2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similar to the mechanism is used by JFFS2.
34 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35 * write size (@c->max_write_size). The latter is the maximum amount of bytes
36 * the underlying flash is able to program at a time, and writing in
37 * @c->max_write_size units should presumably be faster. Obviously,
38 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39 * @c->max_write_size bytes in size for maximum performance. However, when a
40 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41 * boundary) which contains data is written, not the whole write-buffer,
42 * because this is more space-efficient.
44 * This optimization adds few complications to the code. Indeed, on the one
45 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46 * also means aligning writes at the @c->max_write_size bytes offsets. On the
47 * other hand, we do not want to waste space when synchronizing the write
48 * buffer, so during synchronization we writes in smaller chunks. And this makes
49 * the next write offset to be not aligned to @c->max_write_size bytes. So the
50 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51 * to @c->max_write_size bytes again. We do this by temporarily shrinking
52 * write-buffer size (@wbuf->size).
54 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55 * mutexes defined inside these objects. Since sometimes upper-level code
56 * has to lock the write-buffer (e.g. journal space reservation code), many
57 * functions related to write-buffers have "nolock" suffix which means that the
58 * caller has to lock the write-buffer before calling this function.
60 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61 * aligned, UBIFS starts the next node from the aligned address, and the padded
62 * bytes may contain any rubbish. In other words, UBIFS does not put padding
63 * bytes in those small gaps. Common headers of nodes store real node lengths,
64 * not aligned lengths. Indexing nodes also store real lengths in branches.
66 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67 * uses padding nodes or padding bytes, if the padding node does not fit.
69 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70 * they are read from the flash media.
73 #include <linux/crc32.h>
74 #include <linux/slab.h>
78 * ubifs_ro_mode - switch UBIFS to read read-only mode.
79 * @c: UBIFS file-system description object
80 * @err: error code which is the reason of switching to R/O mode
82 void ubifs_ro_mode(struct ubifs_info
*c
, int err
)
86 c
->no_chk_data_crc
= 0;
87 c
->vfs_sb
->s_flags
|= MS_RDONLY
;
88 ubifs_warn(c
, "switched to read-only mode, error %d", err
);
94 * Below are simple wrappers over UBI I/O functions which include some
95 * additional checks and UBIFS debugging stuff. See corresponding UBI function
96 * for more information.
99 int ubifs_leb_read(const struct ubifs_info
*c
, int lnum
, void *buf
, int offs
,
100 int len
, int even_ebadmsg
)
104 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
106 * In case of %-EBADMSG print the error message only if the
107 * @even_ebadmsg is true.
109 if (err
&& (err
!= -EBADMSG
|| even_ebadmsg
)) {
110 ubifs_err(c
, "reading %d bytes from LEB %d:%d failed, error %d",
111 len
, lnum
, offs
, err
);
117 int ubifs_leb_write(struct ubifs_info
*c
, int lnum
, const void *buf
, int offs
,
122 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
125 if (!dbg_is_tst_rcvry(c
))
126 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, len
);
128 err
= dbg_leb_write(c
, lnum
, buf
, offs
, len
);
130 ubifs_err(c
, "writing %d bytes to LEB %d:%d failed, error %d",
131 len
, lnum
, offs
, err
);
132 ubifs_ro_mode(c
, err
);
138 int ubifs_leb_change(struct ubifs_info
*c
, int lnum
, const void *buf
, int len
)
142 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
145 if (!dbg_is_tst_rcvry(c
))
146 err
= ubi_leb_change(c
->ubi
, lnum
, buf
, len
);
148 err
= dbg_leb_change(c
, lnum
, buf
, len
);
150 ubifs_err(c
, "changing %d bytes in LEB %d failed, error %d",
152 ubifs_ro_mode(c
, err
);
158 int ubifs_leb_unmap(struct ubifs_info
*c
, int lnum
)
162 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
165 if (!dbg_is_tst_rcvry(c
))
166 err
= ubi_leb_unmap(c
->ubi
, lnum
);
168 err
= dbg_leb_unmap(c
, lnum
);
170 ubifs_err(c
, "unmap LEB %d failed, error %d", lnum
, err
);
171 ubifs_ro_mode(c
, err
);
177 int ubifs_leb_map(struct ubifs_info
*c
, int lnum
)
181 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
184 if (!dbg_is_tst_rcvry(c
))
185 err
= ubi_leb_map(c
->ubi
, lnum
);
187 err
= dbg_leb_map(c
, lnum
);
189 ubifs_err(c
, "mapping LEB %d failed, error %d", lnum
, err
);
190 ubifs_ro_mode(c
, err
);
196 int ubifs_is_mapped(const struct ubifs_info
*c
, int lnum
)
200 err
= ubi_is_mapped(c
->ubi
, lnum
);
202 ubifs_err(c
, "ubi_is_mapped failed for LEB %d, error %d",
210 * ubifs_check_node - check node.
