 INIT_HLIST_BL_HEAD(&s
->s_roots
);
245 mutex_init(&s
->s_sync_lock
);
246 INIT_LIST_HEAD(&s
->s_inodes
);
247 spin_lock_init(&s
->s_inode_list_lock
);
248 INIT_LIST_HEAD(&s
->s_inodes_wb
);
249 spin_lock_init(&s
->s_inode_wblist_lock
);
252 atomic_set(&s
->s_active
, 1);
253 mutex_init(&s
->s_vfs_rename_mutex
);
254 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
255 init_rwsem(&s
->s_dquot
.dqio_sem
);
256 s
->s_maxbytes
= MAX_NON_LFS
;
257 s
->s_op
= &default_op
;
258 s
->s_time_gran
= 1000000000;
259 s
->cleancache_poolid
= CLEANCACHE_NO_POOL
;
261 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
262 s
->s_shrink
.scan_objects
= super_cache_scan
;
263 s
->s_shrink
.count_objects
= super_cache_count
;
264 s
->s_shrink
.batch
= 1024;
265 s
->s_shrink
.flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
;
266 if (prealloc_shrinker(&s
->s_shrink
))
268 if (list_lru_init_memcg(&s
->s_dentry_lru
, &s
->s_shrink
))
270 if (list_lru_init_memcg(&s
->s_inode_lru
, &s
->s_shrink
))
275 destroy_unused_super(s
);
279 /* Superblock refcounting */
282 * Drop a superblock's refcount. The caller must hold sb_lock.
284 static void __put_super(struct super_block
*s
)
287 list_del_init(&s
->s_list
);
288 WARN_ON(s
->s_dentry_lru
.node
);
289 WARN_ON(s
->s_inode_lru
.node
);
290 WARN_ON(!list_empty(&s
->s_mounts
));
292 put_user_ns(s
->s_user_ns
);
294 call_rcu(&s
->rcu
, destroy_super_rcu
);
299 * put_super - drop a temporary reference to superblock
300 * @sb: superblock in question
302 * Drops a temporary reference, frees superblock if there's no
305 static void put_super(struct super_block
*sb
)
309 spin_unlock(&sb_lock
);
314 * deactivate_locked_super - drop an active reference to superblock
315 * @s: superblock to deactivate
317 * Drops an active reference to superblock, converting it into a temporary
318 * one if there is no other active references left. In that case we
319 * tell fs driver to shut it down and drop the temporary reference we
322 * Caller holds exclusive lock on superblock; that lock is released.
324 void deactivate_locked_super(struct super_block
*s
)
326 struct file_system_type
*fs
= s
->s_type
;
327 if (atomic_dec_and_test(&s
->s_active
)) {
328 cleancache_invalidate_fs(s
);
329 unregister_shrinker(&s
->s_shrink
);
333 * Since list_lru_destroy() may sleep, we cannot call it from
334 * put_super(), where we hold the sb_lock. Therefore we destroy
335 * the lru lists right now.
337 list_lru_destroy(&s
->s_dentry_lru
);
338 list_lru_destroy(&s
->s_inode_lru
);
343 up_write(&s
->s_umount
);
347 EXPORT_SYMBOL(deactivate_locked_super
);
350 * deactivate_super - drop an active reference to superblock
351 * @s: superblock to deactivate
353 * Variant of deactivate_locked_super(), except that superblock is *not*
354 * locked by caller. If we are going to drop the final active reference,
355 * lock will be acquired prior to that.
357 void deactivate_super(struct super_block
*s
)
359 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
360 down_write(&s
->s_umount
);
361 deactivate_locked_super(s
);
365 EXPORT_SYMBOL(deactivate_super
);
368 * grab_super - acquire an active reference
369 * @s: reference we are trying to make active
371 * Tries to acquire an active reference. grab_super() is used when we
372 * had just found a superblock in super_blocks or fs_type->fs_supers
373 * and want to turn it into a full-blown active reference. grab_super()
374 * is called with sb_lock held and drops it. Returns 1 in case of
375 * success, 0 if we had failed (superblock contents was already dead or
376 * dying when grab_super() had been called). Note that this is only
377 * called for superblocks not in rundown mode (== ones still on ->fs_supers
378 * of their type), so increment of ->s_count is OK here.
