2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
24 * Inode locking rules:
26 * inode->i_lock protects:
27 * inode->i_state, inode->i_hash, __iget()
28 * Inode LRU list locks protect:
29 * inode->i_sb->s_inode_lru, inode->i_lru
30 * inode_sb_list_lock protects:
31 * sb->s_inodes, inode->i_sb_list
32 * bdi->wb.list_lock protects:
33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34 * inode_hash_lock protects:
35 * inode_hashtable, inode->i_hash
41 * Inode LRU list locks
54 static unsigned int i_hash_mask __read_mostly
;
55 static unsigned int i_hash_shift __read_mostly
;
56 static struct hlist_head
*inode_hashtable __read_mostly
;
57 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
59 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_sb_list_lock
);
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
65 const struct address_space_operations empty_aops
= {
67 EXPORT_SYMBOL(empty_aops
);
70 * Statistics gathering..
72 struct inodes_stat_t inodes_stat
;
74 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
75 static DEFINE_PER_CPU(unsigned long, nr_unused
);
77 static struct kmem_cache
*inode_cachep __read_mostly
;
79 static long get_nr_inodes(void)
83 for_each_possible_cpu(i
)
84 sum
+= per_cpu(nr_inodes
, i
);
85 return sum
< 0 ? 0 : sum
;
88 static inline long get_nr_inodes_unused(void)
92 for_each_possible_cpu(i
)
93 sum
+= per_cpu(nr_unused
, i
);
94 return sum
< 0 ? 0 : sum
;
97 long get_nr_dirty_inodes(void)
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty
> 0 ? nr_dirty
: 0;
105 * Handle nr_inode sysctl
108 int proc_nr_inodes(struct ctl_table
*table
, int write
,
109 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
111 inodes_stat
.nr_inodes
= get_nr_inodes();
112 inodes_stat
.nr_unused
= get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
117 static int no_open(struct inode
*inode
, struct file
*file
)
123 * inode_init_always - perform inode structure intialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
130 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
132 static const struct inode_operations empty_iops
;
133 static const struct file_operations no_open_fops
= {.open
= no_open
};
134 struct address_space
*const mapping
= &inode
->i_data
;
137 inode
->i_blkbits
= sb
->s_blocksize_bits
;
139 atomic_set(&inode
->i_count
, 1);
140 inode
->i_op
= &empty_iops
;
141 inode
->i_fop
= &no_open_fops
;
142 inode
->__i_nlink
= 1;
143 inode
->i_opflags
= 0;
144 i_uid_write(inode
, 0);
145 i_gid_write(inode
, 0);
146 atomic_set(&inode
->i_writecount
, 0);
150 inode
->i_generation
= 0;
151 inode
->i_pipe
= NULL
;
152 inode
->i_bdev
= NULL
;
153 inode
->i_cdev
= NULL
;
155 inode
->dirtied_when
= 0;
157 if (security_inode_alloc(inode
))
159 spin_lock_init(&inode
->i_lock
);
160 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
162 mutex_init(&inode
->i_mutex
);
163 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
165 atomic_set(&inode
->i_dio_count
, 0);
167 mapping
->a_ops
= &empty_aops
;
168 mapping
->host
= inode
;
170 atomic_set(&mapping
->i_mmap_writable
, 0);
171 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
172 mapping
->private_data
= NULL
;
173 mapping
->backing_dev_info
= &default_backing_dev_info
;
174 mapping
->writeback_index
= 0;
177 * If the block_device provides a backing_dev_info for client
178 * inodes then use that. Otherwise the inode share the bdev's
182 struct backing_dev_info
*bdi
;
184 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
185 mapping
->backing_dev_info
= bdi
;
187 inode
->i_private
= NULL
;
188 inode
->i_mapping
= mapping
;
189 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
190 #ifdef CONFIG_FS_POSIX_ACL
191 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
194 #ifdef CONFIG_FSNOTIFY
195 inode
->i_fsnotify_mask
= 0;
198 this_cpu_inc(nr_inodes
);
204 EXPORT_SYMBOL(inode_init_always
);
206 static struct inode
*alloc_inode(struct super_block
*sb
)
210 if (sb
->s_op
->alloc_inode
)
211 inode
= sb
->s_op
->alloc_inode(sb
);
213 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
218 if (unlikely(inode_init_always(sb
, inode
))) {
219 if (inode
->i_sb
->s_op
->destroy_inode
)
220 inode
->i_sb
->s_op
->destroy_inode(inode
);
222 kmem_cache_free(inode_cachep
, inode
);
229 void free_inode_nonrcu(struct inode
*inode
)
231 kmem_cache_free(inode_cachep
, inode
);
233 EXPORT_SYMBOL(free_inode_nonrcu
);
235 void __destroy_inode(struct inode
*inode
)
237 BUG_ON(inode_has_buffers(inode
));
238 security_inode_free(inode
);
239 fsnotify_inode_delete(inode
);
240 if (!inode
->i_nlink
) {
241 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
242 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
245 #ifdef CONFIG_FS_POSIX_ACL
246 if (inode
->i_acl
&& inode
->i_acl
!= ACL_NOT_CACHED
)
247 posix_acl_release(inode
->i_acl
);
248 if (inode
->i_default_acl
&& inode
->i_default_acl
!= ACL_NOT_CACHED
)
249 posix_acl_release(inode
->i_default_acl
);
251 this_cpu_dec(nr_inodes
);
253 EXPORT_SYMBOL(__destroy_inode
);
255 static void i_callback(struct rcu_head
*head
)
257 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
258 kmem_cache_free(inode_cachep
, inode
);
261 static void destroy_inode(struct inode
*inode
)
263 BUG_ON(!list_empty(&inode
->i_lru
));
264 __destroy_inode(inode
);
265 if (inode
->i_sb
->s_op
->destroy_inode
)
266 inode
->i_sb
->s_op
->destroy_inode(inode
);
268 call_rcu(&inode
->i_rcu
, i_callback
);
272 * drop_nlink - directly drop an inode's link count
275 * This is a low-level filesystem helper to replace any
276 * direct filesystem manipulation of i_nlink. In cases
277 * where we are attempting to track writes to the
278 * filesystem, a decrement to zero means an imminent
279 * write when the file is truncated and actually unlinked
282 void drop_nlink(struct inode
*inode
)
284 WARN_ON(inode
->i_nlink
== 0);
287 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
289 EXPORT_SYMBOL(drop_nlink
);
292 * clear_nlink - directly zero an inode's link count
295 * This is a low-level filesystem helper to replace any
296 * direct filesystem manipulation of i_nlink. See
297 * drop_nlink() for why we care about i_nlink hitting zero.
