Merge tag 'linux-kselftest-4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / fs / ubifs / debug.c
blob7cd8a7b95299c2b096c93d0d0fbfd7838f8dff2c
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include <linux/ctype.h>
36 #include "ubifs.h"
38 static DEFINE_SPINLOCK(dbg_lock);
40 static const char *get_key_fmt(int fmt)
42 switch (fmt) {
43 case UBIFS_SIMPLE_KEY_FMT:
44 return "simple";
45 default:
46 return "unknown/invalid format";
50 static const char *get_key_hash(int hash)
52 switch (hash) {
53 case UBIFS_KEY_HASH_R5:
54 return "R5";
55 case UBIFS_KEY_HASH_TEST:
56 return "test";
57 default:
58 return "unknown/invalid name hash";
62 static const char *get_key_type(int type)
64 switch (type) {
65 case UBIFS_INO_KEY:
66 return "inode";
67 case UBIFS_DENT_KEY:
68 return "direntry";
69 case UBIFS_XENT_KEY:
70 return "xentry";
71 case UBIFS_DATA_KEY:
72 return "data";
73 case UBIFS_TRUN_KEY:
74 return "truncate";
75 default:
76 return "unknown/invalid key";
80 static const char *get_dent_type(int type)
82 switch (type) {
83 case UBIFS_ITYPE_REG:
84 return "file";
85 case UBIFS_ITYPE_DIR:
86 return "dir";
87 case UBIFS_ITYPE_LNK:
88 return "symlink";
89 case UBIFS_ITYPE_BLK:
90 return "blkdev";
91 case UBIFS_ITYPE_CHR:
92 return "char dev";
93 case UBIFS_ITYPE_FIFO:
94 return "fifo";
95 case UBIFS_ITYPE_SOCK:
96 return "socket";
97 default:
98 return "unknown/invalid type";
102 const char *dbg_snprintf_key(const struct ubifs_info *c,
103 const union ubifs_key *key, char *buffer, int len)
105 char *p = buffer;
106 int type = key_type(c, key);
108 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
109 switch (type) {
110 case UBIFS_INO_KEY:
111 len -= snprintf(p, len, "(%lu, %s)",
112 (unsigned long)key_inum(c, key),
113 get_key_type(type));
114 break;
115 case UBIFS_DENT_KEY:
116 case UBIFS_XENT_KEY:
117 len -= snprintf(p, len, "(%lu, %s, %#08x)",
118 (unsigned long)key_inum(c, key),
119 get_key_type(type), key_hash(c, key));
120 break;
121 case UBIFS_DATA_KEY:
122 len -= snprintf(p, len, "(%lu, %s, %u)",
123 (unsigned long)key_inum(c, key),
124 get_key_type(type), key_block(c, key));
125 break;
126 case UBIFS_TRUN_KEY:
127 len -= snprintf(p, len, "(%lu, %s)",
128 (unsigned long)key_inum(c, key),
129 get_key_type(type));
130 break;
131 default:
132 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
133 key->u32[0], key->u32[1]);
135 } else
136 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
137 ubifs_assert(len > 0);
138 return p;
141 const char *dbg_ntype(int type)
143 switch (type) {
144 case UBIFS_PAD_NODE:
145 return "padding node";
146 case UBIFS_SB_NODE:
147 return "superblock node";
148 case UBIFS_MST_NODE:
149 return "master node";
150 case UBIFS_REF_NODE:
151 return "reference node";
152 case UBIFS_INO_NODE:
153 return "inode node";
154 case UBIFS_DENT_NODE:
155 return "direntry node";
156 case UBIFS_XENT_NODE:
157 return "xentry node";
158 case UBIFS_DATA_NODE:
159 return "data node";
160 case UBIFS_TRUN_NODE:
161 return "truncate node";
162 case UBIFS_IDX_NODE:
163 return "indexing node";
164 case UBIFS_CS_NODE:
165 return "commit start node";
166 case UBIFS_ORPH_NODE:
167 return "orphan node";
168 default:
169 return "unknown node";
173 static const char *dbg_gtype(int type)
175 switch (type) {
176 case UBIFS_NO_NODE_GROUP:
177 return "no node group";
178 case UBIFS_IN_NODE_GROUP:
179 return "in node group";
180 case UBIFS_LAST_OF_NODE_GROUP:
181 return "last of node group";
182 default:
183 return "unknown";
187 const char *dbg_cstate(int cmt_state)
189 switch (cmt_state) {
190 case COMMIT_RESTING:
191 return "commit resting";
192 case COMMIT_BACKGROUND:
193 return "background commit requested";
194 case COMMIT_REQUIRED:
195 return "commit required";
196 case COMMIT_RUNNING_BACKGROUND:
197 return "BACKGROUND commit running";
198 case COMMIT_RUNNING_REQUIRED:
199 return "commit running and required";
200 case COMMIT_BROKEN:
201 return "broken commit";
202 default:
203 return "unknown commit state";
207 const char *dbg_jhead(int jhead)
209 switch (jhead) {
210 case GCHD:
211 return "0 (GC)";
212 case BASEHD:
213 return "1 (base)";
214 case DATAHD:
215 return "2 (data)";
216 default:
217 return "unknown journal head";
221 static void dump_ch(const struct ubifs_ch *ch)
223 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic));
224 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc));
225 pr_err("\tnode_type %d (%s)\n", ch->node_type,
226 dbg_ntype(ch->node_type));
227 pr_err("\tgroup_type %d (%s)\n", ch->group_type,
228 dbg_gtype(ch->group_type));
229 pr_err("\tsqnum %llu\n",
230 (unsigned long long)le64_to_cpu(ch->sqnum));
231 pr_err("\tlen %u\n", le32_to_cpu(ch->len));
234 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
236 const struct ubifs_inode *ui = ubifs_inode(inode);
237 struct fscrypt_name nm = {0};
238 union ubifs_key key;
239 struct ubifs_dent_node *dent, *pdent = NULL;
240 int count = 2;
242 pr_err("Dump in-memory inode:");
243 pr_err("\tinode %lu\n", inode->i_ino);
244 pr_err("\tsize %llu\n",
245 (unsigned long long)i_size_read(inode));
246 pr_err("\tnlink %u\n", inode->i_nlink);
247 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode));
248 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode));
249 pr_err("\tatime %u.%u\n",
250 (unsigned int)inode->i_atime.tv_sec,
251 (unsigned int)inode->i_atime.tv_nsec);
252 pr_err("\tmtime %u.%u\n",
253 (unsigned int)inode->i_mtime.tv_sec,
254 (unsigned int)inode->i_mtime.tv_nsec);
255 pr_err("\tctime %u.%u\n",
256 (unsigned int)inode->i_ctime.tv_sec,
257 (unsigned int)inode->i_ctime.tv_nsec);
258 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum);
259 pr_err("\txattr_size %u\n", ui->xattr_size);
260 pr_err("\txattr_cnt %u\n", ui->xattr_cnt);
261 pr_err("\txattr_names %u\n", ui->xattr_names);
262 pr_err("\tdirty %u\n", ui->dirty);
263 pr_err("\txattr %u\n", ui->xattr);
264 pr_err("\tbulk_read %u\n", ui->bulk_read);
265 pr_err("\tsynced_i_size %llu\n",
266 (unsigned long long)ui->synced_i_size);
267 pr_err("\tui_size %llu\n",
268 (unsigned long long)ui->ui_size);
269 pr_err("\tflags %d\n", ui->flags);
270 pr_err("\tcompr_type %d\n", ui->compr_type);
271 pr_err("\tlast_page_read %lu\n", ui->last_page_read);
272 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row);
273 pr_err("\tdata_len %d\n", ui->data_len);
275 if (!S_ISDIR(inode->i_mode))
276 return;
278 pr_err("List of directory entries:\n");
279 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
281 lowest_dent_key(c, &key, inode->i_ino);
282 while (1) {
283 dent = ubifs_tnc_next_ent(c, &key, &nm);
284 if (IS_ERR(dent)) {
285 if (PTR_ERR(dent) != -ENOENT)
286 pr_err("error %ld\n", PTR_ERR(dent));
287 break;
290 pr_err("\t%d: inode %llu, type %s, len %d\n",
291 count++, (unsigned long long) le64_to_cpu(dent->inum),
292 get_dent_type(dent->type),
293 le16_to_cpu(dent->nlen));
295 fname_name(&nm) = dent->name;
296 fname_len(&nm) = le16_to_cpu(dent->nlen);
297 kfree(pdent);
298 pdent = dent;
299 key_read(c, &dent->key, &key);
301 kfree(pdent);
304 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
306 int i, n;
307 union ubifs_key key;
308 const struct ubifs_ch *ch = node;
309 char key_buf[DBG_KEY_BUF_LEN];
311 /* If the magic is incorrect, just hexdump the first bytes */
312 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
313 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
314 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
315 (void *)node, UBIFS_CH_SZ, 1);
316 return;
319 spin_lock(&dbg_lock);
320 dump_ch(node);
322 switch (ch->node_type) {
323 case UBIFS_PAD_NODE:
325 const struct ubifs_pad_node *pad = node;
327 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len));
328 break;
330 case UBIFS_SB_NODE:
332 const struct ubifs_sb_node *sup = node;
333 unsigned int sup_flags = le32_to_cpu(sup->flags);
335 pr_err("\tkey_hash %d (%s)\n",
336 (int)sup->key_hash, get_key_hash(sup->key_hash));
337 pr_err("\tkey_fmt %d (%s)\n",
338 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
339 pr_err("\tflags %#x\n", sup_flags);
340 pr_err("\tbig_lpt %u\n",
341 !!(sup_flags & UBIFS_FLG_BIGLPT));
342 pr_err("\tspace_fixup %u\n",
343 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
344 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size));
345 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size));
346 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt));
347 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt));
348 pr_err("\tmax_bud_bytes %llu\n",
349 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
350 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs));
351 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs));
352 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs));
353 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt));
354 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout));
355 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt));
356 pr_err("\tdefault_compr %u\n",
357 (int)le16_to_cpu(sup->default_compr));
358 pr_err("\trp_size %llu\n",
359 (unsigned long long)le64_to_cpu(sup->rp_size));
360 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid));
361 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid));
362 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version));
363 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran));
364 pr_err("\tUUID %pUB\n", sup->uuid);
365 break;
367 case UBIFS_MST_NODE:
369 const struct ubifs_mst_node *mst = node;
371 pr_err("\thighest_inum %llu\n",
372 (unsigned long long)le64_to_cpu(mst->highest_inum));
373 pr_err("\tcommit number %llu\n",
374 (unsigned long long)le64_to_cpu(mst->cmt_no));
375 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags));
376 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum));
377 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum));
378 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs));
379 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len));
380 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum));
381 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum));
382 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs));
383 pr_err("\tindex_size %llu\n",
384 (unsigned long long)le64_to_cpu(mst->index_size));
385 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum));
386 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs));
387 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum));
388 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs));
389 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum));
390 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs));
391 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum));
392 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs));
393 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum));
394 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt));
395 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs));
396 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs));
397 pr_err("\ttotal_free %llu\n",
398 (unsigned long long)le64_to_cpu(mst->total_free));
399 pr_err("\ttotal_dirty %llu\n",
400 (unsigned long long)le64_to_cpu(mst->total_dirty));
401 pr_err("\ttotal_used %llu\n",
402 (unsigned long long)le64_to_cpu(mst->total_used));
403 pr_err("\ttotal_dead %llu\n",
404 (unsigned long long)le64_to_cpu(mst->total_dead));
405 pr_err("\ttotal_dark %llu\n",
406 (unsigned long long)le64_to_cpu(mst->total_dark));
407 break;
409 case UBIFS_REF_NODE:
411 const struct ubifs_ref_node *ref = node;
413 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum));
414 pr_err("\toffs %u\n", le32_to_cpu(ref->offs));
415 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead));
416 break;
418 case UBIFS_INO_NODE:
420 const struct ubifs_ino_node *ino = node;
422 key_read(c, &ino->key, &key);
423 pr_err("\tkey %s\n",
424 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
425 pr_err("\tcreat_sqnum %llu\n",
426 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
427 pr_err("\tsize %llu\n",
428 (unsigned long long)le64_to_cpu(ino->size));
429 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink));
430 pr_err("\tatime %lld.%u\n",
431 (long long)le64_to_cpu(ino->atime_sec),
432 le32_to_cpu(ino->atime_nsec));
433 pr_err("\tmtime %lld.%u\n",
434 (long long)le64_to_cpu(ino->mtime_sec),
435 le32_to_cpu(ino->mtime_nsec));
436 pr_err("\tctime %lld.%u\n",
437 (long long)le64_to_cpu(ino->ctime_sec),
438 le32_to_cpu(ino->ctime_nsec));
439 pr_err("\tuid %u\n", le32_to_cpu(ino->uid));
440 pr_err("\tgid %u\n", le32_to_cpu(ino->gid));
441 pr_err("\tmode %u\n", le32_to_cpu(ino->mode));
442 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags));
443 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt));
444 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size));
445 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names));
446 pr_err("\tcompr_type %#x\n",
447 (int)le16_to_cpu(ino->compr_type));
448 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len));
449 break;
451 case UBIFS_DENT_NODE:
452 case UBIFS_XENT_NODE:
454 const struct ubifs_dent_node *dent = node;
455 int nlen = le16_to_cpu(dent->nlen);
457 key_read(c, &dent->key, &key);
458 pr_err("\tkey %s\n",
459 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
460 pr_err("\tinum %llu\n",
461 (unsigned long long)le64_to_cpu(dent->inum));
462 pr_err("\ttype %d\n", (int)dent->type);
463 pr_err("\tnlen %d\n", nlen);
464 pr_err("\tname ");
466 if (nlen > UBIFS_MAX_NLEN)
467 pr_err("(bad name length, not printing, bad or corrupted node)");
468 else {
469 for (i = 0; i < nlen && dent->name[i]; i++)
470 pr_cont("%c", isprint(dent->name[i]) ?