380 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
383 spin_unlock(&sb_lock
);
384 down_write(&s
->s_umount
);
385 if ((s
->s_flags
& SB_BORN
) && atomic_inc_not_zero(&s
->s_active
)) {
389 up_write(&s
->s_umount
);
395 * trylock_super - try to grab ->s_umount shared
396 * @sb: reference we are trying to grab
398 * Try to prevent fs shutdown. This is used in places where we
399 * cannot take an active reference but we need to ensure that the
400 * filesystem is not shut down while we are working on it. It returns
401 * false if we cannot acquire s_umount or if we lose the race and
402 * filesystem already got into shutdown, and returns true with the s_umount
403 * lock held in read mode in case of success. On successful return,
404 * the caller must drop the s_umount lock when done.
406 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
407 * The reason why it's safe is that we are OK with doing trylock instead
408 * of down_read(). There's a couple of places that are OK with that, but
409 * it's very much not a general-purpose interface.
411 bool trylock_super(struct super_block
*sb
)
413 if (down_read_trylock(&sb
->s_umount
)) {
414 if (!hlist_unhashed(&sb
->s_instances
) &&
415 sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
417 up_read(&sb
->s_umount
);
424 * generic_shutdown_super - common helper for ->kill_sb()
425 * @sb: superblock to kill
427 * generic_shutdown_super() does all fs-independent work on superblock
428 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
429 * that need destruction out of superblock, call generic_shutdown_super()
430 * and release aforementioned objects. Note: dentries and inodes _are_
431 * taken care of and do not need specific handling.
433 * Upon calling this function, the filesystem may no longer alter or
434 * rearrange the set of dentries belonging to this super_block, nor may it
435 * change the attachments of dentries to inodes.
437 void generic_shutdown_super(struct super_block
*sb
)
439 const struct super_operations
*sop
= sb
->s_op
;
442 shrink_dcache_for_umount(sb
);
444 sb
->s_flags
&= ~SB_ACTIVE
;
446 fsnotify_sb_delete(sb
);
447 cgroup_writeback_umount();
451 if (sb
->s_dio_done_wq
) {
452 destroy_workqueue(sb
->s_dio_done_wq
);
453 sb
->s_dio_done_wq
= NULL
;
459 if (!list_empty(&sb
->s_inodes
)) {
460 printk("VFS: Busy inodes after unmount of %s. "
461 "Self-destruct in 5 seconds. Have a nice day...\n",
466 /* should be initialized for __put_super_and_need_restart() */
467 hlist_del_init(&sb
->s_instances
);
468 spin_unlock(&sb_lock
);
469 up_write(&sb
->s_umount
);
470 if (sb
->s_bdi
!= &noop_backing_dev_info
) {
472 sb
->s_bdi
= &noop_backing_dev_info
;
476 EXPORT_SYMBOL(generic_shutdown_super
);
479 * sget_userns - find or create a superblock
480 * @type: filesystem type superblock should belong to
481 * @test: comparison callback
482 * @set: setup callback
483 * @flags: mount flags
484 * @user_ns: User namespace for the super_block
485 * @data: argument to each of them
487 struct super_block
*sget_userns(struct file_system_type
*type
,
488 int (*test
)(struct super_block
*,void *),
489 int (*set
)(struct super_block
*,void *),
490 int flags
, struct user_namespace
*user_ns
,
493 struct super_block
*s
= NULL
;
494 struct super_block
*old
;
497 if (!(flags
& (SB_KERNMOUNT
|SB_SUBMOUNT
)) &&
498 !(type
->fs_flags
& FS_USERNS_MOUNT
) &&
499 !capable(CAP_SYS_ADMIN
))
500 return ERR_PTR(-EPERM
);
504 hlist_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
505 if (!test(old
, data
))
507 if (user_ns
!= old
->s_user_ns
) {
508 spin_unlock(&sb_lock
);
509 destroy_unused_super(s
);
510 return ERR_PTR(-EBUSY
);
512 if (!grab_super(old
))
514 destroy_unused_super(s
);
519 spin_unlock(&sb_lock
);
520 s
= alloc_super(type
, (flags
& ~SB_SUBMOUNT
), user_ns
);
522 return ERR_PTR(-ENOMEM
);
528 spin_unlock(&sb_lock
);
529 destroy_unused_super(s
);
533 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
534 list_add_tail(&s
->s_list
, &super_blocks
);
535 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
536 spin_unlock(&sb_lock
);
537 get_filesystem(type
);
538 register_shrinker_prepared(&s
->s_shrink
);
542 EXPORT_SYMBOL(sget_userns
);
545 * sget - find or create a superblock
546 * @type: filesystem type superblock should belong to
547 * @test: comparison callback
548 * @set: setup callback
549 * @flags: mount flags
550 * @data: argument to each of them
552 struct super_block
*sget(struct file_system_type
*type
,
553 int (*test
)(struct super_block
*,void *),
554 int (*set
)(struct super_block
*,void *),
558 struct user_namespace
*user_ns
= current_user_ns();
560 /* We don't yet pass the user namespace of the parent
561 * mount through to here so always use &init_user_ns
562 * until that changes.