299 void clear_nlink(struct inode
*inode
)
301 if (inode
->i_nlink
) {
302 inode
->__i_nlink
= 0;
303 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
306 EXPORT_SYMBOL(clear_nlink
);
309 * set_nlink - directly set an inode's link count
311 * @nlink: new nlink (should be non-zero)
313 * This is a low-level filesystem helper to replace any
314 * direct filesystem manipulation of i_nlink.
316 void set_nlink(struct inode
*inode
, unsigned int nlink
)
321 /* Yes, some filesystems do change nlink from zero to one */
322 if (inode
->i_nlink
== 0)
323 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
325 inode
->__i_nlink
= nlink
;
328 EXPORT_SYMBOL(set_nlink
);
331 * inc_nlink - directly increment an inode's link count
334 * This is a low-level filesystem helper to replace any
335 * direct filesystem manipulation of i_nlink. Currently,
336 * it is only here for parity with dec_nlink().
338 void inc_nlink(struct inode
*inode
)
340 if (unlikely(inode
->i_nlink
== 0)) {
341 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
342 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
347 EXPORT_SYMBOL(inc_nlink
);
349 void address_space_init_once(struct address_space
*mapping
)
351 memset(mapping
, 0, sizeof(*mapping
));
352 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
);
353 spin_lock_init(&mapping
->tree_lock
);
354 init_rwsem(&mapping
->i_mmap_rwsem
);
355 INIT_LIST_HEAD(&mapping
->private_list
);
356 spin_lock_init(&mapping
->private_lock
);
357 mapping
->i_mmap
= RB_ROOT
;
358 INIT_LIST_HEAD(&mapping
->i_mmap_nonlinear
);
360 EXPORT_SYMBOL(address_space_init_once
);
363 * These are initializations that only need to be done
364 * once, because the fields are idempotent across use
365 * of the inode, so let the slab aware of that.
367 void inode_init_once(struct inode
*inode
)
369 memset(inode
, 0, sizeof(*inode
));
370 INIT_HLIST_NODE(&inode
->i_hash
);
371 INIT_LIST_HEAD(&inode
->i_devices
);
372 INIT_LIST_HEAD(&inode
->i_wb_list
);
373 INIT_LIST_HEAD(&inode
->i_lru
);
374 address_space_init_once(&inode
->i_data
);
375 i_size_ordered_init(inode
);
376 #ifdef CONFIG_FSNOTIFY
377 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
380 EXPORT_SYMBOL(inode_init_once
);
382 static void init_once(void *foo
)
384 struct inode
*inode
= (struct inode
*) foo
;
386 inode_init_once(inode
);
390 * inode->i_lock must be held
392 void __iget(struct inode
*inode
)
394 atomic_inc(&inode
->i_count
);
398 * get additional reference to inode; caller must already hold one.
400 void ihold(struct inode
*inode
)
402 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
404 EXPORT_SYMBOL(ihold
);
406 static void inode_lru_list_add(struct inode
*inode
)
408 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
409 this_cpu_inc(nr_unused
);
413 * Add inode to LRU if needed (inode is unused and clean).
415 * Needs inode->i_lock held.
417 void inode_add_lru(struct inode
*inode
)
419 if (!(inode
->i_state
& (I_DIRTY
| I_SYNC
| I_FREEING
| I_WILL_FREE
)) &&
420 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& MS_ACTIVE
)
421 inode_lru_list_add(inode
);
425 static void inode_lru_list_del(struct inode
*inode
)
428 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
429 this_cpu_dec(nr_unused
);
433 * inode_sb_list_add - add inode to the superblock list of inodes
434 * @inode: inode to add
436 void inode_sb_list_add(struct inode
*inode
)
438 spin_lock(&inode_sb_list_lock
);
439 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
440 spin_unlock(&inode_sb_list_lock
);
442 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
444 static inline void inode_sb_list_del(struct inode
*inode
)
446 if (!list_empty(&inode
->i_sb_list
)) {
447 spin_lock(&inode_sb_list_lock
);
448 list_del_init(&inode
->i_sb_list
);
449 spin_unlock(&inode_sb_list_lock
);
453 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
457 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
459 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
460 return tmp
& i_hash_mask
;
464 * __insert_inode_hash - hash an inode
465 * @inode: unhashed inode
466 * @hashval: unsigned long value used to locate this object in the
469 * Add an inode to the inode hash for this superblock.
471 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
473 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
475 spin_lock(&inode_hash_lock
);
476 spin_lock(&inode
->i_lock
);
477 hlist_add_head(&inode
->i_hash
, b
);
478 spin_unlock(&inode
->i_lock
);
479 spin_unlock(&inode_hash_lock
);
481 EXPORT_SYMBOL(__insert_inode_hash
);
484 * __remove_inode_hash - remove an inode from the hash
485 * @inode: inode to unhash
487 * Remove an inode from the superblock.
489 void __remove_inode_hash(struct inode
*inode
)
491 spin_lock(&inode_hash_lock
);
492 spin_lock(&inode
->i_lock
);
493 hlist_del_init(&inode
->i_hash
);
494 spin_unlock(&inode
->i_lock
);
495 spin_unlock(&inode_hash_lock
);
497 EXPORT_SYMBOL(__remove_inode_hash
);
499 void clear_inode(struct inode
*inode
)
503 * We have to cycle tree_lock here because reclaim can be still in the
504 * process of removing the last page (in __delete_from_page_cache())
505 * and we must not free mapping under it.
