2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include <linux/ctype.h>
38 static DEFINE_SPINLOCK(dbg_lock
);
40 static const char *get_key_fmt(int fmt
)
43 case UBIFS_SIMPLE_KEY_FMT
:
46 return "unknown/invalid format";
50 static const char *get_key_hash(int hash
)
53 case UBIFS_KEY_HASH_R5
:
55 case UBIFS_KEY_HASH_TEST
:
58 return "unknown/invalid name hash";
62 static const char *get_key_type(int type
)
76 return "unknown/invalid key";
80 static const char *get_dent_type(int type
)
93 case UBIFS_ITYPE_FIFO
:
95 case UBIFS_ITYPE_SOCK
:
98 return "unknown/invalid type";
102 const char *dbg_snprintf_key(const struct ubifs_info
*c
,
103 const union ubifs_key
*key
, char *buffer
, int len
)
106 int type
= key_type(c
, key
);
108 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
111 len
-= snprintf(p
, len
, "(%lu, %s)",
112 (unsigned long)key_inum(c
, key
),
117 len
-= snprintf(p
, len
, "(%lu, %s, %#08x)",
118 (unsigned long)key_inum(c
, key
),
119 get_key_type(type
), key_hash(c
, key
));
122 len
-= snprintf(p
, len
, "(%lu, %s, %u)",
123 (unsigned long)key_inum(c
, key
),
124 get_key_type(type
), key_block(c
, key
));
127 len
-= snprintf(p
, len
, "(%lu, %s)",
128 (unsigned long)key_inum(c
, key
),
132 len
-= snprintf(p
, len
, "(bad key type: %#08x, %#08x)",
133 key
->u32
[0], key
->u32
[1]);
136 len
-= snprintf(p
, len
, "bad key format %d", c
->key_fmt
);
137 ubifs_assert(len
> 0);
141 const char *dbg_ntype(int type
)
145 return "padding node";
147 return "superblock node";
149 return "master node";
151 return "reference node";
154 case UBIFS_DENT_NODE
:
155 return "direntry node";
156 case UBIFS_XENT_NODE
:
157 return "xentry node";
158 case UBIFS_DATA_NODE
:
160 case UBIFS_TRUN_NODE
:
161 return "truncate node";
163 return "indexing node";
165 return "commit start node";
166 case UBIFS_ORPH_NODE
:
167 return "orphan node";
169 return "unknown node";
173 static const char *dbg_gtype(int type
)
176 case UBIFS_NO_NODE_GROUP
:
177 return "no node group";
178 case UBIFS_IN_NODE_GROUP
:
179 return "in node group";
180 case UBIFS_LAST_OF_NODE_GROUP
:
181 return "last of node group";
187 const char *dbg_cstate(int cmt_state
)
191 return "commit resting";
192 case COMMIT_BACKGROUND
:
193 return "background commit requested";
194 case COMMIT_REQUIRED
:
195 return "commit required";
196 case COMMIT_RUNNING_BACKGROUND
:
197 return "BACKGROUND commit running";
198 case COMMIT_RUNNING_REQUIRED
:
199 return "commit running and required";
201 return "broken commit";
203 return "unknown commit state";
207 const char *dbg_jhead(int jhead
)
217 return "unknown journal head";
221 static void dump_ch(const struct ubifs_ch
*ch
)
223 pr_err("\tmagic %#x\n", le32_to_cpu(ch
->magic
));
224 pr_err("\tcrc %#x\n", le32_to_cpu(ch
->crc
));
225 pr_err("\tnode_type %d (%s)\n", ch
->node_type
,
226 dbg_ntype(ch
->node_type
));
227 pr_err("\tgroup_type %d (%s)\n", ch
->group_type
,
228 dbg_gtype(ch
->group_type
));
229 pr_err("\tsqnum %llu\n",
230 (unsigned long long)le64_to_cpu(ch
->sqnum
));
231 pr_err("\tlen %u\n", le32_to_cpu(ch
->len
));
234 void ubifs_dump_inode(struct ubifs_info
*c
, const struct inode
*inode
)
236 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
237 struct fscrypt_name nm
= {0};
239 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
242 pr_err("Dump in-memory inode:");
243 pr_err("\tinode %lu\n", inode
->i_ino
);
244 pr_err("\tsize %llu\n",
245 (unsigned long long)i_size_read(inode
));
246 pr_err("\tnlink %u\n", inode
->i_nlink
);
247 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode
));
248 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode
));
249 pr_err("\tatime %u.%u\n",
250 (unsigned int)inode
->i_atime
.tv_sec
,
251 (unsigned int)inode
->i_atime
.tv_nsec
);
252 pr_err("\tmtime %u.%u\n",
253 (unsigned int)inode
->i_mtime
.tv_sec
,
254 (unsigned int)inode
->i_mtime
.tv_nsec
);
255 pr_err("\tctime %u.%u\n",
256 (unsigned int)inode
->i_ctime
.tv_sec
,
257 (unsigned int)inode
->i_ctime
.tv_nsec
);
258 pr_err("\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
259 pr_err("\txattr_size %u\n", ui
->xattr_size
);
260 pr_err("\txattr_cnt %u\n", ui
->xattr_cnt
);
261 pr_err("\txattr_names %u\n", ui
->xattr_names
);
262 pr_err("\tdirty %u\n", ui
->dirty
);
263 pr_err("\txattr %u\n", ui
->xattr
);
264 pr_err("\tbulk_read %u\n", ui
->bulk_read
);
265 pr_err("\tsynced_i_size %llu\n",
266 (unsigned long long)ui
->synced_i_size
);
267 pr_err("\tui_size %llu\n",
268 (unsigned long long)ui
->ui_size
);
269 pr_err("\tflags %d\n", ui
->flags
);
270 pr_err("\tcompr_type %d\n", ui
->compr_type
);
271 pr_err("\tlast_page_read %lu\n", ui
->last_page_read
);
272 pr_err("\tread_in_a_row %lu\n", ui
->read_in_a_row
);
273 pr_err("\tdata_len %d\n", ui
->data_len
);
275 if (!S_ISDIR(inode
->i_mode
))
278 pr_err("List of directory entries:\n");
279 ubifs_assert(!mutex_is_locked(&c
->tnc_mutex
));
281 lowest_dent_key(c
, &key
, inode
->i_ino
);
283 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
285 if (PTR_ERR(dent
) != -ENOENT
)
286 pr_err("error %ld\n", PTR_ERR(dent
));
290 pr_err("\t%d: inode %llu, type %s, len %d\n",
291 count
++, (unsigned long long) le64_to_cpu(dent
->inum
),
292 get_dent_type(dent
->type
),
293 le16_to_cpu(dent
->nlen
));
295 fname_name(&nm
) = dent
->name
;
296 fname_len(&nm
) = le16_to_cpu(dent
->nlen
);
299 key_read(c
, &dent
->key
, &key
);
304 void ubifs_dump_node(const struct ubifs_info
*c
, const void *node
)
308 const struct ubifs_ch
*ch
= node
;
309 char key_buf
[DBG_KEY_BUF_LEN
];
311 /* If the magic is incorrect, just hexdump the first bytes */
312 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
313 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ
);
314 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 32, 1,
315 (void *)node
, UBIFS_CH_SZ
, 1);
319 spin_lock(&dbg_lock
);
322 switch (ch
->node_type
) {
325 const struct ubifs_pad_node
*pad
= node
;
327 pr_err("\tpad_len %u\n", le32_to_cpu(pad
->pad_len
));
332 const struct ubifs_sb_node
*sup
= node
;
333 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
335 pr_err("\tkey_hash %d (%s)\n",
336 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
337 pr_err("\tkey_fmt %d (%s)\n",
338 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
339 pr_err("\tflags %#x\n", sup_flags
);
340 pr_err("\tbig_lpt %u\n",
341 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
342 pr_err("\tspace_fixup %u\n",
343 !!(sup_flags
& UBIFS_FLG_SPACE_FIXUP
));
344 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup
->min_io_size
));
345 pr_err("\tleb_size %u\n", le32_to_cpu(sup
->leb_size
));
346 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup
->leb_cnt
));
347 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup
->max_leb_cnt
));
348 pr_err("\tmax_bud_bytes %llu\n",
349 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
350 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup
->log_lebs
));
351 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup
->lpt_lebs
));
352 pr_err("\torph_lebs %u\n", le32_to_cpu(sup
->orph_lebs
));
353 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup
->jhead_cnt
));
354 pr_err("\tfanout %u\n", le32_to_cpu(sup
->fanout
));
355 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup
->lsave_cnt
));
356 pr_err("\tdefault_compr %u\n",
357 (int)le16_to_cpu(sup
->default_compr
));
358 pr_err("\trp_size %llu\n",
359 (unsigned long long)le64_to_cpu(sup
->rp_size
));
360 pr_err("\trp_uid %u\n", le32_to_cpu(sup
->rp_uid
));
361 pr_err("\trp_gid %u\n", le32_to_cpu(sup
->rp_gid
));
362 pr_err("\tfmt_version %u\n", le32_to_cpu(sup
->fmt_version
));
363 pr_err("\ttime_gran %u\n", le32_to_cpu(sup
->time_gran
));
364 pr_err("\tUUID %pUB\n", sup
->uuid
);
369 const struct ubifs_mst_node
*mst
= node
;
371 pr_err("\thighest_inum %llu\n",
372 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
373 pr_err("\tcommit number %llu\n",
374 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
375 pr_err("\tflags %#x\n", le32_to_cpu(mst
->flags
));
376 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst
->log_lnum
));
377 pr_err("\troot_lnum %u\n", le32_to_cpu(mst
->root_lnum
));
