fs: take i_mutex during prepare_binprm for set[ug]id executables
[linux/fpc-iii.git] / fs / ocfs2 / alloc.c
blobfcae9ef1a328750ca08cda37691bb51dad5293ef
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * alloc.c
6 * Extent allocs and frees
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/swap.h>
31 #include <linux/quotaops.h>
32 #include <linux/blkdev.h>
34 #include <cluster/masklog.h>
36 #include "ocfs2.h"
38 #include "alloc.h"
39 #include "aops.h"
40 #include "blockcheck.h"
41 #include "dlmglue.h"
42 #include "extent_map.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "localalloc.h"
46 #include "suballoc.h"
47 #include "sysfile.h"
48 #include "file.h"
49 #include "super.h"
50 #include "uptodate.h"
51 #include "xattr.h"
52 #include "refcounttree.h"
53 #include "ocfs2_trace.h"
55 #include "buffer_head_io.h"
57 enum ocfs2_contig_type {
58 CONTIG_NONE = 0,
59 CONTIG_LEFT,
60 CONTIG_RIGHT,
61 CONTIG_LEFTRIGHT,
64 static enum ocfs2_contig_type
65 ocfs2_extent_rec_contig(struct super_block *sb,
66 struct ocfs2_extent_rec *ext,
67 struct ocfs2_extent_rec *insert_rec);
69 * Operations for a specific extent tree type.
71 * To implement an on-disk btree (extent tree) type in ocfs2, add
72 * an ocfs2_extent_tree_operations structure and the matching
73 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
74 * for the allocation portion of the extent tree.
76 struct ocfs2_extent_tree_operations {
78 * last_eb_blk is the block number of the right most leaf extent
79 * block. Most on-disk structures containing an extent tree store
80 * this value for fast access. The ->eo_set_last_eb_blk() and
81 * ->eo_get_last_eb_blk() operations access this value. They are
82 * both required.
84 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
85 u64 blkno);
86 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
89 * The on-disk structure usually keeps track of how many total
90 * clusters are stored in this extent tree. This function updates
91 * that value. new_clusters is the delta, and must be
92 * added to the total. Required.
94 void (*eo_update_clusters)(struct ocfs2_extent_tree *et,
95 u32 new_clusters);
98 * If this extent tree is supported by an extent map, insert
99 * a record into the map.
101 void (*eo_extent_map_insert)(struct ocfs2_extent_tree *et,
102 struct ocfs2_extent_rec *rec);
105 * If this extent tree is supported by an extent map, truncate the
106 * map to clusters,
108 void (*eo_extent_map_truncate)(struct ocfs2_extent_tree *et,
109 u32 clusters);
112 * If ->eo_insert_check() exists, it is called before rec is
113 * inserted into the extent tree. It is optional.
115 int (*eo_insert_check)(struct ocfs2_extent_tree *et,
116 struct ocfs2_extent_rec *rec);
117 int (*eo_sanity_check)(struct ocfs2_extent_tree *et);
120 * --------------------------------------------------------------
121 * The remaining are internal to ocfs2_extent_tree and don't have
122 * accessor functions
126 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
127 * It is required.
129 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
132 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
133 * it exists. If it does not, et->et_max_leaf_clusters is set
134 * to 0 (unlimited). Optional.
136 void (*eo_fill_max_leaf_clusters)(struct ocfs2_extent_tree *et);
139 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
140 * are contiguous or not. Optional. Don't need to set it if use
141 * ocfs2_extent_rec as the tree leaf.
143 enum ocfs2_contig_type
144 (*eo_extent_contig)(struct ocfs2_extent_tree *et,
145 struct ocfs2_extent_rec *ext,
146 struct ocfs2_extent_rec *insert_rec);
151 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
152 * in the methods.
154 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
155 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
156 u64 blkno);
157 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
158 u32 clusters);
159 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
160 struct ocfs2_extent_rec *rec);
161 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
162 u32 clusters);
163 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
164 struct ocfs2_extent_rec *rec);
165 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et);
166 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
167 static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
168 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
169 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
170 .eo_update_clusters = ocfs2_dinode_update_clusters,
171 .eo_extent_map_insert = ocfs2_dinode_extent_map_insert,
172 .eo_extent_map_truncate = ocfs2_dinode_extent_map_truncate,
173 .eo_insert_check = ocfs2_dinode_insert_check,
174 .eo_sanity_check = ocfs2_dinode_sanity_check,
175 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
178 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
179 u64 blkno)
181 struct ocfs2_dinode *di = et->et_object;
183 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
184 di->i_last_eb_blk = cpu_to_le64(blkno);
187 static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
189 struct ocfs2_dinode *di = et->et_object;
191 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
192 return le64_to_cpu(di->i_last_eb_blk);
195 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree *et,
196 u32 clusters)
198 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
199 struct ocfs2_dinode *di = et->et_object;
201 le32_add_cpu(&di->i_clusters, clusters);
202 spin_lock(&oi->ip_lock);
203 oi->ip_clusters = le32_to_cpu(di->i_clusters);
204 spin_unlock(&oi->ip_lock);
207 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree *et,
208 struct ocfs2_extent_rec *rec)
210 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
212 ocfs2_extent_map_insert_rec(inode, rec);
215 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree *et,
216 u32 clusters)
218 struct inode *inode = &cache_info_to_inode(et->et_ci)->vfs_inode;
220 ocfs2_extent_map_trunc(inode, clusters);
223 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree *et,
224 struct ocfs2_extent_rec *rec)
226 struct ocfs2_inode_info *oi = cache_info_to_inode(et->et_ci);
227 struct ocfs2_super *osb = OCFS2_SB(oi->vfs_inode.i_sb);
229 BUG_ON(oi->ip_dyn_features & OCFS2_INLINE_DATA_FL);
230 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
231 (oi->ip_clusters != le32_to_cpu(rec->e_cpos)),
232 "Device %s, asking for sparse allocation: inode %llu, "
233 "cpos %u, clusters %u\n",
234 osb->dev_str,
235 (unsigned long long)oi->ip_blkno,
236 rec->e_cpos, oi->ip_clusters);
238 return 0;
241 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree *et)
243 struct ocfs2_dinode *di = et->et_object;
245 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
246 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
248 return 0;
251 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
253 struct ocfs2_dinode *di = et->et_object;
255 et->et_root_el = &di->id2.i_list;
259 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
261 struct ocfs2_xattr_value_buf *vb = et->et_object;
263 et->et_root_el = &vb->vb_xv->xr_list;
266 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
267 u64 blkno)
269 struct ocfs2_xattr_value_buf *vb = et->et_object;
271 vb->vb_xv->xr_last_eb_blk = cpu_to_le64(blkno);
274 static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
276 struct ocfs2_xattr_value_buf *vb = et->et_object;
278 return le64_to_cpu(vb->vb_xv->xr_last_eb_blk);
281 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree *et,
282 u32 clusters)
284 struct ocfs2_xattr_value_buf *vb = et->et_object;
286 le32_add_cpu(&vb->vb_xv->xr_clusters, clusters);
289 static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
290 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
291 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
292 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
293 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
296 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
298 struct ocfs2_xattr_block *xb = et->et_object;
300 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
303 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree *et)
305 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
306 et->et_max_leaf_clusters =
307 ocfs2_clusters_for_bytes(sb, OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
310 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
311 u64 blkno)
313 struct ocfs2_xattr_block *xb = et->et_object;
314 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
316 xt->xt_last_eb_blk = cpu_to_le64(blkno);
319 static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
321 struct ocfs2_xattr_block *xb = et->et_object;
322 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
324 return le64_to_cpu(xt->xt_last_eb_blk);
327 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree *et,
328 u32 clusters)
330 struct ocfs2_xattr_block *xb = et->et_object;
332 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
335 static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
336 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
337 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
338 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
339 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
340 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
343 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree *et,
344 u64 blkno)
346 struct ocfs2_dx_root_block *dx_root = et->et_object;
348 dx_root->dr_last_eb_blk = cpu_to_le64(blkno);
351 static u64 ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree *et)
353 struct ocfs2_dx_root_block *dx_root = et->et_object;
355 return le64_to_cpu(dx_root->dr_last_eb_blk);
358 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree *et,
359 u32 clusters)
361 struct ocfs2_dx_root_block *dx_root = et->et_object;
363 le32_add_cpu(&dx_root->dr_clusters, clusters);
366 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree *et)
368 struct ocfs2_dx_root_block *dx_root = et->et_object;
370 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root));
372 return 0;
375 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree *et)
377 struct ocfs2_dx_root_block *dx_root = et->et_object;
379 et->et_root_el = &dx_root->dr_list;
382 static struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops = {
383 .eo_set_last_eb_blk = ocfs2_dx_root_set_last_eb_blk,
384 .eo_get_last_eb_blk = ocfs2_dx_root_get_last_eb_blk,
385 .eo_update_clusters = ocfs2_dx_root_update_clusters,
386 .eo_sanity_check = ocfs2_dx_root_sanity_check,
387 .eo_fill_root_el = ocfs2_dx_root_fill_root_el,
390 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree *et)
392 struct ocfs2_refcount_block *rb = et->et_object;
394 et->et_root_el = &rb->rf_list;
397 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
398 u64 blkno)
400 struct ocfs2_refcount_block *rb = et->et_object;
402 rb->rf_last_eb_blk = cpu_to_le64(blkno);
405 static u64 ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
407 struct ocfs2_refcount_block *rb = et->et_object;
409 return le64_to_cpu(rb->rf_last_eb_blk);
412 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree *et,
413 u32 clusters)
415 struct ocfs2_refcount_block *rb = et->et_object;
417 le32_add_cpu(&rb->rf_clusters, clusters);
420 static enum ocfs2_contig_type
421 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree *et,
422 struct ocfs2_extent_rec *ext,
423 struct ocfs2_extent_rec *insert_rec)
425 return CONTIG_NONE;
428 static struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops = {
429 .eo_set_last_eb_blk = ocfs2_refcount_tree_set_last_eb_blk,
430 .eo_get_last_eb_blk = ocfs2_refcount_tree_get_last_eb_blk,
431 .eo_update_clusters = ocfs2_refcount_tree_update_clusters,
432 .eo_fill_root_el = ocfs2_refcount_tree_fill_root_el,
433 .eo_extent_contig = ocfs2_refcount_tree_extent_contig,
436 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
437 struct ocfs2_caching_info *ci,
438 struct buffer_head *bh,
439 ocfs2_journal_access_func access,
440 void *obj,
441 struct ocfs2_extent_tree_operations *ops)
443 et->et_ops = ops;
444 et->et_root_bh = bh;
445 et->et_ci = ci;
446 et->et_root_journal_access = access;
447 if (!obj)
448 obj = (void *)bh->b_data;
449 et->et_object = obj;
451 et->et_ops->eo_fill_root_el(et);
452 if (!et->et_ops->eo_fill_max_leaf_clusters)
453 et->et_max_leaf_clusters = 0;
454 else
455 et->et_ops->eo_fill_max_leaf_clusters(et);
458 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
459 struct ocfs2_caching_info *ci,
460 struct buffer_head *bh)
462 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_di,
463 NULL, &ocfs2_dinode_et_ops);
466 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
467 struct ocfs2_caching_info *ci,
468 struct buffer_head *bh)
470 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_xb,
471 NULL, &ocfs2_xattr_tree_et_ops);
474 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
475 struct ocfs2_caching_info *ci,
476 struct ocfs2_xattr_value_buf *vb)
478 __ocfs2_init_extent_tree(et, ci, vb->vb_bh, vb->vb_access, vb,
479 &ocfs2_xattr_value_et_ops);
482 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et,
483 struct ocfs2_caching_info *ci,
484 struct buffer_head *bh)
486 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_dr,
487 NULL, &ocfs2_dx_root_et_ops);
490 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et,
491 struct ocfs2_caching_info *ci,
492 struct buffer_head *bh)
494 __ocfs2_init_extent_tree(et, ci, bh, ocfs2_journal_access_rb,
495 NULL, &ocfs2_refcount_tree_et_ops);
498 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
499 u64 new_last_eb_blk)
501 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
504 static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
506 return et->et_ops->eo_get_last_eb_blk(et);
509 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree *et,
510 u32 clusters)
512 et->et_ops->eo_update_clusters(et, clusters);
515 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree *et,
516 struct ocfs2_extent_rec *rec)
518 if (et->et_ops->eo_extent_map_insert)
519 et->et_ops->eo_extent_map_insert(et, rec);
522 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree *et,
523 u32 clusters)
525 if (et->et_ops->eo_extent_map_truncate)
526 et->et_ops->eo_extent_map_truncate(et, clusters);
529 static inline int ocfs2_et_root_journal_access(handle_t *handle,
530 struct ocfs2_extent_tree *et,
531 int type)
533 return et->et_root_journal_access(handle, et->et_ci, et->et_root_bh,
534 type);
537 static inline enum ocfs2_contig_type
538 ocfs2_et_extent_contig(struct ocfs2_extent_tree *et,
539 struct ocfs2_extent_rec *rec,
540 struct ocfs2_extent_rec *insert_rec)
542 if (et->et_ops->eo_extent_contig)
543 return et->et_ops->eo_extent_contig(et, rec, insert_rec);
545 return ocfs2_extent_rec_contig(
546 ocfs2_metadata_cache_get_super(et->et_ci),
547 rec, insert_rec);
550 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree *et,
551 struct ocfs2_extent_rec *rec)
553 int ret = 0;
555 if (et->et_ops->eo_insert_check)
556 ret = et->et_ops->eo_insert_check(et, rec);
557 return ret;
560 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree *et)
562 int ret = 0;
564 if (et->et_ops->eo_sanity_check)
565 ret = et->et_ops->eo_sanity_check(et);
566 return ret;
569 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
570 struct ocfs2_extent_block *eb);
571 static void ocfs2_adjust_rightmost_records(handle_t *handle,
572 struct ocfs2_extent_tree *et,
573 struct ocfs2_path *path,
574 struct ocfs2_extent_rec *insert_rec);
576 * Reset the actual path elements so that we can re-use the structure
577 * to build another path. Generally, this involves freeing the buffer
578 * heads.