507 spin_lock_irq(&inode
->i_data
.tree_lock
);
508 BUG_ON(inode
->i_data
.nrpages
);
509 BUG_ON(inode
->i_data
.nrshadows
);
510 spin_unlock_irq(&inode
->i_data
.tree_lock
);
511 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
512 BUG_ON(!(inode
->i_state
& I_FREEING
));
513 BUG_ON(inode
->i_state
& I_CLEAR
);
514 /* don't need i_lock here, no concurrent mods to i_state */
515 inode
->i_state
= I_FREEING
| I_CLEAR
;
517 EXPORT_SYMBOL(clear_inode
);
520 * Free the inode passed in, removing it from the lists it is still connected
521 * to. We remove any pages still attached to the inode and wait for any IO that
522 * is still in progress before finally destroying the inode.
524 * An inode must already be marked I_FREEING so that we avoid the inode being
525 * moved back onto lists if we race with other code that manipulates the lists
526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
528 * An inode must already be removed from the LRU list before being evicted from
529 * the cache. This should occur atomically with setting the I_FREEING state
530 * flag, so no inodes here should ever be on the LRU when being evicted.
532 static void evict(struct inode
*inode
)
534 const struct super_operations
*op
= inode
->i_sb
->s_op
;
536 BUG_ON(!(inode
->i_state
& I_FREEING
));
537 BUG_ON(!list_empty(&inode
->i_lru
));
539 if (!list_empty(&inode
->i_wb_list
))
540 inode_wb_list_del(inode
);
542 inode_sb_list_del(inode
);
545 * Wait for flusher thread to be done with the inode so that filesystem
546 * does not start destroying it while writeback is still running. Since
547 * the inode has I_FREEING set, flusher thread won't start new work on
548 * the inode. We just have to wait for running writeback to finish.
550 inode_wait_for_writeback(inode
);
552 if (op
->evict_inode
) {
553 op
->evict_inode(inode
);
555 truncate_inode_pages_final(&inode
->i_data
);
558 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
560 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
563 remove_inode_hash(inode
);
565 spin_lock(&inode
->i_lock
);
566 wake_up_bit(&inode
->i_state
, __I_NEW
);
567 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
568 spin_unlock(&inode
->i_lock
);
570 destroy_inode(inode
);
574 * dispose_list - dispose of the contents of a local list
575 * @head: the head of the list to free
577 * Dispose-list gets a local list with local inodes in it, so it doesn't
578 * need to worry about list corruption and SMP locks.
580 static void dispose_list(struct list_head
*head
)
582 while (!list_empty(head
)) {
585 inode
= list_first_entry(head
, struct inode
, i_lru
);
586 list_del_init(&inode
->i_lru
);
593 * evict_inodes - evict all evictable inodes for a superblock
594 * @sb: superblock to operate on
596 * Make sure that no inodes with zero refcount are retained. This is
597 * called by superblock shutdown after having MS_ACTIVE flag removed,
598 * so any inode reaching zero refcount during or after that call will
599 * be immediately evicted.
601 void evict_inodes(struct super_block
*sb
)
603 struct inode
*inode
, *next
;
606 spin_lock(&inode_sb_list_lock
);
607 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
608 if (atomic_read(&inode
->i_count
))
611 spin_lock(&inode
->i_lock
);
612 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
613 spin_unlock(&inode
->i_lock
);
617 inode
->i_state
|= I_FREEING
;
618 inode_lru_list_del(inode
);
619 spin_unlock(&inode
->i_lock
);
620 list_add(&inode
->i_lru
, &dispose
);
622 spin_unlock(&inode_sb_list_lock
);
624 dispose_list(&dispose
);
628 * invalidate_inodes - attempt to free all inodes on a superblock
629 * @sb: superblock to operate on
630 * @kill_dirty: flag to guide handling of dirty inodes
632 * Attempts to free all inodes for a given superblock. If there were any
633 * busy inodes return a non-zero value, else zero.
634 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
637 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
640 struct inode
*inode
, *next
;
643 spin_lock(&inode_sb_list_lock
);
644 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
645 spin_lock(&inode
->i_lock
);
646 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
647 spin_unlock(&inode
->i_lock
);
650 if (inode
->i_state
& I_DIRTY
&& !kill_dirty
) {
651 spin_unlock(&inode
->i_lock
);
655 if (atomic_read(&inode
->i_count
)) {
656 spin_unlock(&inode
->i_lock
);
661 inode
->i_state
|= I_FREEING
;
662 inode_lru_list_del(inode
);
663 spin_unlock(&inode
->i_lock
);
664 list_add(&inode
->i_lru
, &dispose
);
666 spin_unlock(&inode_sb_list_lock
);
668 dispose_list(&dispose
);
674 * Isolate the inode from the LRU in preparation for freeing it.
676 * Any inodes which are pinned purely because of attached pagecache have their
677 * pagecache removed. If the inode has metadata buffers attached to
678 * mapping->private_list then try to remove them.
680 * If the inode has the I_REFERENCED flag set, then it means that it has been
681 * used recently - the flag is set in iput_final(). When we encounter such an
682 * inode, clear the flag and move it to the back of the LRU so it gets another
683 * pass through the LRU before it gets reclaimed. This is necessary because of
684 * the fact we are doing lazy LRU updates to minimise lock contention so the
685 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
686 * with this flag set because they are the inodes that are out of order.
688 static enum lru_status
689 inode_lru_isolate(struct list_head
*item
, spinlock_t
*lru_lock
, void *arg
)
691 struct list_head
*freeable
= arg
;
692 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
695 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
696 * If we fail to get the lock, just skip it.
698 if (!spin_trylock(&inode
->i_lock
))
702 * Referenced or dirty inodes are still in use. Give them another pass
703 * through the LRU as we canot reclaim them now.
705 if (atomic_read(&inode
->i_count
) ||
706 (inode
->i_state
& ~I_REFERENCED
)) {
707 list_del_init(&inode
->i_lru
);
708 spin_unlock(&inode
->i_lock
);
709 this_cpu_dec(nr_unused
);
713 /* recently referenced inodes get one more pass */
714 if (inode
->i_state
& I_REFERENCED
) {
715 inode
->i_state
&= ~I_REFERENCED
;
716 spin_unlock(&inode
->i_lock
);
720 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
722 spin_unlock(&inode
->i_lock
);
723 spin_unlock(lru_lock
);
724 if (remove_inode_buffers(inode
)) {
726 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
727 if (current_is_kswapd())
728 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
730 __count_vm_events(PGINODESTEAL
, reap
);
731 if (current
->reclaim_state
)
732 current
->reclaim_state
->reclaimed_slab
+= reap
;
739 WARN_ON(inode
->i_state
& I_NEW
);
740 inode
->i_state
|= I_FREEING
;
741 list_move(&inode
->i_lru
, freeable
);
742 spin_unlock(&inode
->i_lock
);
744 this_cpu_dec(nr_unused
);
749 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
750 * This is called from the superblock shrinker function with a number of inodes
751 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
752 * then are freed outside inode_lock by dispose_list().