471 dent->name[i] : '?');
473 pr_cont("\n");
475 break;
477 case UBIFS_DATA_NODE:
479 const struct ubifs_data_node *dn = node;
480 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
482 key_read(c, &dn->key, &key);
483 pr_err("\tkey %s\n",
484 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
485 pr_err("\tsize %u\n", le32_to_cpu(dn->size));
486 pr_err("\tcompr_typ %d\n",
487 (int)le16_to_cpu(dn->compr_type));
488 pr_err("\tdata size %d\n", dlen);
489 pr_err("\tdata:\n");
490 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
491 (void *)&dn->data, dlen, 0);
492 break;
494 case UBIFS_TRUN_NODE:
496 const struct ubifs_trun_node *trun = node;
498 pr_err("\tinum %u\n", le32_to_cpu(trun->inum));
499 pr_err("\told_size %llu\n",
500 (unsigned long long)le64_to_cpu(trun->old_size));
501 pr_err("\tnew_size %llu\n",
502 (unsigned long long)le64_to_cpu(trun->new_size));
503 break;
505 case UBIFS_IDX_NODE:
507 const struct ubifs_idx_node *idx = node;
509 n = le16_to_cpu(idx->child_cnt);
510 pr_err("\tchild_cnt %d\n", n);
511 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level));
512 pr_err("\tBranches:\n");
514 for (i = 0; i < n && i < c->fanout - 1; i++) {
515 const struct ubifs_branch *br;
517 br = ubifs_idx_branch(c, idx, i);
518 key_read(c, &br->key, &key);
519 pr_err("\t%d: LEB %d:%d len %d key %s\n",
520 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
521 le32_to_cpu(br->len),
522 dbg_snprintf_key(c, &key, key_buf,
523 DBG_KEY_BUF_LEN));
525 break;
527 case UBIFS_CS_NODE:
528 break;
529 case UBIFS_ORPH_NODE:
531 const struct ubifs_orph_node *orph = node;
533 pr_err("\tcommit number %llu\n",
534 (unsigned long long)
535 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
536 pr_err("\tlast node flag %llu\n",
537 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
538 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
539 pr_err("\t%d orphan inode numbers:\n", n);
540 for (i = 0; i < n; i++)
541 pr_err("\t ino %llu\n",
542 (unsigned long long)le64_to_cpu(orph->inos[i]));
543 break;
545 default:
546 pr_err("node type %d was not recognized\n",
547 (int)ch->node_type);
549 spin_unlock(&dbg_lock);
552 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
554 spin_lock(&dbg_lock);
555 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
556 req->new_ino, req->dirtied_ino);
557 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
558 req->new_ino_d, req->dirtied_ino_d);
559 pr_err("\tnew_page %d, dirtied_page %d\n",
560 req->new_page, req->dirtied_page);
561 pr_err("\tnew_dent %d, mod_dent %d\n",
562 req->new_dent, req->mod_dent);
563 pr_err("\tidx_growth %d\n", req->idx_growth);
564 pr_err("\tdata_growth %d dd_growth %d\n",
565 req->data_growth, req->dd_growth);
566 spin_unlock(&dbg_lock);
569 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
571 spin_lock(&dbg_lock);
572 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
573 current->pid, lst->empty_lebs, lst->idx_lebs);
574 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
575 lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
576 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
577 lst->total_used, lst->total_dark, lst->total_dead);
578 spin_unlock(&dbg_lock);
581 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
583 int i;
584 struct rb_node *rb;
585 struct ubifs_bud *bud;
586 struct ubifs_gced_idx_leb *idx_gc;
587 long long available, outstanding, free;
589 spin_lock(&c->space_lock);
590 spin_lock(&dbg_lock);
591 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
592 current->pid, bi->data_growth + bi->dd_growth,
593 bi->data_growth + bi->dd_growth + bi->idx_growth);
594 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
595 bi->data_growth, bi->dd_growth, bi->idx_growth);
596 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
597 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
598 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
599 bi->page_budget, bi->inode_budget, bi->dent_budget);
600 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
601 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
602 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
604 if (bi != &c->bi)
606 * If we are dumping saved budgeting data, do not print
607 * additional information which is about the current state, not
608 * the old one which corresponded to the saved budgeting data.
610 goto out_unlock;
612 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
613 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
614 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
615 atomic_long_read(&c->dirty_pg_cnt),
616 atomic_long_read(&c->dirty_zn_cnt),
617 atomic_long_read(&c->clean_zn_cnt));
618 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
620 /* If we are in R/O mode, journal heads do not exist */
621 if (c->jheads)
622 for (i = 0; i < c->jhead_cnt; i++)
623 pr_err("\tjhead %s\t LEB %d\n",
624 dbg_jhead(c->jheads[i].wbuf.jhead),
625 c->jheads[i].wbuf.lnum);
626 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
627 bud = rb_entry(rb, struct ubifs_bud, rb);
628 pr_err("\tbud LEB %d\n", bud->lnum);
630 list_for_each_entry(bud, &c->old_buds, list)
631 pr_err("\told bud LEB %d\n", bud->lnum);
632 list_for_each_entry(idx_gc, &c->idx_gc, list)
633 pr_err("\tGC'ed idx LEB %d unmap %d\n",
634 idx_gc->lnum, idx_gc->unmap);
635 pr_err("\tcommit state %d\n", c->cmt_state);
637 /* Print budgeting predictions */
638 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
639 outstanding = c->bi.data_growth + c->bi.dd_growth;
640 free = ubifs_get_free_space_nolock(c);
641 pr_err("Budgeting predictions:\n");
642 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
643 available, outstanding, free);
644 out_unlock:
645 spin_unlock(&dbg_lock);
646 spin_unlock(&c->space_lock);
649 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
651 int i, spc, dark = 0, dead = 0;
652 struct rb_node *rb;
653 struct ubifs_bud *bud;
655 spc = lp->free + lp->dirty;
656 if (spc < c->dead_wm)
657 dead = spc;
658 else
659 dark = ubifs_calc_dark(c, spc);
661 if (lp->flags & LPROPS_INDEX)
662 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
663 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664 lp->flags);
665 else
666 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
667 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
668 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
670 if (lp->flags & LPROPS_TAKEN) {
671 if (lp->flags & LPROPS_INDEX)
672 pr_cont("index, taken");
673 else
674 pr_cont("taken");
675 } else {
676 const char *s;
678 if (lp->flags & LPROPS_INDEX) {
679 switch (lp->flags & LPROPS_CAT_MASK) {
680 case LPROPS_DIRTY_IDX:
681 s = "dirty index";
682 break;
683 case LPROPS_FRDI_IDX:
684 s = "freeable index";
685 break;
686 default:
687 s = "index";
689 } else {
690 switch (lp->flags & LPROPS_CAT_MASK) {
691 case LPROPS_UNCAT:
692 s = "not categorized";
693 break;
694 case LPROPS_DIRTY:
695 s = "dirty";
696 break;
697 case LPROPS_FREE:
698 s = "free";
699 break;
700 case LPROPS_EMPTY:
701 s = "empty";
702 break;
703 case LPROPS_FREEABLE:
704 s = "freeable";
705 break;
706 default:
707 s = NULL;
708 break;
711 pr_cont("%s", s);
714 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
715 bud = rb_entry(rb, struct ubifs_bud, rb);
716 if (bud->lnum == lp->lnum) {
717 int head = 0;
718 for (i = 0; i < c->jhead_cnt; i++) {
720 * Note, if we are in R/O mode or in the middle
721 * of mounting/re-mounting, the write-buffers do
722 * not exist.