580 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
582 int i, start = 0, depth = 0;
583 struct ocfs2_path_item *node;
585 if (keep_root)
586 start = 1;
588 for(i = start; i < path_num_items(path); i++) {
589 node = &path->p_node[i];
591 brelse(node->bh);
592 node->bh = NULL;
593 node->el = NULL;
597 * Tree depth may change during truncate, or insert. If we're
598 * keeping the root extent list, then make sure that our path
599 * structure reflects the proper depth.
601 if (keep_root)
602 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
603 else
604 path_root_access(path) = NULL;
606 path->p_tree_depth = depth;
609 void ocfs2_free_path(struct ocfs2_path *path)
611 if (path) {
612 ocfs2_reinit_path(path, 0);
613 kfree(path);
618 * All the elements of src into dest. After this call, src could be freed
619 * without affecting dest.
621 * Both paths should have the same root. Any non-root elements of dest
622 * will be freed.
624 static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
626 int i;
628 BUG_ON(path_root_bh(dest) != path_root_bh(src));
629 BUG_ON(path_root_el(dest) != path_root_el(src));
630 BUG_ON(path_root_access(dest) != path_root_access(src));
632 ocfs2_reinit_path(dest, 1);
634 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
635 dest->p_node[i].bh = src->p_node[i].bh;
636 dest->p_node[i].el = src->p_node[i].el;
638 if (dest->p_node[i].bh)
639 get_bh(dest->p_node[i].bh);
644 * Make the *dest path the same as src and re-initialize src path to
645 * have a root only.
647 static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
649 int i;
651 BUG_ON(path_root_bh(dest) != path_root_bh(src));
652 BUG_ON(path_root_access(dest) != path_root_access(src));
654 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
655 brelse(dest->p_node[i].bh);
657 dest->p_node[i].bh = src->p_node[i].bh;
658 dest->p_node[i].el = src->p_node[i].el;
660 src->p_node[i].bh = NULL;
661 src->p_node[i].el = NULL;
666 * Insert an extent block at given index.
668 * This will not take an additional reference on eb_bh.
670 static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
671 struct buffer_head *eb_bh)
673 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
676 * Right now, no root bh is an extent block, so this helps
677 * catch code errors with dinode trees. The assertion can be
678 * safely removed if we ever need to insert extent block
679 * structures at the root.
681 BUG_ON(index == 0);
683 path->p_node[index].bh = eb_bh;
684 path->p_node[index].el = &eb->h_list;
687 static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
688 struct ocfs2_extent_list *root_el,
689 ocfs2_journal_access_func access)
691 struct ocfs2_path *path;
693 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
695 path = kzalloc(sizeof(*path), GFP_NOFS);
696 if (path) {
697 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
698 get_bh(root_bh);
699 path_root_bh(path) = root_bh;
700 path_root_el(path) = root_el;
701 path_root_access(path) = access;
704 return path;
707 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path)
709 return ocfs2_new_path(path_root_bh(path), path_root_el(path),
710 path_root_access(path));
713 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et)
715 return ocfs2_new_path(et->et_root_bh, et->et_root_el,
716 et->et_root_journal_access);
720 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
721 * otherwise it's the root_access function.
723 * I don't like the way this function's name looks next to
724 * ocfs2_journal_access_path(), but I don't have a better one.
726 int ocfs2_path_bh_journal_access(handle_t *handle,
727 struct ocfs2_caching_info *ci,
728 struct ocfs2_path *path,
729 int idx)
731 ocfs2_journal_access_func access = path_root_access(path);
733 if (!access)
734 access = ocfs2_journal_access;
736 if (idx)
737 access = ocfs2_journal_access_eb;
739 return access(handle, ci, path->p_node[idx].bh,
740 OCFS2_JOURNAL_ACCESS_WRITE);
744 * Convenience function to journal all components in a path.
746 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci,
747 handle_t *handle,
748 struct ocfs2_path *path)
750 int i, ret = 0;
752 if (!path)
753 goto out;
755 for(i = 0; i < path_num_items(path); i++) {
756 ret = ocfs2_path_bh_journal_access(handle, ci, path, i);
757 if (ret < 0) {
758 mlog_errno(ret);
759 goto out;
763 out:
764 return ret;
768 * Return the index of the extent record which contains cluster #v_cluster.
769 * -1 is returned if it was not found.
771 * Should work fine on interior and exterior nodes.
773 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
775 int ret = -1;
776 int i;
777 struct ocfs2_extent_rec *rec;
778 u32 rec_end, rec_start, clusters;
780 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
781 rec = &el->l_recs[i];
783 rec_start = le32_to_cpu(rec->e_cpos);
784 clusters = ocfs2_rec_clusters(el, rec);
786 rec_end = rec_start + clusters;
788 if (v_cluster >= rec_start && v_cluster < rec_end) {
789 ret = i;
790 break;
794 return ret;
798 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
799 * ocfs2_extent_rec_contig only work properly against leaf nodes!
801 static int ocfs2_block_extent_contig(struct super_block *sb,
802 struct ocfs2_extent_rec *ext,
803 u64 blkno)
805 u64 blk_end = le64_to_cpu(ext->e_blkno);
807 blk_end += ocfs2_clusters_to_blocks(sb,
808 le16_to_cpu(ext->e_leaf_clusters));
810 return blkno == blk_end;
813 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
814 struct ocfs2_extent_rec *right)
816 u32 left_range;
818 left_range = le32_to_cpu(left->e_cpos) +
819 le16_to_cpu(left->e_leaf_clusters);
821 return (left_range == le32_to_cpu(right->e_cpos));
824 static enum ocfs2_contig_type
825 ocfs2_extent_rec_contig(struct super_block *sb,
826 struct ocfs2_extent_rec *ext,
827 struct ocfs2_extent_rec *insert_rec)
829 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
832 * Refuse to coalesce extent records with different flag
833 * fields - we don't want to mix unwritten extents with user
834 * data.
836 if (ext->e_flags != insert_rec->e_flags)
837 return CONTIG_NONE;
839 if (ocfs2_extents_adjacent(ext, insert_rec) &&
840 ocfs2_block_extent_contig(sb, ext, blkno))
841 return CONTIG_RIGHT;
843 blkno = le64_to_cpu(ext->e_blkno);
844 if (ocfs2_extents_adjacent(insert_rec, ext) &&
845 ocfs2_block_extent_contig(sb, insert_rec, blkno))
846 return CONTIG_LEFT;
848 return CONTIG_NONE;
852 * NOTE: We can have pretty much any combination of contiguousness and
853 * appending.
855 * The usefulness of APPEND_TAIL is more in that it lets us know that
856 * we'll have to update the path to that leaf.
858 enum ocfs2_append_type {
859 APPEND_NONE = 0,
860 APPEND_TAIL,
863 enum ocfs2_split_type {
864 SPLIT_NONE = 0,
865 SPLIT_LEFT,
866 SPLIT_RIGHT,
869 struct ocfs2_insert_type {
870 enum ocfs2_split_type ins_split;
871 enum ocfs2_append_type ins_appending;
872 enum ocfs2_contig_type ins_contig;
873 int ins_contig_index;
874 int ins_tree_depth;
877 struct ocfs2_merge_ctxt {
878 enum ocfs2_contig_type c_contig_type;
879 int c_has_empty_extent;
880 int c_split_covers_rec;
883 static int ocfs2_validate_extent_block(struct super_block *sb,
884 struct buffer_head *bh)
886 int rc;
887 struct ocfs2_extent_block *eb =
888 (struct ocfs2_extent_block *)bh->b_data;
890 trace_ocfs2_validate_extent_block((unsigned long long)bh->b_blocknr);
892 BUG_ON(!buffer_uptodate(bh));
895 * If the ecc fails, we return the error but otherwise
896 * leave the filesystem running. We know any error is
897 * local to this block.
899 rc = ocfs2_validate_meta_ecc(sb, bh->b_data, &eb->h_check);
900 if (rc) {
901 mlog(ML_ERROR, "Checksum failed for extent block %llu\n",
902 (unsigned long long)bh->b_blocknr);
903 return rc;
907 * Errors after here are fatal.
910 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
911 ocfs2_error(sb,
912 "Extent block #%llu has bad signature %.*s",
913 (unsigned long long)bh->b_blocknr, 7,
914 eb->h_signature);
915 return -EINVAL;
918 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
919 ocfs2_error(sb,
920 "Extent block #%llu has an invalid h_blkno "
921 "of %llu",
922 (unsigned long long)bh->b_blocknr,
923 (unsigned long long)le64_to_cpu(eb->h_blkno));
924 return -EINVAL;
927 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
928 ocfs2_error(sb,
929 "Extent block #%llu has an invalid "
930 "h_fs_generation of #%u",
931 (unsigned long long)bh->b_blocknr,
932 le32_to_cpu(eb->h_fs_generation));
933 return -EINVAL;
936 return 0;
939 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno,
940 struct buffer_head **bh)
942 int rc;
943 struct buffer_head *tmp = *bh;
945 rc = ocfs2_read_block(ci, eb_blkno, &tmp,
946 ocfs2_validate_extent_block);
948 /* If ocfs2_read_block() got us a new bh, pass it up. */
949 if (!rc && !*bh)
950 *bh = tmp;
952 return rc;
957 * How many free extents have we got before we need more meta data?
959 int ocfs2_num_free_extents(struct ocfs2_super *osb,
960 struct ocfs2_extent_tree *et)
962 int retval;
963 struct ocfs2_extent_list *el = NULL;
964 struct ocfs2_extent_block *eb;
965 struct buffer_head *eb_bh = NULL;
966 u64 last_eb_blk = 0;
968 el = et->et_root_el;
969 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
971 if (last_eb_blk) {
972 retval = ocfs2_read_extent_block(et->et_ci, last_eb_blk,
973 &eb_bh);
974 if (retval < 0) {
975 mlog_errno(retval);
976 goto bail;
978 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
979 el = &eb->h_list;
982 BUG_ON(el->l_tree_depth != 0);
984 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
985 bail:
986 brelse(eb_bh);
988 trace_ocfs2_num_free_extents(retval);
989 return retval;
992 /* expects array to already be allocated
994 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
995 * l_count for you
997 static int ocfs2_create_new_meta_bhs(handle_t *handle,
998 struct ocfs2_extent_tree *et,
999 int wanted,
1000 struct ocfs2_alloc_context *meta_ac,
1001 struct buffer_head *bhs[])
1003 int count, status, i;
1004 u16 suballoc_bit_start;
1005 u32 num_got;
1006 u64 suballoc_loc, first_blkno;
1007 struct ocfs2_super *osb =
1008 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
1009 struct ocfs2_extent_block *eb;
1011 count = 0;
1012 while (count < wanted) {
1013 status = ocfs2_claim_metadata(handle,
1014 meta_ac,
1015 wanted - count,
1016 &suballoc_loc,
1017 &suballoc_bit_start,
1018 &num_got,
1019 &first_blkno);
1020 if (status < 0) {
1021 mlog_errno(status);
1022 goto bail;
1025 for(i = count; i < (num_got + count); i++) {
1026 bhs[i] = sb_getblk(osb->sb, first_blkno);
1027 if (bhs[i] == NULL) {
1028 status = -ENOMEM;
1029 mlog_errno(status);
1030 goto bail;
1032 ocfs2_set_new_buffer_uptodate(et->et_ci, bhs[i]);
1034 status = ocfs2_journal_access_eb(handle, et->et_ci,
1035 bhs[i],
1036 OCFS2_JOURNAL_ACCESS_CREATE);
1037 if (status < 0) {
1038 mlog_errno(status);
1039 goto bail;
1042 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
1043 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
1044 /* Ok, setup the minimal stuff here. */
1045 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
1046 eb->h_blkno = cpu_to_le64(first_blkno);
1047 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
1048 eb->h_suballoc_slot =
1049 cpu_to_le16(meta_ac->ac_alloc_slot);
1050 eb->h_suballoc_loc = cpu_to_le64(suballoc_loc);
1051 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
1052 eb->h_list.l_count =
1053 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
1055 suballoc_bit_start++;
1056 first_blkno++;
1058 /* We'll also be dirtied by the caller, so
1059 * this isn't absolutely necessary. */
1060 ocfs2_journal_dirty(handle, bhs[i]);
1063 count += num_got;
1066 status = 0;
1067 bail:
1068 if (status < 0) {
1069 for(i = 0; i < wanted; i++) {
1070 brelse(bhs[i]);
1071 bhs[i] = NULL;
1073 mlog_errno(status);
1075 return status;
1079 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1081 * Returns the sum of the rightmost extent rec logical offset and
1082 * cluster count.
