4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
24 #include <trace/events/f2fs.h>
26 static int gc_thread_func(void *data
)
28 struct f2fs_sb_info
*sbi
= data
;
29 struct f2fs_gc_kthread
*gc_th
= sbi
->gc_thread
;
30 wait_queue_head_t
*wq
= &sbi
->gc_thread
->gc_wait_queue_head
;
33 wait_ms
= gc_th
->min_sleep_time
;
37 wait_event_interruptible_timeout(*wq
,
38 kthread_should_stop() || freezing(current
) ||
40 msecs_to_jiffies(wait_ms
));
42 /* give it a try one time */
48 if (kthread_should_stop())
51 if (sbi
->sb
->s_writers
.frozen
>= SB_FREEZE_WRITE
) {
52 increase_sleep_time(gc_th
, &wait_ms
);
56 #ifdef CONFIG_F2FS_FAULT_INJECTION
57 if (time_to_inject(sbi
, FAULT_CHECKPOINT
)) {
58 f2fs_show_injection_info(FAULT_CHECKPOINT
);
59 f2fs_stop_checkpoint(sbi
, false);
63 if (!sb_start_write_trylock(sbi
->sb
))
67 * [GC triggering condition]
68 * 0. GC is not conducted currently.
69 * 1. There are enough dirty segments.
70 * 2. IO subsystem is idle by checking the # of writeback pages.
71 * 3. IO subsystem is idle by checking the # of requests in
72 * bdev's request list.
74 * Note) We have to avoid triggering GCs frequently.
75 * Because it is possible that some segments can be
76 * invalidated soon after by user update or deletion.
77 * So, I'd like to wait some time to collect dirty segments.
79 if (!mutex_trylock(&sbi
->gc_mutex
))
82 if (gc_th
->gc_urgent
) {
83 wait_ms
= gc_th
->urgent_sleep_time
;
88 increase_sleep_time(gc_th
, &wait_ms
);
89 mutex_unlock(&sbi
->gc_mutex
);
93 if (has_enough_invalid_blocks(sbi
))
94 decrease_sleep_time(gc_th
, &wait_ms
);
96 increase_sleep_time(gc_th
, &wait_ms
);
98 stat_inc_bggc_count(sbi
);
100 /* if return value is not zero, no victim was selected */
101 if (f2fs_gc(sbi
, test_opt(sbi
, FORCE_FG_GC
), true, NULL_SEGNO
))
102 wait_ms
= gc_th
->no_gc_sleep_time
;
104 trace_f2fs_background_gc(sbi
->sb
, wait_ms
,
105 prefree_segments(sbi
), free_segments(sbi
));
107 /* balancing f2fs's metadata periodically */
108 f2fs_balance_fs_bg(sbi
);
110 sb_end_write(sbi
->sb
);
112 } while (!kthread_should_stop());
116 int start_gc_thread(struct f2fs_sb_info
*sbi
)
118 struct f2fs_gc_kthread
*gc_th
;
119 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
122 gc_th
= f2fs_kmalloc(sbi
, sizeof(struct f2fs_gc_kthread
), GFP_KERNEL
);
128 gc_th
->urgent_sleep_time
= DEF_GC_THREAD_URGENT_SLEEP_TIME
;
129 gc_th
->min_sleep_time
= DEF_GC_THREAD_MIN_SLEEP_TIME
;
130 gc_th
->max_sleep_time
= DEF_GC_THREAD_MAX_SLEEP_TIME
;
131 gc_th
->no_gc_sleep_time
= DEF_GC_THREAD_NOGC_SLEEP_TIME
;
134 gc_th
->gc_urgent
= 0;
137 sbi
->gc_thread
= gc_th
;
138 init_waitqueue_head(&sbi
->gc_thread
->gc_wait_queue_head
);
139 sbi
->gc_thread
->f2fs_gc_task
= kthread_run(gc_thread_func
, sbi
,
140 "f2fs_gc-%u:%u", MAJOR(dev
), MINOR(dev
));
141 if (IS_ERR(gc_th
->f2fs_gc_task
)) {
142 err
= PTR_ERR(gc_th
->f2fs_gc_task
);
144 sbi
->gc_thread
= NULL
;
150 void stop_gc_thread(struct f2fs_sb_info
*sbi
)
152 struct f2fs_gc_kthread
*gc_th
= sbi
->gc_thread
;
155 kthread_stop(gc_th
->f2fs_gc_task
);
157 sbi
->gc_thread
= NULL
;
160 static int select_gc_type(struct f2fs_gc_kthread
*gc_th
, int gc_type
)
162 int gc_mode
= (gc_type
== BG_GC
) ? GC_CB
: GC_GREEDY
;
164 if (gc_th
&& gc_th
->gc_idle
) {
165 if (gc_th
->gc_idle
== 1)
167 else if (gc_th
->gc_idle
== 2)
173 static void select_policy(struct f2fs_sb_info
*sbi
, int gc_type
,
174 int type