564 if (flags
& SB_SUBMOUNT
)
565 user_ns
= &init_user_ns
;
567 /* Ensure the requestor has permissions over the target filesystem */
568 if (!(flags
& (SB_KERNMOUNT
|SB_SUBMOUNT
)) && !ns_capable(user_ns
, CAP_SYS_ADMIN
))
569 return ERR_PTR(-EPERM
);
571 return sget_userns(type
, test
, set
, flags
, user_ns
, data
);
576 void drop_super(struct super_block
*sb
)
578 up_read(&sb
->s_umount
);
582 EXPORT_SYMBOL(drop_super
);
584 void drop_super_exclusive(struct super_block
*sb
)
586 up_write(&sb
->s_umount
);
589 EXPORT_SYMBOL(drop_super_exclusive
);
591 static void __iterate_supers(void (*f
)(struct super_block
*))
593 struct super_block
*sb
, *p
= NULL
;
596 list_for_each_entry(sb
, &super_blocks
, s_list
) {
597 if (hlist_unhashed(&sb
->s_instances
))
600 spin_unlock(&sb_lock
);
611 spin_unlock(&sb_lock
);
614 * iterate_supers - call function for all active superblocks
615 * @f: function to call
616 * @arg: argument to pass to it
618 * Scans the superblock list and calls given function, passing it
619 * locked superblock and given argument.
621 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
623 struct super_block
*sb
, *p
= NULL
;
626 list_for_each_entry(sb
, &super_blocks
, s_list
) {
627 if (hlist_unhashed(&sb
->s_instances
))
630 spin_unlock(&sb_lock
);
632 down_read(&sb
->s_umount
);
633 if (sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
635 up_read(&sb
->s_umount
);
644 spin_unlock(&sb_lock
);
648 * iterate_supers_type - call function for superblocks of given type
650 * @f: function to call
651 * @arg: argument to pass to it
653 * Scans the superblock list and calls given function, passing it
654 * locked superblock and given argument.
656 void iterate_supers_type(struct file_system_type
*type
,
657 void (*f
)(struct super_block
*, void *), void *arg
)
659 struct super_block
*sb
, *p
= NULL
;
662 hlist_for_each_entry(sb
, &type
->fs_supers
, s_instances
) {
664 spin_unlock(&sb_lock
);
666 down_read(&sb
->s_umount
);
667 if (sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
669 up_read(&sb
->s_umount
);
678 spin_unlock(&sb_lock
);
681 EXPORT_SYMBOL(iterate_supers_type
);
683 static struct super_block
*__get_super(struct block_device
*bdev
, bool excl
)
685 struct super_block
*sb
;
692 list_for_each_entry(sb
, &super_blocks
, s_list
) {
693 if (hlist_unhashed(&sb
->s_instances
))
695 if (sb
->s_bdev
== bdev
) {
697 spin_unlock(&sb_lock
);
699 down_read(&sb
->s_umount
);
701 down_write(&sb
->s_umount
);
703 if (sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
706 up_read(&sb
->s_umount
);
708 up_write(&sb
->s_umount
);
709 /* nope, got unmounted */
715 spin_unlock(&sb_lock
);
720 * get_super - get the superblock of a device
721 * @bdev: device to get the superblock for
723 * Scans the superblock list and finds the superblock of the file system
724 * mounted on the device given. %NULL is returned if no match is found.