1084 * ocfs2_add_branch() uses this to determine what logical cluster
1085 * value should be populated into the leftmost new branch records.
1087 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1088 * value for the new topmost tree record.
1090 static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
1092 int i;
1094 i = le16_to_cpu(el->l_next_free_rec) - 1;
1096 return le32_to_cpu(el->l_recs[i].e_cpos) +
1097 ocfs2_rec_clusters(el, &el->l_recs[i]);
1101 * Change range of the branches in the right most path according to the leaf
1102 * extent block's rightmost record.
1104 static int ocfs2_adjust_rightmost_branch(handle_t *handle,
1105 struct ocfs2_extent_tree *et)
1107 int status;
1108 struct ocfs2_path *path = NULL;
1109 struct ocfs2_extent_list *el;
1110 struct ocfs2_extent_rec *rec;
1112 path = ocfs2_new_path_from_et(et);
1113 if (!path) {
1114 status = -ENOMEM;
1115 return status;
1118 status = ocfs2_find_path(et->et_ci, path, UINT_MAX);
1119 if (status < 0) {
1120 mlog_errno(status);
1121 goto out;
1124 status = ocfs2_extend_trans(handle, path_num_items(path));
1125 if (status < 0) {
1126 mlog_errno(status);
1127 goto out;
1130 status = ocfs2_journal_access_path(et->et_ci, handle, path);
1131 if (status < 0) {
1132 mlog_errno(status);
1133 goto out;
1136 el = path_leaf_el(path);
1137 rec = &el->l_recs[le16_to_cpu(el->l_next_free_rec) - 1];
1139 ocfs2_adjust_rightmost_records(handle, et, path, rec);
1141 out:
1142 ocfs2_free_path(path);
1143 return status;
1147 * Add an entire tree branch to our inode. eb_bh is the extent block
1148 * to start at, if we don't want to start the branch at the root
1149 * structure.
1151 * last_eb_bh is required as we have to update it's next_leaf pointer
1152 * for the new last extent block.
1154 * the new branch will be 'empty' in the sense that every block will
1155 * contain a single record with cluster count == 0.
1157 static int ocfs2_add_branch(handle_t *handle,
1158 struct ocfs2_extent_tree *et,
1159 struct buffer_head *eb_bh,
1160 struct buffer_head **last_eb_bh,
1161 struct ocfs2_alloc_context *meta_ac)
1163 int status, new_blocks, i;
1164 u64 next_blkno, new_last_eb_blk;
1165 struct buffer_head *bh;
1166 struct buffer_head **new_eb_bhs = NULL;
1167 struct ocfs2_extent_block *eb;
1168 struct ocfs2_extent_list *eb_el;
1169 struct ocfs2_extent_list *el;
1170 u32 new_cpos, root_end;
1172 BUG_ON(!last_eb_bh || !*last_eb_bh);
1174 if (eb_bh) {
1175 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
1176 el = &eb->h_list;
1177 } else
1178 el = et->et_root_el;
1180 /* we never add a branch to a leaf. */
1181 BUG_ON(!el->l_tree_depth);
1183 new_blocks = le16_to_cpu(el->l_tree_depth);
1185 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
1186 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
1187 root_end = ocfs2_sum_rightmost_rec(et->et_root_el);
1190 * If there is a gap before the root end and the real end
1191 * of the righmost leaf block, we need to remove the gap
1192 * between new_cpos and root_end first so that the tree
1193 * is consistent after we add a new branch(it will start
1194 * from new_cpos).
1196 if (root_end > new_cpos) {
1197 trace_ocfs2_adjust_rightmost_branch(
1198 (unsigned long long)
1199 ocfs2_metadata_cache_owner(et->et_ci),
1200 root_end, new_cpos);
1202 status = ocfs2_adjust_rightmost_branch(handle, et);
1203 if (status) {
1204 mlog_errno(status);
1205 goto bail;
1209 /* allocate the number of new eb blocks we need */
1210 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
1211 GFP_KERNEL);
1212 if (!new_eb_bhs) {
1213 status = -ENOMEM;
1214 mlog_errno(status);
1215 goto bail;
1218 status = ocfs2_create_new_meta_bhs(handle, et, new_blocks,
1219 meta_ac, new_eb_bhs);
1220 if (status < 0) {
1221 mlog_errno(status);
1222 goto bail;
1225 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1226 * linked with the rest of the tree.
1227 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1229 * when we leave the loop, new_last_eb_blk will point to the
1230 * newest leaf, and next_blkno will point to the topmost extent
1231 * block. */
1232 next_blkno = new_last_eb_blk = 0;
1233 for(i = 0; i < new_blocks; i++) {
1234 bh = new_eb_bhs[i];
1235 eb = (struct ocfs2_extent_block *) bh->b_data;
1236 /* ocfs2_create_new_meta_bhs() should create it right! */
1237 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1238 eb_el = &eb->h_list;
1240 status = ocfs2_journal_access_eb(handle, et->et_ci, bh,
1241 OCFS2_JOURNAL_ACCESS_CREATE);
1242 if (status < 0) {
1243 mlog_errno(status);
1244 goto bail;
1247 eb->h_next_leaf_blk = 0;
1248 eb_el->l_tree_depth = cpu_to_le16(i);
1249 eb_el->l_next_free_rec = cpu_to_le16(1);
1251 * This actually counts as an empty extent as
1252 * c_clusters == 0
1254 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
1255 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
1257 * eb_el isn't always an interior node, but even leaf
1258 * nodes want a zero'd flags and reserved field so
1259 * this gets the whole 32 bits regardless of use.
1261 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
1262 if (!eb_el->l_tree_depth)
1263 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
1265 ocfs2_journal_dirty(handle, bh);
1266 next_blkno = le64_to_cpu(eb->h_blkno);
1269 /* This is a bit hairy. We want to update up to three blocks
1270 * here without leaving any of them in an inconsistent state
1271 * in case of error. We don't have to worry about
1272 * journal_dirty erroring as it won't unless we've aborted the
1273 * handle (in which case we would never be here) so reserving
1274 * the write with journal_access is all we need to do. */
1275 status = ocfs2_journal_access_eb(handle, et->et_ci, *last_eb_bh,
1276 OCFS2_JOURNAL_ACCESS_WRITE);
1277 if (status < 0) {
1278 mlog_errno(status);
1279 goto bail;
1281 status = ocfs2_et_root_journal_access(handle, et,
1282 OCFS2_JOURNAL_ACCESS_WRITE);
1283 if (status < 0) {
1284 mlog_errno(status);
1285 goto bail;
1287 if (eb_bh) {
1288 status = ocfs2_journal_access_eb(handle, et->et_ci, eb_bh,
1289 OCFS2_JOURNAL_ACCESS_WRITE);
1290 if (status < 0) {
1291 mlog_errno(status);
1292 goto bail;
1296 /* Link the new branch into the rest of the tree (el will
1297 * either be on the root_bh, or the extent block passed in. */
1298 i = le16_to_cpu(el->l_next_free_rec);
1299 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
1300 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
1301 el->l_recs[i].e_int_clusters = 0;
1302 le16_add_cpu(&el->l_next_free_rec, 1);
1304 /* fe needs a new last extent block pointer, as does the
1305 * next_leaf on the previously last-extent-block. */
1306 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
1308 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
1309 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1311 ocfs2_journal_dirty(handle, *last_eb_bh);
1312 ocfs2_journal_dirty(handle, et->et_root_bh);
1313 if (eb_bh)
1314 ocfs2_journal_dirty(handle, eb_bh);
1317 * Some callers want to track the rightmost leaf so pass it
1318 * back here.
1320 brelse(*last_eb_bh);
1321 get_bh(new_eb_bhs[0]);
1322 *last_eb_bh = new_eb_bhs[0];
1324 status = 0;
1325 bail:
1326 if (new_eb_bhs) {
1327 for (i = 0; i < new_blocks; i++)
1328 brelse(new_eb_bhs[i]);
1329 kfree(new_eb_bhs);
1332 return status;
1336 * adds another level to the allocation tree.
1337 * returns back the new extent block so you can add a branch to it
1338 * after this call.
1340 static int ocfs2_shift_tree_depth(handle_t *handle,
1341 struct ocfs2_extent_tree *et,
1342 struct ocfs2_alloc_context *meta_ac,
1343 struct buffer_head **ret_new_eb_bh)
1345 int status, i;
1346 u32 new_clusters;
1347 struct buffer_head *new_eb_bh = NULL;
1348 struct ocfs2_extent_block *eb;
1349 struct ocfs2_extent_list *root_el;
1350 struct ocfs2_extent_list *eb_el;
1352 status = ocfs2_create_new_meta_bhs(handle, et, 1, meta_ac,
1353 &new_eb_bh);
1354 if (status < 0) {
1355 mlog_errno(status);
1356 goto bail;
1359 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
1360 /* ocfs2_create_new_meta_bhs() should create it right! */
1361 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
1363 eb_el = &eb->h_list;
1364 root_el = et->et_root_el;
1366 status = ocfs2_journal_access_eb(handle, et->et_ci, new_eb_bh,
1367 OCFS2_JOURNAL_ACCESS_CREATE);
1368 if (status < 0) {
1369 mlog_errno(status);
1370 goto bail;
1373 /* copy the root extent list data into the new extent block */
1374 eb_el->l_tree_depth = root_el->l_tree_depth;
1375 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1376 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1377 eb_el->l_recs[i] = root_el->l_recs[i];
1379 ocfs2_journal_dirty(handle, new_eb_bh);
1381 status = ocfs2_et_root_journal_access(handle, et,
1382 OCFS2_JOURNAL_ACCESS_WRITE);
1383 if (status < 0) {
1384 mlog_errno(status);
1385 goto bail;
1388 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1390 /* update root_bh now */
1391 le16_add_cpu(&root_el->l_tree_depth, 1);
1392 root_el->l_recs[0].e_cpos = 0;
1393 root_el->l_recs[0].e_blkno = eb->h_blkno;
1394 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1395 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1396 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1397 root_el->l_next_free_rec = cpu_to_le16(1);
1399 /* If this is our 1st tree depth shift, then last_eb_blk
1400 * becomes the allocated extent block */
1401 if (root_el->l_tree_depth == cpu_to_le16(1))
1402 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
1404 ocfs2_journal_dirty(handle, et->et_root_bh);
1406 *ret_new_eb_bh = new_eb_bh;
1407 new_eb_bh = NULL;
1408 status = 0;
1409 bail:
1410 brelse(new_eb_bh);
1412 return status;
1416 * Should only be called when there is no space left in any of the
1417 * leaf nodes. What we want to do is find the lowest tree depth
1418 * non-leaf extent block with room for new records. There are three
1419 * valid results of this search:
1421 * 1) a lowest extent block is found, then we pass it back in
1422 * *lowest_eb_bh and return '0'
1424 * 2) the search fails to find anything, but the root_el has room. We
1425 * pass NULL back in *lowest_eb_bh, but still return '0'
1427 * 3) the search fails to find anything AND the root_el is full, in
1428 * which case we return > 0
1430 * return status < 0 indicates an error.