211 * @c: UBIFS file-system description object
212 * @buf: node to check
213 * @lnum: logical eraseblock number
214 * @offs: offset within the logical eraseblock
215 * @quiet: print no messages
216 * @must_chk_crc: indicates whether to always check the CRC
218 * This function checks node magic number and CRC checksum. This function also
219 * validates node length to prevent UBIFS from becoming crazy when an attacker
220 * feeds it a file-system image with incorrect nodes. For example, too large
221 * node length in the common header could cause UBIFS to read memory outside of
222 * allocated buffer when checking the CRC checksum.
224 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
225 * true, which is controlled by corresponding UBIFS mount option. However, if
226 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
227 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
228 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
229 * is checked. This is because during mounting or re-mounting from R/O mode to
230 * R/W mode we may read journal nodes (when replying the journal or doing the
231 * recovery) and the journal nodes may potentially be corrupted, so checking is
234 * This function returns zero in case of success and %-EUCLEAN in case of bad
237 int ubifs_check_node(const struct ubifs_info
*c
, const void *buf
, int lnum
,
238 int offs
, int quiet
, int must_chk_crc
)
240 int err
= -EINVAL
, type
, node_len
;
241 uint32_t crc
, node_crc
, magic
;
242 const struct ubifs_ch
*ch
= buf
;
244 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
245 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
247 magic
= le32_to_cpu(ch
->magic
);
248 if (magic
!= UBIFS_NODE_MAGIC
) {
250 ubifs_err(c
, "bad magic %#08x, expected %#08x",
251 magic
, UBIFS_NODE_MAGIC
);
256 type
= ch
->node_type
;
257 if (type
< 0 || type
>= UBIFS_NODE_TYPES_CNT
) {
259 ubifs_err(c
, "bad node type %d", type
);
263 node_len
= le32_to_cpu(ch
->len
);
264 if (node_len
+ offs
> c
->leb_size
)
267 if (c
->ranges
[type
].max_len
== 0) {
268 if (node_len
!= c
->ranges
[type
].len
)
270 } else if (node_len
< c
->ranges
[type
].min_len
||
271 node_len
> c
->ranges
[type
].max_len
)
274 if (!must_chk_crc
&& type
== UBIFS_DATA_NODE
&& !c
->mounting
&&
275 !c
->remounting_rw
&& c
->no_chk_data_crc
)
278 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, node_len
- 8);
279 node_crc
= le32_to_cpu(ch
->crc
);
280 if (crc
!= node_crc
) {
282 ubifs_err(c
, "bad CRC: calculated %#08x, read %#08x",
292 ubifs_err(c
, "bad node length %d", node_len
);
295 ubifs_err(c
, "bad node at LEB %d:%d", lnum
, offs
);
296 ubifs_dump_node(c
, buf
);
303 * ubifs_pad - pad flash space.
304 * @c: UBIFS file-system description object
305 * @buf: buffer to put padding to
306 * @pad: how many bytes to pad
308 * The flash media obliges us to write only in chunks of %c->min_io_size and
309 * when we have to write less data we add padding node to the write-buffer and
310 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
311 * media is being scanned. If the amount of wasted space is not enough to fit a
312 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
313 * pattern (%UBIFS_PADDING_BYTE).