, struct victim_sel_policy
*p
)
176 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
178 if (p
->alloc_mode
== SSR
) {
179 p
->gc_mode
= GC_GREEDY
;
180 p
->dirty_segmap
= dirty_i
->dirty_segmap
[type
];
181 p
->max_search
= dirty_i
->nr_dirty
[type
];
184 p
->gc_mode
= select_gc_type(sbi
->gc_thread
, gc_type
);
185 p
->dirty_segmap
= dirty_i
->dirty_segmap
[DIRTY
];
186 p
->max_search
= dirty_i
->nr_dirty
[DIRTY
];
187 p
->ofs_unit
= sbi
->segs_per_sec
;
190 /* we need to check every dirty segments in the FG_GC case */
191 if (gc_type
!= FG_GC
&& p
->max_search
> sbi
->max_victim_search
)
192 p
->max_search
= sbi
->max_victim_search
;
194 /* let's select beginning hot/small space first */
195 if (type
== CURSEG_HOT_DATA
|| IS_NODESEG(type
))
198 p
->offset
= SIT_I(sbi
)->last_victim
[p
->gc_mode
];
201 static unsigned int get_max_cost(struct f2fs_sb_info
*sbi
,
202 struct victim_sel_policy
*p
)
204 /* SSR allocates in a segment unit */
205 if (p
->alloc_mode
== SSR
)
206 return sbi
->blocks_per_seg
;
207 if (p
->gc_mode
== GC_GREEDY
)
208 return 2 * sbi
->blocks_per_seg
* p
->ofs_unit
;
209 else if (p
->gc_mode
== GC_CB
)
211 else /* No other gc_mode */
215 static unsigned int check_bg_victims(struct f2fs_sb_info
*sbi
)
217 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
221 * If the gc_type is FG_GC, we can select victim segments
222 * selected by background GC before.
223 * Those segments guarantee they have small valid blocks.
225 for_each_set_bit(secno
, dirty_i
->victim_secmap
, MAIN_SECS(sbi
)) {
226 if (sec_usage_check(sbi
, secno
))
229 if (no_fggc_candidate(sbi
, secno
))
232 clear_bit(secno
, dirty_i
->victim_secmap
);
233 return GET_SEG_FROM_SEC(sbi
, secno
);
238 static unsigned int get_cb_cost(struct f2fs_sb_info
*sbi
, unsigned int segno
)
240 struct sit_info
*sit_i
= SIT_I(sbi
);
241 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
242 unsigned int start
= GET_SEG_FROM_SEC(sbi
, secno
);
243 unsigned long long mtime
= 0;
244 unsigned int vblocks
;
245 unsigned char age
= 0;
249 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
250 mtime
+= get_seg_entry(sbi
, start
+ i
)->mtime
;
251 vblocks
= get_valid_blocks(sbi
, segno
, true);
253 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
254 vblocks
= div_u64(vblocks
, sbi
->segs_per_sec
);
256 u
= (vblocks
* 100) >> sbi
->log_blocks_per_seg
;
258 /* Handle if the system time has changed by the user */
259 if (mtime
< sit_i
->min_mtime
)
260 sit_i
->min_mtime
= mtime
;
261 if (mtime
> sit_i
->max_mtime
)
262 sit_i
->max_mtime
= mtime
;
263 if (sit_i
->max_mtime
!= sit_i
->min_mtime
)
264 age
= 100 - div64_u64(100 * (mtime
- sit_i
->min_mtime
),
265 sit_i
->max_mtime
- sit_i
->min_mtime
);
267 return UINT_MAX
- ((100 * (100 - u
) * age
) / (100 + u
));
270 static inline unsigned int get_gc_cost(struct f2fs_sb_info
*sbi
,
271 unsigned int segno
, struct victim_sel_policy
*p
)
273 if (p
->alloc_mode
== SSR
)
274 return get_seg_entry(sbi
, segno
)->ckpt_valid_blocks
;
276 /* alloc_mode == LFS */
277 if (p
->gc_mode
== GC_GREEDY
)
278 return get_valid_blocks(sbi
, segno
, true);
280 return get_cb_cost(sbi
, segno
);
283 static unsigned int count_bits(const unsigned long *addr
,
284 unsigned int offset
, unsigned int len
)
286 unsigned int end
= offset
+ len
, sum
= 0;
288 while (offset
< end
) {
289 if (test_bit(offset
++, addr
))
296 * This function is called from two paths.