1432 static int ocfs2_find_branch_target(struct ocfs2_extent_tree *et,
1433 struct buffer_head **target_bh)
1435 int status = 0, i;
1436 u64 blkno;
1437 struct ocfs2_extent_block *eb;
1438 struct ocfs2_extent_list *el;
1439 struct buffer_head *bh = NULL;
1440 struct buffer_head *lowest_bh = NULL;
1442 *target_bh = NULL;
1444 el = et->et_root_el;
1446 while(le16_to_cpu(el->l_tree_depth) > 1) {
1447 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1448 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1449 "Owner %llu has empty "
1450 "extent list (next_free_rec == 0)",
1451 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
1452 status = -EIO;
1453 goto bail;
1455 i = le16_to_cpu(el->l_next_free_rec) - 1;
1456 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1457 if (!blkno) {
1458 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
1459 "Owner %llu has extent "
1460 "list where extent # %d has no physical "
1461 "block start",
1462 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci), i);
1463 status = -EIO;
1464 goto bail;
1467 brelse(bh);
1468 bh = NULL;
1470 status = ocfs2_read_extent_block(et->et_ci, blkno, &bh);
1471 if (status < 0) {
1472 mlog_errno(status);
1473 goto bail;
1476 eb = (struct ocfs2_extent_block *) bh->b_data;
1477 el = &eb->h_list;
1479 if (le16_to_cpu(el->l_next_free_rec) <
1480 le16_to_cpu(el->l_count)) {
1481 brelse(lowest_bh);
1482 lowest_bh = bh;
1483 get_bh(lowest_bh);
1487 /* If we didn't find one and the fe doesn't have any room,
1488 * then return '1' */
1489 el = et->et_root_el;
1490 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
1491 status = 1;
1493 *target_bh = lowest_bh;
1494 bail:
1495 brelse(bh);
1497 return status;
1501 * Grow a b-tree so that it has more records.
1503 * We might shift the tree depth in which case existing paths should
1504 * be considered invalid.
1506 * Tree depth after the grow is returned via *final_depth.
1508 * *last_eb_bh will be updated by ocfs2_add_branch().
1510 static int ocfs2_grow_tree(handle_t *handle, struct ocfs2_extent_tree *et,
1511 int *final_depth, struct buffer_head **last_eb_bh,
1512 struct ocfs2_alloc_context *meta_ac)
1514 int ret, shift;
1515 struct ocfs2_extent_list *el = et->et_root_el;
1516 int depth = le16_to_cpu(el->l_tree_depth);
1517 struct buffer_head *bh = NULL;
1519 BUG_ON(meta_ac == NULL);
1521 shift = ocfs2_find_branch_target(et, &bh);
1522 if (shift < 0) {
1523 ret = shift;
1524 mlog_errno(ret);
1525 goto out;
1528 /* We traveled all the way to the bottom of the allocation tree
1529 * and didn't find room for any more extents - we need to add
1530 * another tree level */
1531 if (shift) {
1532 BUG_ON(bh);
1533 trace_ocfs2_grow_tree(
1534 (unsigned long long)
1535 ocfs2_metadata_cache_owner(et->et_ci),
1536 depth);
1538 /* ocfs2_shift_tree_depth will return us a buffer with
1539 * the new extent block (so we can pass that to
1540 * ocfs2_add_branch). */
1541 ret = ocfs2_shift_tree_depth(handle, et, meta_ac, &bh);
1542 if (ret < 0) {
1543 mlog_errno(ret);
1544 goto out;
1546 depth++;
1547 if (depth == 1) {
1549 * Special case: we have room now if we shifted from
1550 * tree_depth 0, so no more work needs to be done.
1552 * We won't be calling add_branch, so pass
1553 * back *last_eb_bh as the new leaf. At depth
1554 * zero, it should always be null so there's
1555 * no reason to brelse.
1557 BUG_ON(*last_eb_bh);
1558 get_bh(bh);
1559 *last_eb_bh = bh;
1560 goto out;
1564 /* call ocfs2_add_branch to add the final part of the tree with
1565 * the new data. */
1566 ret = ocfs2_add_branch(handle, et, bh, last_eb_bh,
1567 meta_ac);
1568 if (ret < 0) {
1569 mlog_errno(ret);
1570 goto out;
1573 out:
1574 if (final_depth)
1575 *final_depth = depth;
1576 brelse(bh);
1577 return ret;
1581 * This function will discard the rightmost extent record.
1583 static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1585 int next_free = le16_to_cpu(el->l_next_free_rec);
1586 int count = le16_to_cpu(el->l_count);
1587 unsigned int num_bytes;
1589 BUG_ON(!next_free);
1590 /* This will cause us to go off the end of our extent list. */
1591 BUG_ON(next_free >= count);
1593 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1595 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1598 static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1599 struct ocfs2_extent_rec *insert_rec)
1601 int i, insert_index, next_free, has_empty, num_bytes;
1602 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1603 struct ocfs2_extent_rec *rec;
1605 next_free = le16_to_cpu(el->l_next_free_rec);
1606 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1608 BUG_ON(!next_free);
1610 /* The tree code before us didn't allow enough room in the leaf. */
1611 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
1614 * The easiest way to approach this is to just remove the
1615 * empty extent and temporarily decrement next_free.
1617 if (has_empty) {
1619 * If next_free was 1 (only an empty extent), this
1620 * loop won't execute, which is fine. We still want
1621 * the decrement above to happen.
1623 for(i = 0; i < (next_free - 1); i++)
1624 el->l_recs[i] = el->l_recs[i+1];
1626 next_free--;
1630 * Figure out what the new record index should be.
1632 for(i = 0; i < next_free; i++) {
1633 rec = &el->l_recs[i];
1635 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1636 break;
1638 insert_index = i;
1640 trace_ocfs2_rotate_leaf(insert_cpos, insert_index,
1641 has_empty, next_free,
1642 le16_to_cpu(el->l_count));
1644 BUG_ON(insert_index < 0);
1645 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1646 BUG_ON(insert_index > next_free);
1649 * No need to memmove if we're just adding to the tail.
1651 if (insert_index != next_free) {
1652 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1654 num_bytes = next_free - insert_index;
1655 num_bytes *= sizeof(struct ocfs2_extent_rec);
1656 memmove(&el->l_recs[insert_index + 1],
1657 &el->l_recs[insert_index],
1658 num_bytes);
1662 * Either we had an empty extent, and need to re-increment or
1663 * there was no empty extent on a non full rightmost leaf node,
1664 * in which case we still need to increment.
1666 next_free++;
1667 el->l_next_free_rec = cpu_to_le16(next_free);
1669 * Make sure none of the math above just messed up our tree.
1671 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1673 el->l_recs[insert_index] = *insert_rec;
1677 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1679 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1681 BUG_ON(num_recs == 0);
1683 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1684 num_recs--;
1685 size = num_recs * sizeof(struct ocfs2_extent_rec);
1686 memmove(&el->l_recs[0], &el->l_recs[1], size);
1687 memset(&el->l_recs[num_recs], 0,
1688 sizeof(struct ocfs2_extent_rec));
1689 el->l_next_free_rec = cpu_to_le16(num_recs);
1694 * Create an empty extent record .
1696 * l_next_free_rec may be updated.
1698 * If an empty extent already exists do nothing.
1700 static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1702 int next_free = le16_to_cpu(el->l_next_free_rec);
1704 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1706 if (next_free == 0)
1707 goto set_and_inc;
1709 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1710 return;
1712 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1713 "Asked to create an empty extent in a full list:\n"
1714 "count = %u, tree depth = %u",
1715 le16_to_cpu(el->l_count),
1716 le16_to_cpu(el->l_tree_depth));
1718 ocfs2_shift_records_right(el);
1720 set_and_inc:
1721 le16_add_cpu(&el->l_next_free_rec, 1);
1722 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1726 * For a rotation which involves two leaf nodes, the "root node" is
1727 * the lowest level tree node which contains a path to both leafs. This
1728 * resulting set of information can be used to form a complete "subtree"
1730 * This function is passed two full paths from the dinode down to a
1731 * pair of adjacent leaves. It's task is to figure out which path
1732 * index contains the subtree root - this can be the root index itself
1733 * in a worst-case rotation.
1735 * The array index of the subtree root is passed back.
1737 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et,
1738 struct ocfs2_path *left,
1739 struct ocfs2_path *right)
1741 int i = 0;
1744 * Check that the caller passed in two paths from the same tree.
1746 BUG_ON(path_root_bh(left) != path_root_bh(right));
1748 do {
1749 i++;
1752 * The caller didn't pass two adjacent paths.
1754 mlog_bug_on_msg(i > left->p_tree_depth,
1755 "Owner %llu, left depth %u, right depth %u\n"
1756 "left leaf blk %llu, right leaf blk %llu\n",
1757 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
1758 left->p_tree_depth, right->p_tree_depth,
1759 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1760 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1761 } while (left->p_node[i].bh->b_blocknr ==
1762 right->p_node[i].bh->b_blocknr);
1764 return i - 1;
1767 typedef void (path_insert_t)(void *, struct buffer_head *);
1770 * Traverse a btree path in search of cpos, starting at root_el.
1772 * This code can be called with a cpos larger than the tree, in which
1773 * case it will return the rightmost path.
1775 static int __ocfs2_find_path(struct ocfs2_caching_info *ci,
1776 struct ocfs2_extent_list *root_el, u32 cpos,
1777 path_insert_t *func, void *data)
1779 int i, ret = 0;
1780 u32 range;
1781 u64 blkno;
1782 struct buffer_head *bh = NULL;
1783 struct ocfs2_extent_block *eb;
1784 struct ocfs2_extent_list *el;
1785 struct ocfs2_extent_rec *rec;
1787 el = root_el;
1788 while (el->l_tree_depth) {
1789 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1790 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1791 "Owner %llu has empty extent list at "
1792 "depth %u\n",
1793 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1794 le16_to_cpu(el->l_tree_depth));
1795 ret = -EROFS;
1796 goto out;
1800 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1801 rec = &el->l_recs[i];
1804 * In the case that cpos is off the allocation
1805 * tree, this should just wind up returning the
1806 * rightmost record.
1808 range = le32_to_cpu(rec->e_cpos) +
1809 ocfs2_rec_clusters(el, rec);
1810 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1811 break;
1814 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1815 if (blkno == 0) {
1816 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1817 "Owner %llu has bad blkno in extent list "
1818 "at depth %u (index %d)\n",
1819 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1820 le16_to_cpu(el->l_tree_depth), i);
1821 ret = -EROFS;
1822 goto out;
1825 brelse(bh);
1826 bh = NULL;
1827 ret = ocfs2_read_extent_block(ci, blkno, &bh);
1828 if (ret) {
1829 mlog_errno(ret);
1830 goto out;
1833 eb = (struct ocfs2_extent_block *) bh->b_data;
1834 el = &eb->h_list;
1836 if (le16_to_cpu(el->l_next_free_rec) >
1837 le16_to_cpu(el->l_count)) {
1838 ocfs2_error(ocfs2_metadata_cache_get_super(ci),
1839 "Owner %llu has bad count in extent list "
1840 "at block %llu (next free=%u, count=%u)\n",
1841 (unsigned long long)ocfs2_metadata_cache_owner(ci),
1842 (unsigned long long)bh->b_blocknr,
1843 le16_to_cpu(el->l_next_free_rec),
1844 le16_to_cpu(el->l_count));
1845 ret = -EROFS;
1846 goto out;
1849 if (func)
1850 func(data, bh);
1853 out:
1855 * Catch any trailing bh that the loop didn't handle.
1857 brelse(bh);
1859 return ret;
1863 * Given an initialized path (that is, it has a valid root extent
1864 * list), this function will traverse the btree in search of the path
1865 * which would contain cpos.
1867 * The path traveled is recorded in the path structure.
1869 * Note that this will not do any comparisons on leaf node extent
1870 * records, so it will work fine in the case that we just added a tree
1871 * branch.
1873 struct find_path_data {
1874 int index;
1875 struct ocfs2_path *path;
1877 static void find_path_ins(void *data, struct buffer_head *bh)
1879 struct find_path_data *fp = data;
1881 get_bh(bh);
1882 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1883 fp->index++;
1885 int ocfs2_find_path(struct ocfs2_caching_info *ci,
1886 struct ocfs2_path *path, u32 cpos)
1888 struct find_path_data data;
1890 data.index = 1;
1891 data.path = path;
1892 return __ocfs2_find_path(ci, path_root_el(path), cpos,
1893 find_path_ins, &data);
1896 static void find_leaf_ins(void *data, struct buffer_head *bh)
1898 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1899 struct ocfs2_extent_list *el = &eb->h_list;
1900 struct buffer_head **ret = data;
1902 /* We want to retain only the leaf block. */
1903 if (le16_to_cpu(el->l_tree_depth) == 0) {
1904 get_bh(bh);
1905 *ret = bh;
1909 * Find the leaf block in the tree which would contain cpos. No
1910 * checking of the actual leaf is done.
1912 * Some paths want to call this instead of allocating a path structure
1913 * and calling ocfs2_find_path().
1915 * This function doesn't handle non btree extent lists.