315 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
318 void ubifs_pad(const struct ubifs_info
*c
, void *buf
, int pad
)
322 ubifs_assert(pad
>= 0 && !(pad
& 7));
324 if (pad
>= UBIFS_PAD_NODE_SZ
) {
325 struct ubifs_ch
*ch
= buf
;
326 struct ubifs_pad_node
*pad_node
= buf
;
328 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
329 ch
->node_type
= UBIFS_PAD_NODE
;
330 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
331 ch
->padding
[0] = ch
->padding
[1] = 0;
333 ch
->len
= cpu_to_le32(UBIFS_PAD_NODE_SZ
);
334 pad
-= UBIFS_PAD_NODE_SZ
;
335 pad_node
->pad_len
= cpu_to_le32(pad
);
336 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, UBIFS_PAD_NODE_SZ
- 8);
337 ch
->crc
= cpu_to_le32(crc
);
338 memset(buf
+ UBIFS_PAD_NODE_SZ
, 0, pad
);
340 /* Too little space, padding node won't fit */
341 memset(buf
, UBIFS_PADDING_BYTE
, pad
);
345 * next_sqnum - get next sequence number.
346 * @c: UBIFS file-system description object
348 static unsigned long long next_sqnum(struct ubifs_info
*c
)
350 unsigned long long sqnum
;
352 spin_lock(&c
->cnt_lock
);
353 sqnum
= ++c
->max_sqnum
;
354 spin_unlock(&c
->cnt_lock
);
356 if (unlikely(sqnum
>= SQNUM_WARN_WATERMARK
)) {
357 if (sqnum
>= SQNUM_WATERMARK
) {
358 ubifs_err(c
, "sequence number overflow %llu, end of life",
360 ubifs_ro_mode(c
, -EINVAL
);
362 ubifs_warn(c
, "running out of sequence numbers, end of life soon");
369 * ubifs_prepare_node - prepare node to be written to flash.
370 * @c: UBIFS file-system description object
371 * @node: the node to pad
373 * @pad: if the buffer has to be padded
375 * This function prepares node at @node to be written to the media - it
376 * calculates node CRC, fills the common header, and adds proper padding up to
377 * the next minimum I/O unit if @pad is not zero.
379 void ubifs_prepare_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
382 struct ubifs_ch
*ch
= node
;
383 unsigned long long sqnum
= next_sqnum(c
);
385 ubifs_assert(len
>= UBIFS_CH_SZ
);
387 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
388 ch
->len
= cpu_to_le32(len
);
389 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
390 ch
->sqnum
= cpu_to_le64(sqnum
);
391 ch
->padding
[0] = ch
->padding
[1] = 0;
392 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
393 ch
->crc
= cpu_to_le32(crc
);
397 pad
= ALIGN(len
, c
->min_io_size
) - len
;
398 ubifs_pad(c
, node
+ len
, pad
);
403 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
404 * @c: UBIFS file-system description object
405 * @node: the node to pad
407 * @last: indicates the last node of the group
409 * This function prepares node at @node to be written to the media - it
410 * calculates node CRC and fills the common header.
412 void ubifs_prep_grp_node(struct ubifs_info
*c
, void *node
, int len
, int last
)
415 struct ubifs_ch
*ch
= node
;
416 unsigned long long sqnum
= next_sqnum(c
);
418 ubifs_assert(len
>= UBIFS_CH_SZ
);
420 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
421 ch
->len
= cpu_to_le32(len
);
423 ch
->group_type
= UBIFS_LAST_OF_NODE_GROUP
;
425 ch
->group_type
= UBIFS_IN_NODE_GROUP
;
426 ch
->sqnum
= cpu_to_le64(sqnum
);
427 ch
->padding
[0] = ch
->padding
[1] = 0;
428 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
429 ch
->crc
= cpu_to_le32(crc
);
433 * wbuf_timer_callback - write-buffer timer callback function.
434 * @timer: timer data (write-buffer descriptor)
436 * This function is called when the write-buffer timer expires.