724 if (c->jheads &&
725 lp->lnum == c->jheads[i].wbuf.lnum) {
726 pr_cont(", jhead %s", dbg_jhead(i));
727 head = 1;
730 if (!head)
731 pr_cont(", bud of jhead %s",
732 dbg_jhead(bud->jhead));
735 if (lp->lnum == c->gc_lnum)
736 pr_cont(", GC LEB");
737 pr_cont(")\n");
740 void ubifs_dump_lprops(struct ubifs_info *c)
742 int lnum, err;
743 struct ubifs_lprops lp;
744 struct ubifs_lp_stats lst;
746 pr_err("(pid %d) start dumping LEB properties\n", current->pid);
747 ubifs_get_lp_stats(c, &lst);
748 ubifs_dump_lstats(&lst);
750 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
751 err = ubifs_read_one_lp(c, lnum, &lp);
752 if (err) {
753 ubifs_err(c, "cannot read lprops for LEB %d", lnum);
754 continue;
757 ubifs_dump_lprop(c, &lp);
759 pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
762 void ubifs_dump_lpt_info(struct ubifs_info *c)
764 int i;
766 spin_lock(&dbg_lock);
767 pr_err("(pid %d) dumping LPT information\n", current->pid);
768 pr_err("\tlpt_sz: %lld\n", c->lpt_sz);
769 pr_err("\tpnode_sz: %d\n", c->pnode_sz);
770 pr_err("\tnnode_sz: %d\n", c->nnode_sz);
771 pr_err("\tltab_sz: %d\n", c->ltab_sz);
772 pr_err("\tlsave_sz: %d\n", c->lsave_sz);
773 pr_err("\tbig_lpt: %d\n", c->big_lpt);
774 pr_err("\tlpt_hght: %d\n", c->lpt_hght);
775 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt);
776 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt);
777 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
778 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
779 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt);
780 pr_err("\tspace_bits: %d\n", c->space_bits);
781 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
782 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
783 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
784 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits);
785 pr_err("\tlnum_bits: %d\n", c->lnum_bits);
786 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
787 pr_err("\tLPT head is at %d:%d\n",
788 c->nhead_lnum, c->nhead_offs);
789 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
790 if (c->big_lpt)
791 pr_err("\tLPT lsave is at %d:%d\n",
792 c->lsave_lnum, c->lsave_offs);
793 for (i = 0; i < c->lpt_lebs; i++)
794 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
795 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
796 c->ltab[i].tgc, c->ltab[i].cmt);
797 spin_unlock(&dbg_lock);
800 void ubifs_dump_sleb(const struct ubifs_info *c,
801 const struct ubifs_scan_leb *sleb, int offs)
803 struct ubifs_scan_node *snod;
805 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
806 current->pid, sleb->lnum, offs);
808 list_for_each_entry(snod, &sleb->nodes, list) {
809 cond_resched();
810 pr_err("Dumping node at LEB %d:%d len %d\n",
811 sleb->lnum, snod->offs, snod->len);
812 ubifs_dump_node(c, snod->node);
816 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
818 struct ubifs_scan_leb *sleb;
819 struct ubifs_scan_node *snod;
820 void *buf;
822 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
824 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
825 if (!buf) {
826 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
827 return;
830 sleb = ubifs_scan(c, lnum, 0, buf, 0);
831 if (IS_ERR(sleb)) {
832 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
833 goto out;
836 pr_err("LEB %d has %d nodes ending at %d\n", lnum,
837 sleb->nodes_cnt, sleb->endpt);
839 list_for_each_entry(snod, &sleb->nodes, list) {
840 cond_resched();
841 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
842 snod->offs, snod->len);
843 ubifs_dump_node(c, snod->node);
846 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
847 ubifs_scan_destroy(sleb);
849 out:
850 vfree(buf);
851 return;
854 void ubifs_dump_znode(const struct ubifs_info *c,
855 const struct ubifs_znode *znode)
857 int n;
858 const struct ubifs_zbranch *zbr;
859 char key_buf[DBG_KEY_BUF_LEN];
861 spin_lock(&dbg_lock);
862 if (znode->parent)
863 zbr = &znode->parent->zbranch[znode->iip];
864 else
865 zbr = &c->zroot;
867 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
868 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
869 znode->level, znode->child_cnt, znode->flags);
871 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
872 spin_unlock(&dbg_lock);
873 return;
876 pr_err("zbranches:\n");
877 for (n = 0; n < znode->child_cnt; n++) {
878 zbr = &znode->zbranch[n];
879 if (znode->level > 0)
880 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
881 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
882 dbg_snprintf_key(c, &zbr->key, key_buf,
883 DBG_KEY_BUF_LEN));
884 else
885 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
886 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
887 dbg_snprintf_key(c, &zbr->key, key_buf,
888 DBG_KEY_BUF_LEN));
890 spin_unlock(&dbg_lock);
893 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
895 int i;
897 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
898 current->pid, cat, heap->cnt);
899 for (i = 0; i < heap->cnt; i++) {
900 struct ubifs_lprops *lprops = heap->arr[i];
902 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
903 i, lprops->lnum, lprops->hpos, lprops->free,
904 lprops->dirty, lprops->flags);
906 pr_err("(pid %d) finish dumping heap\n", current->pid);
909 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
910 struct ubifs_nnode *parent, int iip)
912 int i;
914 pr_err("(pid %d) dumping pnode:\n", current->pid);
915 pr_err("\taddress %zx parent %zx cnext %zx\n",
916 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
917 pr_err("\tflags %lu iip %d level %d num %d\n",
918 pnode->flags, iip, pnode->level, pnode->num);
919 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
920 struct ubifs_lprops *lp = &pnode->lprops[i];
922 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
923 i, lp->free, lp->dirty, lp->flags, lp->lnum);
927 void ubifs_dump_tnc(struct ubifs_info *c)
929 struct ubifs_znode *znode;
930 int level;
932 pr_err("\n");
933 pr_err("(pid %d) start dumping TNC tree\n", current->pid);
934 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
935 level = znode->level;
936 pr_err("== Level %d ==\n", level);
937 while (znode) {
938 if (level != znode->level) {
939 level = znode->level;
940 pr_err("== Level %d ==\n", level);
942 ubifs_dump_znode(c, znode);
943 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
945 pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
948 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
949 void *priv)
951 ubifs_dump_znode(c, znode);
952 return 0;
956 * ubifs_dump_index - dump the on-flash index.
957 * @c: UBIFS file-system description object
959 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
960 * which dumps only in-memory znodes and does not read znodes which from flash.
962 void ubifs_dump_index(struct ubifs_info *c)
964 dbg_walk_index(c, NULL, dump_znode, NULL);
968 * dbg_save_space_info - save information about flash space.
969 * @c: UBIFS file-system description object
971 * This function saves information about UBIFS free space, dirty space, etc, in
972 * order to check it later.
974 void dbg_save_space_info(struct ubifs_info *c)
976 struct ubifs_debug_info *d = c->dbg;
977 int freeable_cnt;
979 spin_lock(&c->space_lock);
980 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
981 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
982 d->saved_idx_gc_cnt = c->idx_gc_cnt;
985 * We use a dirty hack here and zero out @c->freeable_cnt, because it
986 * affects the free space calculations, and UBIFS might not know about
987 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
988 * only when we read their lprops, and we do this only lazily, upon the
989 * need. So at any given point of time @c->freeable_cnt might be not
990 * exactly accurate.
992 * Just one example about the issue we hit when we did not zero
993 * @c->freeable_cnt.
994 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
995 * amount of free space in @d->saved_free
996 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
997 * information from flash, where we cache LEBs from various
998 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
999 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1000 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1001 * -> 'ubifs_add_to_cat()').
1002 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1003 * becomes %1.
1004 * 4. We calculate the amount of free space when the re-mount is
1005 * finished in 'dbg_check_space_info()' and it does not match
1006 * @d->saved_free.
1008 freeable_cnt = c->freeable_cnt;
1009 c->freeable_cnt = 0;
1010 d->saved_free = ubifs_get_free_space_nolock(c);
1011 c->freeable_cnt = freeable_cnt;
1012 spin_unlock(&c->space_lock);
1016 * dbg_check_space_info - check flash space information.
1017 * @c: UBIFS file-system description object
1019 * This function compares current flash space information with the information
1020 * which was saved when the 'dbg_save_space_info()' function was called.
1021 * Returns zero if the information has not changed, and %-EINVAL it it has
1022 * changed.
1024 int dbg_check_space_info(struct ubifs_info *c)
1026 struct ubifs_debug_info *d = c->dbg;
1027 struct ubifs_lp_stats lst;
1028 long long free;
1029 int freeable_cnt;
1031 spin_lock(&c->space_lock);
1032 freeable_cnt = c->freeable_cnt;
1033 c->freeable_cnt = 0;
1034 free = ubifs_get_free_space_nolock(c);
1035 c->freeable_cnt = freeable_cnt;
1036 spin_unlock(&c->space_lock);
1038 if (free != d->saved_free) {
1039 ubifs_err(c, "free space changed from %lld to %lld",
1040 d->saved_free, free);
1041 goto out;
1044 return 0;
1046 out:
1047 ubifs_msg(c, "saved lprops statistics dump");
1048 ubifs_dump_lstats(&d->saved_lst);
1049 ubifs_msg(c, "saved budgeting info dump");
1050 ubifs_dump_budg(c, &d->saved_bi);
1051 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1052 ubifs_msg(c, "current lprops statistics dump");
1053 ubifs_get_lp_stats(c, &lst);
1054 ubifs_dump_lstats(&lst);
1055 ubifs_msg(c, "current budgeting info dump");
1056 ubifs_dump_budg(c, &c->bi);
1057 dump_stack();
1058 return -EINVAL;
1062 * dbg_check_synced_i_size - check synchronized inode size.
1063 * @c: UBIFS file-system description object
1064 * @inode: inode to check
1066 * If inode is clean, synchronized inode size has to be equivalent to current
1067 * inode size. This function has to be called only for locked inodes (@i_mutex
1068 * has to be locked). Returns %0 if synchronized inode size if correct, and
1069 * %-EINVAL if not.
1071 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1073 int err = 0;
1074 struct ubifs_inode *ui = ubifs_inode(inode);
1076 if (!dbg_is_chk_gen(c))
1077 return 0;
1078 if (!S_ISREG(inode->i_mode))
1079 return 0;
1081 mutex_lock(&ui->ui_mutex);
1082 spin_lock(&ui->ui_lock);
1083 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1084 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1085 ui->ui_size, ui->synced_i_size);
1086 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1087 inode->i_mode, i_size_read(inode));
1088 dump_stack();
1089 err = -EINVAL;
1091 spin_unlock(&ui->ui_lock);
1092 mutex_unlock(&ui->ui_mutex);
1093 return err;
1097 * dbg_check_dir - check directory inode size and link count.
1098 * @c: UBIFS file-system description object
1099 * @dir: the directory to calculate size for
1100 * @size: the result is returned here
1102 * This function makes sure that directory size and link count are correct.
1103 * Returns zero in case of success and a negative error code in case of
1104 * failure.
1106 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1107 * calling this function.