1917 int ocfs2_find_leaf(struct ocfs2_caching_info *ci,
1918 struct ocfs2_extent_list *root_el, u32 cpos,
1919 struct buffer_head **leaf_bh)
1921 int ret;
1922 struct buffer_head *bh = NULL;
1924 ret = __ocfs2_find_path(ci, root_el, cpos, find_leaf_ins, &bh);
1925 if (ret) {
1926 mlog_errno(ret);
1927 goto out;
1930 *leaf_bh = bh;
1931 out:
1932 return ret;
1936 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1938 * Basically, we've moved stuff around at the bottom of the tree and
1939 * we need to fix up the extent records above the changes to reflect
1940 * the new changes.
1942 * left_rec: the record on the left.
1943 * left_child_el: is the child list pointed to by left_rec
1944 * right_rec: the record to the right of left_rec
1945 * right_child_el: is the child list pointed to by right_rec
1947 * By definition, this only works on interior nodes.
1949 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1950 struct ocfs2_extent_list *left_child_el,
1951 struct ocfs2_extent_rec *right_rec,
1952 struct ocfs2_extent_list *right_child_el)
1954 u32 left_clusters, right_end;
1957 * Interior nodes never have holes. Their cpos is the cpos of
1958 * the leftmost record in their child list. Their cluster
1959 * count covers the full theoretical range of their child list
1960 * - the range between their cpos and the cpos of the record
1961 * immediately to their right.
1963 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
1964 if (!ocfs2_rec_clusters(right_child_el, &right_child_el->l_recs[0])) {
1965 BUG_ON(right_child_el->l_tree_depth);
1966 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1967 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1969 left_clusters -= le32_to_cpu(left_rec->e_cpos);
1970 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
1973 * Calculate the rightmost cluster count boundary before
1974 * moving cpos - we will need to adjust clusters after
1975 * updating e_cpos to keep the same highest cluster count.
1977 right_end = le32_to_cpu(right_rec->e_cpos);
1978 right_end += le32_to_cpu(right_rec->e_int_clusters);
1980 right_rec->e_cpos = left_rec->e_cpos;
1981 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1983 right_end -= le32_to_cpu(right_rec->e_cpos);
1984 right_rec->e_int_clusters = cpu_to_le32(right_end);
1988 * Adjust the adjacent root node records involved in a
1989 * rotation. left_el_blkno is passed in as a key so that we can easily
1990 * find it's index in the root list.
1992 static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1993 struct ocfs2_extent_list *left_el,
1994 struct ocfs2_extent_list *right_el,
1995 u64 left_el_blkno)
1997 int i;
1999 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
2000 le16_to_cpu(left_el->l_tree_depth));
2002 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
2003 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
2004 break;
2008 * The path walking code should have never returned a root and
2009 * two paths which are not adjacent.
2011 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
2013 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
2014 &root_el->l_recs[i + 1], right_el);
2018 * We've changed a leaf block (in right_path) and need to reflect that
2019 * change back up the subtree.
2021 * This happens in multiple places:
2022 * - When we've moved an extent record from the left path leaf to the right
2023 * path leaf to make room for an empty extent in the left path leaf.
2024 * - When our insert into the right path leaf is at the leftmost edge
2025 * and requires an update of the path immediately to it's left. This
2026 * can occur at the end of some types of rotation and appending inserts.
2027 * - When we've adjusted the last extent record in the left path leaf and the
2028 * 1st extent record in the right path leaf during cross extent block merge.
2030 static void ocfs2_complete_edge_insert(handle_t *handle,
2031 struct ocfs2_path *left_path,
2032 struct ocfs2_path *right_path,
2033 int subtree_index)
2035 int i, idx;
2036 struct ocfs2_extent_list *el, *left_el, *right_el;
2037 struct ocfs2_extent_rec *left_rec, *right_rec;
2038 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2041 * Update the counts and position values within all the
2042 * interior nodes to reflect the leaf rotation we just did.
2044 * The root node is handled below the loop.
2046 * We begin the loop with right_el and left_el pointing to the
2047 * leaf lists and work our way up.
2049 * NOTE: within this loop, left_el and right_el always refer
2050 * to the *child* lists.
2052 left_el = path_leaf_el(left_path);
2053 right_el = path_leaf_el(right_path);
2054 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
2055 trace_ocfs2_complete_edge_insert(i);
2058 * One nice property of knowing that all of these
2059 * nodes are below the root is that we only deal with
2060 * the leftmost right node record and the rightmost
2061 * left node record.
2063 el = left_path->p_node[i].el;
2064 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
2065 left_rec = &el->l_recs[idx];
2067 el = right_path->p_node[i].el;
2068 right_rec = &el->l_recs[0];
2070 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
2071 right_el);
2073 ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
2074 ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
2077 * Setup our list pointers now so that the current
2078 * parents become children in the next iteration.
2080 left_el = left_path->p_node[i].el;
2081 right_el = right_path->p_node[i].el;
2085 * At the root node, adjust the two adjacent records which
2086 * begin our path to the leaves.
2089 el = left_path->p_node[subtree_index].el;
2090 left_el = left_path->p_node[subtree_index + 1].el;
2091 right_el = right_path->p_node[subtree_index + 1].el;
2093 ocfs2_adjust_root_records(el, left_el, right_el,
2094 left_path->p_node[subtree_index + 1].bh->b_blocknr);
2096 root_bh = left_path->p_node[subtree_index].bh;
2098 ocfs2_journal_dirty(handle, root_bh);
2101 static int ocfs2_rotate_subtree_right(handle_t *handle,
2102 struct ocfs2_extent_tree *et,
2103 struct ocfs2_path *left_path,
2104 struct ocfs2_path *right_path,
2105 int subtree_index)
2107 int ret, i;
2108 struct buffer_head *right_leaf_bh;
2109 struct buffer_head *left_leaf_bh = NULL;
2110 struct buffer_head *root_bh;
2111 struct ocfs2_extent_list *right_el, *left_el;
2112 struct ocfs2_extent_rec move_rec;
2114 left_leaf_bh = path_leaf_bh(left_path);
2115 left_el = path_leaf_el(left_path);
2117 if (left_el->l_next_free_rec != left_el->l_count) {
2118 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
2119 "Inode %llu has non-full interior leaf node %llu"
2120 "(next free = %u)",
2121 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2122 (unsigned long long)left_leaf_bh->b_blocknr,
2123 le16_to_cpu(left_el->l_next_free_rec));
2124 return -EROFS;
2128 * This extent block may already have an empty record, so we
2129 * return early if so.
2131 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
2132 return 0;
2134 root_bh = left_path->p_node[subtree_index].bh;
2135 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2137 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2138 subtree_index);
2139 if (ret) {
2140 mlog_errno(ret);
2141 goto out;
2144 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2145 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2146 right_path, i);
2147 if (ret) {
2148 mlog_errno(ret);
2149 goto out;
2152 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2153 left_path, i);
2154 if (ret) {
2155 mlog_errno(ret);
2156 goto out;
2160 right_leaf_bh = path_leaf_bh(right_path);
2161 right_el = path_leaf_el(right_path);
2163 /* This is a code error, not a disk corruption. */
2164 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
2165 "because rightmost leaf block %llu is empty\n",
2166 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2167 (unsigned long long)right_leaf_bh->b_blocknr);
2169 ocfs2_create_empty_extent(right_el);
2171 ocfs2_journal_dirty(handle, right_leaf_bh);
2173 /* Do the copy now. */
2174 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
2175 move_rec = left_el->l_recs[i];
2176 right_el->l_recs[0] = move_rec;
2179 * Clear out the record we just copied and shift everything
2180 * over, leaving an empty extent in the left leaf.
2182 * We temporarily subtract from next_free_rec so that the
2183 * shift will lose the tail record (which is now defunct).
2185 le16_add_cpu(&left_el->l_next_free_rec, -1);
2186 ocfs2_shift_records_right(left_el);
2187 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2188 le16_add_cpu(&left_el->l_next_free_rec, 1);
2190 ocfs2_journal_dirty(handle, left_leaf_bh);
2192 ocfs2_complete_edge_insert(handle, left_path, right_path,
2193 subtree_index);
2195 out:
2196 return ret;
2200 * Given a full path, determine what cpos value would return us a path
2201 * containing the leaf immediately to the left of the current one.
2203 * Will return zero if the path passed in is already the leftmost path.
2205 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
2206 struct ocfs2_path *path, u32 *cpos)
2208 int i, j, ret = 0;
2209 u64 blkno;
2210 struct ocfs2_extent_list *el;
2212 BUG_ON(path->p_tree_depth == 0);
2214 *cpos = 0;
2216 blkno = path_leaf_bh(path)->b_blocknr;
2218 /* Start at the tree node just above the leaf and work our way up. */
2219 i = path->p_tree_depth - 1;
2220 while (i >= 0) {
2221 el = path->p_node[i].el;
2224 * Find the extent record just before the one in our
2225 * path.
2227 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2228 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2229 if (j == 0) {
2230 if (i == 0) {
2232 * We've determined that the
2233 * path specified is already
2234 * the leftmost one - return a
2235 * cpos of zero.
2237 goto out;
2240 * The leftmost record points to our
2241 * leaf - we need to travel up the
2242 * tree one level.
2244 goto next_node;
2247 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
2248 *cpos = *cpos + ocfs2_rec_clusters(el,
2249 &el->l_recs[j - 1]);
2250 *cpos = *cpos - 1;
2251 goto out;
2256 * If we got here, we never found a valid node where
2257 * the tree indicated one should be.
2259 ocfs2_error(sb,
2260 "Invalid extent tree at extent block %llu\n",
2261 (unsigned long long)blkno);
2262 ret = -EROFS;
2263 goto out;
2265 next_node:
2266 blkno = path->p_node[i].bh->b_blocknr;
2267 i--;
2270 out:
2271 return ret;
2275 * Extend the transaction by enough credits to complete the rotation,
2276 * and still leave at least the original number of credits allocated
2277 * to this transaction.
2279 static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
2280 int op_credits,
2281 struct ocfs2_path *path)
2283 int ret = 0;
2284 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
2286 if (handle->h_buffer_credits < credits)
2287 ret = ocfs2_extend_trans(handle,
2288 credits - handle->h_buffer_credits);
2290 return ret;
2294 * Trap the case where we're inserting into the theoretical range past
2295 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2296 * whose cpos is less than ours into the right leaf.
2298 * It's only necessary to look at the rightmost record of the left
2299 * leaf because the logic that calls us should ensure that the
2300 * theoretical ranges in the path components above the leaves are
2301 * correct.
2303 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2304 u32 insert_cpos)
2306 struct ocfs2_extent_list *left_el;
2307 struct ocfs2_extent_rec *rec;
2308 int next_free;
2310 left_el = path_leaf_el(left_path);
2311 next_free = le16_to_cpu(left_el->l_next_free_rec);
2312 rec = &left_el->l_recs[next_free - 1];
2314 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2315 return 1;
2316 return 0;
2319 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2321 int next_free = le16_to_cpu(el->l_next_free_rec);
2322 unsigned int range;
2323 struct ocfs2_extent_rec *rec;
2325 if (next_free == 0)
2326 return 0;
2328 rec = &el->l_recs[0];
2329 if (ocfs2_is_empty_extent(rec)) {
2330 /* Empty list. */
2331 if (next_free == 1)
2332 return 0;
2333 rec = &el->l_recs[1];
2336 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2337 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2338 return 1;
2339 return 0;
2343 * Rotate all the records in a btree right one record, starting at insert_cpos.
2345 * The path to the rightmost leaf should be passed in.
2347 * The array is assumed to be large enough to hold an entire path (tree depth).
2349 * Upon successful return from this function:
2351 * - The 'right_path' array will contain a path to the leaf block
2352 * whose range contains e_cpos.
2353 * - That leaf block will have a single empty extent in list index 0.
2354 * - In the case that the rotation requires a post-insert update,
2355 * *ret_left_path will contain a valid path which can be passed to
2356 * ocfs2_insert_path().
2358 static int ocfs2_rotate_tree_right(handle_t *handle,
2359 struct ocfs2_extent_tree *et,
2360 enum ocfs2_split_type split,
2361 u32 insert_cpos,
2362 struct ocfs2_path *right_path,
2363 struct ocfs2_path **ret_left_path)
2365 int ret, start, orig_credits = handle->h_buffer_credits;
2366 u32 cpos;
2367 struct ocfs2_path *left_path = NULL;
2368 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2370 *ret_left_path = NULL;
2372 left_path = ocfs2_new_path_from_path(right_path);
2373 if (!left_path) {
2374 ret = -ENOMEM;
2375 mlog_errno(ret);
2376 goto out;
2379 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2380 if (ret) {
2381 mlog_errno(ret);
2382 goto out;
2385 trace_ocfs2_rotate_tree_right(
2386 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2387 insert_cpos, cpos);
2390 * What we want to do here is:
2392 * 1) Start with the rightmost path.
2394 * 2) Determine a path to the leaf block directly to the left
2395 * of that leaf.
2397 * 3) Determine the 'subtree root' - the lowest level tree node
2398 * which contains a path to both leaves.