438 static enum hrtimer_restart
wbuf_timer_callback_nolock(struct hrtimer
*timer
)
440 struct ubifs_wbuf
*wbuf
= container_of(timer
, struct ubifs_wbuf
, timer
);
442 dbg_io("jhead %s", dbg_jhead(wbuf
->jhead
));
444 wbuf
->c
->need_wbuf_sync
= 1;
445 ubifs_wake_up_bgt(wbuf
->c
);
446 return HRTIMER_NORESTART
;
450 * new_wbuf_timer - start new write-buffer timer.
451 * @wbuf: write-buffer descriptor
453 static void new_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
455 ktime_t softlimit
= ms_to_ktime(dirty_writeback_interval
* 10);
456 unsigned long long delta
= dirty_writeback_interval
;
458 /* centi to milli, milli to nano, then 10% */
459 delta
*= 10ULL * NSEC_PER_MSEC
/ 10ULL;
461 ubifs_assert(!hrtimer_active(&wbuf
->timer
));
462 ubifs_assert(delta
<= ULONG_MAX
);
466 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
467 dbg_jhead(wbuf
->jhead
),
468 div_u64(ktime_to_ns(softlimit
), USEC_PER_SEC
),
469 div_u64(ktime_to_ns(softlimit
) + delta
, USEC_PER_SEC
));
470 hrtimer_start_range_ns(&wbuf
->timer
, softlimit
, delta
,
475 * cancel_wbuf_timer - cancel write-buffer timer.
476 * @wbuf: write-buffer descriptor
478 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
483 hrtimer_cancel(&wbuf
->timer
);
487 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
488 * @wbuf: write-buffer to synchronize
490 * This function synchronizes write-buffer @buf and returns zero in case of
491 * success or a negative error code in case of failure.
493 * Note, although write-buffers are of @c->max_write_size, this function does
494 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
495 * if the write-buffer is only partially filled with data, only the used part
496 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
497 * This way we waste less space.
499 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf
*wbuf
)
501 struct ubifs_info
*c
= wbuf
->c
;
502 int err
, dirt
, sync_len
;
504 cancel_wbuf_timer_nolock(wbuf
);
505 if (!wbuf
->used
|| wbuf
->lnum
== -1)
506 /* Write-buffer is empty or not seeked */
509 dbg_io("LEB %d:%d, %d bytes, jhead %s",
510 wbuf
->lnum
, wbuf
->offs
, wbuf
->used
, dbg_jhead(wbuf
->jhead
));
511 ubifs_assert(!(wbuf
->avail
& 7));
512 ubifs_assert(wbuf
->offs
+ wbuf
->size
<= c
->leb_size
);
513 ubifs_assert(wbuf
->size
>= c
->min_io_size
);
514 ubifs_assert(wbuf
->size
<= c
->max_write_size
);
515 ubifs_assert(wbuf
->size
% c
->min_io_size
== 0);
516 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
517 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
518 ubifs_assert(!((wbuf
->offs
+ wbuf
->size
) % c
->max_write_size
));
524 * Do not write whole write buffer but write only the minimum necessary
525 * amount of min. I/O units.
527 sync_len
= ALIGN(wbuf
->used
, c
->min_io_size
);
528 dirt
= sync_len
- wbuf
->used
;
530 ubifs_pad(c
, wbuf
->buf
+ wbuf
->used
, dirt
);
531 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
, sync_len
);
535 spin_lock(&wbuf
->lock
);
536 wbuf
->offs
+= sync_len
;
538 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
539 * But our goal is to optimize writes and make sure we write in
540 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
541 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
542 * sure that @wbuf->offs + @wbuf->size is aligned to
543 * @c->max_write_size. This way we make sure that after next
544 * write-buffer flush we are again at the optimal offset (aligned to
545 * @c->max_write_size).
547 if (c
->leb_size
- wbuf
->offs
< c
->max_write_size
)
548 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
549 else if (wbuf
->offs
& (c
->max_write_size
- 1))
550 wbuf
->size
= ALIGN(wbuf
->offs
, c
->max_write_size
) - wbuf
->offs
;
552 wbuf
->size
= c
->max_write_size
;
553 wbuf
->avail
= wbuf
->size
;
556 spin_unlock(&wbuf
->lock
);
558 if (wbuf
->sync_callback
)
559 err
= wbuf
->sync_callback(c
, wbuf
->lnum
,
560 c
->leb_size
- wbuf
->offs
, dirt
);
565 * ubifs_wbuf_seek_nolock - seek write-buffer.