754 long prune_icache_sb(struct super_block
*sb
, unsigned long nr_to_scan
,
760 freed
= list_lru_walk_node(&sb
->s_inode_lru
, nid
, inode_lru_isolate
,
761 &freeable
, &nr_to_scan
);
762 dispose_list(&freeable
);
766 static void __wait_on_freeing_inode(struct inode
*inode
);
768 * Called with the inode lock held.
770 static struct inode
*find_inode(struct super_block
*sb
,
771 struct hlist_head
*head
,
772 int (*test
)(struct inode
*, void *),
775 struct inode
*inode
= NULL
;
778 hlist_for_each_entry(inode
, head
, i_hash
) {
779 if (inode
->i_sb
!= sb
)
781 if (!test(inode
, data
))
783 spin_lock(&inode
->i_lock
);
784 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
785 __wait_on_freeing_inode(inode
);
789 spin_unlock(&inode
->i_lock
);
796 * find_inode_fast is the fast path version of find_inode, see the comment at
797 * iget_locked for details.
799 static struct inode
*find_inode_fast(struct super_block
*sb
,
800 struct hlist_head
*head
, unsigned long ino
)
802 struct inode
*inode
= NULL
;
805 hlist_for_each_entry(inode
, head
, i_hash
) {
806 if (inode
->i_ino
!= ino
)
808 if (inode
->i_sb
!= sb
)
810 spin_lock(&inode
->i_lock
);
811 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
812 __wait_on_freeing_inode(inode
);
816 spin_unlock(&inode
->i_lock
);
823 * Each cpu owns a range of LAST_INO_BATCH numbers.
824 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
825 * to renew the exhausted range.
827 * This does not significantly increase overflow rate because every CPU can
828 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
829 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
830 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
831 * overflow rate by 2x, which does not seem too significant.
833 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
834 * error if st_ino won't fit in target struct field. Use 32bit counter
835 * here to attempt to avoid that.
837 #define LAST_INO_BATCH 1024
838 static DEFINE_PER_CPU(unsigned int, last_ino
);
840 unsigned int get_next_ino(void)
842 unsigned int *p
= &get_cpu_var(last_ino
);
843 unsigned int res
= *p
;
846 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
847 static atomic_t shared_last_ino
;
848 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
850 res
= next
- LAST_INO_BATCH
;
855 put_cpu_var(last_ino
);
858 EXPORT_SYMBOL(get_next_ino
);
861 * new_inode_pseudo - obtain an inode
864 * Allocates a new inode for given superblock.
865 * Inode wont be chained in superblock s_inodes list
867 * - fs can't be unmount
868 * - quotas, fsnotify, writeback can't work
870 struct inode
*new_inode_pseudo(struct super_block
*sb
)
872 struct inode
*inode
= alloc_inode(sb
);
875 spin_lock(&inode
->i_lock
);
877 spin_unlock(&inode
->i_lock
);
878 INIT_LIST_HEAD(&inode
->i_sb_list
);
884 * new_inode - obtain an inode
887 * Allocates a new inode for given superblock. The default gfp_mask
888 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
889 * If HIGHMEM pages are unsuitable or it is known that pages allocated
890 * for the page cache are not reclaimable or migratable,
891 * mapping_set_gfp_mask() must be called with suitable flags on the
892 * newly created inode's mapping
895 struct inode
*new_inode(struct super_block
*sb
)
899 spin_lock_prefetch(&inode_sb_list_lock
);
901 inode
= new_inode_pseudo(sb
);
903 inode_sb_list_add(inode
);
906 EXPORT_SYMBOL(new_inode
);
908 #ifdef CONFIG_DEBUG_LOCK_ALLOC
909 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
911 if (S_ISDIR(inode
->i_mode
)) {
912 struct file_system_type
*type
= inode
->i_sb
->s_type
;
914 /* Set new key only if filesystem hasn't already changed it */
915 if (lockdep_match_class(&inode
->i_mutex
, &type
->i_mutex_key
)) {
917 * ensure nobody is actually holding i_mutex
919 mutex_destroy(&inode
->i_mutex
);
920 mutex_init(&inode
->i_mutex
);
921 lockdep_set_class(&inode
->i_mutex
,
922 &type
->i_mutex_dir_key
);
926 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
930 * unlock_new_inode - clear the I_NEW state and wake up any waiters
931 * @inode: new inode to unlock
933 * Called when the inode is fully initialised to clear the new state of the
934 * inode and wake up anyone waiting for the inode to finish initialisation.
936 void unlock_new_inode(struct inode
*inode
)
938 lockdep_annotate_inode_mutex_key(inode
);
939 spin_lock(&inode
->i_lock
);
940 WARN_ON(!(inode
->i_state
& I_NEW
));
941 inode
->i_state
&= ~I_NEW
;
943 wake_up_bit(&inode
->i_state
, __I_NEW
);
944 spin_unlock(&inode
->i_lock
);
946 EXPORT_SYMBOL(unlock_new_inode
);
949 * lock_two_nondirectories - take two i_mutexes on non-directory objects
951 * Lock any non-NULL argument that is not a directory.
952 * Zero, one or two objects may be locked by this function.