297 * One is garbage collection and the other is SSR segment selection.
298 * When it is called during GC, it just gets a victim segment
299 * and it does not remove it from dirty seglist.
300 * When it is called from SSR segment selection, it finds a segment
301 * which has minimum valid blocks and removes it from dirty seglist.
303 static int get_victim_by_default(struct f2fs_sb_info
*sbi
,
304 unsigned int *result
, int gc_type
, int type
, char alloc_mode
)
306 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
307 struct sit_info
*sm
= SIT_I(sbi
);
308 struct victim_sel_policy p
;
309 unsigned int secno
, last_victim
;
310 unsigned int last_segment
= MAIN_SEGS(sbi
);
311 unsigned int nsearched
= 0;
313 mutex_lock(&dirty_i
->seglist_lock
);
315 p
.alloc_mode
= alloc_mode
;
316 select_policy(sbi
, gc_type
, type
, &p
);
318 p
.min_segno
= NULL_SEGNO
;
319 p
.min_cost
= get_max_cost(sbi
, &p
);
321 if (*result
!= NULL_SEGNO
) {
322 if (IS_DATASEG(get_seg_entry(sbi
, *result
)->type
) &&
323 get_valid_blocks(sbi
, *result
, false) &&
324 !sec_usage_check(sbi
, GET_SEC_FROM_SEG(sbi
, *result
)))
325 p
.min_segno
= *result
;
329 if (p
.max_search
== 0)
332 last_victim
= sm
->last_victim
[p
.gc_mode
];
333 if (p
.alloc_mode
== LFS
&& gc_type
== FG_GC
) {
334 p
.min_segno
= check_bg_victims(sbi
);
335 if (p
.min_segno
!= NULL_SEGNO
)
343 segno
= find_next_bit(p
.dirty_segmap
, last_segment
, p
.offset
);
344 if (segno
>= last_segment
) {
345 if (sm
->last_victim
[p
.gc_mode
]) {
347 sm
->last_victim
[p
.gc_mode
];
348 sm
->last_victim
[p
.gc_mode
] = 0;
355 p
.offset
= segno
+ p
.ofs_unit
;
356 if (p
.ofs_unit
> 1) {
357 p
.offset
-= segno
% p
.ofs_unit
;
358 nsearched
+= count_bits(p
.dirty_segmap
,
359 p
.offset
- p
.ofs_unit
,
365 secno
= GET_SEC_FROM_SEG(sbi
, segno
);
367 if (sec_usage_check(sbi
, secno
))
369 if (gc_type
== BG_GC
&& test_bit(secno
, dirty_i
->victim_secmap
))
371 if (gc_type
== FG_GC
&& p
.alloc_mode
== LFS
&&
372 no_fggc_candidate(sbi
, secno
))
375 cost
= get_gc_cost(sbi
, segno
, &p
);
377 if (p
.min_cost
> cost
) {
382 if (nsearched
>= p
.max_search
) {
383 if (!sm
->last_victim
[p
.gc_mode
] && segno
<= last_victim
)
384 sm
->last_victim
[p
.gc_mode
] = last_victim
+ 1;
386 sm
->last_victim
[p
.gc_mode
] = segno
+ 1;
387 sm
->last_victim
[p
.gc_mode
] %= MAIN_SEGS(sbi
);
391 if (p
.min_segno
!= NULL_SEGNO
) {
393 if (p
.alloc_mode
== LFS
) {
394 secno
= GET_SEC_FROM_SEG(sbi
, p
.min_segno
);
395 if (gc_type
== FG_GC
)
396 sbi
->cur_victim_sec
= secno
;
398 set_bit(secno
, dirty_i
->victim_secmap
);
400 *result
= (p
.min_segno
/ p
.ofs_unit
) * p
.ofs_unit
;
402 trace_f2fs_get_victim(sbi
->sb
, type
, gc_type
, &p