726 struct super_block
*get_super(struct block_device
*bdev
)
728 return __get_super(bdev
, false);
730 EXPORT_SYMBOL(get_super
);
732 static struct super_block
*__get_super_thawed(struct block_device
*bdev
,
736 struct super_block
*s
= __get_super(bdev
, excl
);
737 if (!s
|| s
->s_writers
.frozen
== SB_UNFROZEN
)
740 up_read(&s
->s_umount
);
742 up_write(&s
->s_umount
);
743 wait_event(s
->s_writers
.wait_unfrozen
,
744 s
->s_writers
.frozen
== SB_UNFROZEN
);
750 * get_super_thawed - get thawed superblock of a device
751 * @bdev: device to get the superblock for
753 * Scans the superblock list and finds the superblock of the file system
754 * mounted on the device. The superblock is returned once it is thawed
755 * (or immediately if it was not frozen). %NULL is returned if no match
758 struct super_block
*get_super_thawed(struct block_device
*bdev
)
760 return __get_super_thawed(bdev
, false);
762 EXPORT_SYMBOL(get_super_thawed
);
765 * get_super_exclusive_thawed - get thawed superblock of a device
766 * @bdev: device to get the superblock for
768 * Scans the superblock list and finds the superblock of the file system
769 * mounted on the device. The superblock is returned once it is thawed
770 * (or immediately if it was not frozen) and s_umount semaphore is held
771 * in exclusive mode. %NULL is returned if no match is found.
773 struct super_block
*get_super_exclusive_thawed(struct block_device
*bdev
)
775 return __get_super_thawed(bdev
, true);
777 EXPORT_SYMBOL(get_super_exclusive_thawed
);
780 * get_active_super - get an active reference to the superblock of a device
781 * @bdev: device to get the superblock for
783 * Scans the superblock list and finds the superblock of the file system
784 * mounted on the device given. Returns the superblock with an active
785 * reference or %NULL if none was found.
787 struct super_block
*get_active_super(struct block_device
*bdev
)
789 struct super_block
*sb
;
796 list_for_each_entry(sb
, &super_blocks
, s_list
) {
797 if (hlist_unhashed(&sb
->s_instances
))
799 if (sb
->s_bdev
== bdev
) {
802 up_write(&sb
->s_umount
);
806 spin_unlock(&sb_lock
);
810 struct super_block
*user_get_super(dev_t dev
)
812 struct super_block
*sb
;
816 list_for_each_entry(sb
, &super_blocks
, s_list
) {
817 if (hlist_unhashed(&sb
->s_instances
))
819 if (sb
->s_dev
== dev
) {
821 spin_unlock(&sb_lock
);
822 down_read(&sb
->s_umount
);
824 if (sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
826 up_read(&sb
->s_umount
);
827 /* nope, got unmounted */
833 spin_unlock(&sb_lock
);
838 * do_remount_sb - asks filesystem to change mount options.
839 * @sb: superblock in question
840 * @sb_flags: revised superblock flags
841 * @data: the rest of options
842 * @force: whether or not to force the change
844 * Alters the mount options of a mounted file system.
846 int do_remount_sb(struct super_block
*sb
, int sb_flags
, void *data
, int force
)
851 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
855 if (!(sb_flags
& SB_RDONLY
) && bdev_read_only(sb
->s_bdev
))
859 remount_ro
= (sb_flags
& SB_RDONLY
) && !sb_rdonly(sb
);
862 if (!hlist_empty(&sb
->s_pins
)) {
863 up_write(&sb
->s_umount
);
864 group_pin_kill(&sb
->s_pins
);
865 down_write(&sb
->s_umount
);
868 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
870 remount_ro
= (sb_flags
& SB_RDONLY
) && !sb_rdonly(sb
);
873 shrink_dcache_sb(sb
);
875 /* If we are remounting RDONLY and current sb is read/write,
876 make sure there are no rw files opened */
879 sb
->s_readonly_remount
= 1;
882 retval
= sb_prepare_remount_readonly(sb
);
888 if (sb
->s_op
->remount_fs
) {
889 retval
= sb
->s_op
->remount_fs(sb
, &sb_flags
, data
);
892 goto cancel_readonly
;
893 /* If forced remount, go ahead despite any errors */
894 WARN(1, "forced remount of a %s fs returned %i\n",
895 sb
->s_type
->name
, retval
);
898 sb
->s_flags
= (sb
->s_flags
& ~MS_RMT_MASK
) | (sb_flags
& MS_RMT_MASK
);
899 /* Needs to be ordered wrt mnt_is_readonly() */
901 sb
->s_readonly_remount
= 0;
904 * Some filesystems modify their metadata via some other path than the
905 * bdev buffer cache (eg. use a private mapping, or directories in
906 * pagecache, etc). Also file data modifications go via their own
907 * mappings. So If we try to mount readonly then copy the filesystem
908 * from bdev, we could get stale data, so invalidate it to give a best
909 * effort at coherency.