1109 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1111 unsigned int nlink = 2;
1112 union ubifs_key key;
1113 struct ubifs_dent_node *dent, *pdent = NULL;
1114 struct fscrypt_name nm = {0};
1115 loff_t size = UBIFS_INO_NODE_SZ;
1117 if (!dbg_is_chk_gen(c))
1118 return 0;
1120 if (!S_ISDIR(dir->i_mode))
1121 return 0;
1123 lowest_dent_key(c, &key, dir->i_ino);
1124 while (1) {
1125 int err;
1127 dent = ubifs_tnc_next_ent(c, &key, &nm);
1128 if (IS_ERR(dent)) {
1129 err = PTR_ERR(dent);
1130 if (err == -ENOENT)
1131 break;
1132 return err;
1135 fname_name(&nm) = dent->name;
1136 fname_len(&nm) = le16_to_cpu(dent->nlen);
1137 size += CALC_DENT_SIZE(fname_len(&nm));
1138 if (dent->type == UBIFS_ITYPE_DIR)
1139 nlink += 1;
1140 kfree(pdent);
1141 pdent = dent;
1142 key_read(c, &dent->key, &key);
1144 kfree(pdent);
1146 if (i_size_read(dir) != size) {
1147 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1148 dir->i_ino, (unsigned long long)i_size_read(dir),
1149 (unsigned long long)size);
1150 ubifs_dump_inode(c, dir);
1151 dump_stack();
1152 return -EINVAL;
1154 if (dir->i_nlink != nlink) {
1155 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1156 dir->i_ino, dir->i_nlink, nlink);
1157 ubifs_dump_inode(c, dir);
1158 dump_stack();
1159 return -EINVAL;
1162 return 0;
1166 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1167 * @c: UBIFS file-system description object
1168 * @zbr1: first zbranch
1169 * @zbr2: following zbranch
1171 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1172 * names of the direntries/xentries which are referred by the keys. This
1173 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1174 * sure the name of direntry/xentry referred by @zbr1 is less than
1175 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1176 * and a negative error code in case of failure.
1178 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1179 struct ubifs_zbranch *zbr2)
1181 int err, nlen1, nlen2, cmp;
1182 struct ubifs_dent_node *dent1, *dent2;
1183 union ubifs_key key;
1184 char key_buf[DBG_KEY_BUF_LEN];
1186 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1187 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1188 if (!dent1)
1189 return -ENOMEM;
1190 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1191 if (!dent2) {
1192 err = -ENOMEM;
1193 goto out_free;
1196 err = ubifs_tnc_read_node(c, zbr1, dent1);
1197 if (err)
1198 goto out_free;
1199 err = ubifs_validate_entry(c, dent1);
1200 if (err)
1201 goto out_free;
1203 err = ubifs_tnc_read_node(c, zbr2, dent2);
1204 if (err)
1205 goto out_free;
1206 err = ubifs_validate_entry(c, dent2);
1207 if (err)
1208 goto out_free;
1210 /* Make sure node keys are the same as in zbranch */
1211 err = 1;
1212 key_read(c, &dent1->key, &key);
1213 if (keys_cmp(c, &zbr1->key, &key)) {
1214 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1215 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1216 DBG_KEY_BUF_LEN));
1217 ubifs_err(c, "but it should have key %s according to tnc",
1218 dbg_snprintf_key(c, &zbr1->key, key_buf,
1219 DBG_KEY_BUF_LEN));
1220 ubifs_dump_node(c, dent1);
1221 goto out_free;
1224 key_read(c, &dent2->key, &key);
1225 if (keys_cmp(c, &zbr2->key, &key)) {
1226 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1227 zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1228 DBG_KEY_BUF_LEN));
1229 ubifs_err(c, "but it should have key %s according to tnc",
1230 dbg_snprintf_key(c, &zbr2->key, key_buf,
1231 DBG_KEY_BUF_LEN));
1232 ubifs_dump_node(c, dent2);
1233 goto out_free;
1236 nlen1 = le16_to_cpu(dent1->nlen);
1237 nlen2 = le16_to_cpu(dent2->nlen);
1239 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1240 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1241 err = 0;
1242 goto out_free;
1244 if (cmp == 0 && nlen1 == nlen2)
1245 ubifs_err(c, "2 xent/dent nodes with the same name");
1246 else
1247 ubifs_err(c, "bad order of colliding key %s",
1248 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1250 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1251 ubifs_dump_node(c, dent1);
1252 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1253 ubifs_dump_node(c, dent2);
1255 out_free:
1256 kfree(dent2);
1257 kfree(dent1);
1258 return err;
1262 * dbg_check_znode - check if znode is all right.
1263 * @c: UBIFS file-system description object
1264 * @zbr: zbranch which points to this znode
1266 * This function makes sure that znode referred to by @zbr is all right.
1267 * Returns zero if it is, and %-EINVAL if it is not.
1269 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1271 struct ubifs_znode *znode = zbr->znode;
1272 struct ubifs_znode *zp = znode->parent;
1273 int n, err, cmp;
1275 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1276 err = 1;
1277 goto out;
1279 if (znode->level < 0) {
1280 err = 2;
1281 goto out;
1283 if (znode->iip < 0 || znode->iip >= c->fanout) {
1284 err = 3;
1285 goto out;
1288 if (zbr->len == 0)
1289 /* Only dirty zbranch may have no on-flash nodes */
1290 if (!ubifs_zn_dirty(znode)) {
1291 err = 4;
1292 goto out;
1295 if (ubifs_zn_dirty(znode)) {
1297 * If znode is dirty, its parent has to be dirty as well. The
1298 * order of the operation is important, so we have to have
1299 * memory barriers.
1301 smp_mb();
1302 if (zp && !ubifs_zn_dirty(zp)) {
1304 * The dirty flag is atomic and is cleared outside the
1305 * TNC mutex, so znode's dirty flag may now have
1306 * been cleared. The child is always cleared before the
1307 * parent, so we just need to check again.
1309 smp_mb();
1310 if (ubifs_zn_dirty(znode)) {
1311 err = 5;
1312 goto out;
1317 if (zp) {
1318 const union ubifs_key *min, *max;
1320 if (znode->level != zp->level - 1) {
1321 err = 6;
1322 goto out;
1325 /* Make sure the 'parent' pointer in our znode is correct */
1326 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1327 if (!err) {
1328 /* This zbranch does not exist in the parent */
1329 err = 7;
1330 goto out;
1333 if (znode->iip >= zp->child_cnt) {
1334 err = 8;
1335 goto out;
1338 if (znode->iip != n) {
1339 /* This may happen only in case of collisions */
1340 if (keys_cmp(c, &zp->zbranch[n].key,
1341 &zp->zbranch[znode->iip].key)) {
1342 err = 9;
1343 goto out;
1345 n = znode->iip;
1349 * Make sure that the first key in our znode is greater than or
1350 * equal to the key in the pointing zbranch.
1352 min = &zbr->key;
1353 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1354 if (cmp == 1) {
1355 err = 10;
1356 goto out;
1359 if (n + 1 < zp->child_cnt) {
1360 max = &zp->zbranch[n + 1].key;
1363 * Make sure the last key in our znode is less or
1364 * equivalent than the key in the zbranch which goes
1365 * after our pointing zbranch.
1367 cmp = keys_cmp(c, max,
1368 &znode->zbranch[znode->child_cnt - 1].key);
1369 if (cmp == -1) {
1370 err = 11;
1371 goto out;
1374 } else {
1375 /* This may only be root znode */
1376 if (zbr != &c->zroot) {
1377 err = 12;
1378 goto out;
1383 * Make sure that next key is greater or equivalent then the previous
1384 * one.
1386 for (n = 1; n < znode->child_cnt; n++) {
1387 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1388 &znode->zbranch[n].key);
1389 if (cmp > 0) {
1390 err = 13;
1391 goto out;
1393 if (cmp == 0) {
1394 /* This can only be keys with colliding hash */
1395 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1396 err = 14;
1397 goto out;
1400 if (znode->level != 0 || c->replaying)
1401 continue;
1404 * Colliding keys should follow binary order of
1405 * corresponding xentry/dentry names.
1407 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1408 &znode->zbranch[n]);
1409 if (err < 0)
1410 return err;
1411 if (err) {
1412 err = 15;
1413 goto out;
1418 for (n = 0; n < znode->child_cnt; n++) {
1419 if (!znode->zbranch[n].znode &&
1420 (znode->zbranch[n].lnum == 0 ||
1421 znode->zbranch[n].len == 0)) {
1422 err = 16;
1423 goto out;
1426 if (znode->zbranch[n].lnum != 0 &&
1427 znode->zbranch[n].len == 0) {
1428 err = 17;
1429 goto out;
1432 if (znode->zbranch[n].lnum == 0 &&
1433 znode->zbranch[n].len != 0) {
1434 err = 18;
1435 goto out;
1438 if (znode->zbranch[n].lnum == 0 &&
1439 znode->zbranch[n].offs != 0) {
1440 err = 19;
1441 goto out;
1444 if (znode->level != 0 && znode->zbranch[n].znode)
1445 if (znode->zbranch[n].znode->parent != znode) {
1446 err = 20;
1447 goto out;
1451 return 0;
1453 out:
1454 ubifs_err(c, "failed, error %d", err);
1455 ubifs_msg(c, "dump of the znode");
1456 ubifs_dump_znode(c, znode);
1457 if (zp) {
1458 ubifs_msg(c, "dump of the parent znode");
1459 ubifs_dump_znode(c, zp);
1461 dump_stack();
1462 return -EINVAL;
1466 * dbg_check_tnc - check TNC tree.
1467 * @c: UBIFS file-system description object
1468 * @extra: do extra checks that are possible at start commit
1470 * This function traverses whole TNC tree and checks every znode. Returns zero
1471 * if everything is all right and %-EINVAL if something is wrong with TNC.
1473 int dbg_check_tnc(struct ubifs_info *c, int extra)
1475 struct ubifs_znode *znode;
1476 long clean_cnt = 0, dirty_cnt = 0;
1477 int err, last;
1479 if (!dbg_is_chk_index(c))
1480 return 0;
1482 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1483 if (!c->zroot.znode)
1484 return 0;
1486 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1487 while (1) {
1488 struct ubifs_znode *prev;
1489 struct ubifs_zbranch *zbr;
1491 if (!znode->parent)
1492 zbr = &c->zroot;
1493 else
1494 zbr = &znode->parent->zbranch[znode->iip];
1496 err = dbg_check_znode(c, zbr);
1497 if (err)
1498 return err;
1500 if (extra) {
1501 if (ubifs_zn_dirty(znode))
1502 dirty_cnt += 1;
1503 else
1504 clean_cnt += 1;
1507 prev = znode;
1508 znode = ubifs_tnc_postorder_next(znode);
1509 if (!znode)
1510 break;
1513 * If the last key of this znode is equivalent to the first key
1514 * of the next znode (collision), then check order of the keys.
1516 last = prev->child_cnt - 1;
1517 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1518 !keys_cmp(c, &prev->zbranch[last].key,
1519 &znode->zbranch[0].key)) {
1520 err = dbg_check_key_order(c, &prev->zbranch[last],
1521 &znode->zbranch[0]);
1522 if (err < 0)
1523 return err;
1524 if (err) {
1525 ubifs_msg(c, "first znode");
1526 ubifs_dump_znode(c, prev);
1527 ubifs_msg(c, "second znode");
1528 ubifs_dump_znode(c, znode);
1529 return -EINVAL;
1534 if (extra) {
1535 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1536 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1537 atomic_long_read(&c->clean_zn_cnt),
1538 clean_cnt);
1539 return -EINVAL;
1541 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1542 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1543 atomic_long_read(&c->dirty_zn_cnt),
1544 dirty_cnt);
1545 return -EINVAL;
1549 return 0;
1553 * dbg_walk_index - walk the on-flash index.