,
404 prefree_segments(sbi
), free_segments(sbi
));
407 mutex_unlock(&dirty_i
->seglist_lock
);
409 return (p
.min_segno
== NULL_SEGNO
) ? 0 : 1;
412 static const struct victim_selection default_v_ops
= {
413 .get_victim
= get_victim_by_default
,
416 static struct inode
*find_gc_inode(struct gc_inode_list
*gc_list
, nid_t ino
)
418 struct inode_entry
*ie
;
420 ie
= radix_tree_lookup(&gc_list
->iroot
, ino
);
426 static void add_gc_inode(struct gc_inode_list
*gc_list
, struct inode
*inode
)
428 struct inode_entry
*new_ie
;
430 if (inode
== find_gc_inode(gc_list
, inode
->i_ino
)) {
434 new_ie
= f2fs_kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
435 new_ie
->inode
= inode
;
437 f2fs_radix_tree_insert(&gc_list
->iroot
, inode
->i_ino
, new_ie
);
438 list_add_tail(&new_ie
->list
, &gc_list
->ilist
);
441 static void put_gc_inode(struct gc_inode_list
*gc_list
)
443 struct inode_entry
*ie
, *next_ie
;
444 list_for_each_entry_safe(ie
, next_ie
, &gc_list
->ilist
, list
) {
445 radix_tree_delete(&gc_list
->iroot
, ie
->inode
->i_ino
);
448 kmem_cache_free(inode_entry_slab
, ie
);
452 static int check_valid_map(struct f2fs_sb_info
*sbi
,
453 unsigned int segno
, int offset
)
455 struct sit_info
*sit_i
= SIT_I(sbi
);
456 struct seg_entry
*sentry
;
459 down_read(&sit_i
->sentry_lock
);
460 sentry
= get_seg_entry(sbi
, segno
);
461 ret
= f2fs_test_bit(offset
, sentry
->cur_valid_map
);
462 up_read(&sit_i
->sentry_lock
);
467 * This function compares node address got in summary with that in NAT.
468 * On validity, copy that node with cold status, otherwise (invalid node)
471 static void gc_node_segment(struct f2fs_sb_info
*sbi
,
472 struct f2fs_summary
*sum
, unsigned int segno
, int gc_type
)
474 struct f2fs_summary
*entry
;
479 start_addr
= START_BLOCK(sbi
, segno
);
484 for (off
= 0; off
< sbi
->blocks_per_seg
; off
++, entry
++) {
485 nid_t nid
= le32_to_cpu(entry
->nid
);
486 struct page
*node_page
;
489 /* stop BG_GC if there is not enough free sections. */
490 if (gc_type
== BG_GC
&& has_not_enough_free_secs(sbi
, 0, 0))
493 if (check_valid_map(sbi
, segno
, off
) == 0)
497 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), 1,
503 ra_node_page(sbi
, nid
);
508 node_page
= get_node_page(sbi
, nid
);
509 if (IS_ERR(node_page
))
512 /* block may become invalid during get_node_page */
513 if (check_valid_map(sbi
, segno
, off
) == 0) {
514 f2fs_put_page(node_page
, 1);
518 get_node_info(sbi
, nid
, &ni
);
519 if (ni
.blk_addr
!= start_addr
+ off
) {
520 f2fs_put_page(node_page
, 1);
524 move_node_page(node_page
, gc_type
);
525 stat_inc_node_blk_count(sbi
, 1, gc_type
);
533 * Calculate start block index indicating the given node offset.