911 if (remount_ro
&& sb
->s_bdev
)
912 invalidate_bdev(sb
->s_bdev
);
916 sb
->s_readonly_remount
= 0;
920 static void do_emergency_remount_callback(struct super_block
*sb
)
922 down_write(&sb
->s_umount
);
923 if (sb
->s_root
&& sb
->s_bdev
&& (sb
->s_flags
& SB_BORN
) &&
926 * What lock protects sb->s_flags??
928 do_remount_sb(sb
, SB_RDONLY
, NULL
, 1);
930 up_write(&sb
->s_umount
);
933 static void do_emergency_remount(struct work_struct
*work
)
935 __iterate_supers(do_emergency_remount_callback
);
937 printk("Emergency Remount complete\n");
940 void emergency_remount(void)
942 struct work_struct
*work
;
944 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
946 INIT_WORK(work
, do_emergency_remount
);
951 static void do_thaw_all_callback(struct super_block
*sb
)
953 down_write(&sb
->s_umount
);
954 if (sb
->s_root
&& sb
->s_flags
& SB_BORN
) {
955 emergency_thaw_bdev(sb
);
956 thaw_super_locked(sb
);
958 up_write(&sb
->s_umount
);
962 static void do_thaw_all(struct work_struct
*work
)
964 __iterate_supers(do_thaw_all_callback
);
966 printk(KERN_WARNING
"Emergency Thaw complete\n");
970 * emergency_thaw_all -- forcibly thaw every frozen filesystem
972 * Used for emergency unfreeze of all filesystems via SysRq
974 void emergency_thaw_all(void)
976 struct work_struct
*work
;
978 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
980 INIT_WORK(work
, do_thaw_all
);
985 static DEFINE_IDA(unnamed_dev_ida
);
988 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
989 * @p: Pointer to a dev_t.
991 * Filesystems which don't use real block devices can call this function
992 * to allocate a virtual block device.
994 * Context: Any context. Frequently called while holding sb_lock.
995 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
996 * or -ENOMEM if memory allocation failed.
998 int get_anon_bdev(dev_t
*p
)
1003 * Many userspace utilities consider an FSID of 0 invalid.
1004 * Always return at least 1 from get_anon_bdev.
1006 dev
= ida_alloc_range(&unnamed_dev_ida
, 1, (1 << MINORBITS
) - 1,
1016 EXPORT_SYMBOL(get_anon_bdev
);
1018 void free_anon_bdev(dev_t dev
)
1020 ida_free(&unnamed_dev_ida
, MINOR(dev
));
1022 EXPORT_SYMBOL(free_anon_bdev
);
1024 int set_anon_super(struct super_block
*s
, void *data
)
1026 return get_anon_bdev(&s
->s_dev
);
1028 EXPORT_SYMBOL(set_anon_super
);
1030 void kill_anon_super(struct super_block
*sb
)
1032 dev_t dev
= sb
->s_dev
;
1033 generic_shutdown_super(sb
);
1034 free_anon_bdev(dev
);
1036 EXPORT_SYMBOL(kill_anon_super
);
1038 void kill_litter_super(struct super_block
*sb
)
1041 d_genocide(sb
->s_root
);
1042 kill_anon_super(sb
);
1044 EXPORT_SYMBOL(kill_litter_super
);
1046 static int ns_test_super(struct super_block
*sb
, void *data
)
1048 return sb
->s_fs_info
== data
;
1051 static int ns_set_super(struct super_block
*sb
, void *data
)
1053 sb
->s_fs_info
= data
;
1054 return set_anon_super(sb
, NULL
);
1057 struct dentry
*mount_ns(struct file_system_type
*fs_type
,
1058 int flags
, void *data
, void *ns
, struct user_namespace
*user_ns
,
1059 int (*fill_super
)(struct super_block
*, void *, int))
1061 struct super_block
*sb
;
1063 /* Don't allow mounting unless the caller has CAP_SYS_ADMIN
1064 * over the namespace.
