2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright 2004-2011 Red Hat, Inc.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/dlm.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/gfs2_ondisk.h>
23 #include "trace_gfs2.h"
25 extern struct workqueue_struct
*gfs2_control_wq
;
28 * gfs2_update_stats - Update time based stats
29 * @mv: Pointer to mean/variance structure to update
30 * @sample: New data to include
32 * @delta is the difference between the current rtt sample and the
33 * running average srtt. We add 1/8 of that to the srtt in order to
34 * update the current srtt estimate. The varience estimate is a bit
35 * more complicated. We subtract the abs value of the @delta from
36 * the current variance estimate and add 1/4 of that to the running
39 * Note that the index points at the array entry containing the smoothed
40 * mean value, and the variance is always in the following entry
42 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
43 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
44 * they are not scaled fixed point.
47 static inline void gfs2_update_stats(struct gfs2_lkstats
*s
, unsigned index
,
50 s64 delta
= sample
- s
->stats
[index
];
51 s
->stats
[index
] += (delta
>> 3);
53 s
->stats
[index
] += ((abs64(delta
) - s
->stats
[index
]) >> 2);
57 * gfs2_update_reply_times - Update locking statistics
58 * @gl: The glock to update
60 * This assumes that gl->gl_dstamp has been set earlier.
62 * The rtt (lock round trip time) is an estimate of the time
63 * taken to perform a dlm lock request. We update it on each
66 * The blocking flag is set on the glock for all dlm requests
67 * which may potentially block due to lock requests from other nodes.
68 * DLM requests where the current lock state is exclusive, the
69 * requested state is null (or unlocked) or where the TRY or
70 * TRY_1CB flags are set are classified as non-blocking. All
71 * other DLM requests are counted as (potentially) blocking.
73 static inline void gfs2_update_reply_times(struct gfs2_glock
*gl
)
75 struct gfs2_pcpu_lkstats
*lks
;
76 const unsigned gltype
= gl
->gl_name
.ln_type
;
77 unsigned index
= test_bit(GLF_BLOCKING
, &gl
->gl_flags
) ?
78 GFS2_LKS_SRTTB
: GFS2_LKS_SRTT
;
82 rtt
= ktime_to_ns(ktime_sub(ktime_get_real(), gl
->gl_dstamp
));
83 lks
= this_cpu_ptr(gl
->gl_sbd
->sd_lkstats
);
84 gfs2_update_stats(&gl
->gl_stats
, index
, rtt
); /* Local */
85 gfs2_update_stats(&lks
->lkstats
[gltype
], index
, rtt
); /* Global */
88 trace_gfs2_glock_lock_time(gl
, rtt
);
92 * gfs2_update_request_times - Update locking statistics
93 * @gl: The glock to update
95 * The irt (lock inter-request times) measures the average time
96 * between requests to the dlm. It is updated immediately before
100 static inline void gfs2_update_request_times(struct gfs2_glock
*gl
)
102 struct gfs2_pcpu_lkstats
*lks
;
103 const unsigned gltype
= gl
->gl_name
.ln_type
;
108 dstamp
= gl
->gl_dstamp
;
109 gl
->gl_dstamp
= ktime_get_real();
110 irt
= ktime_to_ns(ktime_sub(gl
->gl_dstamp
, dstamp
));
111 lks
= this_cpu_ptr(gl
->gl_sbd
->sd_lkstats
);
112 gfs2_update_stats(&gl
->gl_stats
, GFS2_LKS_SIRT
, irt
); /* Local */
113 gfs2_update_stats(&lks
->lkstats
[gltype
], GFS2_LKS_SIRT
, irt
); /* Global */
117 static void gdlm_ast(void *arg
)
119 struct gfs2_glock
*gl
= arg
;
120 unsigned ret
= gl
->gl_state
;
122 gfs2_update_reply_times(gl
);
123 BUG_ON(gl
->gl_lksb
.sb_flags
& DLM_SBF_DEMOTED
);
125 if ((gl
->gl_lksb
.sb_flags
& DLM_SBF_VALNOTVALID
) && gl
->gl_lksb
.sb_lvbptr
)
126 memset(gl
->gl_lksb
.sb_lvbptr
, 0, GDLM_LVB_SIZE
);
128 switch (gl
->gl_lksb
.sb_status
) {
129 case -DLM_EUNLOCK
: /* Unlocked, so glock can be freed */
132 case -DLM_ECANCEL
: /* Cancel while getting lock */
133 ret
|= LM_OUT_CANCELED
;
135 case -EAGAIN
: /* Try lock fails */
136 case -EDEADLK
: /* Deadlock detected */
138 case -ETIMEDOUT
: /* Canceled due to timeout */
141 case 0: /* Success */
143 default: /* Something unexpected */
148 if (gl
->gl_lksb
.sb_flags
& DLM_SBF_ALTMODE
) {
149 if (gl
->gl_req
== LM_ST_SHARED
)
150 ret
= LM_ST_DEFERRED
;
151 else if (gl
->gl_req
== LM_ST_DEFERRED
)
157 set_bit(GLF_INITIAL
, &gl
->gl_flags
);
158 gfs2_glock_complete(gl
, ret
);
161 if (!test_bit(GLF_INITIAL
, &gl
->gl_flags
))
162 gl
->gl_lksb
.sb_lkid
= 0;
163 gfs2_glock_complete(gl
, ret
);
166 static void gdlm_bast(void *arg