1554 * @c: UBIFS file-system description object
1555 * @leaf_cb: called for each leaf node
1556 * @znode_cb: called for each indexing node
1557 * @priv: private data which is passed to callbacks
1559 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1560 * node and @znode_cb for each indexing node. Returns zero in case of success
1561 * and a negative error code in case of failure.
1563 * It would be better if this function removed every znode it pulled to into
1564 * the TNC, so that the behavior more closely matched the non-debugging
1565 * behavior.
1567 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1568 dbg_znode_callback znode_cb, void *priv)
1570 int err;
1571 struct ubifs_zbranch *zbr;
1572 struct ubifs_znode *znode, *child;
1574 mutex_lock(&c->tnc_mutex);
1575 /* If the root indexing node is not in TNC - pull it */
1576 if (!c->zroot.znode) {
1577 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1578 if (IS_ERR(c->zroot.znode)) {
1579 err = PTR_ERR(c->zroot.znode);
1580 c->zroot.znode = NULL;
1581 goto out_unlock;
1586 * We are going to traverse the indexing tree in the postorder manner.
1587 * Go down and find the leftmost indexing node where we are going to
1588 * start from.
1590 znode = c->zroot.znode;
1591 while (znode->level > 0) {
1592 zbr = &znode->zbranch[0];
1593 child = zbr->znode;
1594 if (!child) {
1595 child = ubifs_load_znode(c, zbr, znode, 0);
1596 if (IS_ERR(child)) {
1597 err = PTR_ERR(child);
1598 goto out_unlock;
1600 zbr->znode = child;
1603 znode = child;
1606 /* Iterate over all indexing nodes */
1607 while (1) {
1608 int idx;
1610 cond_resched();
1612 if (znode_cb) {
1613 err = znode_cb(c, znode, priv);
1614 if (err) {
1615 ubifs_err(c, "znode checking function returned error %d",
1616 err);
1617 ubifs_dump_znode(c, znode);
1618 goto out_dump;
1621 if (leaf_cb && znode->level == 0) {
1622 for (idx = 0; idx < znode->child_cnt; idx++) {
1623 zbr = &znode->zbranch[idx];
1624 err = leaf_cb(c, zbr, priv);
1625 if (err) {
1626 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1627 err, zbr->lnum, zbr->offs);
1628 goto out_dump;
1633 if (!znode->parent)
1634 break;
1636 idx = znode->iip + 1;
1637 znode = znode->parent;
1638 if (idx < znode->child_cnt) {
1639 /* Switch to the next index in the parent */
1640 zbr = &znode->zbranch[idx];
1641 child = zbr->znode;
1642 if (!child) {
1643 child = ubifs_load_znode(c, zbr, znode, idx);
1644 if (IS_ERR(child)) {
1645 err = PTR_ERR(child);
1646 goto out_unlock;
1648 zbr->znode = child;
1650 znode = child;
1651 } else
1653 * This is the last child, switch to the parent and
1654 * continue.
1656 continue;
1658 /* Go to the lowest leftmost znode in the new sub-tree */
1659 while (znode->level > 0) {
1660 zbr = &znode->zbranch[0];
1661 child = zbr->znode;
1662 if (!child) {
1663 child = ubifs_load_znode(c, zbr, znode, 0);
1664 if (IS_ERR(child)) {
1665 err = PTR_ERR(child);
1666 goto out_unlock;
1668 zbr->znode = child;
1670 znode = child;
1674 mutex_unlock(&c->tnc_mutex);
1675 return 0;
1677 out_dump:
1678 if (znode->parent)
1679 zbr = &znode->parent->zbranch[znode->iip];
1680 else
1681 zbr = &c->zroot;
1682 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1683 ubifs_dump_znode(c, znode);
1684 out_unlock:
1685 mutex_unlock(&c->tnc_mutex);
1686 return err;
1690 * add_size - add znode size to partially calculated index size.
1691 * @c: UBIFS file-system description object
1692 * @znode: znode to add size for
1693 * @priv: partially calculated index size
1695 * This is a helper function for 'dbg_check_idx_size()' which is called for
1696 * every indexing node and adds its size to the 'long long' variable pointed to
1697 * by @priv.
1699 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1701 long long *idx_size = priv;
1702 int add;
1704 add = ubifs_idx_node_sz(c, znode->child_cnt);
1705 add = ALIGN(add, 8);
1706 *idx_size += add;
1707 return 0;
1711 * dbg_check_idx_size - check index size.
1712 * @c: UBIFS file-system description object
1713 * @idx_size: size to check
1715 * This function walks the UBIFS index, calculates its size and checks that the
1716 * size is equivalent to @idx_size. Returns zero in case of success and a
1717 * negative error code in case of failure.
1719 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1721 int err;
1722 long long calc = 0;
1724 if (!dbg_is_chk_index(c))
1725 return 0;
1727 err = dbg_walk_index(c, NULL, add_size, &calc);
1728 if (err) {
1729 ubifs_err(c, "error %d while walking the index", err);
1730 return err;
1733 if (calc != idx_size) {
1734 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1735 calc, idx_size);
1736 dump_stack();
1737 return -EINVAL;
1740 return 0;
1744 * struct fsck_inode - information about an inode used when checking the file-system.
1745 * @rb: link in the RB-tree of inodes
1746 * @inum: inode number
1747 * @mode: inode type, permissions, etc
1748 * @nlink: inode link count
1749 * @xattr_cnt: count of extended attributes
1750 * @references: how many directory/xattr entries refer this inode (calculated
1751 * while walking the index)
1752 * @calc_cnt: for directory inode count of child directories
1753 * @size: inode size (read from on-flash inode)
1754 * @xattr_sz: summary size of all extended attributes (read from on-flash
1755 * inode)
1756 * @calc_sz: for directories calculated directory size
1757 * @calc_xcnt: count of extended attributes
1758 * @calc_xsz: calculated summary size of all extended attributes
1759 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1760 * inode (read from on-flash inode)
1761 * @calc_xnms: calculated sum of lengths of all extended attribute names
1763 struct fsck_inode {
1764 struct rb_node rb;
1765 ino_t inum;
1766 umode_t mode;
1767 unsigned int nlink;
1768 unsigned int xattr_cnt;
1769 int references;
1770 int calc_cnt;
1771 long long size;
1772 unsigned int xattr_sz;
1773 long long calc_sz;
1774 long long calc_xcnt;
1775 long long calc_xsz;
1776 unsigned int xattr_nms;
1777 long long calc_xnms;
1781 * struct fsck_data - private FS checking information.
1782 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1784 struct fsck_data {
1785 struct rb_root inodes;
1789 * add_inode - add inode information to RB-tree of inodes.
1790 * @c: UBIFS file-system description object
1791 * @fsckd: FS checking information
1792 * @ino: raw UBIFS inode to add
1794 * This is a helper function for 'check_leaf()' which adds information about
1795 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1796 * case of success and a negative error code in case of failure.
1798 static struct fsck_inode *add_inode(struct ubifs_info *c,
1799 struct fsck_data *fsckd,
1800 struct ubifs_ino_node *ino)
1802 struct rb_node **p, *parent = NULL;
1803 struct fsck_inode *fscki;
1804 ino_t inum = key_inum_flash(c, &ino->key);
1805 struct inode *inode;
1806 struct ubifs_inode *ui;
1808 p = &fsckd->inodes.rb_node;
1809 while (*p) {
1810 parent = *p;
1811 fscki = rb_entry(parent, struct fsck_inode, rb);
1812 if (inum < fscki->inum)
1813 p = &(*p)->rb_left;
1814 else if (inum > fscki->inum)
1815 p = &(*p)->rb_right;
1816 else
1817 return fscki;
1820 if (inum > c->highest_inum) {
1821 ubifs_err(c, "too high inode number, max. is %lu",
1822 (unsigned long)c->highest_inum);
1823 return ERR_PTR(-EINVAL);
1826 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1827 if (!fscki)
1828 return ERR_PTR(-ENOMEM);
1830 inode = ilookup(c->vfs_sb, inum);
1832 fscki->inum = inum;
1834 * If the inode is present in the VFS inode cache, use it instead of
1835 * the on-flash inode which might be out-of-date. E.g., the size might
1836 * be out-of-date. If we do not do this, the following may happen, for
1837 * example:
1838 * 1. A power cut happens
1839 * 2. We mount the file-system R/O, the replay process fixes up the
1840 * inode size in the VFS cache, but on on-flash.
1841 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1842 * size.
1844 if (!inode) {
1845 fscki->nlink = le32_to_cpu(ino->nlink);
1846 fscki->size = le64_to_cpu(ino->size);
1847 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1848 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1849 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1850 fscki->mode = le32_to_cpu(ino->mode);
1851 } else {
1852 ui = ubifs_inode(inode);
1853 fscki->nlink = inode->i_nlink;
1854 fscki->size = inode->i_size;
1855 fscki->xattr_cnt = ui->xattr_cnt;
1856 fscki->xattr_sz = ui->xattr_size;
1857 fscki->xattr_nms = ui->xattr_names;
1858 fscki->mode = inode->i_mode;
1859 iput(inode);
1862 if (S_ISDIR(fscki->mode)) {
1863 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1864 fscki->calc_cnt = 2;
1867 rb_link_node(&fscki->rb, parent, p);
1868 rb_insert_color(&fscki->rb, &fsckd->inodes);
1870 return fscki;
1874 * search_inode - search inode in the RB-tree of inodes.
1875 * @fsckd: FS checking information
1876 * @inum: inode number to search
1878 * This is a helper function for 'check_leaf()' which searches inode @inum in
1879 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1880 * the inode was not found.
1882 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1884 struct rb_node *p;
1885 struct fsck_inode *fscki;
1887 p = fsckd->inodes.rb_node;
1888 while (p) {
1889 fscki = rb_entry(p, struct fsck_inode, rb);
1890 if (inum < fscki->inum)
1891 p = p->rb_left;
1892 else if (inum > fscki->inum)
1893 p = p->rb_right;
1894 else
1895 return fscki;
1897 return NULL;
1901 * read_add_inode - read inode node and add it to RB-tree of inodes.
1902 * @c: UBIFS file-system description object
1903 * @fsckd: FS checking information
1904 * @inum: inode number to read
1906 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1907 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1908 * information pointer in case of success and a negative error code in case of
1909 * failure.
1911 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1912 struct fsck_data *fsckd, ino_t inum)
1914 int n, err;
1915 union ubifs_key key;
1916 struct ubifs_znode *znode;
1917 struct ubifs_zbranch *zbr;
1918 struct ubifs_ino_node *ino;
1919 struct fsck_inode *fscki;
1921 fscki = search_inode(fsckd, inum);
1922 if (fscki)
1923 return fscki;
1925 ino_key_init(c, &key, inum);
1926 err = ubifs_lookup_level0(c, &key, &znode, &n);
1927 if (!err) {
1928 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1929 return ERR_PTR(-ENOENT);
1930 } else if (err < 0) {
1931 ubifs_err(c, "error %d while looking up inode %lu",
1932 err, (unsigned long)inum);
1933 return ERR_PTR(err);
1936 zbr = &znode->zbranch[n];
1937 if (zbr->len < UBIFS_INO_NODE_SZ) {
1938 ubifs_err(c, "bad node %lu node length %d",
1939 (unsigned long)inum, zbr->len);
1940 return ERR_PTR(-EINVAL);
1943 ino = kmalloc(zbr->len, GFP_NOFS);
1944 if (!ino)
1945 return ERR_PTR(-ENOMEM);
1947 err = ubifs_tnc_read_node(c, zbr, ino);
1948 if (err) {
1949 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1950 zbr->lnum, zbr->offs, err);
1951 kfree(ino);
1952 return ERR_PTR(err);
1955 fscki = add_inode(c, fsckd, ino);
1956 kfree(ino);
1957 if (IS_ERR(fscki)) {
1958 ubifs_err(c, "error %ld while adding inode %lu node",
1959 PTR_ERR(fscki), (unsigned long)inum);
1960 return fscki;
1963 return fscki;
1967 * check_leaf - check leaf node.