1066 if (!(flags
& SB_KERNMOUNT
) && !ns_capable(user_ns
, CAP_SYS_ADMIN
))
1067 return ERR_PTR(-EPERM
);
1069 sb
= sget_userns(fs_type
, ns_test_super
, ns_set_super
, flags
,
1072 return ERR_CAST(sb
);
1076 err
= fill_super(sb
, data
, flags
& SB_SILENT
? 1 : 0);
1078 deactivate_locked_super(sb
);
1079 return ERR_PTR(err
);
1082 sb
->s_flags
|= SB_ACTIVE
;
1085 return dget(sb
->s_root
);
1088 EXPORT_SYMBOL(mount_ns
);
1091 static int set_bdev_super(struct super_block
*s
, void *data
)
1094 s
->s_dev
= s
->s_bdev
->bd_dev
;
1095 s
->s_bdi
= bdi_get(s
->s_bdev
->bd_bdi
);
1100 static int test_bdev_super(struct super_block
*s
, void *data
)
1102 return (void *)s
->s_bdev
== data
;
1105 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
1106 int flags
, const char *dev_name
, void *data
,
1107 int (*fill_super
)(struct super_block
*, void *, int))
1109 struct block_device
*bdev
;
1110 struct super_block
*s
;
1111 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
1114 if (!(flags
& SB_RDONLY
))
1115 mode
|= FMODE_WRITE
;
1117 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
1119 return ERR_CAST(bdev
);
1122 * once the super is inserted into the list by sget, s_umount
1123 * will protect the lockfs code from trying to start a snapshot
1124 * while we are mounting
1126 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
1127 if (bdev
->bd_fsfreeze_count
> 0) {
1128 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1132 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
| SB_NOSEC
,
1134 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1139 if ((flags
^ s
->s_flags
) & SB_RDONLY
) {
1140 deactivate_locked_super(s
);
1146 * s_umount nests inside bd_mutex during
1147 * __invalidate_device(). blkdev_put() acquires
1148 * bd_mutex and can't be called under s_umount. Drop
1149 * s_umount temporarily. This is safe as we're
1150 * holding an active reference.
1152 up_write(&s
->s_umount
);
1153 blkdev_put(bdev
, mode
);
1154 down_write(&s
->s_umount
);
1157 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", bdev
);
1158 sb_set_blocksize(s
, block_size(bdev
));
1159 error
= fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1161 deactivate_locked_super(s
);
1165 s
->s_flags
|= SB_ACTIVE
;
1169 return dget(s
->s_root
);
1174 blkdev_put(bdev
, mode
);
1176 return ERR_PTR(error
);
1178 EXPORT_SYMBOL(mount_bdev
);
1180 void kill_block_super(struct super_block
*sb
)
1182 struct block_device
*bdev
= sb
->s_bdev
;
1183 fmode_t mode
= sb
->s_mode
;
1185 bdev
->bd_super
= NULL
;
1186 generic_shutdown_super(sb
);
1187 sync_blockdev(bdev
);
1188 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1189 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1192 EXPORT_SYMBOL(kill_block_super
);
1195 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1196 int flags
, void *data
,
1197 int (*fill_super
)(struct super_block
*, void *, int))
1200 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1205 error
= fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1207 deactivate_locked_super(s
);
1208 return ERR_PTR(error
);
1210 s
->s_flags
|= SB_ACTIVE
;
1211 return dget(s
->s_root
);
1213 EXPORT_SYMBOL(mount_nodev
);
1215 static int compare_single(struct super_block
*s
, void *p
)
1220 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1221 int flags
, void *data
,
1222 int (*fill_super
)(struct super_block
*, void *, int))
1224 struct super_block
*s
;
1227 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1231 error
= fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1233 deactivate_locked_super(s
);
1234 return ERR_PTR(error
);
1236 s
->s_flags
|= SB_ACTIVE
;
1238 do_remount_sb(s
, flags
, data
, 0);
1240 return dget(s
->s_root
);
1242 EXPORT_SYMBOL(mount_single
);
1245 mount_fs(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
1247 struct dentry
*root
;
1248 struct super_block
*sb
;
1249 int error
= -ENOMEM
;
1250 void *sec_opts
= NULL
;
1252 if (data
&& !(type
->fs_flags
& FS_BINARY_MOUNTDATA
)) {
1253 error
= security_sb_eat_lsm_opts(data
, &sec_opts
);
1255 return ERR_PTR(error
);
1258 root
= type
->mount(type
, flags
, name
, data
);
1260 error
= PTR_ERR(root
);
1261 goto out_free_secdata
;
1265 WARN_ON(!sb
->s_bdi
);
1268 * Write barrier is for super_cache_count(). We place it before setting
1269 * SB_BORN as the data dependency between the two functions is the
1270 * superblock structure contents that we just set up, not the SB_BORN
1274 sb
->s_flags
|= SB_BORN
;
1276 error
= security_sb_set_mnt_opts(sb
, sec_opts
, 0, NULL
);
1280 if (!(flags
& (MS_KERNMOUNT
|MS_SUBMOUNT
))) {
1281 error
= security_sb_kern_mount(sb
);
1287 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1288 * but s_maxbytes was an unsigned long long for many releases. Throw
1289 * this warning for a little while to try and catch filesystems that
1290 * violate this rule.