, int mode
)
168 struct gfs2_glock
*gl
= arg
;
172 gfs2_glock_cb(gl
, LM_ST_UNLOCKED
);
175 gfs2_glock_cb(gl
, LM_ST_DEFERRED
);
178 gfs2_glock_cb(gl
, LM_ST_SHARED
);
181 pr_err("unknown bast mode %d\n", mode
);
186 /* convert gfs lock-state to dlm lock-mode */
188 static int make_mode(const unsigned int lmstate
)
193 case LM_ST_EXCLUSIVE
:
200 pr_err("unknown LM state %d\n", lmstate
);
205 static u32
make_flags(struct gfs2_glock
*gl
, const unsigned int gfs_flags
,
210 if (gl
->gl_lksb
.sb_lvbptr
)
211 lkf
|= DLM_LKF_VALBLK
;
213 if (gfs_flags
& LM_FLAG_TRY
)
214 lkf
|= DLM_LKF_NOQUEUE
;
216 if (gfs_flags
& LM_FLAG_TRY_1CB
) {
217 lkf
|= DLM_LKF_NOQUEUE
;
218 lkf
|= DLM_LKF_NOQUEUEBAST
;
221 if (gfs_flags
& LM_FLAG_PRIORITY
) {
222 lkf
|= DLM_LKF_NOORDER
;
223 lkf
|= DLM_LKF_HEADQUE
;
226 if (gfs_flags
& LM_FLAG_ANY
) {
227 if (req
== DLM_LOCK_PR
)
228 lkf
|= DLM_LKF_ALTCW
;
229 else if (req
== DLM_LOCK_CW
)
230 lkf
|= DLM_LKF_ALTPR
;
235 if (gl
->gl_lksb
.sb_lkid
!= 0) {
236 lkf
|= DLM_LKF_CONVERT
;
237 if (test_bit(GLF_BLOCKING
, &gl
->gl_flags
))
238 lkf
|= DLM_LKF_QUECVT
;
244 static void gfs2_reverse_hex(char *c
, u64 value
)
248 *c
-- = hex_asc
[value
& 0x0f];
253 static int gdlm_lock(struct gfs2_glock
*gl
, unsigned int req_state
,
256 struct lm_lockstruct
*ls
= &gl
->gl_sbd
->sd_lockstruct
;
259 char strname
[GDLM_STRNAME_BYTES
] = "";
261 req
= make_mode(req_state
);
262 lkf
= make_flags(gl
, flags
, req
);
263 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
264 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
265 if (gl
->gl_lksb
.sb_lkid
) {
266 gfs2_update_request_times(gl
);
268 memset(strname
, ' ', GDLM_STRNAME_BYTES
- 1);
269 strname
[GDLM_STRNAME_BYTES
- 1] = '\0';
270 gfs2_reverse_hex(strname
+ 7, gl
->gl_name
.ln_type
);
271 gfs2_reverse_hex(strname
+ 23, gl
->gl_name
.ln_number
);
272 gl
->gl_dstamp
= ktime_get_real();
275 * Submit the actual lock request.
278 return dlm_lock(ls
->ls_dlm
, req
, &gl
->gl_lksb
, lkf
, strname
,
279 GDLM_STRNAME_BYTES
- 1, 0, gdlm_ast
, gl
, gdlm_bast
);
282 static void gdlm_put_lock(struct gfs2_glock
*gl
)
284 struct gfs2_sbd
*sdp
= gl
->gl_sbd
;
285 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
286 int lvb_needs_unlock
= 0;
289 if (gl
->gl_lksb
.sb_lkid
== 0) {
294 clear_bit(GLF_BLOCKING
, &gl
->gl_flags
);
295 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
296 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
297 gfs2_update_request_times(gl
);
299 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
301 if (gl
->gl_lksb
.sb_lvbptr
&& (gl
->gl_state
== LM_ST_EXCLUSIVE
))
302 lvb_needs_unlock
= 1;
304 if (test_bit(SDF_SKIP_DLM_UNLOCK
, &sdp
->sd_flags
) &&
310 error
= dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_VALBLK
,
313 pr_err("gdlm_unlock %x,%llx err=%d\n",
315 (unsigned long long)gl
->gl_name
.ln_number
, error
);
320 static void gdlm_cancel(struct gfs2_glock
*gl
)
322 struct lm_lockstruct
*ls
= &gl
->gl_sbd
->sd_lockstruct
;
323 dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_CANCEL
, NULL
, gl
);
327 * dlm/gfs2 recovery coordination using dlm_recover callbacks
329 * 1. dlm_controld sees lockspace members change
330 * 2. dlm_controld blocks dlm-kernel locking activity
331 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
332 * 4. dlm_controld starts and finishes its own user level recovery
333 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
334 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
335 * 7. dlm_recoverd does its own lock recovery
336 * 8. dlm_recoverd unblocks dlm-kernel locking activity
337 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
338 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
339 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
340 * 12. gfs2_recover dequeues and recovers journals of failed nodes
341 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
342 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
343 * 15. gfs2_control unblocks normal locking when all journals are recovered
345 * - failures during recovery
347 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
348 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
349 * recovering for a prior failure. gfs2_control needs a way to detect
350 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
351 * the recover_block and recover_start values.