2400 * 4) Rotate the subtree.
2402 * 5) Find the next subtree by considering the left path to be
2403 * the new right path.
2405 * The check at the top of this while loop also accepts
2406 * insert_cpos == cpos because cpos is only a _theoretical_
2407 * value to get us the left path - insert_cpos might very well
2408 * be filling that hole.
2410 * Stop at a cpos of '0' because we either started at the
2411 * leftmost branch (i.e., a tree with one branch and a
2412 * rotation inside of it), or we've gone as far as we can in
2413 * rotating subtrees.
2415 while (cpos && insert_cpos <= cpos) {
2416 trace_ocfs2_rotate_tree_right(
2417 (unsigned long long)
2418 ocfs2_metadata_cache_owner(et->et_ci),
2419 insert_cpos, cpos);
2421 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
2422 if (ret) {
2423 mlog_errno(ret);
2424 goto out;
2427 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2428 path_leaf_bh(right_path),
2429 "Owner %llu: error during insert of %u "
2430 "(left path cpos %u) results in two identical "
2431 "paths ending at %llu\n",
2432 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2433 insert_cpos, cpos,
2434 (unsigned long long)
2435 path_leaf_bh(left_path)->b_blocknr);
2437 if (split == SPLIT_NONE &&
2438 ocfs2_rotate_requires_path_adjustment(left_path,
2439 insert_cpos)) {
2442 * We've rotated the tree as much as we
2443 * should. The rest is up to
2444 * ocfs2_insert_path() to complete, after the
2445 * record insertion. We indicate this
2446 * situation by returning the left path.
2448 * The reason we don't adjust the records here
2449 * before the record insert is that an error
2450 * later might break the rule where a parent
2451 * record e_cpos will reflect the actual
2452 * e_cpos of the 1st nonempty record of the
2453 * child list.
2455 *ret_left_path = left_path;
2456 goto out_ret_path;
2459 start = ocfs2_find_subtree_root(et, left_path, right_path);
2461 trace_ocfs2_rotate_subtree(start,
2462 (unsigned long long)
2463 right_path->p_node[start].bh->b_blocknr,
2464 right_path->p_tree_depth);
2466 ret = ocfs2_extend_rotate_transaction(handle, start,
2467 orig_credits, right_path);
2468 if (ret) {
2469 mlog_errno(ret);
2470 goto out;
2473 ret = ocfs2_rotate_subtree_right(handle, et, left_path,
2474 right_path, start);
2475 if (ret) {
2476 mlog_errno(ret);
2477 goto out;
2480 if (split != SPLIT_NONE &&
2481 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2482 insert_cpos)) {
2484 * A rotate moves the rightmost left leaf
2485 * record over to the leftmost right leaf
2486 * slot. If we're doing an extent split
2487 * instead of a real insert, then we have to
2488 * check that the extent to be split wasn't
2489 * just moved over. If it was, then we can
2490 * exit here, passing left_path back -
2491 * ocfs2_split_extent() is smart enough to
2492 * search both leaves.
2494 *ret_left_path = left_path;
2495 goto out_ret_path;
2499 * There is no need to re-read the next right path
2500 * as we know that it'll be our current left
2501 * path. Optimize by copying values instead.
2503 ocfs2_mv_path(right_path, left_path);
2505 ret = ocfs2_find_cpos_for_left_leaf(sb, right_path, &cpos);
2506 if (ret) {
2507 mlog_errno(ret);
2508 goto out;
2512 out:
2513 ocfs2_free_path(left_path);
2515 out_ret_path:
2516 return ret;
2519 static int ocfs2_update_edge_lengths(handle_t *handle,
2520 struct ocfs2_extent_tree *et,
2521 int subtree_index, struct ocfs2_path *path)
2523 int i, idx, ret;
2524 struct ocfs2_extent_rec *rec;
2525 struct ocfs2_extent_list *el;
2526 struct ocfs2_extent_block *eb;
2527 u32 range;
2530 * In normal tree rotation process, we will never touch the
2531 * tree branch above subtree_index and ocfs2_extend_rotate_transaction
2532 * doesn't reserve the credits for them either.
2534 * But we do have a special case here which will update the rightmost
2535 * records for all the bh in the path.
2536 * So we have to allocate extra credits and access them.
2538 ret = ocfs2_extend_trans(handle, subtree_index);
2539 if (ret) {
2540 mlog_errno(ret);
2541 goto out;
2544 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
2545 if (ret) {
2546 mlog_errno(ret);
2547 goto out;
2550 /* Path should always be rightmost. */
2551 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2552 BUG_ON(eb->h_next_leaf_blk != 0ULL);
2554 el = &eb->h_list;
2555 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2556 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2557 rec = &el->l_recs[idx];
2558 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2560 for (i = 0; i < path->p_tree_depth; i++) {
2561 el = path->p_node[i].el;
2562 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2563 rec = &el->l_recs[idx];
2565 rec->e_int_clusters = cpu_to_le32(range);
2566 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
2568 ocfs2_journal_dirty(handle, path->p_node[i].bh);
2570 out:
2571 return ret;
2574 static void ocfs2_unlink_path(handle_t *handle,
2575 struct ocfs2_extent_tree *et,
2576 struct ocfs2_cached_dealloc_ctxt *dealloc,
2577 struct ocfs2_path *path, int unlink_start)
2579 int ret, i;
2580 struct ocfs2_extent_block *eb;
2581 struct ocfs2_extent_list *el;
2582 struct buffer_head *bh;
2584 for(i = unlink_start; i < path_num_items(path); i++) {
2585 bh = path->p_node[i].bh;
2587 eb = (struct ocfs2_extent_block *)bh->b_data;
2589 * Not all nodes might have had their final count
2590 * decremented by the caller - handle this here.
2592 el = &eb->h_list;
2593 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2594 mlog(ML_ERROR,
2595 "Inode %llu, attempted to remove extent block "
2596 "%llu with %u records\n",
2597 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
2598 (unsigned long long)le64_to_cpu(eb->h_blkno),
2599 le16_to_cpu(el->l_next_free_rec));
2601 ocfs2_journal_dirty(handle, bh);
2602 ocfs2_remove_from_cache(et->et_ci, bh);
2603 continue;
2606 el->l_next_free_rec = 0;
2607 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2609 ocfs2_journal_dirty(handle, bh);
2611 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2612 if (ret)
2613 mlog_errno(ret);
2615 ocfs2_remove_from_cache(et->et_ci, bh);
2619 static void ocfs2_unlink_subtree(handle_t *handle,
2620 struct ocfs2_extent_tree *et,
2621 struct ocfs2_path *left_path,
2622 struct ocfs2_path *right_path,
2623 int subtree_index,
2624 struct ocfs2_cached_dealloc_ctxt *dealloc)
2626 int i;
2627 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2628 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
2629 struct ocfs2_extent_list *el;
2630 struct ocfs2_extent_block *eb;
2632 el = path_leaf_el(left_path);
2634 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
2636 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2637 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2638 break;
2640 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
2642 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2643 le16_add_cpu(&root_el->l_next_free_rec, -1);
2645 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2646 eb->h_next_leaf_blk = 0;
2648 ocfs2_journal_dirty(handle, root_bh);
2649 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2651 ocfs2_unlink_path(handle, et, dealloc, right_path,
2652 subtree_index + 1);
2655 static int ocfs2_rotate_subtree_left(handle_t *handle,
2656 struct ocfs2_extent_tree *et,
2657 struct ocfs2_path *left_path,
2658 struct ocfs2_path *right_path,
2659 int subtree_index,
2660 struct ocfs2_cached_dealloc_ctxt *dealloc,
2661 int *deleted)
2663 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2664 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
2665 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2666 struct ocfs2_extent_block *eb;
2668 *deleted = 0;
2670 right_leaf_el = path_leaf_el(right_path);
2671 left_leaf_el = path_leaf_el(left_path);
2672 root_bh = left_path->p_node[subtree_index].bh;
2673 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2675 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2676 return 0;
2678 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2679 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
2681 * It's legal for us to proceed if the right leaf is
2682 * the rightmost one and it has an empty extent. There
2683 * are two cases to handle - whether the leaf will be
2684 * empty after removal or not. If the leaf isn't empty
2685 * then just remove the empty extent up front. The
2686 * next block will handle empty leaves by flagging
2687 * them for unlink.
2689 * Non rightmost leaves will throw -EAGAIN and the
2690 * caller can manually move the subtree and retry.
2693 if (eb->h_next_leaf_blk != 0ULL)
2694 return -EAGAIN;
2696 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2697 ret = ocfs2_journal_access_eb(handle, et->et_ci,
2698 path_leaf_bh(right_path),
2699 OCFS2_JOURNAL_ACCESS_WRITE);
2700 if (ret) {
2701 mlog_errno(ret);
2702 goto out;
2705 ocfs2_remove_empty_extent(right_leaf_el);
2706 } else
2707 right_has_empty = 1;
2710 if (eb->h_next_leaf_blk == 0ULL &&
2711 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2713 * We have to update i_last_eb_blk during the meta
2714 * data delete.
2716 ret = ocfs2_et_root_journal_access(handle, et,
2717 OCFS2_JOURNAL_ACCESS_WRITE);
2718 if (ret) {
2719 mlog_errno(ret);
2720 goto out;
2723 del_right_subtree = 1;
2727 * Getting here with an empty extent in the right path implies
2728 * that it's the rightmost path and will be deleted.
2730 BUG_ON(right_has_empty && !del_right_subtree);
2732 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
2733 subtree_index);
2734 if (ret) {
2735 mlog_errno(ret);
2736 goto out;
2739 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2740 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2741 right_path, i);
2742 if (ret) {
2743 mlog_errno(ret);
2744 goto out;
2747 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2748 left_path, i);
2749 if (ret) {
2750 mlog_errno(ret);
2751 goto out;
2755 if (!right_has_empty) {
2757 * Only do this if we're moving a real
2758 * record. Otherwise, the action is delayed until
2759 * after removal of the right path in which case we
2760 * can do a simple shift to remove the empty extent.
2762 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2763 memset(&right_leaf_el->l_recs[0], 0,
2764 sizeof(struct ocfs2_extent_rec));
2766 if (eb->h_next_leaf_blk == 0ULL) {
2768 * Move recs over to get rid of empty extent, decrease
2769 * next_free. This is allowed to remove the last
2770 * extent in our leaf (setting l_next_free_rec to
2771 * zero) - the delete code below won't care.
2773 ocfs2_remove_empty_extent(right_leaf_el);
2776 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2777 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2779 if (del_right_subtree) {
2780 ocfs2_unlink_subtree(handle, et, left_path, right_path,
2781 subtree_index, dealloc);
2782 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
2783 left_path);
2784 if (ret) {
2785 mlog_errno(ret);
2786 goto out;
2789 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2790 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
2793 * Removal of the extent in the left leaf was skipped
2794 * above so we could delete the right path
2795 * 1st.
2797 if (right_has_empty)
2798 ocfs2_remove_empty_extent(left_leaf_el);
2800 ocfs2_journal_dirty(handle, et_root_bh);
2802 *deleted = 1;
2803 } else
2804 ocfs2_complete_edge_insert(handle, left_path, right_path,
2805 subtree_index);
2807 out:
2808 return ret;
2812 * Given a full path, determine what cpos value would return us a path
2813 * containing the leaf immediately to the right of the current one.
2815 * Will return zero if the path passed in is already the rightmost path.
2817 * This looks similar, but is subtly different to
2818 * ocfs2_find_cpos_for_left_leaf().
2820 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2821 struct ocfs2_path *path, u32 *cpos)
2823 int i, j, ret = 0;
2824 u64 blkno;
2825 struct ocfs2_extent_list *el;
2827 *cpos = 0;
2829 if (path->p_tree_depth == 0)
2830 return 0;
2832 blkno = path_leaf_bh(path)->b_blocknr;
2834 /* Start at the tree node just above the leaf and work our way up. */
2835 i = path->p_tree_depth - 1;
2836 while (i >= 0) {
2837 int next_free;
2839 el = path->p_node[i].el;
2842 * Find the extent record just after the one in our
2843 * path.
2845 next_free = le16_to_cpu(el->l_next_free_rec);
2846 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2847 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2848 if (j == (next_free - 1)) {
2849 if (i == 0) {
2851 * We've determined that the
2852 * path specified is already
2853 * the rightmost one - return a
2854 * cpos of zero.
2856 goto out;
2859 * The rightmost record points to our
2860 * leaf - we need to travel up the
2861 * tree one level.
2863 goto next_node;
2866 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2867 goto out;
2872 * If we got here, we never found a valid node where
2873 * the tree indicated one should be.