566 * @wbuf: write-buffer
567 * @lnum: logical eraseblock number to seek to
568 * @offs: logical eraseblock offset to seek to
570 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
571 * The write-buffer has to be empty. Returns zero in case of success and a
572 * negative error code in case of failure.
574 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf
*wbuf
, int lnum
, int offs
)
576 const struct ubifs_info
*c
= wbuf
->c
;
578 dbg_io("LEB %d:%d, jhead %s", lnum
, offs
, dbg_jhead(wbuf
->jhead
));
579 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
);
580 ubifs_assert(offs
>= 0 && offs
<= c
->leb_size
);
581 ubifs_assert(offs
% c
->min_io_size
== 0 && !(offs
& 7));
582 ubifs_assert(lnum
!= wbuf
->lnum
);
583 ubifs_assert(wbuf
->used
== 0);
585 spin_lock(&wbuf
->lock
);
588 if (c
->leb_size
- wbuf
->offs
< c
->max_write_size
)
589 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
590 else if (wbuf
->offs
& (c
->max_write_size
- 1))
591 wbuf
->size
= ALIGN(wbuf
->offs
, c
->max_write_size
) - wbuf
->offs
;
593 wbuf
->size
= c
->max_write_size
;
594 wbuf
->avail
= wbuf
->size
;
596 spin_unlock(&wbuf
->lock
);
602 * ubifs_bg_wbufs_sync - synchronize write-buffers.
603 * @c: UBIFS file-system description object
605 * This function is called by background thread to synchronize write-buffers.
606 * Returns zero in case of success and a negative error code in case of
609 int ubifs_bg_wbufs_sync(struct ubifs_info
*c
)
613 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
614 if (!c
->need_wbuf_sync
)
616 c
->need_wbuf_sync
= 0;
623 dbg_io("synchronize");
624 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
625 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
630 * If the mutex is locked then wbuf is being changed, so
631 * synchronization is not necessary.
633 if (mutex_is_locked(&wbuf
->io_mutex
))
636 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
637 if (!wbuf
->need_sync
) {
638 mutex_unlock(&wbuf
->io_mutex
);
642 err
= ubifs_wbuf_sync_nolock(wbuf
);
643 mutex_unlock(&wbuf
->io_mutex
);
645 ubifs_err(c
, "cannot sync write-buffer, error %d", err
);
646 ubifs_ro_mode(c
, err
);
654 /* Cancel all timers to prevent repeated errors */
655 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
656 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
658 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
659 cancel_wbuf_timer_nolock(wbuf
);
660 mutex_unlock(&wbuf
->io_mutex
);
666 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
667 * @wbuf: write-buffer
668 * @buf: node to write
671 * This function writes data to flash via write-buffer @wbuf. This means that
672 * the last piece of the node won't reach the flash media immediately if it
673 * does not take whole max. write unit (@c->max_write_size). Instead, the node
674 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
675 * because more data are appended to the write-buffer).
677 * This function returns zero in case of success and a negative error code in
678 * case of failure. If the node cannot be written because there is no more
679 * space in this logical eraseblock, %-ENOSPC is returned.