353 * recover_done() provides a new lockspace generation number each time it
354 * is called (step 9). This generation number is saved as recover_start.
355 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
356 * recover_block = recover_start. So, while recover_block is equal to
357 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
358 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
360 * - more specific gfs2 steps in sequence above
362 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
363 * 6. recover_slot records any failed jids (maybe none)
364 * 9. recover_done sets recover_start = new generation number
365 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
366 * 12. gfs2_recover does journal recoveries for failed jids identified above
367 * 14. gfs2_control clears control_lock lvb bits for recovered jids
368 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
369 * again) then do nothing, otherwise if recover_start > recover_block
370 * then clear BLOCK_LOCKS.
372 * - parallel recovery steps across all nodes
374 * All nodes attempt to update the control_lock lvb with the new generation
375 * number and jid bits, but only the first to get the control_lock EX will
376 * do so; others will see that it's already done (lvb already contains new
377 * generation number.)
379 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
380 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
381 * . One node gets control_lock first and writes the lvb, others see it's done
382 * . All nodes attempt to recover jids for which they see control_lock bits set
383 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
384 * . All nodes will eventually see all lvb bits clear and unblock locks
386 * - is there a problem with clearing an lvb bit that should be set
387 * and missing a journal recovery?
390 * 2. lvb bit set for step 1
391 * 3. jid recovered for step 1
392 * 4. jid taken again (new mount)
393 * 5. jid fails (for step 4)
394 * 6. lvb bit set for step 5 (will already be set)
395 * 7. lvb bit cleared for step 3
397 * This is not a problem because the failure in step 5 does not
398 * require recovery, because the mount in step 4 could not have
399 * progressed far enough to unblock locks and access the fs. The
400 * control_mount() function waits for all recoveries to be complete
401 * for the latest lockspace generation before ever unblocking locks
402 * and returning. The mount in step 4 waits until the recovery in
405 * - special case of first mounter: first node to mount the fs
407 * The first node to mount a gfs2 fs needs to check all the journals
408 * and recover any that need recovery before other nodes are allowed
409 * to mount the fs. (Others may begin mounting, but they must wait
410 * for the first mounter to be done before taking locks on the fs
411 * or accessing the fs.) This has two parts:
413 * 1. The mounted_lock tells a node it's the first to mount the fs.
414 * Each node holds the mounted_lock in PR while it's mounted.
415 * Each node tries to acquire the mounted_lock in EX when it mounts.
416 * If a node is granted the mounted_lock EX it means there are no
417 * other mounted nodes (no PR locks exist), and it is the first mounter.
418 * The mounted_lock is demoted to PR when first recovery is done, so
419 * others will fail to get an EX lock, but will get a PR lock.
421 * 2. The control_lock blocks others in control_mount() while the first
422 * mounter is doing first mount recovery of all journals.
423 * A mounting node needs to acquire control_lock in EX mode before
424 * it can proceed. The first mounter holds control_lock in EX while doing
425 * the first mount recovery, blocking mounts from other nodes, then demotes
426 * control_lock to NL when it's done (others_may_mount/first_done),
427 * allowing other nodes to continue mounting.
430 * control_lock EX/NOQUEUE success
431 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
433 * do first mounter recovery
434 * mounted_lock EX->PR
435 * control_lock EX->NL, write lvb generation
438 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
439 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
440 * mounted_lock PR/NOQUEUE success
441 * read lvb generation
442 * control_lock EX->NL
445 * - mount during recovery
447 * If a node mounts while others are doing recovery (not first mounter),
448 * the mounting node will get its initial recover_done() callback without
449 * having seen any previous failures/callbacks.
451 * It must wait for all recoveries preceding its mount to be finished
452 * before it unblocks locks. It does this by repeating the "other mounter"
453 * steps above until the lvb generation number is >= its mount generation
454 * number (from initial recover_done) and all lvb bits are clear.
456 * - control_lock lvb format
458 * 4 bytes generation number: the latest dlm lockspace generation number
459 * from recover_done callback. Indicates the jid bitmap has been updated
460 * to reflect all slot failures through that generation.
462 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
463 * that jid N needs recovery.