378 pr_err("\troot_offs %u\n", le32_to_cpu(mst
->root_offs
));
379 pr_err("\troot_len %u\n", le32_to_cpu(mst
->root_len
));
380 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst
->gc_lnum
));
381 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst
->ihead_lnum
));
382 pr_err("\tihead_offs %u\n", le32_to_cpu(mst
->ihead_offs
));
383 pr_err("\tindex_size %llu\n",
384 (unsigned long long)le64_to_cpu(mst
->index_size
));
385 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst
->lpt_lnum
));
386 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst
->lpt_offs
));
387 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst
->nhead_lnum
));
388 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst
->nhead_offs
));
389 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst
->ltab_lnum
));
390 pr_err("\tltab_offs %u\n", le32_to_cpu(mst
->ltab_offs
));
391 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst
->lsave_lnum
));
392 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst
->lsave_offs
));
393 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst
->lscan_lnum
));
394 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst
->leb_cnt
));
395 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst
->empty_lebs
));
396 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst
->idx_lebs
));
397 pr_err("\ttotal_free %llu\n",
398 (unsigned long long)le64_to_cpu(mst
->total_free
));
399 pr_err("\ttotal_dirty %llu\n",
400 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
401 pr_err("\ttotal_used %llu\n",
402 (unsigned long long)le64_to_cpu(mst
->total_used
));
403 pr_err("\ttotal_dead %llu\n",
404 (unsigned long long)le64_to_cpu(mst
->total_dead
));
405 pr_err("\ttotal_dark %llu\n",
406 (unsigned long long)le64_to_cpu(mst
->total_dark
));
411 const struct ubifs_ref_node
*ref
= node
;
413 pr_err("\tlnum %u\n", le32_to_cpu(ref
->lnum
));
414 pr_err("\toffs %u\n", le32_to_cpu(ref
->offs
));
415 pr_err("\tjhead %u\n", le32_to_cpu(ref
->jhead
));
420 const struct ubifs_ino_node
*ino
= node
;
422 key_read(c
, &ino
->key
, &key
);
424 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
425 pr_err("\tcreat_sqnum %llu\n",
426 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
427 pr_err("\tsize %llu\n",
428 (unsigned long long)le64_to_cpu(ino
->size
));
429 pr_err("\tnlink %u\n", le32_to_cpu(ino
->nlink
));
430 pr_err("\tatime %lld.%u\n",
431 (long long)le64_to_cpu(ino
->atime_sec
),
432 le32_to_cpu(ino
->atime_nsec
));
433 pr_err("\tmtime %lld.%u\n",
434 (long long)le64_to_cpu(ino
->mtime_sec
),
435 le32_to_cpu(ino
->mtime_nsec
));
436 pr_err("\tctime %lld.%u\n",
437 (long long)le64_to_cpu(ino
->ctime_sec
),
438 le32_to_cpu(ino
->ctime_nsec
));
439 pr_err("\tuid %u\n", le32_to_cpu(ino
->uid
));
440 pr_err("\tgid %u\n", le32_to_cpu(ino
->gid
));
441 pr_err("\tmode %u\n", le32_to_cpu(ino
->mode
));
442 pr_err("\tflags %#x\n", le32_to_cpu(ino
->flags
));
443 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino
->xattr_cnt
));
444 pr_err("\txattr_size %u\n", le32_to_cpu(ino
->xattr_size
));
445 pr_err("\txattr_names %u\n", le32_to_cpu(ino
->xattr_names
));
446 pr_err("\tcompr_type %#x\n",
447 (int)le16_to_cpu(ino
->compr_type
));
448 pr_err("\tdata len %u\n", le32_to_cpu(ino
->data_len
));
451 case UBIFS_DENT_NODE
:
452 case UBIFS_XENT_NODE
:
454 const struct ubifs_dent_node
*dent
= node
;
455 int nlen
= le16_to_cpu(dent
->nlen
);
457 key_read(c
, &dent
->key
, &key
);
459 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
460 pr_err("\tinum %llu\n",
461 (unsigned long long)le64_to_cpu(dent
->inum
));
462 pr_err("\ttype %d\n", (int)dent
->type
);
463 pr_err("\tnlen %d\n", nlen
);
466 if (nlen
> UBIFS_MAX_NLEN
)
467 pr_err("(bad name length, not printing, bad or corrupted node)");
469 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
470 pr_cont("%c", isprint(dent
->name
[i
]) ?
471 dent
->name
[i
] : '?');
477 case UBIFS_DATA_NODE
:
479 const struct ubifs_data_node
*dn
= node
;
480 int dlen
= le32_to_cpu(ch
->len
) - UBIFS_DATA_NODE_SZ
;
482 key_read(c
, &dn
->key
, &key
);
484 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
485 pr_err("\tsize %u\n", le32_to_cpu(dn
->size
));
486 pr_err("\tcompr_typ %d\n",
487 (int)le16_to_cpu(dn
->compr_type
));
488 pr_err("\tdata size %d\n", dlen
);
490 print_hex_dump(KERN_ERR
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
491 (void *)&dn
->data
, dlen
, 0);
494 case UBIFS_TRUN_NODE
:
496 const struct ubifs_trun_node
*trun
= node
;
498 pr_err("\tinum %u\n", le32_to_cpu(trun
->inum
));
499 pr_err("\told_size %llu\n",
500 (unsigned long long)le64_to_cpu(trun
->old_size
));
501 pr_err("\tnew_size %llu\n",
502 (unsigned long long)le64_to_cpu(trun
->new_size
));
507 const struct ubifs_idx_node
*idx
= node
;
509 n
= le16_to_cpu(idx
->child_cnt
);
510 pr_err("\tchild_cnt %d\n", n
);
511 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx
->level
));
512 pr_err("\tBranches:\n");
514 for (i
= 0; i
< n
&& i
< c
->fanout
- 1; i
++) {
515 const struct ubifs_branch
*br
;
517 br
= ubifs_idx_branch(c
, idx
, i
);
518 key_read(c
, &br
->key
, &key
);
519 pr_err("\t%d: LEB %d:%d len %d key %s\n",
520 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
521 le32_to_cpu(br
->len
),
522 dbg_snprintf_key(c
, &key
, key_buf
,
529 case UBIFS_ORPH_NODE
:
531 const struct ubifs_orph_node
*orph
= node
;
533 pr_err("\tcommit number %llu\n",
535 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
536 pr_err("\tlast node flag %llu\n",
537 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
538 n
= (le32_to_cpu(ch
->len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
539 pr_err("\t%d orphan inode numbers:\n", n
);
540 for (i
= 0; i
< n
; i
++)
541 pr_err("\t ino %llu\n",
542 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
546 pr_err("node type %d was not recognized\n",
549 spin_unlock(&dbg_lock
);
552 void ubifs_dump_budget_req(const struct ubifs_budget_req
*req
)
554 spin_lock(&dbg_lock
);
555 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
556 req
->new_ino
, req
->dirtied_ino
);
557 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
558 req
->new_ino_d
, req
->dirtied_ino_d
);
559 pr_err("\tnew_page %d, dirtied_page %d\n",
560 req
->new_page
, req
->dirtied_page
);
561 pr_err("\tnew_dent %d, mod_dent %d\n",
562 req
->new_dent
, req
->mod_dent
);
563 pr_err("\tidx_growth %d\n", req
->idx_growth
);
564 pr_err("\tdata_growth %d dd_growth %d\n",
565 req
->data_growth
, req
->dd_growth
);
566 spin_unlock(&dbg_lock
);
569 void ubifs_dump_lstats(const struct ubifs_lp_stats
*lst
)
571 spin_lock(&dbg_lock
);
572 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
573 current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
574 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
575 lst
->taken_empty_lebs
, lst
->total_free
, lst
->total_dirty
);
576 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
577 lst
->total_used
, lst
->total_dark
, lst
->total_dead
);
578 spin_unlock(&dbg_lock
);
581 void ubifs_dump_budg(struct ubifs_info
*c
, const struct ubifs_budg_info
*bi
)
585 struct ubifs_bud
*bud
;
586 struct ubifs_gced_idx_leb
*idx_gc
;
587 long long available
, outstanding
, free
;
589 spin_lock(&c
->space_lock
);
590 spin_lock(&dbg_lock
);
591 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
592 current
->pid
, bi
->data_growth
+ bi
->dd_growth
,
593 bi
->data_growth
+ bi
->dd_growth
+ bi
->idx_growth
);
594 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
595 bi
->data_growth
, bi
->dd_growth
, bi
->idx_growth
);
596 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
597 bi
->min_idx_lebs
, bi
->old_idx_sz
, bi
->uncommitted_idx
);
598 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
599 bi
->page_budget
, bi
->inode_budget
, bi
->dent_budget
);
600 pr_err("\tnospace %u, nospace_rp %u\n", bi
->nospace
, bi
->nospace_rp
);
601 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
602 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
606 * If we are dumping saved budgeting data, do not print
607 * additional information which is about the current state, not
608 * the old one which corresponded to the saved budgeting data.