2875 ocfs2_error(sb,
2876 "Invalid extent tree at extent block %llu\n",
2877 (unsigned long long)blkno);
2878 ret = -EROFS;
2879 goto out;
2881 next_node:
2882 blkno = path->p_node[i].bh->b_blocknr;
2883 i--;
2886 out:
2887 return ret;
2890 static int ocfs2_rotate_rightmost_leaf_left(handle_t *handle,
2891 struct ocfs2_extent_tree *et,
2892 struct ocfs2_path *path)
2894 int ret;
2895 struct buffer_head *bh = path_leaf_bh(path);
2896 struct ocfs2_extent_list *el = path_leaf_el(path);
2898 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2899 return 0;
2901 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
2902 path_num_items(path) - 1);
2903 if (ret) {
2904 mlog_errno(ret);
2905 goto out;
2908 ocfs2_remove_empty_extent(el);
2909 ocfs2_journal_dirty(handle, bh);
2911 out:
2912 return ret;
2915 static int __ocfs2_rotate_tree_left(handle_t *handle,
2916 struct ocfs2_extent_tree *et,
2917 int orig_credits,
2918 struct ocfs2_path *path,
2919 struct ocfs2_cached_dealloc_ctxt *dealloc,
2920 struct ocfs2_path **empty_extent_path)
2922 int ret, subtree_root, deleted;
2923 u32 right_cpos;
2924 struct ocfs2_path *left_path = NULL;
2925 struct ocfs2_path *right_path = NULL;
2926 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
2928 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2930 *empty_extent_path = NULL;
2932 ret = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
2933 if (ret) {
2934 mlog_errno(ret);
2935 goto out;
2938 left_path = ocfs2_new_path_from_path(path);
2939 if (!left_path) {
2940 ret = -ENOMEM;
2941 mlog_errno(ret);
2942 goto out;
2945 ocfs2_cp_path(left_path, path);
2947 right_path = ocfs2_new_path_from_path(path);
2948 if (!right_path) {
2949 ret = -ENOMEM;
2950 mlog_errno(ret);
2951 goto out;
2954 while (right_cpos) {
2955 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
2956 if (ret) {
2957 mlog_errno(ret);
2958 goto out;
2961 subtree_root = ocfs2_find_subtree_root(et, left_path,
2962 right_path);
2964 trace_ocfs2_rotate_subtree(subtree_root,
2965 (unsigned long long)
2966 right_path->p_node[subtree_root].bh->b_blocknr,
2967 right_path->p_tree_depth);
2969 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2970 orig_credits, left_path);
2971 if (ret) {
2972 mlog_errno(ret);
2973 goto out;
2977 * Caller might still want to make changes to the
2978 * tree root, so re-add it to the journal here.
2980 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
2981 left_path, 0);
2982 if (ret) {
2983 mlog_errno(ret);
2984 goto out;
2987 ret = ocfs2_rotate_subtree_left(handle, et, left_path,
2988 right_path, subtree_root,
2989 dealloc, &deleted);
2990 if (ret == -EAGAIN) {
2992 * The rotation has to temporarily stop due to
2993 * the right subtree having an empty
2994 * extent. Pass it back to the caller for a
2995 * fixup.
2997 *empty_extent_path = right_path;
2998 right_path = NULL;
2999 goto out;
3001 if (ret) {
3002 mlog_errno(ret);
3003 goto out;
3007 * The subtree rotate might have removed records on
3008 * the rightmost edge. If so, then rotation is
3009 * complete.
3011 if (deleted)
3012 break;
3014 ocfs2_mv_path(left_path, right_path);
3016 ret = ocfs2_find_cpos_for_right_leaf(sb, left_path,
3017 &right_cpos);
3018 if (ret) {
3019 mlog_errno(ret);
3020 goto out;
3024 out:
3025 ocfs2_free_path(right_path);
3026 ocfs2_free_path(left_path);
3028 return ret;
3031 static int ocfs2_remove_rightmost_path(handle_t *handle,
3032 struct ocfs2_extent_tree *et,
3033 struct ocfs2_path *path,
3034 struct ocfs2_cached_dealloc_ctxt *dealloc)
3036 int ret, subtree_index;
3037 u32 cpos;
3038 struct ocfs2_path *left_path = NULL;
3039 struct ocfs2_extent_block *eb;
3040 struct ocfs2_extent_list *el;
3043 ret = ocfs2_et_sanity_check(et);
3044 if (ret)
3045 goto out;
3047 * There's two ways we handle this depending on
3048 * whether path is the only existing one.
3050 ret = ocfs2_extend_rotate_transaction(handle, 0,
3051 handle->h_buffer_credits,
3052 path);
3053 if (ret) {
3054 mlog_errno(ret);
3055 goto out;
3058 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
3059 if (ret) {
3060 mlog_errno(ret);
3061 goto out;
3064 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3065 path, &cpos);
3066 if (ret) {
3067 mlog_errno(ret);
3068 goto out;
3071 if (cpos) {
3073 * We have a path to the left of this one - it needs
3074 * an update too.
3076 left_path = ocfs2_new_path_from_path(path);
3077 if (!left_path) {
3078 ret = -ENOMEM;
3079 mlog_errno(ret);
3080 goto out;
3083 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
3084 if (ret) {
3085 mlog_errno(ret);
3086 goto out;
3089 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
3090 if (ret) {
3091 mlog_errno(ret);
3092 goto out;
3095 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
3097 ocfs2_unlink_subtree(handle, et, left_path, path,
3098 subtree_index, dealloc);
3099 ret = ocfs2_update_edge_lengths(handle, et, subtree_index,
3100 left_path);
3101 if (ret) {
3102 mlog_errno(ret);
3103 goto out;
3106 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
3107 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
3108 } else {
3110 * 'path' is also the leftmost path which
3111 * means it must be the only one. This gets
3112 * handled differently because we want to
3113 * revert the root back to having extents
3114 * in-line.
3116 ocfs2_unlink_path(handle, et, dealloc, path, 1);
3118 el = et->et_root_el;
3119 el->l_tree_depth = 0;
3120 el->l_next_free_rec = 0;
3121 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3123 ocfs2_et_set_last_eb_blk(et, 0);
3126 ocfs2_journal_dirty(handle, path_root_bh(path));
3128 out:
3129 ocfs2_free_path(left_path);
3130 return ret;
3134 * Left rotation of btree records.
3136 * In many ways, this is (unsurprisingly) the opposite of right
3137 * rotation. We start at some non-rightmost path containing an empty
3138 * extent in the leaf block. The code works its way to the rightmost
3139 * path by rotating records to the left in every subtree.
3141 * This is used by any code which reduces the number of extent records
3142 * in a leaf. After removal, an empty record should be placed in the
3143 * leftmost list position.
3145 * This won't handle a length update of the rightmost path records if
3146 * the rightmost tree leaf record is removed so the caller is
3147 * responsible for detecting and correcting that.
3149 static int ocfs2_rotate_tree_left(handle_t *handle,
3150 struct ocfs2_extent_tree *et,
3151 struct ocfs2_path *path,
3152 struct ocfs2_cached_dealloc_ctxt *dealloc)
3154 int ret, orig_credits = handle->h_buffer_credits;
3155 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
3156 struct ocfs2_extent_block *eb;
3157 struct ocfs2_extent_list *el;
3159 el = path_leaf_el(path);
3160 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
3161 return 0;
3163 if (path->p_tree_depth == 0) {
3164 rightmost_no_delete:
3166 * Inline extents. This is trivially handled, so do
3167 * it up front.
3169 ret = ocfs2_rotate_rightmost_leaf_left(handle, et, path);
3170 if (ret)
3171 mlog_errno(ret);
3172 goto out;
3176 * Handle rightmost branch now. There's several cases:
3177 * 1) simple rotation leaving records in there. That's trivial.
3178 * 2) rotation requiring a branch delete - there's no more
3179 * records left. Two cases of this:
3180 * a) There are branches to the left.
3181 * b) This is also the leftmost (the only) branch.
3183 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3184 * 2a) we need the left branch so that we can update it with the unlink
3185 * 2b) we need to bring the root back to inline extents.
3188 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
3189 el = &eb->h_list;
3190 if (eb->h_next_leaf_blk == 0) {
3192 * This gets a bit tricky if we're going to delete the
3193 * rightmost path. Get the other cases out of the way
3194 * 1st.
3196 if (le16_to_cpu(el->l_next_free_rec) > 1)
3197 goto rightmost_no_delete;
3199 if (le16_to_cpu(el->l_next_free_rec) == 0) {
3200 ret = -EIO;
3201 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3202 "Owner %llu has empty extent block at %llu",
3203 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
3204 (unsigned long long)le64_to_cpu(eb->h_blkno));
3205 goto out;
3209 * XXX: The caller can not trust "path" any more after
3210 * this as it will have been deleted. What do we do?
3212 * In theory the rotate-for-merge code will never get
3213 * here because it'll always ask for a rotate in a
3214 * nonempty list.
3217 ret = ocfs2_remove_rightmost_path(handle, et, path,
3218 dealloc);
3219 if (ret)
3220 mlog_errno(ret);
3221 goto out;
3225 * Now we can loop, remembering the path we get from -EAGAIN
3226 * and restarting from there.
3228 try_rotate:
3229 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits, path,
3230 dealloc, &restart_path);
3231 if (ret && ret != -EAGAIN) {
3232 mlog_errno(ret);
3233 goto out;
3236 while (ret == -EAGAIN) {
3237 tmp_path = restart_path;
3238 restart_path = NULL;
3240 ret = __ocfs2_rotate_tree_left(handle, et, orig_credits,
3241 tmp_path, dealloc,
3242 &restart_path);
3243 if (ret && ret != -EAGAIN) {
3244 mlog_errno(ret);
3245 goto out;
3248 ocfs2_free_path(tmp_path);
3249 tmp_path = NULL;
3251 if (ret == 0)
3252 goto try_rotate;
3255 out:
3256 ocfs2_free_path(tmp_path);
3257 ocfs2_free_path(restart_path);
3258 return ret;
3261 static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3262 int index)
3264 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3265 unsigned int size;
3267 if (rec->e_leaf_clusters == 0) {
3269 * We consumed all of the merged-from record. An empty
3270 * extent cannot exist anywhere but the 1st array
3271 * position, so move things over if the merged-from
3272 * record doesn't occupy that position.
3274 * This creates a new empty extent so the caller
3275 * should be smart enough to have removed any existing
3276 * ones.
3278 if (index > 0) {
3279 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3280 size = index * sizeof(struct ocfs2_extent_rec);
3281 memmove(&el->l_recs[1], &el->l_recs[0], size);
3285 * Always memset - the caller doesn't check whether it
3286 * created an empty extent, so there could be junk in
3287 * the other fields.
3289 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3293 static int ocfs2_get_right_path(struct ocfs2_extent_tree *et,
3294 struct ocfs2_path *left_path,
3295 struct ocfs2_path **ret_right_path)
3297 int ret;
3298 u32 right_cpos;
3299 struct ocfs2_path *right_path = NULL;
3300 struct ocfs2_extent_list *left_el;
3302 *ret_right_path = NULL;
3304 /* This function shouldn't be called for non-trees. */
3305 BUG_ON(left_path->p_tree_depth == 0);
3307 left_el = path_leaf_el(left_path);
3308 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3310 ret = ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3311 left_path, &right_cpos);
3312 if (ret) {
3313 mlog_errno(ret);
3314 goto out;
3317 /* This function shouldn't be called for the rightmost leaf. */
3318 BUG_ON(right_cpos == 0);
3320 right_path = ocfs2_new_path_from_path(left_path);
3321 if (!right_path) {
3322 ret = -ENOMEM;
3323 mlog_errno(ret);
3324 goto out;
3327 ret = ocfs2_find_path(et->et_ci, right_path, right_cpos);
3328 if (ret) {
3329 mlog_errno(ret);
3330 goto out;
3333 *ret_right_path = right_path;
3334 out:
3335 if (ret)
3336 ocfs2_free_path(right_path);
3337 return ret;
3341 * Remove split_rec clusters from the record at index and merge them
3342 * onto the beginning of the record "next" to it.
3343 * For index < l_count - 1, the next means the extent rec at index + 1.
3344 * For index == l_count - 1, the "next" means the 1st extent rec of the
3345 * next extent block.