466 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
468 static void control_lvb_read(struct lm_lockstruct
*ls
, uint32_t *lvb_gen
,
472 memcpy(lvb_bits
, ls
->ls_control_lvb
, GDLM_LVB_SIZE
);
473 memcpy(&gen
, lvb_bits
, sizeof(__le32
));
474 *lvb_gen
= le32_to_cpu(gen
);
477 static void control_lvb_write(struct lm_lockstruct
*ls
, uint32_t lvb_gen
,
481 memcpy(ls
->ls_control_lvb
, lvb_bits
, GDLM_LVB_SIZE
);
482 gen
= cpu_to_le32(lvb_gen
);
483 memcpy(ls
->ls_control_lvb
, &gen
, sizeof(__le32
));
486 static int all_jid_bits_clear(char *lvb
)
488 return !memchr_inv(lvb
+ JID_BITMAP_OFFSET
, 0,
489 GDLM_LVB_SIZE
- JID_BITMAP_OFFSET
);
492 static void sync_wait_cb(void *arg
)
494 struct lm_lockstruct
*ls
= arg
;
495 complete(&ls
->ls_sync_wait
);
498 static int sync_unlock(struct gfs2_sbd
*sdp
, struct dlm_lksb
*lksb
, char *name
)
500 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
503 error
= dlm_unlock(ls
->ls_dlm
, lksb
->sb_lkid
, 0, lksb
, ls
);
505 fs_err(sdp
, "%s lkid %x error %d\n",
506 name
, lksb
->sb_lkid
, error
);
510 wait_for_completion(&ls
->ls_sync_wait
);
512 if (lksb
->sb_status
!= -DLM_EUNLOCK
) {
513 fs_err(sdp
, "%s lkid %x status %d\n",
514 name
, lksb
->sb_lkid
, lksb
->sb_status
);
520 static int sync_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
,
521 unsigned int num
, struct dlm_lksb
*lksb
, char *name
)
523 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
524 char strname
[GDLM_STRNAME_BYTES
];
527 memset(strname
, 0, GDLM_STRNAME_BYTES
);
528 snprintf(strname
, GDLM_STRNAME_BYTES
, "%8x%16x", LM_TYPE_NONDISK
, num
);
530 error
= dlm_lock(ls
->ls_dlm
, mode
, lksb
, flags
,
531 strname
, GDLM_STRNAME_BYTES
- 1,
532 0, sync_wait_cb
, ls
, NULL
);
534 fs_err(sdp
, "%s lkid %x flags %x mode %d error %d\n",
535 name
, lksb
->sb_lkid
, flags
, mode
, error
);
539 wait_for_completion(&ls
->ls_sync_wait
);
541 status
= lksb
->sb_status
;
543 if (status
&& status
!= -EAGAIN
) {
544 fs_err(sdp
, "%s lkid %x flags %x mode %d status %d\n",
545 name
, lksb
->sb_lkid
, flags
, mode
, status
);
551 static int mounted_unlock(struct gfs2_sbd
*sdp
)
553 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
554 return sync_unlock(sdp
, &ls
->ls_mounted_lksb
, "mounted_lock");
557 static int mounted_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
559 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
560 return sync_lock(sdp
, mode
, flags
, GFS2_MOUNTED_LOCK
,
561 &ls
->ls_mounted_lksb
, "mounted_lock");
564 static int control_unlock(struct gfs2_sbd
*sdp
)
566 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
567 return sync_unlock(sdp
, &ls
->ls_control_lksb
, "control_lock");
570 static int control_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
572 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
573 return sync_lock(sdp
, mode
, flags
, GFS2_CONTROL_LOCK
,
574 &ls
->ls_control_lksb
, "control_lock");
577 static void gfs2_control_func(struct work_struct
*work
)
579 struct gfs2_sbd
*sdp
= container_of(work
, struct gfs2_sbd
, sd_control_work
.work
);
580 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
581 uint32_t block_gen
, start_gen
, lvb_gen
, flags
;
587 spin_lock(&ls
->ls_recover_spin
);
589 * No MOUNT_DONE means we're still mounting; control_mount()
590 * will set this flag, after which this thread will take over
591 * all further clearing of BLOCK_LOCKS.
593 * FIRST_MOUNT means this node is doing first mounter recovery,
594 * for which recovery control is handled by
595 * control_mount()/control_first_done(), not this thread.
597 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
598 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
599 spin_unlock(&ls
->ls_recover_spin
);
602 block_gen
= ls
->ls_recover_block
;
603 start_gen
= ls
->ls_recover_start
;
604 spin_unlock(&ls
->ls_recover_spin
);
607 * Equal block_gen and start_gen implies we are between
608 * recover_prep and recover_done callbacks, which means
609 * dlm recovery is in progress and dlm locking is blocked.
610 * There's no point trying to do any work until recover_done.
613 if (block_gen
== start_gen
)
617 * Propagate recover_submit[] and recover_result[] to lvb:
618 * dlm_recoverd adds to recover_submit[] jids needing recovery
619 * gfs2_recover adds to recover_result[] journal recovery results
621 * set lvb bit for jids in recover_submit[] if the lvb has not
622 * yet been updated for the generation of the failure
624 * clear lvb bit for jids in recover_result[] if the result of
625 * the journal recovery is SUCCESS
628 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
630 fs_err(sdp
, "control lock EX error %d\n", error
);
634 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
636 spin_lock(&ls
->ls_recover_spin
);
637 if (block_gen
!= ls
->ls_recover_block
||
638 start_gen
!= ls
->ls_recover_start
) {
639 fs_info(sdp
, "recover generation %u block1 %u %u\n",
640 start_gen
, block_gen
, ls
->ls_recover_block
);
641 spin_unlock(&ls
->ls_recover_spin
);
642 control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
646 recover_size
= ls
->ls_recover_size
;
648 if (lvb_gen
<= start_gen
) {
650 * Clear lvb bits for jids we've successfully recovered.