612 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
613 c
->freeable_cnt
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
614 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
615 atomic_long_read(&c
->dirty_pg_cnt
),
616 atomic_long_read(&c
->dirty_zn_cnt
),
617 atomic_long_read(&c
->clean_zn_cnt
));
618 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c
->gc_lnum
, c
->ihead_lnum
);
620 /* If we are in R/O mode, journal heads do not exist */
622 for (i
= 0; i
< c
->jhead_cnt
; i
++)
623 pr_err("\tjhead %s\t LEB %d\n",
624 dbg_jhead(c
->jheads
[i
].wbuf
.jhead
),
625 c
->jheads
[i
].wbuf
.lnum
);
626 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
627 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
628 pr_err("\tbud LEB %d\n", bud
->lnum
);
630 list_for_each_entry(bud
, &c
->old_buds
, list
)
631 pr_err("\told bud LEB %d\n", bud
->lnum
);
632 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
633 pr_err("\tGC'ed idx LEB %d unmap %d\n",
634 idx_gc
->lnum
, idx_gc
->unmap
);
635 pr_err("\tcommit state %d\n", c
->cmt_state
);
637 /* Print budgeting predictions */
638 available
= ubifs_calc_available(c
, c
->bi
.min_idx_lebs
);
639 outstanding
= c
->bi
.data_growth
+ c
->bi
.dd_growth
;
640 free
= ubifs_get_free_space_nolock(c
);
641 pr_err("Budgeting predictions:\n");
642 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
643 available
, outstanding
, free
);
645 spin_unlock(&dbg_lock
);
646 spin_unlock(&c
->space_lock
);
649 void ubifs_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
651 int i
, spc
, dark
= 0, dead
= 0;
653 struct ubifs_bud
*bud
;
655 spc
= lp
->free
+ lp
->dirty
;
656 if (spc
< c
->dead_wm
)
659 dark
= ubifs_calc_dark(c
, spc
);
661 if (lp
->flags
& LPROPS_INDEX
)
662 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
663 lp
->lnum
, lp
->free
, lp
->dirty
, c
->leb_size
- spc
, spc
,
666 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
667 lp
->lnum
, lp
->free
, lp
->dirty
, c
->leb_size
- spc
, spc
,
668 dark
, dead
, (int)(spc
/ UBIFS_MAX_NODE_SZ
), lp
->flags
);
670 if (lp
->flags
& LPROPS_TAKEN
) {
671 if (lp
->flags
& LPROPS_INDEX
)
672 pr_cont("index, taken");
678 if (lp
->flags
& LPROPS_INDEX
) {
679 switch (lp
->flags
& LPROPS_CAT_MASK
) {
680 case LPROPS_DIRTY_IDX
:
683 case LPROPS_FRDI_IDX
:
684 s
= "freeable index";
690 switch (lp
->flags
& LPROPS_CAT_MASK
) {
692 s
= "not categorized";
703 case LPROPS_FREEABLE
:
714 for (rb
= rb_first((struct rb_root
*)&c
->buds
); rb
; rb
= rb_next(rb
)) {
715 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
716 if (bud
->lnum
== lp
->lnum
) {
718 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
720 * Note, if we are in R/O mode or in the middle
721 * of mounting/re-mounting, the write-buffers do
725 lp
->lnum
== c
->jheads
[i
].wbuf
.lnum
) {
726 pr_cont(", jhead %s", dbg_jhead(i
));
731 pr_cont(", bud of jhead %s",
732 dbg_jhead(bud
->jhead
));
735 if (lp
->lnum
== c
->gc_lnum
)
740 void ubifs_dump_lprops(struct ubifs_info
*c
)
743 struct ubifs_lprops lp
;
744 struct ubifs_lp_stats lst
;
746 pr_err("(pid %d) start dumping LEB properties\n", current
->pid
);
747 ubifs_get_lp_stats(c
, &lst
);
748 ubifs_dump_lstats(&lst
);
750 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
751 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
753 ubifs_err(c
, "cannot read lprops for LEB %d", lnum
);
757 ubifs_dump_lprop(c
, &lp
);
759 pr_err("(pid %d) finish dumping LEB properties\n", current
->pid
);
762 void ubifs_dump_lpt_info(struct ubifs_info
*c
)
766 spin_lock(&dbg_lock
);
767 pr_err("(pid %d) dumping LPT information\n", current
->pid
);
768 pr_err("\tlpt_sz: %lld\n", c
->lpt_sz
);
769 pr_err("\tpnode_sz: %d\n", c
->pnode_sz
);
770 pr_err("\tnnode_sz: %d\n", c
->nnode_sz
);
771 pr_err("\tltab_sz: %d\n", c
->ltab_sz
);
772 pr_err("\tlsave_sz: %d\n", c
->lsave_sz
);
773 pr_err("\tbig_lpt: %d\n", c
->big_lpt
);
774 pr_err("\tlpt_hght: %d\n", c
->lpt_hght
);
775 pr_err("\tpnode_cnt: %d\n", c
->pnode_cnt
);
776 pr_err("\tnnode_cnt: %d\n", c
->nnode_cnt
);
777 pr_err("\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
778 pr_err("\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
779 pr_err("\tlsave_cnt: %d\n", c
->lsave_cnt
);
780 pr_err("\tspace_bits: %d\n", c
->space_bits
);
781 pr_err("\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
782 pr_err("\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
783 pr_err("\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
784 pr_err("\tpcnt_bits: %d\n", c
->pcnt_bits
);
785 pr_err("\tlnum_bits: %d\n", c
->lnum_bits
);
786 pr_err("\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
787 pr_err("\tLPT head is at %d:%d\n",
788 c
->nhead_lnum
, c
->nhead_offs
);
789 pr_err("\tLPT ltab is at %d:%d\n", c
->ltab_lnum
, c
->ltab_offs
);
791 pr_err("\tLPT lsave is at %d:%d\n",
792 c
->lsave_lnum
, c
->lsave_offs
);
793 for (i
= 0; i
< c
->lpt_lebs
; i
++)
794 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
795 i
+ c
->lpt_first
, c
->ltab
[i
].free
, c
->ltab
[i
].dirty
,
796 c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
797 spin_unlock(&dbg_lock
);
800 void ubifs_dump_sleb(const struct ubifs_info
*c
,
801 const struct ubifs_scan_leb
*sleb
, int offs
)
803 struct ubifs_scan_node
*snod
;
805 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
806 current
->pid
, sleb
->lnum
, offs
);
808 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
810 pr_err("Dumping node at LEB %d:%d len %d\n",
811 sleb
->lnum
, snod
->offs
, snod
->len
);
812 ubifs_dump_node(c
, snod
->node
);
816 void ubifs_dump_leb(const struct ubifs_info
*c
, int lnum
)
818 struct ubifs_scan_leb
*sleb
;
819 struct ubifs_scan_node
*snod
;
822 pr_err("(pid %d) start dumping LEB %d\n", current
->pid
, lnum
);
824 buf
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
826 ubifs_err(c
, "cannot allocate memory for dumping LEB %d", lnum
);
830 sleb
= ubifs_scan(c
, lnum
, 0, buf
, 0);
832 ubifs_err(c
, "scan error %d", (int)PTR_ERR(sleb
));
836 pr_err("LEB %d has %d nodes ending at %d\n", lnum
,
837 sleb
->nodes_cnt
, sleb
->endpt
);
839 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
841 pr_err("Dumping node at LEB %d:%d len %d\n", lnum
,
842 snod
->offs
, snod
->len
);
843 ubifs_dump_node(c
, snod
->node
);
846 pr_err("(pid %d) finish dumping LEB %d\n", current
->pid
, lnum
);
847 ubifs_scan_destroy(sleb
);
854 void ubifs_dump_znode(const struct ubifs_info
*c
,
855 const struct ubifs_znode
*znode
)
858 const struct ubifs_zbranch
*zbr
;
859 char key_buf
[DBG_KEY_BUF_LEN
];
861 spin_lock(&dbg_lock
);
863 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
867 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
868 znode
, zbr
->lnum
, zbr
->offs
, zbr
->len
, znode
->parent
, znode
->iip
,
869 znode
->level
, znode
->child_cnt
, znode
->flags
);
871 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
872 spin_unlock(&dbg_lock
);
876 pr_err("zbranches:\n");
877 for (n
= 0; n
< znode
->child_cnt
; n
++) {
878 zbr
= &znode
->zbranch
[n
];
879 if (znode
->level
> 0)
880 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
881 n
, zbr
->znode
, zbr
->lnum
, zbr
->offs
, zbr
->len
,
882 dbg_snprintf_key(c
, &zbr
->key
, key_buf
,
885 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
886 n
, zbr
->znode
, zbr
->lnum
, zbr
->offs
, zbr
->len
,
887 dbg_snprintf_key(c
, &zbr
->key
, key_buf
,
890 spin_unlock(&dbg_lock
);
893 void ubifs_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
897 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
898 current
->pid
, cat
, heap
->cnt
);
899 for (i
= 0; i
< heap
->cnt
; i
++) {
900 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
902 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
903 i
, lprops
->lnum
, lprops
->hpos
, lprops
->free
,
904 lprops
->dirty
, lprops
->flags
);
906 pr_err("(pid %d) finish dumping heap\n", current
->pid
);
909 void ubifs_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
910 struct ubifs_nnode
*parent
, int iip
)
914 pr_err("(pid %d) dumping pnode:\n", current
->pid
);
915 pr_err("\taddress %zx parent %zx cnext %zx\n",
916 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
917 pr_err("\tflags %lu iip %d level %d num %d\n",
918 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
919 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
920 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
922 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
923 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
927 void ubifs_dump_tnc(struct ubifs_info
*c
)
929 struct ubifs_znode
*znode
;
933 pr_err("(pid %d) start dumping TNC tree\n", current
->pid
);
934 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, NULL
);
935 level
= znode
->level
;
936 pr_err("== Level %d ==\n", level
);
938 if (level
!= znode
->level
) {
939 level
= znode
->level
;
940 pr_err("== Level %d ==\n", level
);
942 ubifs_dump_znode(c
, znode
);
943 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, znode
);
945 pr_err("(pid %d) finish dumping TNC tree\n", current
->pid
);
948 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
951 ubifs_dump_znode(c
, znode
);
956 * ubifs_dump_index - dump the on-flash index.
957 * @c: UBIFS file-system description object
959 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
960 * which dumps only in-memory znodes and does not read znodes which from flash.
962 void ubifs_dump_index(struct ubifs_info
*c
)
964 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
968 * dbg_save_space_info - save information about flash space.
969 * @c: UBIFS file-system description object
971 * This function saves information about UBIFS free space, dirty space, etc, in
972 * order to check it later.
974 void dbg_save_space_info(struct ubifs_info
*c
)
976 struct ubifs_debug_info
*d
= c
->dbg
;
979 spin_lock(&c
->space_lock
);
980 memcpy(&d
->saved_lst
, &c
->lst
, sizeof(struct ubifs_lp_stats
));
981 memcpy(&d
->saved_bi
, &c
->bi
, sizeof(struct ubifs_budg_info
));
982 d
->saved_idx_gc_cnt
= c
->idx_gc_cnt
;
985 * We use a dirty hack here and zero out @c->freeable_cnt, because it
986 * affects the free space calculations, and UBIFS might not know about
987 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
988 * only when we read their lprops, and we do this only lazily, upon the
989 * need. So at any given point of time @c->freeable_cnt might be not
992 * Just one example about the issue we hit when we did not zero
994 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
995 * amount of free space in @d->saved_free
996 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
997 * information from flash, where we cache LEBs from various
998 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
999 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1000 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1001 * -> 'ubifs_add_to_cat()').
1002 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1004 * 4. We calculate the amount of free space when the re-mount is
1005 * finished in 'dbg_check_space_info()' and it does not match
1008 freeable_cnt
= c
->freeable_cnt
;
1009 c
->freeable_cnt
= 0;
1010 d
->saved_free
= ubifs_get_free_space_nolock(c
);
1011 c
->freeable_cnt
= freeable_cnt
;
1012 spin_unlock(&c
->space_lock
);
1016 * dbg_check_space_info - check flash space information.
1017 * @c: UBIFS file-system description object
1019 * This function compares current flash space information with the information
1020 * which was saved when the 'dbg_save_space_info()' function was called.