1292 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1293 "negative value (%lld)\n", type
->name
, sb
->s_maxbytes
);
1295 up_write(&sb
->s_umount
);
1296 security_free_mnt_opts(&sec_opts
);
1300 deactivate_locked_super(sb
);
1302 security_free_mnt_opts(&sec_opts
);
1303 return ERR_PTR(error
);
1307 * Setup private BDI for given superblock. It gets automatically cleaned up
1308 * in generic_shutdown_super().
1310 int super_setup_bdi_name(struct super_block
*sb
, char *fmt
, ...)
1312 struct backing_dev_info
*bdi
;
1316 bdi
= bdi_alloc(GFP_KERNEL
);
1320 bdi
->name
= sb
->s_type
->name
;
1322 va_start(args
, fmt
);
1323 err
= bdi_register_va(bdi
, fmt
, args
);
1329 WARN_ON(sb
->s_bdi
!= &noop_backing_dev_info
);
1334 EXPORT_SYMBOL(super_setup_bdi_name
);
1337 * Setup private BDI for given superblock. I gets automatically cleaned up
1338 * in generic_shutdown_super().
1340 int super_setup_bdi(struct super_block
*sb
)
1342 static atomic_long_t bdi_seq
= ATOMIC_LONG_INIT(0);
1344 return super_setup_bdi_name(sb
, "%.28s-%ld", sb
->s_type
->name
,
1345 atomic_long_inc_return(&bdi_seq
));
1347 EXPORT_SYMBOL(super_setup_bdi
);
1350 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1353 void __sb_end_write(struct super_block
*sb
, int level
)
1355 percpu_up_read(sb
->s_writers
.rw_sem
+ level
-1);
1357 EXPORT_SYMBOL(__sb_end_write
);
1360 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1363 int __sb_start_write(struct super_block
*sb
, int level
, bool wait
)
1365 bool force_trylock
= false;
1368 #ifdef CONFIG_LOCKDEP
1370 * We want lockdep to tell us about possible deadlocks with freezing
1371 * but it's it bit tricky to properly instrument it. Getting a freeze
1372 * protection works as getting a read lock but there are subtle
1373 * problems. XFS for example gets freeze protection on internal level
1374 * twice in some cases, which is OK only because we already hold a
1375 * freeze protection also on higher level. Due to these cases we have
1376 * to use wait == F (trylock mode) which must not fail.
1381 for (i
= 0; i
< level
- 1; i
++)
1382 if (percpu_rwsem_is_held(sb
->s_writers
.rw_sem
+ i
)) {
1383 force_trylock
= true;
1388 if (wait
&& !force_trylock
)
1389 percpu_down_read(sb
->s_writers
.rw_sem
+ level
-1);
1391 ret
= percpu_down_read_trylock(sb
->s_writers
.rw_sem
+ level
-1);
1393 WARN_ON(force_trylock
&& !ret
);
1396 EXPORT_SYMBOL(__sb_start_write
);
1399 * sb_wait_write - wait until all writers to given file system finish
1400 * @sb: the super for which we wait
1401 * @level: type of writers we wait for (normal vs page fault)
1403 * This function waits until there are no writers of given type to given file
1406 static void sb_wait_write(struct super_block
*sb
, int level
)
1408 percpu_down_write(sb
->s_writers
.rw_sem
+ level
-1);
1412 * We are going to return to userspace and forget about these locks, the
1413 * ownership goes to the caller of thaw_super() which does unlock().