534 * Be careful, caller should give this node offset only indicating direct node
535 * blocks. If any node offsets, which point the other types of node blocks such
536 * as indirect or double indirect node blocks, are given, it must be a caller's
539 block_t
start_bidx_of_node(unsigned int node_ofs
, struct inode
*inode
)
541 unsigned int indirect_blks
= 2 * NIDS_PER_BLOCK
+ 4;
549 } else if (node_ofs
<= indirect_blks
) {
550 int dec
= (node_ofs
- 4) / (NIDS_PER_BLOCK
+ 1);
551 bidx
= node_ofs
- 2 - dec
;
553 int dec
= (node_ofs
- indirect_blks
- 3) / (NIDS_PER_BLOCK
+ 1);
554 bidx
= node_ofs
- 5 - dec
;
556 return bidx
* ADDRS_PER_BLOCK
+ ADDRS_PER_INODE(inode
);
559 static bool is_alive(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
560 struct node_info
*dni
, block_t blkaddr
, unsigned int *nofs
)
562 struct page
*node_page
;
564 unsigned int ofs_in_node
;
565 block_t source_blkaddr
;
567 nid
= le32_to_cpu(sum
->nid
);
568 ofs_in_node
= le16_to_cpu(sum
->ofs_in_node
);
570 node_page
= get_node_page(sbi
, nid
);
571 if (IS_ERR(node_page
))
574 get_node_info(sbi
, nid
, dni
);
576 if (sum
->version
!= dni
->version
) {
577 f2fs_msg(sbi
->sb
, KERN_WARNING
,
578 "%s: valid data with mismatched node version.",
580 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
583 *nofs
= ofs_of_node(node_page
);
584 source_blkaddr
= datablock_addr(NULL
, node_page
, ofs_in_node
);
585 f2fs_put_page(node_page
, 1);
587 if (source_blkaddr
!= blkaddr
)
593 * Move data block via META_MAPPING while keeping locked data page.
594 * This can be used to move blocks, aka LBAs, directly on disk.
596 static void move_data_block(struct inode
*inode
, block_t bidx
,
597 unsigned int segno
, int off
)
599 struct f2fs_io_info fio
= {
600 .sbi
= F2FS_I_SB(inode
),
606 .encrypted_page
= NULL
,
609 struct dnode_of_data dn
;
610 struct f2fs_summary sum
;
616 /* do not read out */
617 page
= f2fs_grab_cache_page(inode
->i_mapping
, bidx
, false);
621 if (!check_valid_map(F2FS_I_SB(inode
), segno
, off
))
624 if (f2fs_is_atomic_file(inode
))
627 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
628 err
= get_dnode_of_data(&dn
, bidx
, LOOKUP_NODE
);
632 if (unlikely(dn
.data_blkaddr
== NULL_ADDR
)) {
633 ClearPageUptodate(page
);
638 * don't cache encrypted data into meta inode until previous dirty
639 * data were writebacked to avoid racing between GC and flush.
641 f2fs_wait_on_page_writeback(page
, DATA
, true);
643 get_node_info(fio
.sbi
, dn
.nid
, &ni
);
644 set_summary(&sum
, dn
.nid
, dn
.ofs_in_node
, ni
.version
);
648 fio
.new_blkaddr
= fio
.old_blkaddr
= dn
.data_blkaddr
;
650 allocate_data_block(fio
.sbi
, NULL
, fio
.old_blkaddr
, &newaddr
,
651 &sum
, CURSEG_COLD_DATA
, NULL
, false);
653 fio
.encrypted_page
= f2fs_pagecache_get_page(META_MAPPING(fio
.sbi
),
654 newaddr
, FGP_LOCK
| FGP_CREAT
, GFP_NOFS
);
655 if (!fio
.encrypted_page
) {
660 err
= f2fs_submit_page_bio(&fio
);
665 lock_page(fio
.encrypted_page
);
667 if (unlikely(fio
.encrypted_page
->mapping
!= META_MAPPING(fio
.sbi
))) {
671 if (unlikely(!PageUptodate(fio
.encrypted_page
))) {
676 set_page_dirty(fio
.encrypted_page
);