681 int ubifs_wbuf_write_nolock(struct ubifs_wbuf
*wbuf
, void *buf
, int len
)
683 struct ubifs_info
*c
= wbuf
->c
;
684 int err
, written
, n
, aligned_len
= ALIGN(len
, 8);
686 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len
,
687 dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
),
688 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
);
689 ubifs_assert(len
> 0 && wbuf
->lnum
>= 0 && wbuf
->lnum
< c
->leb_cnt
);
690 ubifs_assert(wbuf
->offs
>= 0 && wbuf
->offs
% c
->min_io_size
== 0);
691 ubifs_assert(!(wbuf
->offs
& 7) && wbuf
->offs
<= c
->leb_size
);
692 ubifs_assert(wbuf
->avail
> 0 && wbuf
->avail
<= wbuf
->size
);
693 ubifs_assert(wbuf
->size
>= c
->min_io_size
);
694 ubifs_assert(wbuf
->size
<= c
->max_write_size
);
695 ubifs_assert(wbuf
->size
% c
->min_io_size
== 0);
696 ubifs_assert(mutex_is_locked(&wbuf
->io_mutex
));
697 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
698 ubifs_assert(!c
->space_fixup
);
699 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
700 ubifs_assert(!((wbuf
->offs
+ wbuf
->size
) % c
->max_write_size
));
702 if (c
->leb_size
- wbuf
->offs
- wbuf
->used
< aligned_len
) {
707 cancel_wbuf_timer_nolock(wbuf
);
712 if (aligned_len
<= wbuf
->avail
) {
714 * The node is not very large and fits entirely within
717 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, len
);
719 if (aligned_len
== wbuf
->avail
) {
720 dbg_io("flush jhead %s wbuf to LEB %d:%d",
721 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
);
722 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
,
723 wbuf
->offs
, wbuf
->size
);
727 spin_lock(&wbuf
->lock
);
728 wbuf
->offs
+= wbuf
->size
;
729 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
730 wbuf
->size
= c
->max_write_size
;
732 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
733 wbuf
->avail
= wbuf
->size
;
736 spin_unlock(&wbuf
->lock
);
738 spin_lock(&wbuf
->lock
);
739 wbuf
->avail
-= aligned_len
;
740 wbuf
->used
+= aligned_len
;
741 spin_unlock(&wbuf
->lock
);
751 * The node is large enough and does not fit entirely within
752 * current available space. We have to fill and flush
753 * write-buffer and switch to the next max. write unit.
755 dbg_io("flush jhead %s wbuf to LEB %d:%d",
756 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
);
757 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, wbuf
->avail
);
758 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
763 wbuf
->offs
+= wbuf
->size
;
765 aligned_len
-= wbuf
->avail
;
766 written
+= wbuf
->avail
;
767 } else if (wbuf
->offs
& (c
->max_write_size
- 1)) {
769 * The write-buffer offset is not aligned to
770 * @c->max_write_size and @wbuf->size is less than
771 * @c->max_write_size. Write @wbuf->size bytes to make sure the
772 * following writes are done in optimal @c->max_write_size
775 dbg_io("write %d bytes to LEB %d:%d",
776 wbuf
->size
, wbuf
->lnum
, wbuf
->offs
);
777 err
= ubifs_leb_write(c
, wbuf
->lnum
, buf
, wbuf
->offs
,
782 wbuf
->offs
+= wbuf
->size
;
784 aligned_len
-= wbuf
->size
;
785 written
+= wbuf
->size
;
789 * The remaining data may take more whole max. write units, so write the
790 * remains multiple to max. write unit size directly to the flash media.
791 * We align node length to 8-byte boundary because we anyway flash wbuf
792 * if the remaining space is less than 8 bytes.
794 n
= aligned_len
>> c
->max_write_shift
;
796 n
<<= c
->max_write_shift
;
797 dbg_io("write %d bytes to LEB %d:%d", n
, wbuf
->lnum
,
799 err
= ubifs_leb_write(c
, wbuf
->lnum
, buf
+ written
,
809 spin_lock(&wbuf
->lock
);
812 * And now we have what's left and what does not take whole
813 * max. write unit, so write it to the write-buffer and we are
816 memcpy(wbuf
->buf
, buf
+ written
, len
);
818 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
819 wbuf
->size
= c
->max_write_size
;
821 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
822 wbuf
->avail
= wbuf
->size
- aligned_len
;
823 wbuf
->used
= aligned_len
;
825 spin_unlock(&wbuf
->lock
);
828 if (wbuf
->sync_callback
) {
829 int free
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
831 err
= wbuf
->sync_callback(c
, wbuf
->lnum
, free
, 0);
837 new_wbuf_timer_nolock(wbuf
);
842 ubifs_err(c
, "cannot write %d bytes to LEB %d:%d, error %d",
843 len
, wbuf
->lnum
, wbuf
->offs
, err
);
844 ubifs_dump_node(c
, buf
);
846 ubifs_dump_leb(c
, wbuf
->lnum
);
851 * ubifs_write_node - write node to the media.