651 * Because all nodes attempt to recover failed journals,
652 * a journal can be recovered multiple times successfully
653 * in succession. Only the first will really do recovery,
654 * the others find it clean, but still report a successful
655 * recovery. So, another node may have already recovered
656 * the jid and cleared the lvb bit for it.
658 for (i
= 0; i
< recover_size
; i
++) {
659 if (ls
->ls_recover_result
[i
] != LM_RD_SUCCESS
)
662 ls
->ls_recover_result
[i
] = 0;
664 if (!test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
))
667 __clear_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
672 if (lvb_gen
== start_gen
) {
674 * Failed slots before start_gen are already set in lvb.
676 for (i
= 0; i
< recover_size
; i
++) {
677 if (!ls
->ls_recover_submit
[i
])
679 if (ls
->ls_recover_submit
[i
] < lvb_gen
)
680 ls
->ls_recover_submit
[i
] = 0;
682 } else if (lvb_gen
< start_gen
) {
684 * Failed slots before start_gen are not yet set in lvb.
686 for (i
= 0; i
< recover_size
; i
++) {
687 if (!ls
->ls_recover_submit
[i
])
689 if (ls
->ls_recover_submit
[i
] < start_gen
) {
690 ls
->ls_recover_submit
[i
] = 0;
691 __set_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
694 /* even if there are no bits to set, we need to write the
695 latest generation to the lvb */
699 * we should be getting a recover_done() for lvb_gen soon
702 spin_unlock(&ls
->ls_recover_spin
);
705 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
706 flags
= DLM_LKF_CONVERT
| DLM_LKF_VALBLK
;
708 flags
= DLM_LKF_CONVERT
;
711 error
= control_lock(sdp
, DLM_LOCK_NL
, flags
);
713 fs_err(sdp
, "control lock NL error %d\n", error
);
718 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
719 * and clear a jid bit in the lvb if the recovery is a success.
720 * Eventually all journals will be recovered, all jid bits will
721 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
724 for (i
= 0; i
< recover_size
; i
++) {
725 if (test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
)) {
726 fs_info(sdp
, "recover generation %u jid %d\n",
728 gfs2_recover_set(sdp
, i
);
736 * No more jid bits set in lvb, all recovery is done, unblock locks
737 * (unless a new recover_prep callback has occured blocking locks
738 * again while working above)
741 spin_lock(&ls
->ls_recover_spin
);
742 if (ls
->ls_recover_block
== block_gen
&&
743 ls
->ls_recover_start
== start_gen
) {
744 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
745 spin_unlock(&ls
->ls_recover_spin
);
746 fs_info(sdp
, "recover generation %u done\n", start_gen
);
747 gfs2_glock_thaw(sdp
);
749 fs_info(sdp
, "recover generation %u block2 %u %u\n",
750 start_gen
, block_gen
, ls
->ls_recover_block
);
751 spin_unlock(&ls
->ls_recover_spin
);
755 static int control_mount(struct gfs2_sbd
*sdp
)
757 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
758 uint32_t start_gen
, block_gen
, mount_gen
, lvb_gen
;
763 memset(&ls
->ls_mounted_lksb
, 0, sizeof(struct dlm_lksb
));
764 memset(&ls
->ls_control_lksb
, 0, sizeof(struct dlm_lksb
));
765 memset(&ls
->ls_control_lvb
, 0, GDLM_LVB_SIZE
);
766 ls
->ls_control_lksb
.sb_lvbptr
= ls
->ls_control_lvb
;
767 init_completion(&ls
->ls_sync_wait
);
769 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
771 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_VALBLK
);
773 fs_err(sdp
, "control_mount control_lock NL error %d\n", error
);
777 error
= mounted_lock(sdp
, DLM_LOCK_NL
, 0);
779 fs_err(sdp
, "control_mount mounted_lock NL error %d\n", error
);
783 mounted_mode
= DLM_LOCK_NL
;
786 if (retries
++ && signal_pending(current
)) {
792 * We always start with both locks in NL. control_lock is
793 * demoted to NL below so we don't need to do it here.
796 if (mounted_mode
!= DLM_LOCK_NL
) {
797 error
= mounted_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
800 mounted_mode
= DLM_LOCK_NL
;
804 * Other nodes need to do some work in dlm recovery and gfs2_control
805 * before the recover_done and control_lock will be ready for us below.
806 * A delay here is not required but often avoids having to retry.
809 msleep_interruptible(500);
812 * Acquire control_lock in EX and mounted_lock in either EX or PR.
813 * control_lock lvb keeps track of any pending journal recoveries.
814 * mounted_lock indicates if any other nodes have the fs mounted.