677 f2fs_wait_on_page_writeback(fio
.encrypted_page
, DATA
, true);
678 if (clear_page_dirty_for_io(fio
.encrypted_page
))
679 dec_page_count(fio
.sbi
, F2FS_DIRTY_META
);
681 set_page_writeback(fio
.encrypted_page
);
683 /* allocate block address */
684 f2fs_wait_on_page_writeback(dn
.node_page
, NODE
, true);
686 fio
.op
= REQ_OP_WRITE
;
687 fio
.op_flags
= REQ_SYNC
;
688 fio
.new_blkaddr
= newaddr
;
689 f2fs_submit_page_write(&fio
);
691 f2fs_update_iostat(fio
.sbi
, FS_GC_DATA_IO
, F2FS_BLKSIZE
);
693 f2fs_update_data_blkaddr(&dn
, newaddr
);
694 set_inode_flag(inode
, FI_APPEND_WRITE
);
695 if (page
->index
== 0)
696 set_inode_flag(inode
, FI_FIRST_BLOCK_WRITTEN
);
698 f2fs_put_page(fio
.encrypted_page
, 1);
701 __f2fs_replace_block(fio
.sbi
, &sum
, newaddr
, fio
.old_blkaddr
,
706 f2fs_put_page(page
, 1);
709 static void move_data_page(struct inode
*inode
, block_t bidx
, int gc_type
,
710 unsigned int segno
, int off
)
714 page
= get_lock_data_page(inode
, bidx
, true);
718 if (!check_valid_map(F2FS_I_SB(inode
), segno
, off
))
721 if (f2fs_is_atomic_file(inode
))
724 if (gc_type
== BG_GC
) {
725 if (PageWriteback(page
))
727 set_page_dirty(page
);
730 struct f2fs_io_info fio
= {
731 .sbi
= F2FS_I_SB(inode
),
736 .op_flags
= REQ_SYNC
,
737 .old_blkaddr
= NULL_ADDR
,
739 .encrypted_page
= NULL
,
740 .need_lock
= LOCK_REQ
,
741 .io_type
= FS_GC_DATA_IO
,
743 bool is_dirty
= PageDirty(page
);
747 set_page_dirty(page
);
748 f2fs_wait_on_page_writeback(page
, DATA
, true);
749 if (clear_page_dirty_for_io(page
)) {
750 inode_dec_dirty_pages(inode
);
751 remove_dirty_inode(inode
);
756 err
= do_write_data_page(&fio
);
757 if (err
== -ENOMEM
&& is_dirty
) {
758 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
763 f2fs_put_page(page
, 1);
767 * This function tries to get parent node of victim data block, and identifies
768 * data block validity. If the block is valid, copy that with cold status and
769 * modify parent node.
770 * If the parent node is not valid or the data block address is different,
771 * the victim data block is ignored.
773 static void gc_data_segment(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
774 struct gc_inode_list
*gc_list
, unsigned int segno
, int gc_type
)
776 struct super_block
*sb
= sbi
->sb
;
777 struct f2fs_summary
*entry
;
782 start_addr
= START_BLOCK(sbi
, segno
);
787 for (off
= 0; off
< sbi
->blocks_per_seg
; off
++, entry
++) {
788 struct page
*data_page
;
790 struct node_info dni
; /* dnode info for the data */
791 unsigned int ofs_in_node
, nofs
;
793 nid_t nid
= le32_to_cpu(entry
->nid
);
795 /* stop BG_GC if there is not enough free sections. */
796 if (gc_type
== BG_GC
&& has_not_enough_free_secs(sbi
, 0, 0))
799 if (check_valid_map(sbi
, segno
, off
) == 0)
803 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), 1,
809 ra_node_page(sbi
, nid
);
813 /* Get an inode by ino with checking validity */
814 if (!is_alive(sbi
, entry
, &dni
, start_addr
+ off
, &nofs
))
818 ra_node_page(sbi
, dni
.ino
);
822 ofs_in_node
= le16_to_cpu(entry
->ofs_in_node
);
825 inode
= f2fs_iget(sb
, dni
.ino
);
826 if (IS_ERR(inode
) || is_bad_inode(inode