954 * @inode1: first inode to lock
955 * @inode2: second inode to lock
957 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
960 swap(inode1
, inode2
);
962 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
963 mutex_lock(&inode1
->i_mutex
);
964 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
965 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_NONDIR2
);
967 EXPORT_SYMBOL(lock_two_nondirectories
);
970 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
971 * @inode1: first inode to unlock
972 * @inode2: second inode to unlock
974 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
976 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
977 mutex_unlock(&inode1
->i_mutex
);
978 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
979 mutex_unlock(&inode2
->i_mutex
);
981 EXPORT_SYMBOL(unlock_two_nondirectories
);
984 * iget5_locked - obtain an inode from a mounted file system
985 * @sb: super block of file system
986 * @hashval: hash value (usually inode number) to get
987 * @test: callback used for comparisons between inodes
988 * @set: callback used to initialize a new struct inode
989 * @data: opaque data pointer to pass to @test and @set
991 * Search for the inode specified by @hashval and @data in the inode cache,
992 * and if present it is return it with an increased reference count. This is
993 * a generalized version of iget_locked() for file systems where the inode
994 * number is not sufficient for unique identification of an inode.
996 * If the inode is not in cache, allocate a new inode and return it locked,
997 * hashed, and with the I_NEW flag set. The file system gets to fill it in
998 * before unlocking it via unlock_new_inode().
1000 * Note both @test and @set are called with the inode_hash_lock held, so can't
1003 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1004 int (*test
)(struct inode
*, void *),
1005 int (*set
)(struct inode
*, void *), void *data
)
1007 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1008 struct inode
*inode
;
1010 spin_lock(&inode_hash_lock
);
1011 inode
= find_inode(sb
, head
, test
, data
);
1012 spin_unlock(&inode_hash_lock
);
1015 wait_on_inode(inode
);
1019 inode
= alloc_inode(sb
);
1023 spin_lock(&inode_hash_lock
);
1024 /* We released the lock, so.. */
1025 old
= find_inode(sb
, head
, test
, data
);
1027 if (set(inode
, data
))
1030 spin_lock(&inode
->i_lock
);
1031 inode
->i_state
= I_NEW
;
1032 hlist_add_head(&inode
->i_hash
, head
);
1033 spin_unlock(&inode
->i_lock
);
1034 inode_sb_list_add(inode
);
1035 spin_unlock(&inode_hash_lock
);
1037 /* Return the locked inode with I_NEW set, the
1038 * caller is responsible for filling in the contents
1044 * Uhhuh, somebody else created the same inode under
1045 * us. Use the old inode instead of the one we just
1048 spin_unlock(&inode_hash_lock
);
1049 destroy_inode(inode
);
1051 wait_on_inode(inode
);
1056 spin_unlock(&inode_hash_lock
);
1057 destroy_inode(inode
);
1060 EXPORT_SYMBOL(iget5_locked
);
1063 * iget_locked - obtain an inode from a mounted file system
1064 * @sb: super block of file system
1065 * @ino: inode number to get
1067 * Search for the inode specified by @ino in the inode cache and if present
1068 * return it with an increased reference count. This is for file systems
1069 * where the inode number is sufficient for unique identification of an inode.
1071 * If the inode is not in cache, allocate a new inode and return it locked,
1072 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1073 * before unlocking it via unlock_new_inode().
1075 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1077 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1078 struct inode
*inode
;
1080 spin_lock(&inode_hash_lock
);
1081 inode
= find_inode_fast(sb
, head
, ino
);
1082 spin_unlock(&inode_hash_lock
);
1084 wait_on_inode(inode
);
1088 inode
= alloc_inode(sb
);
1092 spin_lock(&inode_hash_lock
);
1093 /* We released the lock, so.. */
1094 old
= find_inode_fast(sb
, head
, ino
);
1097 spin_lock(&inode
->i_lock
);
1098 inode
->i_state
= I_NEW
;
1099 hlist_add_head(&inode
->i_hash
, head
);
1100 spin_unlock(&inode
->i_lock
);
1101 inode_sb_list_add(inode
);
1102 spin_unlock(&inode_hash_lock
);
1104 /* Return the locked inode with I_NEW set, the
1105 * caller is responsible for filling in the contents
1111 * Uhhuh, somebody else created the same inode under
1112 * us. Use the old inode instead of the one we just
1115 spin_unlock(&inode_hash_lock
);
1116 destroy_inode(inode
);
1118 wait_on_inode(inode
);
1122 EXPORT_SYMBOL(iget_locked
);
1125 * search the inode cache for a matching inode number.
1126 * If we find one, then the inode number we are trying to
1127 * allocate is not unique and so we should not use it.
1129 * Returns 1 if the inode number is unique, 0 if it is not.
1131 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1133 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1134 struct inode
*inode
;
1136 spin_lock(&inode_hash_lock
);
1137 hlist_for_each_entry(inode
, b
, i_hash
) {
1138 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1139 spin_unlock(&inode_hash_lock
);
1143 spin_unlock(&inode_hash_lock
);
1149 * iunique - get a unique inode number
1151 * @max_reserved: highest reserved inode number
1153 * Obtain an inode number that is unique on the system for a given
1154 * superblock. This is used by file systems that have no natural
1155 * permanent inode numbering system. An inode number is returned that
1156 * is higher than the reserved limit but unique.
1159 * With a large number of inodes live on the file system this function
1160 * currently becomes quite slow.
1162 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1165 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1166 * error if st_ino won't fit in target struct field. Use 32bit counter
1167 * here to attempt to avoid that.
1169 static DEFINE_SPINLOCK(iunique_lock
);
1170 static unsigned int counter
;
1173 spin_lock(&iunique_lock
);
1175 if (counter
<= max_reserved
)
1176 counter
= max_reserved
+ 1;
1178 } while (!test_inode_iunique(sb
, res
));
1179 spin_unlock(&iunique_lock
);
1183 EXPORT_SYMBOL(iunique
);
1185 struct inode
*igrab(struct inode
*inode
)
1187 spin_lock(&inode
->i_lock
);
1188 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1190 spin_unlock(&inode
->i_lock
);
1192 spin_unlock(&inode
->i_lock
);
1194 * Handle the case where s_op->clear_inode is not been
1195 * called yet, and somebody is calling igrab
1196 * while the inode is getting freed.
1202 EXPORT_SYMBOL(igrab
);
1205 * ilookup5_nowait - search for an inode in the inode cache
1206 * @sb: super block of file system to search
1207 * @hashval: hash value (usually inode number) to search for
1208 * @test: callback used for comparisons between inodes
1209 * @data: opaque data pointer to pass to @test
1211 * Search for the inode specified by @hashval and @data in the inode cache.