1968 * @c: UBIFS file-system description object
1969 * @zbr: zbranch of the leaf node to check
1970 * @priv: FS checking information
1972 * This is a helper function for 'dbg_check_filesystem()' which is called for
1973 * every single leaf node while walking the indexing tree. It checks that the
1974 * leaf node referred from the indexing tree exists, has correct CRC, and does
1975 * some other basic validation. This function is also responsible for building
1976 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1977 * calculates reference count, size, etc for each inode in order to later
1978 * compare them to the information stored inside the inodes and detect possible
1979 * inconsistencies. Returns zero in case of success and a negative error code
1980 * in case of failure.
1982 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1983 void *priv)
1985 ino_t inum;
1986 void *node;
1987 struct ubifs_ch *ch;
1988 int err, type = key_type(c, &zbr->key);
1989 struct fsck_inode *fscki;
1991 if (zbr->len < UBIFS_CH_SZ) {
1992 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1993 zbr->len, zbr->lnum, zbr->offs);
1994 return -EINVAL;
1997 node = kmalloc(zbr->len, GFP_NOFS);
1998 if (!node)
1999 return -ENOMEM;
2001 err = ubifs_tnc_read_node(c, zbr, node);
2002 if (err) {
2003 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2004 zbr->lnum, zbr->offs, err);
2005 goto out_free;
2008 /* If this is an inode node, add it to RB-tree of inodes */
2009 if (type == UBIFS_INO_KEY) {
2010 fscki = add_inode(c, priv, node);
2011 if (IS_ERR(fscki)) {
2012 err = PTR_ERR(fscki);
2013 ubifs_err(c, "error %d while adding inode node", err);
2014 goto out_dump;
2016 goto out;
2019 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2020 type != UBIFS_DATA_KEY) {
2021 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2022 type, zbr->lnum, zbr->offs);
2023 err = -EINVAL;
2024 goto out_free;
2027 ch = node;
2028 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2029 ubifs_err(c, "too high sequence number, max. is %llu",
2030 c->max_sqnum);
2031 err = -EINVAL;
2032 goto out_dump;
2035 if (type == UBIFS_DATA_KEY) {
2036 long long blk_offs;
2037 struct ubifs_data_node *dn = node;
2039 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2042 * Search the inode node this data node belongs to and insert
2043 * it to the RB-tree of inodes.
2045 inum = key_inum_flash(c, &dn->key);
2046 fscki = read_add_inode(c, priv, inum);
2047 if (IS_ERR(fscki)) {
2048 err = PTR_ERR(fscki);
2049 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2050 err, (unsigned long)inum);
2051 goto out_dump;
2054 /* Make sure the data node is within inode size */
2055 blk_offs = key_block_flash(c, &dn->key);
2056 blk_offs <<= UBIFS_BLOCK_SHIFT;
2057 blk_offs += le32_to_cpu(dn->size);
2058 if (blk_offs > fscki->size) {
2059 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2060 zbr->lnum, zbr->offs, fscki->size);
2061 err = -EINVAL;
2062 goto out_dump;
2064 } else {
2065 int nlen;
2066 struct ubifs_dent_node *dent = node;
2067 struct fsck_inode *fscki1;
2069 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2071 err = ubifs_validate_entry(c, dent);
2072 if (err)
2073 goto out_dump;
2076 * Search the inode node this entry refers to and the parent
2077 * inode node and insert them to the RB-tree of inodes.
2079 inum = le64_to_cpu(dent->inum);
2080 fscki = read_add_inode(c, priv, inum);
2081 if (IS_ERR(fscki)) {
2082 err = PTR_ERR(fscki);
2083 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2084 err, (unsigned long)inum);
2085 goto out_dump;
2088 /* Count how many direntries or xentries refers this inode */
2089 fscki->references += 1;
2091 inum = key_inum_flash(c, &dent->key);
2092 fscki1 = read_add_inode(c, priv, inum);
2093 if (IS_ERR(fscki1)) {
2094 err = PTR_ERR(fscki1);
2095 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2096 err, (unsigned long)inum);
2097 goto out_dump;
2100 nlen = le16_to_cpu(dent->nlen);
2101 if (type == UBIFS_XENT_KEY) {
2102 fscki1->calc_xcnt += 1;
2103 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2104 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2105 fscki1->calc_xnms += nlen;
2106 } else {
2107 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2108 if (dent->type == UBIFS_ITYPE_DIR)
2109 fscki1->calc_cnt += 1;
2113 out:
2114 kfree(node);
2115 return 0;
2117 out_dump:
2118 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2119 ubifs_dump_node(c, node);
2120 out_free:
2121 kfree(node);
2122 return err;
2126 * free_inodes - free RB-tree of inodes.
2127 * @fsckd: FS checking information
2129 static void free_inodes(struct fsck_data *fsckd)
2131 struct fsck_inode *fscki, *n;
2133 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2134 kfree(fscki);
2138 * check_inodes - checks all inodes.
2139 * @c: UBIFS file-system description object
2140 * @fsckd: FS checking information
2142 * This is a helper function for 'dbg_check_filesystem()' which walks the
2143 * RB-tree of inodes after the index scan has been finished, and checks that
2144 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2145 * %-EINVAL if not, and a negative error code in case of failure.
2147 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2149 int n, err;
2150 union ubifs_key key;
2151 struct ubifs_znode *znode;
2152 struct ubifs_zbranch *zbr;
2153 struct ubifs_ino_node *ino;
2154 struct fsck_inode *fscki;
2155 struct rb_node *this = rb_first(&fsckd->inodes);
2157 while (this) {
2158 fscki = rb_entry(this, struct fsck_inode, rb);
2159 this = rb_next(this);
2161 if (S_ISDIR(fscki->mode)) {
2163 * Directories have to have exactly one reference (they
2164 * cannot have hardlinks), although root inode is an
2165 * exception.
2167 if (fscki->inum != UBIFS_ROOT_INO &&
2168 fscki->references != 1) {
2169 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2170 (unsigned long)fscki->inum,
2171 fscki->references);
2172 goto out_dump;
2174 if (fscki->inum == UBIFS_ROOT_INO &&
2175 fscki->references != 0) {
2176 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2177 (unsigned long)fscki->inum,
2178 fscki->references);
2179 goto out_dump;
2181 if (fscki->calc_sz != fscki->size) {
2182 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2183 (unsigned long)fscki->inum,
2184 fscki->size, fscki->calc_sz);
2185 goto out_dump;
2187 if (fscki->calc_cnt != fscki->nlink) {
2188 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2189 (unsigned long)fscki->inum,
2190 fscki->nlink, fscki->calc_cnt);
2191 goto out_dump;
2193 } else {
2194 if (fscki->references != fscki->nlink) {
2195 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2196 (unsigned long)fscki->inum,
2197 fscki->nlink, fscki->references);
2198 goto out_dump;
2201 if (fscki->xattr_sz != fscki->calc_xsz) {
2202 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2203 (unsigned long)fscki->inum, fscki->xattr_sz,
2204 fscki->calc_xsz);
2205 goto out_dump;
2207 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2208 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2209 (unsigned long)fscki->inum,
2210 fscki->xattr_cnt, fscki->calc_xcnt);
2211 goto out_dump;
2213 if (fscki->xattr_nms != fscki->calc_xnms) {
2214 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2215 (unsigned long)fscki->inum, fscki->xattr_nms,
2216 fscki->calc_xnms);
2217 goto out_dump;
2221 return 0;
2223 out_dump:
2224 /* Read the bad inode and dump it */
2225 ino_key_init(c, &key, fscki->inum);
2226 err = ubifs_lookup_level0(c, &key, &znode, &n);
2227 if (!err) {
2228 ubifs_err(c, "inode %lu not found in index",
2229 (unsigned long)fscki->inum);
2230 return -ENOENT;
2231 } else if (err < 0) {
2232 ubifs_err(c, "error %d while looking up inode %lu",
2233 err, (unsigned long)fscki->inum);
2234 return err;
2237 zbr = &znode->zbranch[n];
2238 ino = kmalloc(zbr->len, GFP_NOFS);
2239 if (!ino)
2240 return -ENOMEM;
2242 err = ubifs_tnc_read_node(c, zbr, ino);
2243 if (err) {
2244 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2245 zbr->lnum, zbr->offs, err);
2246 kfree(ino);
2247 return err;
2250 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2251 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2252 ubifs_dump_node(c, ino);
2253 kfree(ino);
2254 return -EINVAL;
2258 * dbg_check_filesystem - check the file-system.
2259 * @c: UBIFS file-system description object
2261 * This function checks the file system, namely:
2262 * o makes sure that all leaf nodes exist and their CRCs are correct;
2263 * o makes sure inode nlink, size, xattr size/count are correct (for all
2264 * inodes).
2266 * The function reads whole indexing tree and all nodes, so it is pretty
2267 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2268 * not, and a negative error code in case of failure.
2270 int dbg_check_filesystem(struct ubifs_info *c)
2272 int err;
2273 struct fsck_data fsckd;
2275 if (!dbg_is_chk_fs(c))
2276 return 0;
2278 fsckd.inodes = RB_ROOT;
2279 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2280 if (err)
2281 goto out_free;
2283 err = check_inodes(c, &fsckd);
2284 if (err)
2285 goto out_free;
2287 free_inodes(&fsckd);
2288 return 0;
2290 out_free:
2291 ubifs_err(c, "file-system check failed with error %d", err);
2292 dump_stack();
2293 free_inodes(&fsckd);
2294 return err;
2298 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2299 * @c: UBIFS file-system description object
2300 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2302 * This function returns zero if the list of data nodes is sorted correctly,
2303 * and %-EINVAL if not.