))
829 /* if encrypted inode, let's go phase 3 */
830 if (f2fs_encrypted_file(inode
)) {
831 add_gc_inode(gc_list
, inode
);
835 if (!down_write_trylock(
836 &F2FS_I(inode
)->dio_rwsem
[WRITE
])) {
841 start_bidx
= start_bidx_of_node(nofs
, inode
);
842 data_page
= get_read_data_page(inode
,
843 start_bidx
+ ofs_in_node
, REQ_RAHEAD
,
845 up_write(&F2FS_I(inode
)->dio_rwsem
[WRITE
]);
846 if (IS_ERR(data_page
)) {
851 f2fs_put_page(data_page
, 0);
852 add_gc_inode(gc_list
, inode
);
857 inode
= find_gc_inode(gc_list
, dni
.ino
);
859 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
862 if (S_ISREG(inode
->i_mode
)) {
863 if (!down_write_trylock(&fi
->dio_rwsem
[READ
]))
865 if (!down_write_trylock(
866 &fi
->dio_rwsem
[WRITE
])) {
867 up_write(&fi
->dio_rwsem
[READ
]);
872 /* wait for all inflight aio data */
873 inode_dio_wait(inode
);
876 start_bidx
= start_bidx_of_node(nofs
, inode
)
878 if (f2fs_encrypted_file(inode
))
879 move_data_block(inode
, start_bidx
, segno
, off
);
881 move_data_page(inode
, start_bidx
, gc_type
,
885 up_write(&fi
->dio_rwsem
[WRITE
]);
886 up_write(&fi
->dio_rwsem
[READ
]);
889 stat_inc_data_blk_count(sbi
, 1, gc_type
);
897 static int __get_victim(struct f2fs_sb_info
*sbi
, unsigned int *victim
,
900 struct sit_info
*sit_i
= SIT_I(sbi
);
903 down_write(&sit_i
->sentry_lock
);
904 ret
= DIRTY_I(sbi
)->v_ops
->get_victim(sbi
, victim
, gc_type
,
906 up_write(&sit_i
->sentry_lock
);
910 static int do_garbage_collect(struct f2fs_sb_info
*sbi
,
911 unsigned int start_segno
,
912 struct gc_inode_list
*gc_list
, int gc_type
)
914 struct page
*sum_page
;
915 struct f2fs_summary_block
*sum
;
916 struct blk_plug plug
;
917 unsigned int segno
= start_segno
;
918 unsigned int end_segno
= start_segno
+ sbi
->segs_per_sec
;
920 unsigned char type
= IS_DATASEG(get_seg_entry(sbi
, segno
)->type
) ?
921 SUM_TYPE_DATA
: SUM_TYPE_NODE
;
923 /* readahead multi ssa blocks those have contiguous address */
924 if (sbi
->segs_per_sec
> 1)
925 ra_meta_pages(sbi
, GET_SUM_BLOCK(sbi
, segno
),
926 sbi
->segs_per_sec
, META_SSA
, true);
928 /* reference all summary page */
929 while (segno
< end_segno
) {
930 sum_page
= get_sum_page(sbi
, segno
++);
931 unlock_page(sum_page
);
934 blk_start_plug(&plug
);
936 for (segno
= start_segno
; segno
< end_segno
; segno
++) {
938 /* find segment summary of victim */
939 sum_page
= find_get_page(META_MAPPING(sbi
),
940 GET_SUM_BLOCK(sbi
, segno
));
941 f2fs_put_page(sum_page
, 0);
943 if (get_valid_blocks(sbi
, segno
, false) == 0 ||
944 !PageUptodate(sum_page
) ||
945 unlikely(f2fs_cp_error(sbi
)))
948 sum
= page_address(sum_page
);
949 f2fs_bug_on(sbi
, type
!= GET_SUM_TYPE((&sum
->footer
)));
952 * this is to avoid deadlock:
953 * - lock_page(sum_page) - f2fs_replace_block
954 * - check_valid_map() - down_write(sentry_lock)
955 * - down_read(sentry_lock) - change_curseg()
956 * - lock_page(sum_page)
958 if (type
== SUM_TYPE_NODE
)
959 gc_node_segment(sbi
, sum
->entries
, segno
, gc_type
);
961 gc_data_segment(sbi
, sum
->entries
, gc_list
, segno
,
964 stat_inc_seg_count(sbi
, type
, gc_type
);
966 if (gc_type
== FG_GC
&&