817 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
|DLM_LKF_VALBLK
);
818 if (error
== -EAGAIN
) {
821 fs_err(sdp
, "control_mount control_lock EX error %d\n", error
);
825 error
= mounted_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
827 mounted_mode
= DLM_LOCK_EX
;
829 } else if (error
!= -EAGAIN
) {
830 fs_err(sdp
, "control_mount mounted_lock EX error %d\n", error
);
834 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
836 mounted_mode
= DLM_LOCK_PR
;
839 /* not even -EAGAIN should happen here */
840 fs_err(sdp
, "control_mount mounted_lock PR error %d\n", error
);
846 * If we got both locks above in EX, then we're the first mounter.
847 * If not, then we need to wait for the control_lock lvb to be
848 * updated by other mounted nodes to reflect our mount generation.
850 * In simple first mounter cases, first mounter will see zero lvb_gen,
851 * but in cases where all existing nodes leave/fail before mounting
852 * nodes finish control_mount, then all nodes will be mounting and
853 * lvb_gen will be non-zero.
856 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
858 if (lvb_gen
== 0xFFFFFFFF) {
859 /* special value to force mount attempts to fail */
860 fs_err(sdp
, "control_mount control_lock disabled\n");
865 if (mounted_mode
== DLM_LOCK_EX
) {
866 /* first mounter, keep both EX while doing first recovery */
867 spin_lock(&ls
->ls_recover_spin
);
868 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
869 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
870 set_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
871 spin_unlock(&ls
->ls_recover_spin
);
872 fs_info(sdp
, "first mounter control generation %u\n", lvb_gen
);
876 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
881 * We are not first mounter, now we need to wait for the control_lock
882 * lvb generation to be >= the generation from our first recover_done
883 * and all lvb bits to be clear (no pending journal recoveries.)
886 if (!all_jid_bits_clear(ls
->ls_lvb_bits
)) {
887 /* journals need recovery, wait until all are clear */
888 fs_info(sdp
, "control_mount wait for journal recovery\n");
892 spin_lock(&ls
->ls_recover_spin
);
893 block_gen
= ls
->ls_recover_block
;
894 start_gen
= ls
->ls_recover_start
;
895 mount_gen
= ls
->ls_recover_mount
;
897 if (lvb_gen
< mount_gen
) {
898 /* wait for mounted nodes to update control_lock lvb to our
899 generation, which might include new recovery bits set */
900 fs_info(sdp
, "control_mount wait1 block %u start %u mount %u "
901 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
902 lvb_gen
, ls
->ls_recover_flags
);
903 spin_unlock(&ls
->ls_recover_spin
);
907 if (lvb_gen
!= start_gen
) {
908 /* wait for mounted nodes to update control_lock lvb to the
909 latest recovery generation */
910 fs_info(sdp
, "control_mount wait2 block %u start %u mount %u "
911 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
912 lvb_gen
, ls
->ls_recover_flags
);
913 spin_unlock(&ls
->ls_recover_spin
);
917 if (block_gen
== start_gen
) {
918 /* dlm recovery in progress, wait for it to finish */
919 fs_info(sdp
, "control_mount wait3 block %u start %u mount %u "
920 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
921 lvb_gen
, ls
->ls_recover_flags
);
922 spin_unlock(&ls
->ls_recover_spin
);
926 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
927 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
928 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
929 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
930 spin_unlock(&ls
->ls_recover_spin
);
939 static int control_first_done(struct gfs2_sbd
*sdp
)
941 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
942 uint32_t start_gen
, block_gen
;
946 spin_lock(&ls
->ls_recover_spin
);
947 start_gen
= ls
->ls_recover_start
;
948 block_gen
= ls
->ls_recover_block
;
950 if (test_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
) ||
951 !test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
952 !test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
953 /* sanity check, should not happen */
954 fs_err(sdp
, "control_first_done start %u block %u flags %lx\n",
955 start_gen
, block_gen
, ls
->ls_recover_flags
);
956 spin_unlock(&ls
->ls_recover_spin
);
961 if (start_gen
== block_gen
) {
963 * Wait for the end of a dlm recovery cycle to switch from
964 * first mounter recovery. We can ignore any recover_slot
965 * callbacks between the recover_prep and next recover_done
966 * because we are still the first mounter and any failed nodes
967 * have not fully mounted, so they don't need recovery.