852 * @c: UBIFS file-system description object
853 * @buf: the node to write
855 * @lnum: logical eraseblock number
856 * @offs: offset within the logical eraseblock
858 * This function automatically fills node magic number, assigns sequence
859 * number, and calculates node CRC checksum. The length of the @buf buffer has
860 * to be aligned to the minimal I/O unit size. This function automatically
861 * appends padding node and padding bytes if needed. Returns zero in case of
862 * success and a negative error code in case of failure.
864 int ubifs_write_node(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
867 int err
, buf_len
= ALIGN(len
, c
->min_io_size
);
869 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
870 lnum
, offs
, dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), len
,
872 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
873 ubifs_assert(offs
% c
->min_io_size
== 0 && offs
< c
->leb_size
);
874 ubifs_assert(!c
->ro_media
&& !c
->ro_mount
);
875 ubifs_assert(!c
->space_fixup
);
880 ubifs_prepare_node(c
, buf
, len
, 1);
881 err
= ubifs_leb_write(c
, lnum
, buf
, offs
, buf_len
);
883 ubifs_dump_node(c
, buf
);
889 * ubifs_read_node_wbuf - read node from the media or write-buffer.
890 * @wbuf: wbuf to check for un-written data
891 * @buf: buffer to read to
894 * @lnum: logical eraseblock number
895 * @offs: offset within the logical eraseblock
897 * This function reads a node of known type and length, checks it and stores
898 * in @buf. If the node partially or fully sits in the write-buffer, this
899 * function takes data from the buffer, otherwise it reads the flash media.
900 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
901 * error code in case of failure.
903 int ubifs_read_node_wbuf(struct ubifs_wbuf
*wbuf
, void *buf
, int type
, int len
,
906 const struct ubifs_info
*c
= wbuf
->c
;
907 int err
, rlen
, overlap
;
908 struct ubifs_ch
*ch
= buf
;
910 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum
, offs
,
911 dbg_ntype(type
), len
, dbg_jhead(wbuf
->jhead
));
912 ubifs_assert(wbuf
&& lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
913 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
914 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
916 spin_lock(&wbuf
->lock
);
917 overlap
= (lnum
== wbuf
->lnum
&& offs
+ len
> wbuf
->offs
);
919 /* We may safely unlock the write-buffer and read the data */
920 spin_unlock(&wbuf
->lock
);
921 return ubifs_read_node(c
, buf
, type
, len
, lnum
, offs
);
924 /* Don't read under wbuf */
925 rlen
= wbuf
->offs
- offs
;
929 /* Copy the rest from the write-buffer */
930 memcpy(buf
+ rlen
, wbuf
->buf
+ offs
+ rlen
- wbuf
->offs
, len
- rlen
);
931 spin_unlock(&wbuf
->lock
);
934 /* Read everything that goes before write-buffer */
935 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, rlen
, 0);
936 if (err
&& err
!= -EBADMSG
)
940 if (type
!= ch
->node_type
) {
941 ubifs_err(c
, "bad node type (%d but expected %d)",
942 ch
->node_type
, type
);
946 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
948 ubifs_err(c
, "expected node type %d", type
);
952 rlen
= le32_to_cpu(ch
->len
);
954 ubifs_err(c
, "bad node length %d, expected %d", rlen
, len
);
961 ubifs_err(c
, "bad node at LEB %d:%d", lnum
, offs
);
962 ubifs_dump_node(c
, buf
);
968 * ubifs_read_node - read node.
969 * @c: UBIFS file-system description object
970 * @buf: buffer to read to
972 * @len: node length (not aligned)
973 * @lnum: logical eraseblock number
974 * @offs: offset within the logical eraseblock
976 * This function reads a node of known type and and length, checks it and
977 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
978 * and a negative error code in case of failure.