1021 * Returns zero if the information has not changed, and %-EINVAL it it has
1024 int dbg_check_space_info(struct ubifs_info
*c
)
1026 struct ubifs_debug_info
*d
= c
->dbg
;
1027 struct ubifs_lp_stats lst
;
1031 spin_lock(&c
->space_lock
);
1032 freeable_cnt
= c
->freeable_cnt
;
1033 c
->freeable_cnt
= 0;
1034 free
= ubifs_get_free_space_nolock(c
);
1035 c
->freeable_cnt
= freeable_cnt
;
1036 spin_unlock(&c
->space_lock
);
1038 if (free
!= d
->saved_free
) {
1039 ubifs_err(c
, "free space changed from %lld to %lld",
1040 d
->saved_free
, free
);
1047 ubifs_msg(c
, "saved lprops statistics dump");
1048 ubifs_dump_lstats(&d
->saved_lst
);
1049 ubifs_msg(c
, "saved budgeting info dump");
1050 ubifs_dump_budg(c
, &d
->saved_bi
);
1051 ubifs_msg(c
, "saved idx_gc_cnt %d", d
->saved_idx_gc_cnt
);
1052 ubifs_msg(c
, "current lprops statistics dump");
1053 ubifs_get_lp_stats(c
, &lst
);
1054 ubifs_dump_lstats(&lst
);
1055 ubifs_msg(c
, "current budgeting info dump");
1056 ubifs_dump_budg(c
, &c
->bi
);
1062 * dbg_check_synced_i_size - check synchronized inode size.
1063 * @c: UBIFS file-system description object
1064 * @inode: inode to check
1066 * If inode is clean, synchronized inode size has to be equivalent to current
1067 * inode size. This function has to be called only for locked inodes (@i_mutex
1068 * has to be locked). Returns %0 if synchronized inode size if correct, and
1071 int dbg_check_synced_i_size(const struct ubifs_info
*c
, struct inode
*inode
)
1074 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1076 if (!dbg_is_chk_gen(c
))
1078 if (!S_ISREG(inode
->i_mode
))
1081 mutex_lock(&ui
->ui_mutex
);
1082 spin_lock(&ui
->ui_lock
);
1083 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
1084 ubifs_err(c
, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1085 ui
->ui_size
, ui
->synced_i_size
);
1086 ubifs_err(c
, "i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
1087 inode
->i_mode
, i_size_read(inode
));
1091 spin_unlock(&ui
->ui_lock
);
1092 mutex_unlock(&ui
->ui_mutex
);
1097 * dbg_check_dir - check directory inode size and link count.
1098 * @c: UBIFS file-system description object
1099 * @dir: the directory to calculate size for
1100 * @size: the result is returned here
1102 * This function makes sure that directory size and link count are correct.
1103 * Returns zero in case of success and a negative error code in case of
1106 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1107 * calling this function.
1109 int dbg_check_dir(struct ubifs_info
*c
, const struct inode
*dir
)
1111 unsigned int nlink
= 2;
1112 union ubifs_key key
;
1113 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
1114 struct fscrypt_name nm
= {0};
1115 loff_t size
= UBIFS_INO_NODE_SZ
;
1117 if (!dbg_is_chk_gen(c
))
1120 if (!S_ISDIR(dir
->i_mode
))
1123 lowest_dent_key(c
, &key
, dir
->i_ino
);
1127 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
1129 err
= PTR_ERR(dent
);
1135 fname_name(&nm
) = dent
->name
;
1136 fname_len(&nm
) = le16_to_cpu(dent
->nlen
);
1137 size
+= CALC_DENT_SIZE(fname_len(&nm
));
1138 if (dent
->type
== UBIFS_ITYPE_DIR
)
1142 key_read(c
, &dent
->key
, &key
);
1146 if (i_size_read(dir
) != size
) {
1147 ubifs_err(c
, "directory inode %lu has size %llu, but calculated size is %llu",
1148 dir
->i_ino
, (unsigned long long)i_size_read(dir
),
1149 (unsigned long long)size
);
1150 ubifs_dump_inode(c
, dir
);
1154 if (dir
->i_nlink
!= nlink
) {
1155 ubifs_err(c
, "directory inode %lu has nlink %u, but calculated nlink is %u",
1156 dir
->i_ino
, dir
->i_nlink
, nlink
);
1157 ubifs_dump_inode(c
, dir
);
1166 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1167 * @c: UBIFS file-system description object
1168 * @zbr1: first zbranch
1169 * @zbr2: following zbranch
1171 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1172 * names of the direntries/xentries which are referred by the keys. This
1173 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1174 * sure the name of direntry/xentry referred by @zbr1 is less than
1175 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1176 * and a negative error code in case of failure.
1178 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
1179 struct ubifs_zbranch
*zbr2
)
1181 int err
, nlen1
, nlen2
, cmp
;
1182 struct ubifs_dent_node
*dent1
, *dent2
;
1183 union ubifs_key key
;
1184 char key_buf
[DBG_KEY_BUF_LEN
];
1186 ubifs_assert(!keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
1187 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1190 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1196 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
1199 err
= ubifs_validate_entry(c
, dent1
);
1203 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1206 err
= ubifs_validate_entry(c
, dent2
);
1210 /* Make sure node keys are the same as in zbranch */
1212 key_read(c
, &dent1
->key
, &key
);
1213 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1214 ubifs_err(c
, "1st entry at %d:%d has key %s", zbr1
->lnum
,
1215 zbr1
->offs
, dbg_snprintf_key(c
, &key
, key_buf
,
1217 ubifs_err(c
, "but it should have key %s according to tnc",
1218 dbg_snprintf_key(c
, &zbr1
->key
, key_buf
,
1220 ubifs_dump_node(c
, dent1
);
1224 key_read(c
, &dent2
->key
, &key
);
1225 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1226 ubifs_err(c
, "2nd entry at %d:%d has key %s", zbr1
->lnum
,
1227 zbr1
->offs
, dbg_snprintf_key(c
, &key
, key_buf
,
1229 ubifs_err(c
, "but it should have key %s according to tnc",
1230 dbg_snprintf_key(c
, &zbr2
->key
, key_buf
,
1232 ubifs_dump_node(c
, dent2
);
1236 nlen1
= le16_to_cpu(dent1
->nlen
);
1237 nlen2
= le16_to_cpu(dent2
->nlen
);
1239 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1240 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1244 if (cmp
== 0 && nlen1
== nlen2
)
1245 ubifs_err(c
, "2 xent/dent nodes with the same name");
1247 ubifs_err(c
, "bad order of colliding key %s",
1248 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
1250 ubifs_msg(c
, "first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1251 ubifs_dump_node(c
, dent1
);
1252 ubifs_msg(c
, "second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1253 ubifs_dump_node(c
, dent2
);
1262 * dbg_check_znode - check if znode is all right.
1263 * @c: UBIFS file-system description object
1264 * @zbr: zbranch which points to this znode
1266 * This function makes sure that znode referred to by @zbr is all right.
1267 * Returns zero if it is, and %-EINVAL if it is not.
1269 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1271 struct ubifs_znode
*znode
= zbr
->znode
;
1272 struct ubifs_znode
*zp
= znode
->parent
;
1275 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1279 if (znode
->level
< 0) {
1283 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1289 /* Only dirty zbranch may have no on-flash nodes */
1290 if (!ubifs_zn_dirty(znode
)) {
1295 if (ubifs_zn_dirty(znode
)) {
1297 * If znode is dirty, its parent has to be dirty as well. The
1298 * order of the operation is important, so we have to have
1302 if (zp
&& !ubifs_zn_dirty(zp
)) {
1304 * The dirty flag is atomic and is cleared outside the
1305 * TNC mutex, so znode's dirty flag may now have
1306 * been cleared. The child is always cleared before the
1307 * parent, so we just need to check again.
1310 if (ubifs_zn_dirty(znode
)) {
1318 const union ubifs_key
*min
, *max
;
1320 if (znode
->level
!= zp
->level
- 1) {
1325 /* Make sure the 'parent' pointer in our znode is correct */
1326 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1328 /* This zbranch does not exist in the parent */
1333 if (znode
->iip
>= zp
->child_cnt
) {
1338 if (znode
->iip
!= n
) {
1339 /* This may happen only in case of collisions */
1340 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1341 &zp
->zbranch
[znode
->iip
].key
)) {
1349 * Make sure that the first key in our znode is greater than or
1350 * equal to the key in the pointing zbranch.
1353 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1359 if (n
+ 1 < zp
->child_cnt
) {
1360 max
= &zp
->zbranch
[n
+ 1].key
;
1363 * Make sure the last key in our znode is less or
1364 * equivalent than the key in the zbranch which goes
1365 * after our pointing zbranch.
1367 cmp
= keys_cmp(c
, max
,
1368 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1375 /* This may only be root znode */
1376 if (zbr
!= &c
->zroot
) {
1383 * Make sure that next key is greater or equivalent then the previous
1386 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1387 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1388 &znode
->zbranch
[n
].key
);
1394 /* This can only be keys with colliding hash */
1395 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1400 if (znode
->level
!= 0 || c
->replaying
)
1404 * Colliding keys should follow binary order of
1405 * corresponding xentry/dentry names.
1407 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1408 &znode
->zbranch
[n
]);
1418 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1419 if (!znode
->zbranch
[n
].znode
&&
1420 (znode
->zbranch
[n
].lnum
== 0 ||
1421 znode
->zbranch
[n
].len
== 0)) {
1426 if (znode
->zbranch
[n
].lnum
!= 0 &&
1427 znode
->zbranch
[n
].len
== 0) {
1432 if (znode
->zbranch
[n
].lnum
== 0 &&
1433 znode
->zbranch
[n
].len
!= 0) {
1438 if (znode
->zbranch
[n
].lnum
== 0 &&
1439 znode
->zbranch
[n
].offs
!= 0) {
1444 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1445 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1454 ubifs_err(c
, "failed, error %d", err
);
1455 ubifs_msg(c
, "dump of the znode");
1456 ubifs_dump_znode(c
, znode
);
1458 ubifs_msg(c
, "dump of the parent znode");
1459 ubifs_dump_znode(c
, zp
);
1466 * dbg_check_tnc - check TNC tree.
1467 * @c: UBIFS file-system description object
1468 * @extra: do extra checks that are possible at start commit
1470 * This function traverses whole TNC tree and checks every znode. Returns zero
1471 * if everything is all right and %-EINVAL if something is wrong with TNC.