1212 * If the inode is in the cache, the inode is returned with an incremented
1215 * Note: I_NEW is not waited upon so you have to be very careful what you do
1216 * with the returned inode. You probably should be using ilookup5() instead.
1218 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1220 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1221 int (*test
)(struct inode
*, void *), void *data
)
1223 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1224 struct inode
*inode
;
1226 spin_lock(&inode_hash_lock
);
1227 inode
= find_inode(sb
, head
, test
, data
);
1228 spin_unlock(&inode_hash_lock
);
1232 EXPORT_SYMBOL(ilookup5_nowait
);
1235 * ilookup5 - search for an inode in the inode cache
1236 * @sb: super block of file system to search
1237 * @hashval: hash value (usually inode number) to search for
1238 * @test: callback used for comparisons between inodes
1239 * @data: opaque data pointer to pass to @test
1241 * Search for the inode specified by @hashval and @data in the inode cache,
1242 * and if the inode is in the cache, return the inode with an incremented
1243 * reference count. Waits on I_NEW before returning the inode.
1244 * returned with an incremented reference count.
1246 * This is a generalized version of ilookup() for file systems where the
1247 * inode number is not sufficient for unique identification of an inode.
1249 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1251 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1252 int (*test
)(struct inode
*, void *), void *data
)
1254 struct inode
*inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1257 wait_on_inode(inode
);
1260 EXPORT_SYMBOL(ilookup5
);
1263 * ilookup - search for an inode in the inode cache
1264 * @sb: super block of file system to search
1265 * @ino: inode number to search for
1267 * Search for the inode @ino in the inode cache, and if the inode is in the
1268 * cache, the inode is returned with an incremented reference count.
1270 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1272 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1273 struct inode
*inode
;
1275 spin_lock(&inode_hash_lock
);
1276 inode
= find_inode_fast(sb
, head
, ino
);
1277 spin_unlock(&inode_hash_lock
);
1280 wait_on_inode(inode
);
1283 EXPORT_SYMBOL(ilookup
);
1285 int insert_inode_locked(struct inode
*inode
)
1287 struct super_block
*sb
= inode
->i_sb
;
1288 ino_t ino
= inode
->i_ino
;
1289 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1292 struct inode
*old
= NULL
;
1293 spin_lock(&inode_hash_lock
);
1294 hlist_for_each_entry(old
, head
, i_hash
) {
1295 if (old
->i_ino
!= ino
)
1297 if (old
->i_sb
!= sb
)
1299 spin_lock(&old
->i_lock
);
1300 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1301 spin_unlock(&old
->i_lock
);
1307 spin_lock(&inode
->i_lock
);
1308 inode
->i_state
|= I_NEW
;
1309 hlist_add_head(&inode
->i_hash
, head
);
1310 spin_unlock(&inode
->i_lock
);
1311 spin_unlock(&inode_hash_lock
);
1315 spin_unlock(&old
->i_lock
);
1316 spin_unlock(&inode_hash_lock
);
1318 if (unlikely(!inode_unhashed(old
))) {
1325 EXPORT_SYMBOL(insert_inode_locked
);
1327 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1328 int (*test
)(struct inode
*, void *), void *data
)
1330 struct super_block
*sb
= inode
->i_sb
;
1331 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1334 struct inode
*old
= NULL
;
1336 spin_lock(&inode_hash_lock
);
1337 hlist_for_each_entry(old
, head
, i_hash
) {
1338 if (old
->i_sb
!= sb
)
1340 if (!test(old
, data
))
1342 spin_lock(&old
->i_lock
);
1343 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1344 spin_unlock(&old
->i_lock
);
1350 spin_lock(&inode
->i_lock
);
1351 inode
->i_state
|= I_NEW
;
1352 hlist_add_head(&inode
->i_hash
, head
);
1353 spin_unlock(&inode
->i_lock
);
1354 spin_unlock(&inode_hash_lock
);
1358 spin_unlock(&old
->i_lock
);
1359 spin_unlock(&inode_hash_lock
);
1361 if (unlikely(!inode_unhashed(old
))) {
1368 EXPORT_SYMBOL(insert_inode_locked4
);
1371 int generic_delete_inode(struct inode
*inode
)
1375 EXPORT_SYMBOL(generic_delete_inode
);
1378 * Called when we're dropping the last reference
1381 * Call the FS "drop_inode()" function, defaulting to
1382 * the legacy UNIX filesystem behaviour. If it tells
1383 * us to evict inode, do so. Otherwise, retain inode
1384 * in cache if fs is alive, sync and evict if fs is
1387 static void iput_final(struct inode
*inode
)
1389 struct super_block
*sb
= inode
->i_sb
;
1390 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1393 WARN_ON(inode
->i_state
& I_NEW
);
1396 drop
= op
->drop_inode(inode
);
1398 drop
= generic_drop_inode(inode
);
1400 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1401 inode
->i_state
|= I_REFERENCED
;
1402 inode_add_lru(inode
);
1403 spin_unlock(&inode
->i_lock
);
1408 inode
->i_state
|= I_WILL_FREE
;
1409 spin_unlock(&inode
->i_lock
);
1410 write_inode_now(inode
, 1);
1411 spin_lock(&inode
->i_lock
);
1412 WARN_ON(inode
->i_state
& I_NEW
);
1413 inode
->i_state
&= ~I_WILL_FREE
;
1416 inode
->i_state
|= I_FREEING
;
1417 if (!list_empty(&inode
->i_lru
))
1418 inode_lru_list_del(inode
);
1419 spin_unlock(&inode
->i_lock
);
1425 * iput - put an inode
1426 * @inode: inode to put
1428 * Puts an inode, dropping its usage count. If the inode use count hits
1429 * zero, the inode is then freed and may also be destroyed.
1431 * Consequently, iput() can sleep.
1433 void iput(struct inode
*inode
)
1436 BUG_ON(inode
->i_state
& I_CLEAR
);
1438 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
))
1442 EXPORT_SYMBOL(iput
);
1445 * bmap - find a block number in a file
1446 * @inode: inode of file
1447 * @block: block to find
1449 * Returns the block number on the device holding the inode that
1450 * is the disk block number for the block of the file requested.