967 get_valid_blocks(sbi
, segno
, false) == 0)
970 f2fs_put_page(sum_page
, 0);
973 if (gc_type
== FG_GC
)
974 f2fs_submit_merged_write(sbi
,
975 (type
== SUM_TYPE_NODE
) ? NODE
: DATA
);
977 blk_finish_plug(&plug
);
979 stat_inc_call_count(sbi
->stat_info
);
984 int f2fs_gc(struct f2fs_sb_info
*sbi
, bool sync
,
985 bool background
, unsigned int segno
)
987 int gc_type
= sync
? FG_GC
: BG_GC
;
988 int sec_freed
= 0, seg_freed
= 0, total_freed
= 0;
990 struct cp_control cpc
;
991 unsigned int init_segno
= segno
;
992 struct gc_inode_list gc_list
= {
993 .ilist
= LIST_HEAD_INIT(gc_list
.ilist
),
994 .iroot
= RADIX_TREE_INIT(GFP_NOFS
),
997 trace_f2fs_gc_begin(sbi
->sb
, sync
, background
,
998 get_pages(sbi
, F2FS_DIRTY_NODES
),
999 get_pages(sbi
, F2FS_DIRTY_DENTS
),
1000 get_pages(sbi
, F2FS_DIRTY_IMETA
),
1003 reserved_segments(sbi
),
1004 prefree_segments(sbi
));
1006 cpc
.reason
= __get_cp_reason(sbi
);
1008 if (unlikely(!(sbi
->sb
->s_flags
& MS_ACTIVE
))) {
1012 if (unlikely(f2fs_cp_error(sbi
))) {
1017 if (gc_type
== BG_GC
&& has_not_enough_free_secs(sbi
, 0, 0)) {
1019 * For example, if there are many prefree_segments below given
1020 * threshold, we can make them free by checkpoint. Then, we
1021 * secure free segments which doesn't need fggc any more.
1023 if (prefree_segments(sbi
)) {
1024 ret
= write_checkpoint(sbi
, &cpc
);
1028 if (has_not_enough_free_secs(sbi
, 0, 0))
1032 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1033 if (gc_type
== BG_GC
&& !background
) {
1037 if (!__get_victim(sbi
, &segno
, gc_type
)) {
1042 seg_freed
= do_garbage_collect(sbi
, segno
, &gc_list
, gc_type
);
1043 if (gc_type
== FG_GC
&& seg_freed
== sbi
->segs_per_sec
)
1045 total_freed
+= seg_freed
;
1047 if (gc_type
== FG_GC
)
1048 sbi
->cur_victim_sec
= NULL_SEGNO
;
1051 if (has_not_enough_free_secs(sbi
, sec_freed
, 0)) {
1056 if (gc_type
== FG_GC
)
1057 ret
= write_checkpoint(sbi
, &cpc
);
1060 SIT_I(sbi
)->last_victim
[ALLOC_NEXT
] = 0;
1061 SIT_I(sbi
)->last_victim
[FLUSH_DEVICE
] = init_segno
;
1063 trace_f2fs_gc_end(sbi
->sb
, ret
, total_freed
, sec_freed
,
1064 get_pages(sbi
, F2FS_DIRTY_NODES
),
1065 get_pages(sbi
, F2FS_DIRTY_DENTS
),
1066 get_pages(sbi
, F2FS_DIRTY_IMETA
),
1069 reserved_segments(sbi
),
1070 prefree_segments(sbi
));
1072 mutex_unlock(&sbi
->gc_mutex
);
1074 put_gc_inode(&gc_list
);
1077 ret
= sec_freed
? 0 : -EAGAIN
;
1081 void build_gc_manager(struct f2fs_sb_info
*sbi
)
1083 u64 main_count
, resv_count
, ovp_count
;
1085 DIRTY_I(sbi
)->v_ops
= &default_v_ops
;
1087 /* threshold of # of valid blocks in a section for victims of FG_GC */
1088 main_count
= SM_I(sbi
)->main_segments
<< sbi
->log_blocks_per_seg
;
1089 resv_count
= SM_I(sbi
)->reserved_segments
<< sbi
->log_blocks_per_seg
;
1090 ovp_count
= SM_I(sbi
)->ovp_segments
<< sbi
->log_blocks_per_seg
;
1092 sbi
->fggc_threshold
= div64_u64((main_count
- ovp_count
) *
1093 BLKS_PER_SEC(sbi
), (main_count
- resv_count
));
1095 /* give warm/cold data area from slower device */
1096 if (sbi
->s_ndevs
&& sbi
->segs_per_sec
== 1)
1097 SIT_I(sbi
)->last_victim
[ALLOC_NEXT
] =
1098 GET_SEGNO(sbi
, FDEV(0).end_blk
) + 1;