1473 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1475 struct ubifs_znode
*znode
;
1476 long clean_cnt
= 0, dirty_cnt
= 0;
1479 if (!dbg_is_chk_index(c
))
1482 ubifs_assert(mutex_is_locked(&c
->tnc_mutex
));
1483 if (!c
->zroot
.znode
)
1486 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1488 struct ubifs_znode
*prev
;
1489 struct ubifs_zbranch
*zbr
;
1494 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1496 err
= dbg_check_znode(c
, zbr
);
1501 if (ubifs_zn_dirty(znode
))
1508 znode
= ubifs_tnc_postorder_next(znode
);
1513 * If the last key of this znode is equivalent to the first key
1514 * of the next znode (collision), then check order of the keys.
1516 last
= prev
->child_cnt
- 1;
1517 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1518 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1519 &znode
->zbranch
[0].key
)) {
1520 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1521 &znode
->zbranch
[0]);
1525 ubifs_msg(c
, "first znode");
1526 ubifs_dump_znode(c
, prev
);
1527 ubifs_msg(c
, "second znode");
1528 ubifs_dump_znode(c
, znode
);
1535 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1536 ubifs_err(c
, "incorrect clean_zn_cnt %ld, calculated %ld",
1537 atomic_long_read(&c
->clean_zn_cnt
),
1541 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1542 ubifs_err(c
, "incorrect dirty_zn_cnt %ld, calculated %ld",
1543 atomic_long_read(&c
->dirty_zn_cnt
),
1553 * dbg_walk_index - walk the on-flash index.
1554 * @c: UBIFS file-system description object
1555 * @leaf_cb: called for each leaf node
1556 * @znode_cb: called for each indexing node
1557 * @priv: private data which is passed to callbacks
1559 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1560 * node and @znode_cb for each indexing node. Returns zero in case of success
1561 * and a negative error code in case of failure.
1563 * It would be better if this function removed every znode it pulled to into
1564 * the TNC, so that the behavior more closely matched the non-debugging
1567 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1568 dbg_znode_callback znode_cb
, void *priv
)
1571 struct ubifs_zbranch
*zbr
;
1572 struct ubifs_znode
*znode
, *child
;
1574 mutex_lock(&c
->tnc_mutex
);
1575 /* If the root indexing node is not in TNC - pull it */
1576 if (!c
->zroot
.znode
) {
1577 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1578 if (IS_ERR(c
->zroot
.znode
)) {
1579 err
= PTR_ERR(c
->zroot
.znode
);
1580 c
->zroot
.znode
= NULL
;
1586 * We are going to traverse the indexing tree in the postorder manner.
1587 * Go down and find the leftmost indexing node where we are going to
1590 znode
= c
->zroot
.znode
;
1591 while (znode
->level
> 0) {
1592 zbr
= &znode
->zbranch
[0];
1595 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1596 if (IS_ERR(child
)) {
1597 err
= PTR_ERR(child
);
1606 /* Iterate over all indexing nodes */
1613 err
= znode_cb(c
, znode
, priv
);
1615 ubifs_err(c
, "znode checking function returned error %d",
1617 ubifs_dump_znode(c
, znode
);
1621 if (leaf_cb
&& znode
->level
== 0) {
1622 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1623 zbr
= &znode
->zbranch
[idx
];
1624 err
= leaf_cb(c
, zbr
, priv
);
1626 ubifs_err(c
, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1627 err
, zbr
->lnum
, zbr
->offs
);
1636 idx
= znode
->iip
+ 1;
1637 znode
= znode
->parent
;
1638 if (idx
< znode
->child_cnt
) {
1639 /* Switch to the next index in the parent */
1640 zbr
= &znode
->zbranch
[idx
];
1643 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1644 if (IS_ERR(child
)) {
1645 err
= PTR_ERR(child
);
1653 * This is the last child, switch to the parent and
1658 /* Go to the lowest leftmost znode in the new sub-tree */
1659 while (znode
->level
> 0) {
1660 zbr
= &znode
->zbranch
[0];
1663 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1664 if (IS_ERR(child
)) {
1665 err
= PTR_ERR(child
);
1674 mutex_unlock(&c
->tnc_mutex
);
1679 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1682 ubifs_msg(c
, "dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1683 ubifs_dump_znode(c
, znode
);
1685 mutex_unlock(&c
->tnc_mutex
);
1690 * add_size - add znode size to partially calculated index size.
1691 * @c: UBIFS file-system description object
1692 * @znode: znode to add size for
1693 * @priv: partially calculated index size
1695 * This is a helper function for 'dbg_check_idx_size()' which is called for
1696 * every indexing node and adds its size to the 'long long' variable pointed to
1699 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1701 long long *idx_size
= priv
;
1704 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1705 add
= ALIGN(add
, 8);
1711 * dbg_check_idx_size - check index size.
1712 * @c: UBIFS file-system description object
1713 * @idx_size: size to check
1715 * This function walks the UBIFS index, calculates its size and checks that the
1716 * size is equivalent to @idx_size. Returns zero in case of success and a
1717 * negative error code in case of failure.
1719 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1724 if (!dbg_is_chk_index(c
))
1727 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1729 ubifs_err(c
, "error %d while walking the index", err
);
1733 if (calc
!= idx_size
) {
1734 ubifs_err(c
, "index size check failed: calculated size is %lld, should be %lld",
1744 * struct fsck_inode - information about an inode used when checking the file-system.
1745 * @rb: link in the RB-tree of inodes
1746 * @inum: inode number
1747 * @mode: inode type, permissions, etc
1748 * @nlink: inode link count
1749 * @xattr_cnt: count of extended attributes
1750 * @references: how many directory/xattr entries refer this inode (calculated
1751 * while walking the index)
1752 * @calc_cnt: for directory inode count of child directories
1753 * @size: inode size (read from on-flash inode)
1754 * @xattr_sz: summary size of all extended attributes (read from on-flash
1756 * @calc_sz: for directories calculated directory size
1757 * @calc_xcnt: count of extended attributes
1758 * @calc_xsz: calculated summary size of all extended attributes
1759 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1760 * inode (read from on-flash inode)
1761 * @calc_xnms: calculated sum of lengths of all extended attribute names
1768 unsigned int xattr_cnt
;
1772 unsigned int xattr_sz
;
1774 long long calc_xcnt
;
1776 unsigned int xattr_nms
;
1777 long long calc_xnms
;
1781 * struct fsck_data - private FS checking information.
1782 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1785 struct rb_root inodes
;
1789 * add_inode - add inode information to RB-tree of inodes.
1790 * @c: UBIFS file-system description object
1791 * @fsckd: FS checking information
1792 * @ino: raw UBIFS inode to add
1794 * This is a helper function for 'check_leaf()' which adds information about
1795 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1796 * case of success and a negative error code in case of failure.
1798 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1799 struct fsck_data
*fsckd
,
1800 struct ubifs_ino_node
*ino
)
1802 struct rb_node
**p
, *parent
= NULL
;
1803 struct fsck_inode
*fscki
;
1804 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1805 struct inode
*inode
;
1806 struct ubifs_inode
*ui
;
1808 p
= &fsckd
->inodes
.rb_node
;
1811 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1812 if (inum
< fscki
->inum
)
1814 else if (inum
> fscki
->inum
)
1815 p
= &(*p
)->rb_right
;
1820 if (inum
> c
->highest_inum
) {
1821 ubifs_err(c
, "too high inode number, max. is %lu",
1822 (unsigned long)c
->highest_inum
);
1823 return ERR_PTR(-EINVAL
);
1826 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1828 return ERR_PTR(-ENOMEM
);
1830 inode
= ilookup(c
->vfs_sb
, inum
);
1834 * If the inode is present in the VFS inode cache, use it instead of
1835 * the on-flash inode which might be out-of-date. E.g., the size might
1836 * be out-of-date. If we do not do this, the following may happen, for
1838 * 1. A power cut happens
1839 * 2. We mount the file-system R/O, the replay process fixes up the
1840 * inode size in the VFS cache, but on on-flash.
1841 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1845 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1846 fscki
->size
= le64_to_cpu(ino
->size
);
1847 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1848 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1849 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1850 fscki
->mode
= le32_to_cpu(ino
->mode
);
1852 ui
= ubifs_inode(inode
);
1853 fscki
->nlink
= inode
->i_nlink
;
1854 fscki
->size
= inode
->i_size
;
1855 fscki
->xattr_cnt
= ui
->xattr_cnt
;
1856 fscki
->xattr_sz
= ui
->xattr_size
;
1857 fscki
->xattr_nms
= ui
->xattr_names
;
1858 fscki
->mode
= inode
->i_mode
;
1862 if (S_ISDIR(fscki
->mode
)) {
1863 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1864 fscki
->calc_cnt
= 2;
1867 rb_link_node(&fscki
->rb
, parent
, p
);
1868 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1874 * search_inode - search inode in the RB-tree of inodes.
1875 * @fsckd: FS checking information
1876 * @inum: inode number to search
1878 * This is a helper function for 'check_leaf()' which searches inode @inum in
1879 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1880 * the inode was not found.
1882 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1885 struct fsck_inode
*fscki
;
1887 p
= fsckd
->inodes
.rb_node
;
1889 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1890 if (inum
< fscki
->inum
)
1892 else if (inum
> fscki
->inum
)
1901 * read_add_inode - read inode node and add it to RB-tree of inodes.
1902 * @c: UBIFS file-system description object
1903 * @fsckd: FS checking information
1904 * @inum: inode number to read
1906 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1907 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1908 * information pointer in case of success and a negative error code in case of
1911 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1912 struct fsck_data
*fsckd
, ino_t inum
)
1915 union ubifs_key key
;
1916 struct ubifs_znode
*znode
;
1917 struct ubifs_zbranch
*zbr
;
1918 struct ubifs_ino_node
*ino
;
1919 struct fsck_inode
*fscki
;
1921 fscki
= search_inode(fsckd
, inum
);
1925 ino_key_init(c
, &key
, inum
);
1926 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
1928 ubifs_err(c
, "inode %lu not found in index", (unsigned long)inum
);
1929 return ERR_PTR(-ENOENT
);
1930 } else if (err
< 0) {
1931 ubifs_err(c
, "error %d while looking up inode %lu",
1932 err
, (unsigned long)inum
);
1933 return ERR_PTR(err
);
1936 zbr
= &znode
->zbranch
[n
];
1937 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
1938 ubifs_err(c
, "bad node %lu node length %d",
1939 (unsigned long)inum
, zbr
->len
);
1940 return ERR_PTR(-EINVAL
);
1943 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
1945 return ERR_PTR(-ENOMEM
);
1947 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
1949 ubifs_err(c
, "cannot read inode node at LEB %d:%d, error %d",
1950 zbr
->lnum
, zbr
->offs
, err
);
1952 return ERR_PTR(err
);
1955 fscki
= add_inode(c
, fsckd
, ino
);
1957 if (IS_ERR(fscki
)) {
1958 ubifs_err(c
, "error %ld while adding inode %lu node",
1959 PTR_ERR(fscki
), (unsigned long)inum
);
1967 * check_leaf - check leaf node.