969 spin_unlock(&ls
->ls_recover_spin
);
970 fs_info(sdp
, "control_first_done wait gen %u\n", start_gen
);
972 wait_on_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
,
973 TASK_UNINTERRUPTIBLE
);
977 clear_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
978 set_bit(DFL_FIRST_MOUNT_DONE
, &ls
->ls_recover_flags
);
979 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
980 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
981 spin_unlock(&ls
->ls_recover_spin
);
983 memset(ls
->ls_lvb_bits
, 0, GDLM_LVB_SIZE
);
984 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
986 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
);
988 fs_err(sdp
, "control_first_done mounted PR error %d\n", error
);
990 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
992 fs_err(sdp
, "control_first_done control NL error %d\n", error
);
998 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
999 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1000 * gfs2 jids start at 0, so jid = slot - 1)
1003 #define RECOVER_SIZE_INC 16
1005 static int set_recover_size(struct gfs2_sbd
*sdp
, struct dlm_slot
*slots
,
1008 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1009 uint32_t *submit
= NULL
;
1010 uint32_t *result
= NULL
;
1011 uint32_t old_size
, new_size
;
1014 if (!ls
->ls_lvb_bits
) {
1015 ls
->ls_lvb_bits
= kzalloc(GDLM_LVB_SIZE
, GFP_NOFS
);
1016 if (!ls
->ls_lvb_bits
)
1021 for (i
= 0; i
< num_slots
; i
++) {
1022 if (max_jid
< slots
[i
].slot
- 1)
1023 max_jid
= slots
[i
].slot
- 1;
1026 old_size
= ls
->ls_recover_size
;
1028 if (old_size
>= max_jid
+ 1)
1031 new_size
= old_size
+ RECOVER_SIZE_INC
;
1033 submit
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1034 result
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1035 if (!submit
|| !result
) {
1041 spin_lock(&ls
->ls_recover_spin
);
1042 memcpy(submit
, ls
->ls_recover_submit
, old_size
* sizeof(uint32_t));
1043 memcpy(result
, ls
->ls_recover_result
, old_size
* sizeof(uint32_t));
1044 kfree(ls
->ls_recover_submit
);
1045 kfree(ls
->ls_recover_result
);
1046 ls
->ls_recover_submit
= submit
;
1047 ls
->ls_recover_result
= result
;
1048 ls
->ls_recover_size
= new_size
;
1049 spin_unlock(&ls
->ls_recover_spin
);
1053 static void free_recover_size(struct lm_lockstruct
*ls
)
1055 kfree(ls
->ls_lvb_bits
);
1056 kfree(ls
->ls_recover_submit
);
1057 kfree(ls
->ls_recover_result
);
1058 ls
->ls_recover_submit
= NULL
;
1059 ls
->ls_recover_result
= NULL
;
1060 ls
->ls_recover_size
= 0;
1063 /* dlm calls before it does lock recovery */
1065 static void gdlm_recover_prep(void *arg
)
1067 struct gfs2_sbd
*sdp
= arg
;
1068 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1070 spin_lock(&ls
->ls_recover_spin
);
1071 ls
->ls_recover_block
= ls
->ls_recover_start
;
1072 set_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1074 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
1075 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1076 spin_unlock(&ls
->ls_recover_spin
);
1079 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
1080 spin_unlock(&ls
->ls_recover_spin
);
1083 /* dlm calls after recover_prep has been completed on all lockspace members;
1084 identifies slot/jid of failed member */
1086 static void gdlm_recover_slot(void *arg
, struct dlm_slot
*slot
)
1088 struct gfs2_sbd
*sdp
= arg
;
1089 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1090 int jid
= slot
->slot
- 1;
1092 spin_lock(&ls
->ls_recover_spin
);
1093 if (ls
->ls_recover_size
< jid
+ 1) {
1094 fs_err(sdp
, "recover_slot jid %d gen %u short size %d",
1095 jid
, ls
->ls_recover_block
, ls
->ls_recover_size
);
1096 spin_unlock(&ls
->ls_recover_spin
);
1100 if (ls
->ls_recover_submit
[jid
]) {
1101 fs_info(sdp
, "recover_slot jid %d gen %u prev %u\n",
1102 jid
, ls
->ls_recover_block
, ls
->ls_recover_submit
[jid
]);
1104 ls
->ls_recover_submit
[jid
] = ls
->ls_recover_block
;
1105 spin_unlock(&ls
->ls_recover_spin
);
1108 /* dlm calls after recover_slot and after it completes lock recovery */
1110 static void gdlm_recover_done(void *arg
, struct dlm_slot
*slots
, int num_slots
,
1111 int our_slot
, uint32_t generation
)
1113 struct gfs2_sbd
*sdp
= arg
;
1114 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1116 /* ensure the ls jid arrays are large enough */
1117 set_recover_size(sdp
, slots
, num_slots
);
1119 spin_lock(&ls
->ls_recover_spin
);
1120 ls
->ls_recover_start
= generation
;
1122 if (!ls
->ls_recover_mount
) {
1123 ls
->ls_recover_mount
= generation
;
1124 ls
->ls_jid
= our_slot
- 1;
1127 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1128 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
, 0);
1130 clear_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1131 smp_mb__after_atomic();
1132 wake_up_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
);
1133 spin_unlock(&ls