1415 static void lockdep_sb_freeze_release(struct super_block
*sb
)
1419 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1420 percpu_rwsem_release(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1424 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1426 static void lockdep_sb_freeze_acquire(struct super_block
*sb
)
1430 for (level
= 0; level
< SB_FREEZE_LEVELS
; ++level
)
1431 percpu_rwsem_acquire(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1434 static void sb_freeze_unlock(struct super_block
*sb
)
1438 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1439 percpu_up_write(sb
->s_writers
.rw_sem
+ level
);
1443 * freeze_super - lock the filesystem and force it into a consistent state
1444 * @sb: the super to lock
1446 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1447 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1450 * During this function, sb->s_writers.frozen goes through these values:
1452 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1454 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1455 * writes should be blocked, though page faults are still allowed. We wait for
1456 * all writes to complete and then proceed to the next stage.
1458 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1459 * but internal fs threads can still modify the filesystem (although they
1460 * should not dirty new pages or inodes), writeback can run etc. After waiting
1461 * for all running page faults we sync the filesystem which will clean all
1462 * dirty pages and inodes (no new dirty pages or inodes can be created when
1465 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1466 * modification are blocked (e.g. XFS preallocation truncation on inode
1467 * reclaim). This is usually implemented by blocking new transactions for
1468 * filesystems that have them and need this additional guard. After all
1469 * internal writers are finished we call ->freeze_fs() to finish filesystem
1470 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1471 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1473 * sb->s_writers.frozen is protected by sb->s_umount.
1475 int freeze_super(struct super_block
*sb
)
1479 atomic_inc(&sb
->s_active
);
1480 down_write(&sb
->s_umount
);
1481 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
1482 deactivate_locked_super(sb
);
1486 if (!(sb
->s_flags
& SB_BORN
)) {
1487 up_write(&sb
->s_umount
);
1488 return 0; /* sic - it's "nothing to do" */
1491 if (sb_rdonly(sb
)) {
1492 /* Nothing to do really... */
1493 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1494 up_write(&sb
->s_umount
);
1498 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
1499 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1500 up_write(&sb
->s_umount
);
1501 sb_wait_write(sb
, SB_FREEZE_WRITE
);
1502 down_write(&sb
->s_umount
);
1504 /* Now we go and block page faults... */
1505 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
1506 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
1508 /* All writers are done so after syncing there won't be dirty data */
1509 sync_filesystem(sb
);
1511 /* Now wait for internal filesystem counter */
1512 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
1513 sb_wait_write(sb
, SB_FREEZE_FS
);
1515 if (sb
->s_op
->freeze_fs
) {
1516 ret
= sb
->s_op
->freeze_fs(sb
);
1519 "VFS:Filesystem freeze failed\n");
1520 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1521 sb_freeze_unlock(sb
);
1522 wake_up(&sb
->s_writers
.wait_unfrozen
);
1523 deactivate_locked_super(sb
);
1528 * For debugging purposes so that fs can warn if it sees write activity
1529 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1531 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1532 lockdep_sb_freeze_release(sb
);
1533 up_write(&sb
->s_umount
);
1536 EXPORT_SYMBOL(freeze_super
);
1539 * thaw_super -- unlock filesystem
1540 * @sb: the super to thaw
1542 * Unlocks the filesystem and marks it writeable again after freeze_super().
1544 static int thaw_super_locked(struct super_block
*sb
)
1548 if (sb
->s_writers
.frozen
!= SB_FREEZE_COMPLETE
) {
1549 up_write(&sb
->s_umount
);
1553 if (sb_rdonly(sb
)) {
1554 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1558 lockdep_sb_freeze_acquire(sb
);
1560 if (sb
->s_op
->unfreeze_fs
) {
1561 error
= sb
->s_op
->unfreeze_fs(sb
);
1564 "VFS:Filesystem thaw failed\n");
1565 lockdep_sb_freeze_release(sb
);
1566 up_write(&sb
->s_umount
);
1571 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1572 sb_freeze_unlock(sb
);
1574 wake_up(&sb
->s_writers
.wait_unfrozen
);
1575 deactivate_locked_super(sb
);
1579 int thaw_super(struct super_block
*sb
)
1581 down_write(&sb
->s_umount
);
1582 return thaw_super_locked(sb
);
1584 EXPORT_SYMBOL(thaw_super
);