1968 * @c: UBIFS file-system description object
1969 * @zbr: zbranch of the leaf node to check
1970 * @priv: FS checking information
1972 * This is a helper function for 'dbg_check_filesystem()' which is called for
1973 * every single leaf node while walking the indexing tree. It checks that the
1974 * leaf node referred from the indexing tree exists, has correct CRC, and does
1975 * some other basic validation. This function is also responsible for building
1976 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1977 * calculates reference count, size, etc for each inode in order to later
1978 * compare them to the information stored inside the inodes and detect possible
1979 * inconsistencies. Returns zero in case of success and a negative error code
1980 * in case of failure.
1982 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
1987 struct ubifs_ch
*ch
;
1988 int err
, type
= key_type(c
, &zbr
->key
);
1989 struct fsck_inode
*fscki
;
1991 if (zbr
->len
< UBIFS_CH_SZ
) {
1992 ubifs_err(c
, "bad leaf length %d (LEB %d:%d)",
1993 zbr
->len
, zbr
->lnum
, zbr
->offs
);
1997 node
= kmalloc(zbr
->len
, GFP_NOFS
);
2001 err
= ubifs_tnc_read_node(c
, zbr
, node
);
2003 ubifs_err(c
, "cannot read leaf node at LEB %d:%d, error %d",
2004 zbr
->lnum
, zbr
->offs
, err
);
2008 /* If this is an inode node, add it to RB-tree of inodes */
2009 if (type
== UBIFS_INO_KEY
) {
2010 fscki
= add_inode(c
, priv
, node
);
2011 if (IS_ERR(fscki
)) {
2012 err
= PTR_ERR(fscki
);
2013 ubifs_err(c
, "error %d while adding inode node", err
);
2019 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
2020 type
!= UBIFS_DATA_KEY
) {
2021 ubifs_err(c
, "unexpected node type %d at LEB %d:%d",
2022 type
, zbr
->lnum
, zbr
->offs
);
2028 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
2029 ubifs_err(c
, "too high sequence number, max. is %llu",
2035 if (type
== UBIFS_DATA_KEY
) {
2037 struct ubifs_data_node
*dn
= node
;
2039 ubifs_assert(zbr
->len
>= UBIFS_DATA_NODE_SZ
);
2042 * Search the inode node this data node belongs to and insert
2043 * it to the RB-tree of inodes.
2045 inum
= key_inum_flash(c
, &dn
->key
);
2046 fscki
= read_add_inode(c
, priv
, inum
);
2047 if (IS_ERR(fscki
)) {
2048 err
= PTR_ERR(fscki
);
2049 ubifs_err(c
, "error %d while processing data node and trying to find inode node %lu",
2050 err
, (unsigned long)inum
);
2054 /* Make sure the data node is within inode size */
2055 blk_offs
= key_block_flash(c
, &dn
->key
);
2056 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
2057 blk_offs
+= le32_to_cpu(dn
->size
);
2058 if (blk_offs
> fscki
->size
) {
2059 ubifs_err(c
, "data node at LEB %d:%d is not within inode size %lld",
2060 zbr
->lnum
, zbr
->offs
, fscki
->size
);
2066 struct ubifs_dent_node
*dent
= node
;
2067 struct fsck_inode
*fscki1
;
2069 ubifs_assert(zbr
->len
>= UBIFS_DENT_NODE_SZ
);
2071 err
= ubifs_validate_entry(c
, dent
);
2076 * Search the inode node this entry refers to and the parent
2077 * inode node and insert them to the RB-tree of inodes.
2079 inum
= le64_to_cpu(dent
->inum
);
2080 fscki
= read_add_inode(c
, priv
, inum
);
2081 if (IS_ERR(fscki
)) {
2082 err
= PTR_ERR(fscki
);
2083 ubifs_err(c
, "error %d while processing entry node and trying to find inode node %lu",
2084 err
, (unsigned long)inum
);
2088 /* Count how many direntries or xentries refers this inode */
2089 fscki
->references
+= 1;
2091 inum
= key_inum_flash(c
, &dent
->key
);
2092 fscki1
= read_add_inode(c
, priv
, inum
);
2093 if (IS_ERR(fscki1
)) {
2094 err
= PTR_ERR(fscki1
);
2095 ubifs_err(c
, "error %d while processing entry node and trying to find parent inode node %lu",
2096 err
, (unsigned long)inum
);
2100 nlen
= le16_to_cpu(dent
->nlen
);
2101 if (type
== UBIFS_XENT_KEY
) {
2102 fscki1
->calc_xcnt
+= 1;
2103 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
2104 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
2105 fscki1
->calc_xnms
+= nlen
;
2107 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
2108 if (dent
->type
== UBIFS_ITYPE_DIR
)
2109 fscki1
->calc_cnt
+= 1;
2118 ubifs_msg(c
, "dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
2119 ubifs_dump_node(c
, node
);
2126 * free_inodes - free RB-tree of inodes.
2127 * @fsckd: FS checking information
2129 static void free_inodes(struct fsck_data
*fsckd
)
2131 struct fsck_inode
*fscki
, *n
;
2133 rbtree_postorder_for_each_entry_safe(fscki
, n
, &fsckd
->inodes
, rb
)
2138 * check_inodes - checks all inodes.
2139 * @c: UBIFS file-system description object
2140 * @fsckd: FS checking information
2142 * This is a helper function for 'dbg_check_filesystem()' which walks the
2143 * RB-tree of inodes after the index scan has been finished, and checks that
2144 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2145 * %-EINVAL if not, and a negative error code in case of failure.
2147 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
2150 union ubifs_key key
;
2151 struct ubifs_znode
*znode
;
2152 struct ubifs_zbranch
*zbr
;
2153 struct ubifs_ino_node
*ino
;
2154 struct fsck_inode
*fscki
;
2155 struct rb_node
*this = rb_first(&fsckd
->inodes
);
2158 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2159 this = rb_next(this);
2161 if (S_ISDIR(fscki
->mode
)) {
2163 * Directories have to have exactly one reference (they
2164 * cannot have hardlinks), although root inode is an
2167 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
2168 fscki
->references
!= 1) {
2169 ubifs_err(c
, "directory inode %lu has %d direntries which refer it, but should be 1",
2170 (unsigned long)fscki
->inum
,
2174 if (fscki
->inum
== UBIFS_ROOT_INO
&&
2175 fscki
->references
!= 0) {
2176 ubifs_err(c
, "root inode %lu has non-zero (%d) direntries which refer it",
2177 (unsigned long)fscki
->inum
,
2181 if (fscki
->calc_sz
!= fscki
->size
) {
2182 ubifs_err(c
, "directory inode %lu size is %lld, but calculated size is %lld",
2183 (unsigned long)fscki
->inum
,
2184 fscki
->size
, fscki
->calc_sz
);
2187 if (fscki
->calc_cnt
!= fscki
->nlink
) {
2188 ubifs_err(c
, "directory inode %lu nlink is %d, but calculated nlink is %d",
2189 (unsigned long)fscki
->inum
,
2190 fscki
->nlink
, fscki
->calc_cnt
);
2194 if (fscki
->references
!= fscki
->nlink
) {
2195 ubifs_err(c
, "inode %lu nlink is %d, but calculated nlink is %d",
2196 (unsigned long)fscki
->inum
,
2197 fscki
->nlink
, fscki
->references
);
2201 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
2202 ubifs_err(c
, "inode %lu has xattr size %u, but calculated size is %lld",
2203 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
2207 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
2208 ubifs_err(c
, "inode %lu has %u xattrs, but calculated count is %lld",
2209 (unsigned long)fscki
->inum
,
2210 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2213 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2214 ubifs_err(c
, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2215 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2224 /* Read the bad inode and dump it */
2225 ino_key_init(c
, &key
, fscki
->inum
);
2226 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2228 ubifs_err(c
, "inode %lu not found in index",
2229 (unsigned long)fscki
->inum
);
2231 } else if (err
< 0) {
2232 ubifs_err(c
, "error %d while looking up inode %lu",
2233 err
, (unsigned long)fscki
->inum
);
2237 zbr
= &znode
->zbranch
[n
];
2238 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2242 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2244 ubifs_err(c
, "cannot read inode node at LEB %d:%d, error %d",
2245 zbr
->lnum
, zbr
->offs
, err
);
2250 ubifs_msg(c
, "dump of the inode %lu sitting in LEB %d:%d",
2251 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2252 ubifs_dump_node(c
, ino
);
2258 * dbg_check_filesystem - check the file-system.
2259 * @c: UBIFS file-system description object
2261 * This function checks the file system, namely:
2262 * o makes sure that all leaf nodes exist and their CRCs are correct;
2263 * o makes sure inode nlink, size, xattr size/count are correct (for all
2266 * The function reads whole indexing tree and all nodes, so it is pretty
2267 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2268 * not, and a negative error code in case of failure.
2270 int dbg_check_filesystem(struct ubifs_info
*c
)
2273 struct fsck_data fsckd
;
2275 if (!dbg_is_chk_fs(c
))
2278 fsckd
.inodes
= RB_ROOT
;
2279 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2283 err
= check_inodes(c
, &fsckd
);
2287 free_inodes(&fsckd
);
2291 ubifs_err(c
, "file-system check failed with error %d", err
);
2293 free_inodes(&fsckd
);
2298 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2299 * @c: UBIFS file-system description object
2300 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2302 * This function returns zero if the list of data nodes is sorted correctly,
2303 * and %-EINVAL if not.