1451 * That is, asked for block 4 of inode 1 the function will return the
1452 * disk block relative to the disk start that holds that block of the
1455 sector_t
bmap(struct inode
*inode
, sector_t block
)
1458 if (inode
->i_mapping
->a_ops
->bmap
)
1459 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1462 EXPORT_SYMBOL(bmap
);
1465 * With relative atime, only update atime if the previous atime is
1466 * earlier than either the ctime or mtime or if at least a day has
1467 * passed since the last atime update.
1469 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1470 struct timespec now
)
1473 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1476 * Is mtime younger than atime? If yes, update atime:
1478 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1481 * Is ctime younger than atime? If yes, update atime:
1483 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1487 * Is the previous atime value older than a day? If yes,
1490 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1493 * Good, we can skip the atime update:
1499 * This does the actual work of updating an inodes time or version. Must have
1500 * had called mnt_want_write() before calling this.
1502 static int update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1504 if (inode
->i_op
->update_time
)
1505 return inode
->i_op
->update_time(inode
, time
, flags
);
1507 if (flags
& S_ATIME
)
1508 inode
->i_atime
= *time
;
1509 if (flags
& S_VERSION
)
1510 inode_inc_iversion(inode
);
1511 if (flags
& S_CTIME
)
1512 inode
->i_ctime
= *time
;
1513 if (flags
& S_MTIME
)
1514 inode
->i_mtime
= *time
;
1515 mark_inode_dirty_sync(inode
);
1520 * touch_atime - update the access time
1521 * @path: the &struct path to update
1523 * Update the accessed time on an inode and mark it for writeback.
1524 * This function automatically handles read only file systems and media,
1525 * as well as the "noatime" flag and inode specific "noatime" markers.
1527 void touch_atime(const struct path
*path
)
1529 struct vfsmount
*mnt
= path
->mnt
;
1530 struct inode
*inode
= path
->dentry
->d_inode
;
1531 struct timespec now
;
1533 if (inode
->i_flags
& S_NOATIME
)
1535 if (IS_NOATIME(inode
))
1537 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1540 if (mnt
->mnt_flags
& MNT_NOATIME
)
1542 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1545 now
= current_fs_time(inode
->i_sb
);
1547 if (!relatime_need_update(mnt
, inode
, now
))
1550 if (timespec_equal(&inode
->i_atime
, &now
))
1553 if (!sb_start_write_trylock(inode
->i_sb
))
1556 if (__mnt_want_write(mnt
))
1559 * File systems can error out when updating inodes if they need to
1560 * allocate new space to modify an inode (such is the case for
1561 * Btrfs), but since we touch atime while walking down the path we
1562 * really don't care if we failed to update the atime of the file,
1563 * so just ignore the return value.
1564 * We may also fail on filesystems that have the ability to make parts
1565 * of the fs read only, e.g. subvolumes in Btrfs.
1567 update_time(inode
, &now
, S_ATIME
);
1568 __mnt_drop_write(mnt
);
1570 sb_end_write(inode
->i_sb
);
1572 EXPORT_SYMBOL(touch_atime
);
1575 * The logic we want is
1577 * if suid or (sgid and xgrp)
1580 int should_remove_suid(struct dentry
*dentry
)
1582 umode_t mode
= dentry
->d_inode
->i_mode
;
1585 /* suid always must be killed */
1586 if (unlikely(mode
& S_ISUID
))
1587 kill
= ATTR_KILL_SUID
;
1590 * sgid without any exec bits is just a mandatory locking mark; leave
1591 * it alone. If some exec bits are set, it's a real sgid; kill it.
1593 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1594 kill
|= ATTR_KILL_SGID
;
1596 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1601 EXPORT_SYMBOL(should_remove_suid
);
1603 static int __remove_suid(struct dentry
*dentry
, int kill
)
1605 struct iattr newattrs
;
1607 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1609 * Note we call this on write, so notify_change will not
1610 * encounter any conflicting delegations:
1612 return notify_change(dentry
, &newattrs
, NULL
);
1615 int file_remove_suid(struct file
*file
)
1617 struct dentry
*dentry
= file
->f_path
.dentry
;
1618 struct inode
*inode
= dentry
->d_inode
;
1623 /* Fast path for nothing security related */
1624 if (IS_NOSEC(inode
))
1627 killsuid
= should_remove_suid(dentry
);
1628 killpriv
= security_inode_need_killpriv(dentry
);
1633 error
= security_inode_killpriv(dentry
);
1634 if (!error
&& killsuid
)
1635 error
= __remove_suid(dentry
, killsuid
);
1636 if (!error
&& (inode
->i_sb
->s_flags
& MS_NOSEC
))
1637 inode
->i_flags
|= S_NOSEC
;
1641 EXPORT_SYMBOL(file_remove_suid
);
1644 * file_update_time - update mtime and ctime time
1645 * @file: file accessed
1647 * Update the mtime and ctime members of an inode and mark the inode
1648 * for writeback. Note that this function is meant exclusively for
1649 * usage in the file write path of filesystems, and filesystems may
1650 * choose to explicitly ignore update via this function with the
1651 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1652 * timestamps are handled by the server. This can return an error for
1653 * file systems who need to allocate space in order to update an inode.
1656 int file_update_time(struct file
*file
)
1658 struct inode
*inode
= file_inode(file
);
1659 struct timespec now
;
1663 /* First try to exhaust all avenues to not sync */
1664 if (IS_NOCMTIME(inode
))
1667 now
= current_fs_time(inode
->i_sb
);
1668 if (!timespec_equal(&inode
->i_mtime
, &now
))
1671 if (!timespec_equal(&inode
->i_ctime
, &now
))
1674 if (IS_I_VERSION(inode
))
1675 sync_it
|= S_VERSION
;
1680 /* Finally allowed to write? Takes lock. */
1681 if (__mnt_want_write_file(file
))
1684 ret
= update_time(inode
, &now
, sync_it
);
1685 __mnt_drop_write_file(file
);
1689 EXPORT_SYMBOL(file_update_time
);
1691 int inode_needs_sync(struct inode
*inode
)
1695 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1699 EXPORT_SYMBOL(inode_needs_sync
);
1702 * If we try to find an inode in the inode hash while it is being
1703 * deleted, we have to wait until the filesystem completes its
1704 * deletion before reporting that it isn't found. This function waits
1705 * until the deletion _might_ have completed. Callers are responsible
1706 * to recheck inode state.