2305 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2307 struct list_head *cur;
2308 struct ubifs_scan_node *sa, *sb;
2310 if (!dbg_is_chk_gen(c))
2311 return 0;
2313 for (cur = head->next; cur->next != head; cur = cur->next) {
2314 ino_t inuma, inumb;
2315 uint32_t blka, blkb;
2317 cond_resched();
2318 sa = container_of(cur, struct ubifs_scan_node, list);
2319 sb = container_of(cur->next, struct ubifs_scan_node, list);
2321 if (sa->type != UBIFS_DATA_NODE) {
2322 ubifs_err(c, "bad node type %d", sa->type);
2323 ubifs_dump_node(c, sa->node);
2324 return -EINVAL;
2326 if (sb->type != UBIFS_DATA_NODE) {
2327 ubifs_err(c, "bad node type %d", sb->type);
2328 ubifs_dump_node(c, sb->node);
2329 return -EINVAL;
2332 inuma = key_inum(c, &sa->key);
2333 inumb = key_inum(c, &sb->key);
2335 if (inuma < inumb)
2336 continue;
2337 if (inuma > inumb) {
2338 ubifs_err(c, "larger inum %lu goes before inum %lu",
2339 (unsigned long)inuma, (unsigned long)inumb);
2340 goto error_dump;
2343 blka = key_block(c, &sa->key);
2344 blkb = key_block(c, &sb->key);
2346 if (blka > blkb) {
2347 ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2348 goto error_dump;
2350 if (blka == blkb) {
2351 ubifs_err(c, "two data nodes for the same block");
2352 goto error_dump;
2356 return 0;
2358 error_dump:
2359 ubifs_dump_node(c, sa->node);
2360 ubifs_dump_node(c, sb->node);
2361 return -EINVAL;
2365 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2366 * @c: UBIFS file-system description object
2367 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2369 * This function returns zero if the list of non-data nodes is sorted correctly,
2370 * and %-EINVAL if not.
2372 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2374 struct list_head *cur;
2375 struct ubifs_scan_node *sa, *sb;
2377 if (!dbg_is_chk_gen(c))
2378 return 0;
2380 for (cur = head->next; cur->next != head; cur = cur->next) {
2381 ino_t inuma, inumb;
2382 uint32_t hasha, hashb;
2384 cond_resched();
2385 sa = container_of(cur, struct ubifs_scan_node, list);
2386 sb = container_of(cur->next, struct ubifs_scan_node, list);
2388 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2389 sa->type != UBIFS_XENT_NODE) {
2390 ubifs_err(c, "bad node type %d", sa->type);
2391 ubifs_dump_node(c, sa->node);
2392 return -EINVAL;
2394 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2395 sb->type != UBIFS_XENT_NODE) {
2396 ubifs_err(c, "bad node type %d", sb->type);
2397 ubifs_dump_node(c, sb->node);
2398 return -EINVAL;
2401 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2402 ubifs_err(c, "non-inode node goes before inode node");
2403 goto error_dump;
2406 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2407 continue;
2409 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2410 /* Inode nodes are sorted in descending size order */
2411 if (sa->len < sb->len) {
2412 ubifs_err(c, "smaller inode node goes first");
2413 goto error_dump;
2415 continue;
2419 * This is either a dentry or xentry, which should be sorted in
2420 * ascending (parent ino, hash) order.
2422 inuma = key_inum(c, &sa->key);
2423 inumb = key_inum(c, &sb->key);
2425 if (inuma < inumb)
2426 continue;
2427 if (inuma > inumb) {
2428 ubifs_err(c, "larger inum %lu goes before inum %lu",
2429 (unsigned long)inuma, (unsigned long)inumb);
2430 goto error_dump;
2433 hasha = key_block(c, &sa->key);
2434 hashb = key_block(c, &sb->key);
2436 if (hasha > hashb) {
2437 ubifs_err(c, "larger hash %u goes before %u",
2438 hasha, hashb);
2439 goto error_dump;
2443 return 0;
2445 error_dump:
2446 ubifs_msg(c, "dumping first node");
2447 ubifs_dump_node(c, sa->node);
2448 ubifs_msg(c, "dumping second node");
2449 ubifs_dump_node(c, sb->node);
2450 return -EINVAL;
2451 return 0;
2454 static inline int chance(unsigned int n, unsigned int out_of)
2456 return !!((prandom_u32() % out_of) + 1 <= n);
2460 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2462 struct ubifs_debug_info *d = c->dbg;
2464 ubifs_assert(dbg_is_tst_rcvry(c));
2466 if (!d->pc_cnt) {
2467 /* First call - decide delay to the power cut */
2468 if (chance(1, 2)) {
2469 unsigned long delay;
2471 if (chance(1, 2)) {
2472 d->pc_delay = 1;
2473 /* Fail within 1 minute */
2474 delay = prandom_u32() % 60000;
2475 d->pc_timeout = jiffies;
2476 d->pc_timeout += msecs_to_jiffies(delay);
2477 ubifs_warn(c, "failing after %lums", delay);
2478 } else {
2479 d->pc_delay = 2;
2480 delay = prandom_u32() % 10000;
2481 /* Fail within 10000 operations */
2482 d->pc_cnt_max = delay;
2483 ubifs_warn(c, "failing after %lu calls", delay);
2487 d->pc_cnt += 1;
2490 /* Determine if failure delay has expired */
2491 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2492 return 0;
2493 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2494 return 0;
2496 if (lnum == UBIFS_SB_LNUM) {
2497 if (write && chance(1, 2))
2498 return 0;
2499 if (chance(19, 20))
2500 return 0;
2501 ubifs_warn(c, "failing in super block LEB %d", lnum);
2502 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2503 if (chance(19, 20))
2504 return 0;
2505 ubifs_warn(c, "failing in master LEB %d", lnum);
2506 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2507 if (write && chance(99, 100))
2508 return 0;
2509 if (chance(399, 400))
2510 return 0;
2511 ubifs_warn(c, "failing in log LEB %d", lnum);
2512 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2513 if (write && chance(7, 8))
2514 return 0;
2515 if (chance(19, 20))
2516 return 0;
2517 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2518 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2519 if (write && chance(1, 2))
2520 return 0;
2521 if (chance(9, 10))
2522 return 0;
2523 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2524 } else if (lnum == c->ihead_lnum) {
2525 if (chance(99, 100))
2526 return 0;
2527 ubifs_warn(c, "failing in index head LEB %d", lnum);
2528 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2529 if (chance(9, 10))
2530 return 0;
2531 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2532 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2533 !ubifs_search_bud(c, lnum)) {
2534 if (chance(19, 20))
2535 return 0;
2536 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2537 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2538 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2539 if (chance(999, 1000))
2540 return 0;
2541 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2542 } else {
2543 if (chance(9999, 10000))
2544 return 0;
2545 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2548 d->pc_happened = 1;
2549 ubifs_warn(c, "========== Power cut emulated ==========");
2550 dump_stack();
2551 return 1;
2554 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2555 unsigned int len)
2557 unsigned int from, to, ffs = chance(1, 2);
2558 unsigned char *p = (void *)buf;
2560 from = prandom_u32() % len;
2561 /* Corruption span max to end of write unit */
2562 to = min(len, ALIGN(from + 1, c->max_write_size));
2564 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2565 ffs ? "0xFFs" : "random data");
2567 if (ffs)
2568 memset(p + from, 0xFF, to - from);
2569 else
2570 prandom_bytes(p + from, to - from);
2572 return to;
2575 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2576 int offs, int len)
2578 int err, failing;
2580 if (dbg_is_power_cut(c))
2581 return -EROFS;
2583 failing = power_cut_emulated(c, lnum, 1);
2584 if (failing) {
2585 len = corrupt_data(c, buf, len);
2586 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2587 len, lnum, offs);
2589 err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2590 if (err)
2591 return err;
2592 if (failing)
2593 return -EROFS;
2594 return 0;
2597 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2598 int len)
2600 int err;
2602 if (dbg_is_power_cut(c))
2603 return -EROFS;
2604 if (power_cut_emulated(c, lnum, 1))
2605 return -EROFS;
2606 err = ubi_leb_change(c->ubi, lnum, buf, len);
2607 if (err)
2608 return err;
2609 if (power_cut_emulated(c, lnum, 1))
2610 return -EROFS;
2611 return 0;
2614 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2616 int err;
2618 if (dbg_is_power_cut(c))
2619 return -EROFS;
2620 if (power_cut_emulated(c, lnum, 0))
2621 return -EROFS;
2622 err = ubi_leb_unmap(c->ubi, lnum);
2623 if (err)
2624 return err;
2625 if (power_cut_emulated(c, lnum, 0))
2626 return -EROFS;
2627 return 0;
2630 int dbg_leb_map(struct ubifs_info *c, int lnum)
2632 int err;
2634 if (dbg_is_power_cut(c))
2635 return -EROFS;
2636 if (power_cut_emulated(c, lnum, 0))
2637 return -EROFS;
2638 err = ubi_leb_map(c->ubi, lnum);
2639 if (err)
2640 return err;
2641 if (power_cut_emulated(c, lnum, 0))
2642 return -EROFS;
2643 return 0;
2647 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2648 * contain the stuff specific to particular file-system mounts.
2650 static struct dentry *dfs_rootdir;
2652 static int dfs_file_open(struct inode *inode, struct file *file)
2654 file->private_data = inode->i_private;
2655 return nonseekable_open(inode, file);
2659 * provide_user_output - provide output to the user reading a debugfs file.
2660 * @val: boolean value for the answer
2661 * @u: the buffer to store the answer at
2662 * @count: size of the buffer
2663 * @ppos: position in the @u output buffer
2665 * This is a simple helper function which stores @val boolean value in the user
2666 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2667 * bytes written to @u in case of success and a negative error code in case of
2668 * failure.
2670 static int provide_user_output(int val, char __user *u, size_t count,
2671 loff_t *ppos)
2673 char buf[3];
2675 if (val)
2676 buf[0] = '1';
2677 else
2678 buf[0] = '0';
2679 buf[1] = '\n';
2680 buf[2] = 0x00;
2682 return simple_read_from_buffer(u, count, ppos, buf, 2);
2685 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2686 loff_t *ppos)
2688 struct dentry *dent = file->f_path.dentry;
2689 struct ubifs_info *c = file->private_data;
2690 struct ubifs_debug_info *d = c->dbg;
2691 int val;
2693 if (dent == d->dfs_chk_gen)
2694 val = d->chk_gen;
2695 else if (dent == d->dfs_chk_index)
2696 val = d->chk_index;
2697 else if (dent == d->dfs_chk_orph)
2698 val = d->chk_orph;
2699 else if (dent == d->dfs_chk_lprops)
2700 val = d->chk_lprops;
2701 else if (dent == d->dfs_chk_fs)
2702 val = d->chk_fs;
2703 else if (dent == d->dfs_tst_rcvry)
2704 val = d->tst_rcvry;
2705 else if (dent == d->dfs_ro_error)
2706 val = c->ro_error;
2707 else
2708 return -EINVAL;
2710 return provide_user_output(val, u, count, ppos);
2714 * interpret_user_input - interpret user debugfs file input.
2715 * @u: user-provided buffer with the input
2716 * @count: buffer size
2718 * This is a helper function which interpret user input to a boolean UBIFS
2719 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2720 * in case of failure.
2722 static int interpret_user_input(const char __user *u, size_t count)
2724 size_t buf_size;
2725 char buf[8];
2727 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2728 if (copy_from_user(buf, u, buf_size))
2729 return -EFAULT;
2731 if (buf[0] == '1')
2732 return 1;
2733 else if (buf[0] == '0')
2734 return 0;
2736 return -EINVAL;
2739 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2740 size_t count, loff_t *ppos)
2742 struct ubifs_info *c = file->private_data;
2743 struct ubifs_debug_info *d = c->dbg;
2744 struct dentry *dent = file->f_path.dentry;
2745 int val;
2748 * TODO: this is racy - the file-system might have already been
2749 * unmounted and we'd oops in this case. The plan is to fix it with
2750 * help of 'iterate_supers_type()' which we should have in v3.0: when
2751 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2752 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2753 * superblocks and fine the one with the same UUID, and take the
2754 * locking right.