2305 int dbg_check_data_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2307 struct list_head
*cur
;
2308 struct ubifs_scan_node
*sa
, *sb
;
2310 if (!dbg_is_chk_gen(c
))
2313 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2315 uint32_t blka
, blkb
;
2318 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2319 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2321 if (sa
->type
!= UBIFS_DATA_NODE
) {
2322 ubifs_err(c
, "bad node type %d", sa
->type
);
2323 ubifs_dump_node(c
, sa
->node
);
2326 if (sb
->type
!= UBIFS_DATA_NODE
) {
2327 ubifs_err(c
, "bad node type %d", sb
->type
);
2328 ubifs_dump_node(c
, sb
->node
);
2332 inuma
= key_inum(c
, &sa
->key
);
2333 inumb
= key_inum(c
, &sb
->key
);
2337 if (inuma
> inumb
) {
2338 ubifs_err(c
, "larger inum %lu goes before inum %lu",
2339 (unsigned long)inuma
, (unsigned long)inumb
);
2343 blka
= key_block(c
, &sa
->key
);
2344 blkb
= key_block(c
, &sb
->key
);
2347 ubifs_err(c
, "larger block %u goes before %u", blka
, blkb
);
2351 ubifs_err(c
, "two data nodes for the same block");
2359 ubifs_dump_node(c
, sa
->node
);
2360 ubifs_dump_node(c
, sb
->node
);
2365 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2366 * @c: UBIFS file-system description object
2367 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2369 * This function returns zero if the list of non-data nodes is sorted correctly,
2370 * and %-EINVAL if not.
2372 int dbg_check_nondata_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2374 struct list_head
*cur
;
2375 struct ubifs_scan_node
*sa
, *sb
;
2377 if (!dbg_is_chk_gen(c
))
2380 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2382 uint32_t hasha
, hashb
;
2385 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2386 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2388 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2389 sa
->type
!= UBIFS_XENT_NODE
) {
2390 ubifs_err(c
, "bad node type %d", sa
->type
);
2391 ubifs_dump_node(c
, sa
->node
);
2394 if (sb
->type
!= UBIFS_INO_NODE
&& sb
->type
!= UBIFS_DENT_NODE
&&
2395 sb
->type
!= UBIFS_XENT_NODE
) {
2396 ubifs_err(c
, "bad node type %d", sb
->type
);
2397 ubifs_dump_node(c
, sb
->node
);
2401 if (sa
->type
!= UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2402 ubifs_err(c
, "non-inode node goes before inode node");
2406 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
!= UBIFS_INO_NODE
)
2409 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2410 /* Inode nodes are sorted in descending size order */
2411 if (sa
->len
< sb
->len
) {
2412 ubifs_err(c
, "smaller inode node goes first");
2419 * This is either a dentry or xentry, which should be sorted in
2420 * ascending (parent ino, hash) order.
2422 inuma
= key_inum(c
, &sa
->key
);
2423 inumb
= key_inum(c
, &sb
->key
);
2427 if (inuma
> inumb
) {
2428 ubifs_err(c
, "larger inum %lu goes before inum %lu",
2429 (unsigned long)inuma
, (unsigned long)inumb
);
2433 hasha
= key_block(c
, &sa
->key
);
2434 hashb
= key_block(c
, &sb
->key
);
2436 if (hasha
> hashb
) {
2437 ubifs_err(c
, "larger hash %u goes before %u",
2446 ubifs_msg(c
, "dumping first node");
2447 ubifs_dump_node(c
, sa
->node
);
2448 ubifs_msg(c
, "dumping second node");
2449 ubifs_dump_node(c
, sb
->node
);
2454 static inline int chance(unsigned int n
, unsigned int out_of
)
2456 return !!((prandom_u32() % out_of
) + 1 <= n
);
2460 static int power_cut_emulated(struct ubifs_info
*c
, int lnum
, int write
)
2462 struct ubifs_debug_info
*d
= c
->dbg
;
2464 ubifs_assert(dbg_is_tst_rcvry(c
));
2467 /* First call - decide delay to the power cut */
2469 unsigned long delay
;
2473 /* Fail within 1 minute */
2474 delay
= prandom_u32() % 60000;
2475 d
->pc_timeout
= jiffies
;
2476 d
->pc_timeout
+= msecs_to_jiffies(delay
);
2477 ubifs_warn(c
, "failing after %lums", delay
);
2480 delay
= prandom_u32() % 10000;
2481 /* Fail within 10000 operations */
2482 d
->pc_cnt_max
= delay
;
2483 ubifs_warn(c
, "failing after %lu calls", delay
);
2490 /* Determine if failure delay has expired */
2491 if (d
->pc_delay
== 1 && time_before(jiffies
, d
->pc_timeout
))
2493 if (d
->pc_delay
== 2 && d
->pc_cnt
++ < d
->pc_cnt_max
)
2496 if (lnum
== UBIFS_SB_LNUM
) {
2497 if (write
&& chance(1, 2))
2501 ubifs_warn(c
, "failing in super block LEB %d", lnum
);
2502 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2505 ubifs_warn(c
, "failing in master LEB %d", lnum
);
2506 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2507 if (write
&& chance(99, 100))
2509 if (chance(399, 400))
2511 ubifs_warn(c
, "failing in log LEB %d", lnum
);
2512 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2513 if (write
&& chance(7, 8))
2517 ubifs_warn(c
, "failing in LPT LEB %d", lnum
);
2518 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2519 if (write
&& chance(1, 2))
2523 ubifs_warn(c
, "failing in orphan LEB %d", lnum
);
2524 } else if (lnum
== c
->ihead_lnum
) {
2525 if (chance(99, 100))
2527 ubifs_warn(c
, "failing in index head LEB %d", lnum
);
2528 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2531 ubifs_warn(c
, "failing in GC head LEB %d", lnum
);
2532 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2533 !ubifs_search_bud(c
, lnum
)) {
2536 ubifs_warn(c
, "failing in non-bud LEB %d", lnum
);
2537 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2538 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2539 if (chance(999, 1000))
2541 ubifs_warn(c
, "failing in bud LEB %d commit running", lnum
);
2543 if (chance(9999, 10000))
2545 ubifs_warn(c
, "failing in bud LEB %d commit not running", lnum
);
2549 ubifs_warn(c
, "========== Power cut emulated ==========");
2554 static int corrupt_data(const struct ubifs_info
*c
, const void *buf
,
2557 unsigned int from
, to
, ffs
= chance(1, 2);
2558 unsigned char *p
= (void *)buf
;
2560 from
= prandom_u32() % len
;
2561 /* Corruption span max to end of write unit */
2562 to
= min(len
, ALIGN(from
+ 1, c
->max_write_size
));
2564 ubifs_warn(c
, "filled bytes %u-%u with %s", from
, to
- 1,
2565 ffs
? "0xFFs" : "random data");
2568 memset(p
+ from
, 0xFF, to
- from
);
2570 prandom_bytes(p
+ from
, to
- from
);
2575 int dbg_leb_write(struct ubifs_info
*c
, int lnum
, const void *buf
,
2580 if (dbg_is_power_cut(c
))
2583 failing
= power_cut_emulated(c
, lnum
, 1);
2585 len
= corrupt_data(c
, buf
, len
);
2586 ubifs_warn(c
, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2589 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, len
);
2597 int dbg_leb_change(struct ubifs_info
*c
, int lnum
, const void *buf
,
2602 if (dbg_is_power_cut(c
))
2604 if (power_cut_emulated(c
, lnum
, 1))
2606 err
= ubi_leb_change(c
->ubi
, lnum
, buf
, len
);
2609 if (power_cut_emulated(c
, lnum
, 1))
2614 int dbg_leb_unmap(struct ubifs_info
*c
, int lnum
)
2618 if (dbg_is_power_cut(c
))
2620 if (power_cut_emulated(c
, lnum
, 0))
2622 err
= ubi_leb_unmap(c
->ubi
, lnum
);
2625 if (power_cut_emulated(c
, lnum
, 0))
2630 int dbg_leb_map(struct ubifs_info
*c
, int lnum
)
2634 if (dbg_is_power_cut(c
))
2636 if (power_cut_emulated(c
, lnum
, 0))
2638 err
= ubi_leb_map(c
->ubi
, lnum
);
2641 if (power_cut_emulated(c
, lnum
, 0))
2647 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2648 * contain the stuff specific to particular file-system mounts.
2650 static struct dentry
*dfs_rootdir
;
2652 static int dfs_file_open(struct inode
*inode
, struct file
*file
)
2654 file
->private_data
= inode
->i_private
;
2655 return nonseekable_open(inode
, file
);
2659 * provide_user_output - provide output to the user reading a debugfs file.
2660 * @val: boolean value for the answer
2661 * @u: the buffer to store the answer at
2662 * @count: size of the buffer
2663 * @ppos: position in the @u output buffer
2665 * This is a simple helper function which stores @val boolean value in the user
2666 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2667 * bytes written to @u in case of success and a negative error code in case of
2670 static int provide_user_output(int val
, char __user
*u
, size_t count
,
2682 return simple_read_from_buffer(u
, count
, ppos
, buf
, 2);
2685 static ssize_t
dfs_file_read(struct file
*file
, char __user
*u
, size_t count
,
2688 struct dentry
*dent
= file
->f_path
.dentry
;
2689 struct ubifs_info
*c
= file
->private_data
;
2690 struct ubifs_debug_info
*d
= c
->dbg
;
2693 if (dent
== d
->dfs_chk_gen
)
2695 else if (dent
== d
->dfs_chk_index
)
2697 else if (dent
== d
->dfs_chk_orph
)
2699 else if (dent
== d
->dfs_chk_lprops
)
2700 val
= d
->chk_lprops
;
2701 else if (dent
== d
->dfs_chk_fs
)
2703 else if (dent
== d
->dfs_tst_rcvry
)
2705 else if (dent
== d
->dfs_ro_error
)
2710 return provide_user_output(val
, u
, count
, ppos
);
2714 * interpret_user_input - interpret user debugfs file input.
2715 * @u: user-provided buffer with the input
2716 * @count: buffer size
2718 * This is a helper function which interpret user input to a boolean UBIFS
2719 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2720 * in case of failure.