1708 * It doesn't matter if I_NEW is not set initially, a call to
1709 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1712 static void __wait_on_freeing_inode(struct inode
*inode
)
1714 wait_queue_head_t
*wq
;
1715 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1716 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1717 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1718 spin_unlock(&inode
->i_lock
);
1719 spin_unlock(&inode_hash_lock
);
1721 finish_wait(wq
, &wait
.wait
);
1722 spin_lock(&inode_hash_lock
);
1725 static __initdata
unsigned long ihash_entries
;
1726 static int __init
set_ihash_entries(char *str
)
1730 ihash_entries
= simple_strtoul(str
, &str
, 0);
1733 __setup("ihash_entries=", set_ihash_entries
);
1736 * Initialize the waitqueues and inode hash table.
1738 void __init
inode_init_early(void)
1742 /* If hashes are distributed across NUMA nodes, defer
1743 * hash allocation until vmalloc space is available.
1749 alloc_large_system_hash("Inode-cache",
1750 sizeof(struct hlist_head
),
1759 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1760 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1763 void __init
inode_init(void)
1767 /* inode slab cache */
1768 inode_cachep
= kmem_cache_create("inode_cache",
1769 sizeof(struct inode
),
1771 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1775 /* Hash may have been set up in inode_init_early */
1780 alloc_large_system_hash("Inode-cache",
1781 sizeof(struct hlist_head
),
1790 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1791 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1794 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1796 inode
->i_mode
= mode
;
1797 if (S_ISCHR(mode
)) {
1798 inode
->i_fop
= &def_chr_fops
;
1799 inode
->i_rdev
= rdev
;
1800 } else if (S_ISBLK(mode
)) {
1801 inode
->i_fop
= &def_blk_fops
;
1802 inode
->i_rdev
= rdev
;
1803 } else if (S_ISFIFO(mode
))
1804 inode
->i_fop
= &pipefifo_fops
;
1805 else if (S_ISSOCK(mode
))
1806 ; /* leave it no_open_fops */
1808 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1809 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1812 EXPORT_SYMBOL(init_special_inode
);
1815 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1817 * @dir: Directory inode
1818 * @mode: mode of the new inode
1820 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1823 inode
->i_uid
= current_fsuid();
1824 if (dir
&& dir
->i_mode
& S_ISGID
) {
1825 inode
->i_gid
= dir
->i_gid
;
1829 inode
->i_gid
= current_fsgid();
1830 inode
->i_mode
= mode
;
1832 EXPORT_SYMBOL(inode_init_owner
);
1835 * inode_owner_or_capable - check current task permissions to inode
1836 * @inode: inode being checked
1838 * Return true if current either has CAP_FOWNER in a namespace with the
1839 * inode owner uid mapped, or owns the file.
1841 bool inode_owner_or_capable(const struct inode
*inode
)
1843 struct user_namespace
*ns
;
1845 if (uid_eq(current_fsuid(), inode
->i_uid
))
1848 ns
= current_user_ns();
1849 if (ns_capable(ns
, CAP_FOWNER
) && kuid_has_mapping(ns
, inode
->i_uid
))
1853 EXPORT_SYMBOL(inode_owner_or_capable
);
1856 * Direct i/o helper functions
1858 static void __inode_dio_wait(struct inode
*inode
)
1860 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
1861 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
1864 prepare_to_wait(wq
, &q
.wait
, TASK_UNINTERRUPTIBLE
);
1865 if (atomic_read(&inode
->i_dio_count
))
1867 } while (atomic_read(&inode
->i_dio_count
));
1868 finish_wait(wq
, &q
.wait
);
1872 * inode_dio_wait - wait for outstanding DIO requests to finish
1873 * @inode: inode to wait for
1875 * Waits for all pending direct I/O requests to finish so that we can
1876 * proceed with a truncate or equivalent operation.
1878 * Must be called under a lock that serializes taking new references
1879 * to i_dio_count, usually by inode->i_mutex.
1881 void inode_dio_wait(struct inode
*inode
)
1883 if (atomic_read(&inode
->i_dio_count
))
1884 __inode_dio_wait(inode
);
1886 EXPORT_SYMBOL(inode_dio_wait
);
1889 * inode_dio_done - signal finish of a direct I/O requests
1890 * @inode: inode the direct I/O happens on
1892 * This is called once we've finished processing a direct I/O request,
1893 * and is used to wake up callers waiting for direct I/O to be quiesced.
1895 void inode_dio_done(struct inode
*inode
)
1897 if (atomic_dec_and_test(&inode
->i_dio_count
))
1898 wake_up_bit(&inode
->i_state
, __I_DIO_WAKEUP
);
1900 EXPORT_SYMBOL(inode_dio_done
);
1903 * inode_set_flags - atomically set some inode flags
1905 * Note: the caller should be holding i_mutex, or else be sure that
1906 * they have exclusive access to the inode structure (i.e., while the
1907 * inode is being instantiated). The reason for the cmpxchg() loop
1908 * --- which wouldn't be necessary if all code paths which modify
1909 * i_flags actually followed this rule, is that there is at least one
1910 * code path which doesn't today --- for example,
1911 * __generic_file_aio_write() calls file_remove_suid() without holding
1912 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1914 * In the long run, i_mutex is overkill, and we should probably look
1915 * at using the i_lock spinlock to protect i_flags, and then make sure
1916 * it is so documented in include/linux/fs.h and that all code follows
1917 * the locking convention!!
1919 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
1922 unsigned int old_flags
, new_flags
;
1924 WARN_ON_ONCE(flags
& ~mask
);
1926 old_flags
= ACCESS_ONCE(inode
->i_flags
);
1927 new_flags
= (old_flags
& ~mask
) | flags
;
1928 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
1929 new_flags
) != old_flags
));
1931 EXPORT_SYMBOL(inode_set_flags
);