->ls_recover_spin
);
1136 /* gfs2_recover thread has a journal recovery result */
1138 static void gdlm_recovery_result(struct gfs2_sbd
*sdp
, unsigned int jid
,
1139 unsigned int result
)
1141 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1143 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1146 /* don't care about the recovery of own journal during mount */
1147 if (jid
== ls
->ls_jid
)
1150 spin_lock(&ls
->ls_recover_spin
);
1151 if (test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1152 spin_unlock(&ls
->ls_recover_spin
);
1155 if (ls
->ls_recover_size
< jid
+ 1) {
1156 fs_err(sdp
, "recovery_result jid %d short size %d",
1157 jid
, ls
->ls_recover_size
);
1158 spin_unlock(&ls
->ls_recover_spin
);
1162 fs_info(sdp
, "recover jid %d result %s\n", jid
,
1163 result
== LM_RD_GAVEUP
? "busy" : "success");
1165 ls
->ls_recover_result
[jid
] = result
;
1167 /* GAVEUP means another node is recovering the journal; delay our
1168 next attempt to recover it, to give the other node a chance to
1169 finish before trying again */
1171 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1172 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
,
1173 result
== LM_RD_GAVEUP
? HZ
: 0);
1174 spin_unlock(&ls
->ls_recover_spin
);
1177 const struct dlm_lockspace_ops gdlm_lockspace_ops
= {
1178 .recover_prep
= gdlm_recover_prep
,
1179 .recover_slot
= gdlm_recover_slot
,
1180 .recover_done
= gdlm_recover_done
,
1183 static int gdlm_mount(struct gfs2_sbd
*sdp
, const char *table
)
1185 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1186 char cluster
[GFS2_LOCKNAME_LEN
];
1189 int error
, ops_result
;
1192 * initialize everything
1195 INIT_DELAYED_WORK(&sdp
->sd_control_work
, gfs2_control_func
);
1196 spin_lock_init(&ls
->ls_recover_spin
);
1197 ls
->ls_recover_flags
= 0;
1198 ls
->ls_recover_mount
= 0;
1199 ls
->ls_recover_start
= 0;
1200 ls
->ls_recover_block
= 0;
1201 ls
->ls_recover_size
= 0;
1202 ls
->ls_recover_submit
= NULL
;
1203 ls
->ls_recover_result
= NULL
;
1204 ls
->ls_lvb_bits
= NULL
;
1206 error
= set_recover_size(sdp
, NULL
, 0);
1211 * prepare dlm_new_lockspace args
1214 fsname
= strchr(table
, ':');
1216 fs_info(sdp
, "no fsname found\n");
1220 memset(cluster
, 0, sizeof(cluster
));
1221 memcpy(cluster
, table
, strlen(table
) - strlen(fsname
));
1224 flags
= DLM_LSFL_FS
| DLM_LSFL_NEWEXCL
;
1227 * create/join lockspace
1230 error
= dlm_new_lockspace(fsname
, cluster
, flags
, GDLM_LVB_SIZE
,
1231 &gdlm_lockspace_ops
, sdp
, &ops_result
,
1234 fs_err(sdp
, "dlm_new_lockspace error %d\n", error
);
1238 if (ops_result
< 0) {
1240 * dlm does not support ops callbacks,
1241 * old dlm_controld/gfs_controld are used, try without ops.
1243 fs_info(sdp
, "dlm lockspace ops not used\n");
1244 free_recover_size(ls
);
1245 set_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
);
1249 if (!test_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
)) {
1250 fs_err(sdp
, "dlm lockspace ops disallow jid preset\n");
1256 * control_mount() uses control_lock to determine first mounter,
1257 * and for later mounts, waits for any recoveries to be cleared.
1260 error
= control_mount(sdp
);
1262 fs_err(sdp
, "mount control error %d\n", error
);
1266 ls
->ls_first
= !!test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
1267 clear_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
);
1268 smp_mb__after_atomic();
1269 wake_up_bit(&sdp
->sd_flags
, SDF_NOJOURNALID
);
1273 dlm_release_lockspace(ls
->ls_dlm
, 2);
1275 free_recover_size(ls
);
1280 static void gdlm_first_done(struct gfs2_sbd
*sdp
)
1282 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1285 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1288 error
= control_first_done(sdp
);
1290 fs_err(sdp
, "mount first_done error %d\n", error
);
1293 static void gdlm_unmount(struct gfs2_sbd
*sdp
)
1295 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1297 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1300 /* wait for gfs2_control_wq to be done with this mount */
1302 spin_lock(&ls
->ls_recover_spin
);
1303 set_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
);
1304 spin_unlock(&ls
->ls_recover_spin
);
1305 flush_delayed_work(&sdp
->sd_control_work
);
1307 /* mounted_lock and control_lock will be purged in dlm recovery */
1310 dlm_release_lockspace(ls
->ls_dlm
, 2);
1314 free_recover_size(ls
);
1317 static const match_table_t dlm_tokens
= {
1318 { Opt_jid
, "jid=%d"},
1320 { Opt_first
, "first=%d"},
1321 { Opt_nodir
, "nodir=%d"},
1325 const struct lm_lockops gfs2_dlm_ops
= {
1326 .lm_proto_name
= "lock_dlm",
1327 .lm_mount
= gdlm_mount
,
1328 .lm_first_done
= gdlm_first_done
,
1329 .lm_recovery_result
= gdlm_recovery_result
,
1330 .lm_unmount
= gdlm_unmount
,
1331 .lm_put_lock
= gdlm_put_lock
,
1332 .lm_lock
= gdlm_lock
,
1333 .lm_cancel
= gdlm_cancel
,
1334 .lm_tokens
= &dlm_tokens
,