980 int ubifs_read_node(const struct ubifs_info
*c
, void *buf
, int type
, int len
,
984 struct ubifs_ch
*ch
= buf
;
986 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
987 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
988 ubifs_assert(len
>= UBIFS_CH_SZ
&& offs
+ len
<= c
->leb_size
);
989 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
990 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
992 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, len
, 0);
993 if (err
&& err
!= -EBADMSG
)
996 if (type
!= ch
->node_type
) {
997 ubifs_errc(c
, "bad node type (%d but expected %d)",
998 ch
->node_type
, type
);
1002 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
1004 ubifs_errc(c
, "expected node type %d", type
);
1008 l
= le32_to_cpu(ch
->len
);
1010 ubifs_errc(c
, "bad node length %d, expected %d", l
, len
);
1017 ubifs_errc(c
, "bad node at LEB %d:%d, LEB mapping status %d", lnum
,
1018 offs
, ubi_is_mapped(c
->ubi
, lnum
));
1020 ubifs_dump_node(c
, buf
);
1027 * ubifs_wbuf_init - initialize write-buffer.
1028 * @c: UBIFS file-system description object
1029 * @wbuf: write-buffer to initialize
1031 * This function initializes write-buffer. Returns zero in case of success
1032 * %-ENOMEM in case of failure.
1034 int ubifs_wbuf_init(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
1038 wbuf
->buf
= kmalloc(c
->max_write_size
, GFP_KERNEL
);
1042 size
= (c
->max_write_size
/ UBIFS_CH_SZ
+ 1) * sizeof(ino_t
);
1043 wbuf
->inodes
= kmalloc(size
, GFP_KERNEL
);
1044 if (!wbuf
->inodes
) {
1051 wbuf
->lnum
= wbuf
->offs
= -1;
1053 * If the LEB starts at the max. write size aligned address, then
1054 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1055 * set it to something smaller so that it ends at the closest max.
1056 * write size boundary.
1058 size
= c
->max_write_size
- (c
->leb_start
% c
->max_write_size
);
1059 wbuf
->avail
= wbuf
->size
= size
;
1060 wbuf
->sync_callback
= NULL
;
1061 mutex_init(&wbuf
->io_mutex
);
1062 spin_lock_init(&wbuf
->lock
);
1066 hrtimer_init(&wbuf
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1067 wbuf
->timer
.function
= wbuf_timer_callback_nolock
;
1072 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1073 * @wbuf: the write-buffer where to add
1074 * @inum: the inode number
1076 * This function adds an inode number to the inode array of the write-buffer.
1078 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf
*wbuf
, ino_t inum
)
1081 /* NOR flash or something similar */
1084 spin_lock(&wbuf
->lock
);
1086 wbuf
->inodes
[wbuf
->next_ino
++] = inum
;
1087 spin_unlock(&wbuf
->lock
);
1091 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1092 * @wbuf: the write-buffer
1093 * @inum: the inode number
1095 * This function returns with %1 if the write-buffer contains some data from the
1096 * given inode otherwise it returns with %0.
1098 static int wbuf_has_ino(struct ubifs_wbuf
*wbuf
, ino_t inum
)
1102 spin_lock(&wbuf
->lock
);
1103 for (i
= 0; i
< wbuf
->next_ino
; i
++)
1104 if (inum
== wbuf
->inodes
[i
]) {
1108 spin_unlock(&wbuf
->lock
);
1114 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1115 * @c: UBIFS file-system description object
1116 * @inode: inode to synchronize
1118 * This function synchronizes write-buffers which contain nodes belonging to
1119 * @inode. Returns zero in case of success and a negative error code in case of
1122 int ubifs_sync_wbufs_by_inode(struct ubifs_info
*c
, struct inode
*inode
)
1126 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1127 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
1131 * GC head is special, do not look at it. Even if the
1132 * head contains something related to this inode, it is
1133 * a _copy_ of corresponding on-flash node which sits
1138 if (!wbuf_has_ino(wbuf
, inode
->i_ino
))
1141 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
1142 if (wbuf_has_ino(wbuf
, inode
->i_ino
))
1143 err
= ubifs_wbuf_sync_nolock(wbuf
);
1144 mutex_unlock(&wbuf
->io_mutex
);
1147 ubifs_ro_mode(c
, err
);