2756 * The other way to go suggested by Al Viro is to create a separate
2757 * 'ubifs-debug' file-system instead.
2759 if (file->f_path.dentry == d->dfs_dump_lprops) {
2760 ubifs_dump_lprops(c);
2761 return count;
2763 if (file->f_path.dentry == d->dfs_dump_budg) {
2764 ubifs_dump_budg(c, &c->bi);
2765 return count;
2767 if (file->f_path.dentry == d->dfs_dump_tnc) {
2768 mutex_lock(&c->tnc_mutex);
2769 ubifs_dump_tnc(c);
2770 mutex_unlock(&c->tnc_mutex);
2771 return count;
2774 val = interpret_user_input(u, count);
2775 if (val < 0)
2776 return val;
2778 if (dent == d->dfs_chk_gen)
2779 d->chk_gen = val;
2780 else if (dent == d->dfs_chk_index)
2781 d->chk_index = val;
2782 else if (dent == d->dfs_chk_orph)
2783 d->chk_orph = val;
2784 else if (dent == d->dfs_chk_lprops)
2785 d->chk_lprops = val;
2786 else if (dent == d->dfs_chk_fs)
2787 d->chk_fs = val;
2788 else if (dent == d->dfs_tst_rcvry)
2789 d->tst_rcvry = val;
2790 else if (dent == d->dfs_ro_error)
2791 c->ro_error = !!val;
2792 else
2793 return -EINVAL;
2795 return count;
2798 static const struct file_operations dfs_fops = {
2799 .open = dfs_file_open,
2800 .read = dfs_file_read,
2801 .write = dfs_file_write,
2802 .owner = THIS_MODULE,
2803 .llseek = no_llseek,
2807 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2808 * @c: UBIFS file-system description object
2810 * This function creates all debugfs files for this instance of UBIFS. Returns
2811 * zero in case of success and a negative error code in case of failure.
2813 * Note, the only reason we have not merged this function with the
2814 * 'ubifs_debugging_init()' function is because it is better to initialize
2815 * debugfs interfaces at the very end of the mount process, and remove them at
2816 * the very beginning of the mount process.
2818 int dbg_debugfs_init_fs(struct ubifs_info *c)
2820 int err, n;
2821 const char *fname;
2822 struct dentry *dent;
2823 struct ubifs_debug_info *d = c->dbg;
2825 if (!IS_ENABLED(CONFIG_DEBUG_FS))
2826 return 0;
2828 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2829 c->vi.ubi_num, c->vi.vol_id);
2830 if (n == UBIFS_DFS_DIR_LEN) {
2831 /* The array size is too small */
2832 fname = UBIFS_DFS_DIR_NAME;
2833 dent = ERR_PTR(-EINVAL);
2834 goto out;
2837 fname = d->dfs_dir_name;
2838 dent = debugfs_create_dir(fname, dfs_rootdir);
2839 if (IS_ERR_OR_NULL(dent))
2840 goto out;
2841 d->dfs_dir = dent;
2843 fname = "dump_lprops";
2844 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2845 if (IS_ERR_OR_NULL(dent))
2846 goto out_remove;
2847 d->dfs_dump_lprops = dent;
2849 fname = "dump_budg";
2850 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2851 if (IS_ERR_OR_NULL(dent))
2852 goto out_remove;
2853 d->dfs_dump_budg = dent;
2855 fname = "dump_tnc";
2856 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2857 if (IS_ERR_OR_NULL(dent))
2858 goto out_remove;
2859 d->dfs_dump_tnc = dent;
2861 fname = "chk_general";
2862 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2863 &dfs_fops);
2864 if (IS_ERR_OR_NULL(dent))
2865 goto out_remove;
2866 d->dfs_chk_gen = dent;
2868 fname = "chk_index";
2869 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2870 &dfs_fops);
2871 if (IS_ERR_OR_NULL(dent))
2872 goto out_remove;
2873 d->dfs_chk_index = dent;
2875 fname = "chk_orphans";
2876 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2877 &dfs_fops);
2878 if (IS_ERR_OR_NULL(dent))
2879 goto out_remove;
2880 d->dfs_chk_orph = dent;
2882 fname = "chk_lprops";
2883 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2884 &dfs_fops);
2885 if (IS_ERR_OR_NULL(dent))
2886 goto out_remove;
2887 d->dfs_chk_lprops = dent;
2889 fname = "chk_fs";
2890 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2891 &dfs_fops);
2892 if (IS_ERR_OR_NULL(dent))
2893 goto out_remove;
2894 d->dfs_chk_fs = dent;
2896 fname = "tst_recovery";
2897 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2898 &dfs_fops);
2899 if (IS_ERR_OR_NULL(dent))
2900 goto out_remove;
2901 d->dfs_tst_rcvry = dent;
2903 fname = "ro_error";
2904 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2905 &dfs_fops);
2906 if (IS_ERR_OR_NULL(dent))
2907 goto out_remove;
2908 d->dfs_ro_error = dent;
2910 return 0;
2912 out_remove:
2913 debugfs_remove_recursive(d->dfs_dir);
2914 out:
2915 err = dent ? PTR_ERR(dent) : -ENODEV;
2916 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2917 fname, err);
2918 return err;
2922 * dbg_debugfs_exit_fs - remove all debugfs files.
2923 * @c: UBIFS file-system description object
2925 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2927 if (IS_ENABLED(CONFIG_DEBUG_FS))
2928 debugfs_remove_recursive(c->dbg->dfs_dir);
2931 struct ubifs_global_debug_info ubifs_dbg;
2933 static struct dentry *dfs_chk_gen;
2934 static struct dentry *dfs_chk_index;
2935 static struct dentry *dfs_chk_orph;
2936 static struct dentry *dfs_chk_lprops;
2937 static struct dentry *dfs_chk_fs;
2938 static struct dentry *dfs_tst_rcvry;
2940 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2941 size_t count, loff_t *ppos)
2943 struct dentry *dent = file->f_path.dentry;
2944 int val;
2946 if (dent == dfs_chk_gen)
2947 val = ubifs_dbg.chk_gen;
2948 else if (dent == dfs_chk_index)
2949 val = ubifs_dbg.chk_index;
2950 else if (dent == dfs_chk_orph)
2951 val = ubifs_dbg.chk_orph;
2952 else if (dent == dfs_chk_lprops)
2953 val = ubifs_dbg.chk_lprops;
2954 else if (dent == dfs_chk_fs)
2955 val = ubifs_dbg.chk_fs;
2956 else if (dent == dfs_tst_rcvry)
2957 val = ubifs_dbg.tst_rcvry;
2958 else
2959 return -EINVAL;
2961 return provide_user_output(val, u, count, ppos);
2964 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2965 size_t count, loff_t *ppos)
2967 struct dentry *dent = file->f_path.dentry;
2968 int val;
2970 val = interpret_user_input(u, count);
2971 if (val < 0)
2972 return val;
2974 if (dent == dfs_chk_gen)
2975 ubifs_dbg.chk_gen = val;
2976 else if (dent == dfs_chk_index)
2977 ubifs_dbg.chk_index = val;
2978 else if (dent == dfs_chk_orph)
2979 ubifs_dbg.chk_orph = val;
2980 else if (dent == dfs_chk_lprops)
2981 ubifs_dbg.chk_lprops = val;
2982 else if (dent == dfs_chk_fs)
2983 ubifs_dbg.chk_fs = val;
2984 else if (dent == dfs_tst_rcvry)
2985 ubifs_dbg.tst_rcvry = val;
2986 else
2987 return -EINVAL;
2989 return count;
2992 static const struct file_operations dfs_global_fops = {
2993 .read = dfs_global_file_read,
2994 .write = dfs_global_file_write,
2995 .owner = THIS_MODULE,
2996 .llseek = no_llseek,
3000 * dbg_debugfs_init - initialize debugfs file-system.
3002 * UBIFS uses debugfs file-system to expose various debugging knobs to
3003 * user-space. This function creates "ubifs" directory in the debugfs
3004 * file-system. Returns zero in case of success and a negative error code in
3005 * case of failure.
3007 int dbg_debugfs_init(void)
3009 int err;
3010 const char *fname;
3011 struct dentry *dent;
3013 if (!IS_ENABLED(CONFIG_DEBUG_FS))
3014 return 0;
3016 fname = "ubifs";
3017 dent = debugfs_create_dir(fname, NULL);
3018 if (IS_ERR_OR_NULL(dent))
3019 goto out;
3020 dfs_rootdir = dent;
3022 fname = "chk_general";
3023 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3024 &dfs_global_fops);
3025 if (IS_ERR_OR_NULL(dent))
3026 goto out_remove;
3027 dfs_chk_gen = dent;
3029 fname = "chk_index";
3030 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3031 &dfs_global_fops);
3032 if (IS_ERR_OR_NULL(dent))
3033 goto out_remove;
3034 dfs_chk_index = dent;
3036 fname = "chk_orphans";
3037 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3038 &dfs_global_fops);
3039 if (IS_ERR_OR_NULL(dent))
3040 goto out_remove;
3041 dfs_chk_orph = dent;
3043 fname = "chk_lprops";
3044 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3045 &dfs_global_fops);
3046 if (IS_ERR_OR_NULL(dent))
3047 goto out_remove;
3048 dfs_chk_lprops = dent;
3050 fname = "chk_fs";
3051 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3052 &dfs_global_fops);
3053 if (IS_ERR_OR_NULL(dent))
3054 goto out_remove;
3055 dfs_chk_fs = dent;
3057 fname = "tst_recovery";
3058 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3059 &dfs_global_fops);
3060 if (IS_ERR_OR_NULL(dent))
3061 goto out_remove;
3062 dfs_tst_rcvry = dent;
3064 return 0;
3066 out_remove:
3067 debugfs_remove_recursive(dfs_rootdir);
3068 out:
3069 err = dent ? PTR_ERR(dent) : -ENODEV;
3070 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3071 current->pid, fname, err);
3072 return err;
3076 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3078 void dbg_debugfs_exit(void)
3080 if (IS_ENABLED(CONFIG_DEBUG_FS))
3081 debugfs_remove_recursive(dfs_rootdir);
3085 * ubifs_debugging_init - initialize UBIFS debugging.
3086 * @c: UBIFS file-system description object
3088 * This function initializes debugging-related data for the file system.
3089 * Returns zero in case of success and a negative error code in case of
3090 * failure.
3092 int ubifs_debugging_init(struct ubifs_info *c)
3094 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3095 if (!c->dbg)
3096 return -ENOMEM;
3098 return 0;
3102 * ubifs_debugging_exit - free debugging data.
3103 * @c: UBIFS file-system description object
3105 void ubifs_debugging_exit(struct ubifs_info *c)
3107 kfree(c->dbg);