2722 static int interpret_user_input(const char __user
*u
, size_t count
)
2727 buf_size
= min_t(size_t, count
, (sizeof(buf
) - 1));
2728 if (copy_from_user(buf
, u
, buf_size
))
2733 else if (buf
[0] == '0')
2739 static ssize_t
dfs_file_write(struct file
*file
, const char __user
*u
,
2740 size_t count
, loff_t
*ppos
)
2742 struct ubifs_info
*c
= file
->private_data
;
2743 struct ubifs_debug_info
*d
= c
->dbg
;
2744 struct dentry
*dent
= file
->f_path
.dentry
;
2748 * TODO: this is racy - the file-system might have already been
2749 * unmounted and we'd oops in this case. The plan is to fix it with
2750 * help of 'iterate_supers_type()' which we should have in v3.0: when
2751 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2752 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2753 * superblocks and fine the one with the same UUID, and take the
2756 * The other way to go suggested by Al Viro is to create a separate
2757 * 'ubifs-debug' file-system instead.
2759 if (file
->f_path
.dentry
== d
->dfs_dump_lprops
) {
2760 ubifs_dump_lprops(c
);
2763 if (file
->f_path
.dentry
== d
->dfs_dump_budg
) {
2764 ubifs_dump_budg(c
, &c
->bi
);
2767 if (file
->f_path
.dentry
== d
->dfs_dump_tnc
) {
2768 mutex_lock(&c
->tnc_mutex
);
2770 mutex_unlock(&c
->tnc_mutex
);
2774 val
= interpret_user_input(u
, count
);
2778 if (dent
== d
->dfs_chk_gen
)
2780 else if (dent
== d
->dfs_chk_index
)
2782 else if (dent
== d
->dfs_chk_orph
)
2784 else if (dent
== d
->dfs_chk_lprops
)
2785 d
->chk_lprops
= val
;
2786 else if (dent
== d
->dfs_chk_fs
)
2788 else if (dent
== d
->dfs_tst_rcvry
)
2790 else if (dent
== d
->dfs_ro_error
)
2791 c
->ro_error
= !!val
;
2798 static const struct file_operations dfs_fops
= {
2799 .open
= dfs_file_open
,
2800 .read
= dfs_file_read
,
2801 .write
= dfs_file_write
,
2802 .owner
= THIS_MODULE
,
2803 .llseek
= no_llseek
,
2807 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2808 * @c: UBIFS file-system description object
2810 * This function creates all debugfs files for this instance of UBIFS. Returns
2811 * zero in case of success and a negative error code in case of failure.
2813 * Note, the only reason we have not merged this function with the
2814 * 'ubifs_debugging_init()' function is because it is better to initialize
2815 * debugfs interfaces at the very end of the mount process, and remove them at
2816 * the very beginning of the mount process.
2818 int dbg_debugfs_init_fs(struct ubifs_info
*c
)
2822 struct dentry
*dent
;
2823 struct ubifs_debug_info
*d
= c
->dbg
;
2825 if (!IS_ENABLED(CONFIG_DEBUG_FS
))
2828 n
= snprintf(d
->dfs_dir_name
, UBIFS_DFS_DIR_LEN
+ 1, UBIFS_DFS_DIR_NAME
,
2829 c
->vi
.ubi_num
, c
->vi
.vol_id
);
2830 if (n
== UBIFS_DFS_DIR_LEN
) {
2831 /* The array size is too small */
2832 fname
= UBIFS_DFS_DIR_NAME
;
2833 dent
= ERR_PTR(-EINVAL
);
2837 fname
= d
->dfs_dir_name
;
2838 dent
= debugfs_create_dir(fname
, dfs_rootdir
);
2839 if (IS_ERR_OR_NULL(dent
))
2843 fname
= "dump_lprops";
2844 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2845 if (IS_ERR_OR_NULL(dent
))
2847 d
->dfs_dump_lprops
= dent
;
2849 fname
= "dump_budg";
2850 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2851 if (IS_ERR_OR_NULL(dent
))
2853 d
->dfs_dump_budg
= dent
;
2856 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2857 if (IS_ERR_OR_NULL(dent
))
2859 d
->dfs_dump_tnc
= dent
;
2861 fname
= "chk_general";
2862 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2864 if (IS_ERR_OR_NULL(dent
))
2866 d
->dfs_chk_gen
= dent
;
2868 fname
= "chk_index";
2869 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2871 if (IS_ERR_OR_NULL(dent
))
2873 d
->dfs_chk_index
= dent
;
2875 fname
= "chk_orphans";
2876 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2878 if (IS_ERR_OR_NULL(dent
))
2880 d
->dfs_chk_orph
= dent
;
2882 fname
= "chk_lprops";
2883 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2885 if (IS_ERR_OR_NULL(dent
))
2887 d
->dfs_chk_lprops
= dent
;
2890 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2892 if (IS_ERR_OR_NULL(dent
))
2894 d
->dfs_chk_fs
= dent
;
2896 fname
= "tst_recovery";
2897 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2899 if (IS_ERR_OR_NULL(dent
))
2901 d
->dfs_tst_rcvry
= dent
;
2904 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2906 if (IS_ERR_OR_NULL(dent
))
2908 d
->dfs_ro_error
= dent
;
2913 debugfs_remove_recursive(d
->dfs_dir
);
2915 err
= dent
? PTR_ERR(dent
) : -ENODEV
;
2916 ubifs_err(c
, "cannot create \"%s\" debugfs file or directory, error %d\n",
2922 * dbg_debugfs_exit_fs - remove all debugfs files.
2923 * @c: UBIFS file-system description object
2925 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
2927 if (IS_ENABLED(CONFIG_DEBUG_FS
))
2928 debugfs_remove_recursive(c
->dbg
->dfs_dir
);
2931 struct ubifs_global_debug_info ubifs_dbg
;
2933 static struct dentry
*dfs_chk_gen
;
2934 static struct dentry
*dfs_chk_index
;
2935 static struct dentry
*dfs_chk_orph
;
2936 static struct dentry
*dfs_chk_lprops
;
2937 static struct dentry
*dfs_chk_fs
;
2938 static struct dentry
*dfs_tst_rcvry
;
2940 static ssize_t
dfs_global_file_read(struct file
*file
, char __user
*u
,
2941 size_t count
, loff_t
*ppos
)
2943 struct dentry
*dent
= file
->f_path
.dentry
;
2946 if (dent
== dfs_chk_gen
)
2947 val
= ubifs_dbg
.chk_gen
;
2948 else if (dent
== dfs_chk_index
)
2949 val
= ubifs_dbg
.chk_index
;
2950 else if (dent
== dfs_chk_orph
)
2951 val
= ubifs_dbg
.chk_orph
;
2952 else if (dent
== dfs_chk_lprops
)
2953 val
= ubifs_dbg
.chk_lprops
;
2954 else if (dent
== dfs_chk_fs
)
2955 val
= ubifs_dbg
.chk_fs
;
2956 else if (dent
== dfs_tst_rcvry
)
2957 val
= ubifs_dbg
.tst_rcvry
;
2961 return provide_user_output(val
, u
, count
, ppos
);
2964 static ssize_t
dfs_global_file_write(struct file
*file
, const char __user
*u
,
2965 size_t count
, loff_t
*ppos
)
2967 struct dentry
*dent
= file
->f_path
.dentry
;
2970 val
= interpret_user_input(u
, count
);
2974 if (dent
== dfs_chk_gen
)
2975 ubifs_dbg
.chk_gen
= val
;
2976 else if (dent
== dfs_chk_index
)
2977 ubifs_dbg
.chk_index
= val
;
2978 else if (dent
== dfs_chk_orph
)
2979 ubifs_dbg
.chk_orph
= val
;
2980 else if (dent
== dfs_chk_lprops
)
2981 ubifs_dbg
.chk_lprops
= val
;
2982 else if (dent
== dfs_chk_fs
)
2983 ubifs_dbg
.chk_fs
= val
;
2984 else if (dent
== dfs_tst_rcvry
)
2985 ubifs_dbg
.tst_rcvry
= val
;
2992 static const struct file_operations dfs_global_fops
= {
2993 .read
= dfs_global_file_read
,
2994 .write
= dfs_global_file_write
,
2995 .owner
= THIS_MODULE
,
2996 .llseek
= no_llseek
,
3000 * dbg_debugfs_init - initialize debugfs file-system.
3002 * UBIFS uses debugfs file-system to expose various debugging knobs to
3003 * user-space. This function creates "ubifs" directory in the debugfs
3004 * file-system. Returns zero in case of success and a negative error code in
3007 int dbg_debugfs_init(void)
3011 struct dentry
*dent
;
3013 if (!IS_ENABLED(CONFIG_DEBUG_FS
))
3017 dent
= debugfs_create_dir(fname
, NULL
);
3018 if (IS_ERR_OR_NULL(dent
))
3022 fname
= "chk_general";
3023 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3025 if (IS_ERR_OR_NULL(dent
))
3029 fname
= "chk_index";
3030 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3032 if (IS_ERR_OR_NULL(dent
))
3034 dfs_chk_index
= dent
;
3036 fname
= "chk_orphans";
3037 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3039 if (IS_ERR_OR_NULL(dent
))
3041 dfs_chk_orph
= dent
;
3043 fname
= "chk_lprops";
3044 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3046 if (IS_ERR_OR_NULL(dent
))
3048 dfs_chk_lprops
= dent
;
3051 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3053 if (IS_ERR_OR_NULL(dent
))
3057 fname
= "tst_recovery";
3058 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3060 if (IS_ERR_OR_NULL(dent
))
3062 dfs_tst_rcvry
= dent
;
3067 debugfs_remove_recursive(dfs_rootdir
);
3069 err
= dent
? PTR_ERR(dent
) : -ENODEV
;
3070 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3071 current
->pid
, fname
, err
);
3076 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3078 void dbg_debugfs_exit(void)
3080 if (IS_ENABLED(CONFIG_DEBUG_FS
))
3081 debugfs_remove_recursive(dfs_rootdir
);
3085 * ubifs_debugging_init - initialize UBIFS debugging.
3086 * @c: UBIFS file-system description object
3088 * This function initializes debugging-related data for the file system.
3089 * Returns zero in case of success and a negative error code in case of
3092 int ubifs_debugging_init(struct ubifs_info
*c
)
3094 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
3102 * ubifs_debugging_exit - free debugging data.
3103 * @c: UBIFS file-system description object
3105 void ubifs_debugging_exit(struct ubifs_info
*c
)