3347 static int ocfs2_merge_rec_right(struct ocfs2_path *left_path,
3348 handle_t *handle,
3349 struct ocfs2_extent_tree *et,
3350 struct ocfs2_extent_rec *split_rec,
3351 int index)
3353 int ret, next_free, i;
3354 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3355 struct ocfs2_extent_rec *left_rec;
3356 struct ocfs2_extent_rec *right_rec;
3357 struct ocfs2_extent_list *right_el;
3358 struct ocfs2_path *right_path = NULL;
3359 int subtree_index = 0;
3360 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3361 struct buffer_head *bh = path_leaf_bh(left_path);
3362 struct buffer_head *root_bh = NULL;
3364 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
3365 left_rec = &el->l_recs[index];
3367 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
3368 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3369 /* we meet with a cross extent block merge. */
3370 ret = ocfs2_get_right_path(et, left_path, &right_path);
3371 if (ret) {
3372 mlog_errno(ret);
3373 goto out;
3376 right_el = path_leaf_el(right_path);
3377 next_free = le16_to_cpu(right_el->l_next_free_rec);
3378 BUG_ON(next_free <= 0);
3379 right_rec = &right_el->l_recs[0];
3380 if (ocfs2_is_empty_extent(right_rec)) {
3381 BUG_ON(next_free <= 1);
3382 right_rec = &right_el->l_recs[1];
3385 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3386 le16_to_cpu(left_rec->e_leaf_clusters) !=
3387 le32_to_cpu(right_rec->e_cpos));
3389 subtree_index = ocfs2_find_subtree_root(et, left_path,
3390 right_path);
3392 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3393 handle->h_buffer_credits,
3394 right_path);
3395 if (ret) {
3396 mlog_errno(ret);
3397 goto out;
3400 root_bh = left_path->p_node[subtree_index].bh;
3401 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3403 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3404 subtree_index);
3405 if (ret) {
3406 mlog_errno(ret);
3407 goto out;
3410 for (i = subtree_index + 1;
3411 i < path_num_items(right_path); i++) {
3412 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3413 right_path, i);
3414 if (ret) {
3415 mlog_errno(ret);
3416 goto out;
3419 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3420 left_path, i);
3421 if (ret) {
3422 mlog_errno(ret);
3423 goto out;
3427 } else {
3428 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3429 right_rec = &el->l_recs[index + 1];
3432 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, left_path,
3433 path_num_items(left_path) - 1);
3434 if (ret) {
3435 mlog_errno(ret);
3436 goto out;
3439 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3441 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3442 le64_add_cpu(&right_rec->e_blkno,
3443 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3444 split_clusters));
3445 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3447 ocfs2_cleanup_merge(el, index);
3449 ocfs2_journal_dirty(handle, bh);
3450 if (right_path) {
3451 ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3452 ocfs2_complete_edge_insert(handle, left_path, right_path,
3453 subtree_index);
3455 out:
3456 if (right_path)
3457 ocfs2_free_path(right_path);
3458 return ret;
3461 static int ocfs2_get_left_path(struct ocfs2_extent_tree *et,
3462 struct ocfs2_path *right_path,
3463 struct ocfs2_path **ret_left_path)
3465 int ret;
3466 u32 left_cpos;
3467 struct ocfs2_path *left_path = NULL;
3469 *ret_left_path = NULL;
3471 /* This function shouldn't be called for non-trees. */
3472 BUG_ON(right_path->p_tree_depth == 0);
3474 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3475 right_path, &left_cpos);
3476 if (ret) {
3477 mlog_errno(ret);
3478 goto out;
3481 /* This function shouldn't be called for the leftmost leaf. */
3482 BUG_ON(left_cpos == 0);
3484 left_path = ocfs2_new_path_from_path(right_path);
3485 if (!left_path) {
3486 ret = -ENOMEM;
3487 mlog_errno(ret);
3488 goto out;
3491 ret = ocfs2_find_path(et->et_ci, left_path, left_cpos);
3492 if (ret) {
3493 mlog_errno(ret);
3494 goto out;
3497 *ret_left_path = left_path;
3498 out:
3499 if (ret)
3500 ocfs2_free_path(left_path);
3501 return ret;
3505 * Remove split_rec clusters from the record at index and merge them
3506 * onto the tail of the record "before" it.
3507 * For index > 0, the "before" means the extent rec at index - 1.
3509 * For index == 0, the "before" means the last record of the previous
3510 * extent block. And there is also a situation that we may need to
3511 * remove the rightmost leaf extent block in the right_path and change
3512 * the right path to indicate the new rightmost path.
3514 static int ocfs2_merge_rec_left(struct ocfs2_path *right_path,
3515 handle_t *handle,
3516 struct ocfs2_extent_tree *et,
3517 struct ocfs2_extent_rec *split_rec,
3518 struct ocfs2_cached_dealloc_ctxt *dealloc,
3519 int index)
3521 int ret, i, subtree_index = 0, has_empty_extent = 0;
3522 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3523 struct ocfs2_extent_rec *left_rec;
3524 struct ocfs2_extent_rec *right_rec;
3525 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3526 struct buffer_head *bh = path_leaf_bh(right_path);
3527 struct buffer_head *root_bh = NULL;
3528 struct ocfs2_path *left_path = NULL;
3529 struct ocfs2_extent_list *left_el;
3531 BUG_ON(index < 0);
3533 right_rec = &el->l_recs[index];
3534 if (index == 0) {
3535 /* we meet with a cross extent block merge. */
3536 ret = ocfs2_get_left_path(et, right_path, &left_path);
3537 if (ret) {
3538 mlog_errno(ret);
3539 goto out;
3542 left_el = path_leaf_el(left_path);
3543 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3544 le16_to_cpu(left_el->l_count));
3546 left_rec = &left_el->l_recs[
3547 le16_to_cpu(left_el->l_next_free_rec) - 1];
3548 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3549 le16_to_cpu(left_rec->e_leaf_clusters) !=
3550 le32_to_cpu(split_rec->e_cpos));
3552 subtree_index = ocfs2_find_subtree_root(et, left_path,
3553 right_path);
3555 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3556 handle->h_buffer_credits,
3557 left_path);
3558 if (ret) {
3559 mlog_errno(ret);
3560 goto out;
3563 root_bh = left_path->p_node[subtree_index].bh;
3564 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3566 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3567 subtree_index);
3568 if (ret) {
3569 mlog_errno(ret);
3570 goto out;
3573 for (i = subtree_index + 1;
3574 i < path_num_items(right_path); i++) {
3575 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3576 right_path, i);
3577 if (ret) {
3578 mlog_errno(ret);
3579 goto out;
3582 ret = ocfs2_path_bh_journal_access(handle, et->et_ci,
3583 left_path, i);
3584 if (ret) {
3585 mlog_errno(ret);
3586 goto out;
3589 } else {
3590 left_rec = &el->l_recs[index - 1];
3591 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3592 has_empty_extent = 1;
3595 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, right_path,
3596 path_num_items(right_path) - 1);
3597 if (ret) {
3598 mlog_errno(ret);
3599 goto out;
3602 if (has_empty_extent && index == 1) {
3604 * The easy case - we can just plop the record right in.
3606 *left_rec = *split_rec;
3608 has_empty_extent = 0;
3609 } else
3610 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
3612 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3613 le64_add_cpu(&right_rec->e_blkno,
3614 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et->et_ci),
3615 split_clusters));
3616 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3618 ocfs2_cleanup_merge(el, index);
3620 ocfs2_journal_dirty(handle, bh);
3621 if (left_path) {
3622 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3625 * In the situation that the right_rec is empty and the extent
3626 * block is empty also, ocfs2_complete_edge_insert can't handle
3627 * it and we need to delete the right extent block.
3629 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3630 le16_to_cpu(el->l_next_free_rec) == 1) {
3632 ret = ocfs2_remove_rightmost_path(handle, et,
3633 right_path,
3634 dealloc);
3635 if (ret) {
3636 mlog_errno(ret);
3637 goto out;
3640 /* Now the rightmost extent block has been deleted.
3641 * So we use the new rightmost path.
3643 ocfs2_mv_path(right_path, left_path);
3644 left_path = NULL;
3645 } else
3646 ocfs2_complete_edge_insert(handle, left_path,
3647 right_path, subtree_index);
3649 out:
3650 if (left_path)
3651 ocfs2_free_path(left_path);
3652 return ret;
3655 static int ocfs2_try_to_merge_extent(handle_t *handle,
3656 struct ocfs2_extent_tree *et,
3657 struct ocfs2_path *path,
3658 int split_index,
3659 struct ocfs2_extent_rec *split_rec,
3660 struct ocfs2_cached_dealloc_ctxt *dealloc,
3661 struct ocfs2_merge_ctxt *ctxt)
3663 int ret = 0;
3664 struct ocfs2_extent_list *el = path_leaf_el(path);
3665 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3667 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3669 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3671 * The merge code will need to create an empty
3672 * extent to take the place of the newly
3673 * emptied slot. Remove any pre-existing empty
3674 * extents - having more than one in a leaf is
3675 * illegal.
3677 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3678 if (ret) {
3679 mlog_errno(ret);
3680 goto out;
3682 split_index--;
3683 rec = &el->l_recs[split_index];
3686 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3688 * Left-right contig implies this.
3690 BUG_ON(!ctxt->c_split_covers_rec);
3693 * Since the leftright insert always covers the entire
3694 * extent, this call will delete the insert record
3695 * entirely, resulting in an empty extent record added to
3696 * the extent block.
3698 * Since the adding of an empty extent shifts
3699 * everything back to the right, there's no need to
3700 * update split_index here.
3702 * When the split_index is zero, we need to merge it to the
3703 * prevoius extent block. It is more efficient and easier
3704 * if we do merge_right first and merge_left later.
3706 ret = ocfs2_merge_rec_right(path, handle, et, split_rec,
3707 split_index);
3708 if (ret) {
3709 mlog_errno(ret);
3710 goto out;
3714 * We can only get this from logic error above.
3716 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3718 /* The merge left us with an empty extent, remove it. */
3719 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3720 if (ret) {
3721 mlog_errno(ret);
3722 goto out;
3725 rec = &el->l_recs[split_index];
3728 * Note that we don't pass split_rec here on purpose -
3729 * we've merged it into the rec already.
3731 ret = ocfs2_merge_rec_left(path, handle, et, rec,
3732 dealloc, split_index);
3734 if (ret) {
3735 mlog_errno(ret);
3736 goto out;
3739 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
3741 * Error from this last rotate is not critical, so
3742 * print but don't bubble it up.
3744 if (ret)
3745 mlog_errno(ret);
3746 ret = 0;
3747 } else {
3749 * Merge a record to the left or right.
3751 * 'contig_type' is relative to the existing record,
3752 * so for example, if we're "right contig", it's to
3753 * the record on the left (hence the left merge).
3755 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3756 ret = ocfs2_merge_rec_left(path, handle, et,
3757 split_rec, dealloc,
3758 split_index);
3759 if (ret) {
3760 mlog_errno(ret);
3761 goto out;
3763 } else {
3764 ret = ocfs2_merge_rec_right(path, handle,
3765 et, split_rec,
3766 split_index);
3767 if (ret) {
3768 mlog_errno(ret);
3769 goto out;
3773 if (ctxt->c_split_covers_rec) {
3775 * The merge may have left an empty extent in
3776 * our leaf. Try to rotate it away.
3778 ret = ocfs2_rotate_tree_left(handle, et, path,
3779 dealloc);
3780 if (ret)
3781 mlog_errno(ret);
3782 ret = 0;
3786 out:
3787 return ret;
3790 static void ocfs2_subtract_from_rec(struct super_block *sb,
3791 enum ocfs2_split_type split,
3792 struct ocfs2_extent_rec *rec,
3793 struct ocfs2_extent_rec *split_rec)
3795 u64 len_blocks;
3797 len_blocks = ocfs2_clusters_to_blocks(sb,
3798 le16_to_cpu(split_rec->e_leaf_clusters));
3800 if (split == SPLIT_LEFT) {
3802 * Region is on the left edge of the existing
3803 * record.
3805 le32_add_cpu(&rec->e_cpos,
3806 le16_to_cpu(split_rec->e_leaf_clusters));
3807 le64_add_cpu(&rec->e_blkno, len_blocks);
3808 le16_add_cpu(&rec->e_leaf_clusters,
3809 -le16_to_cpu(split_rec->e_leaf_clusters));
3810 } else {
3812 * Region is on the right edge of the existing
3813 * record.
3815 le16_add_cpu(&rec->e_leaf_clusters,
3816 -le16_to_cpu(split_rec->e_leaf_clusters));
3821 * Do the final bits of extent record insertion at the target leaf
3822 * list. If this leaf is part of an allocation tree, it is assumed
3823 * that the tree above has been prepared.
3825 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree *et,
3826 struct ocfs2_extent_rec *insert_rec,
3827 struct ocfs2_extent_list *el,
3828 struct ocfs2_insert_type *insert)
3830 int i = insert->ins_contig_index;
3831 unsigned int range;
3832 struct ocfs2_extent_rec *rec;
3834 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3836 if (insert->ins_split != SPLIT_NONE) {
3837 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3838 BUG_ON(i == -1);
3839 rec = &el->l_recs[i];
3840 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
3841 insert->ins_split, rec,
3842 insert_rec);
3843 goto rotate;
3847 * Contiguous insert - either left or right.
3849 if (insert->ins_contig != CONTIG_NONE) {
3850 rec = &el->l_recs[i];
3851 if (insert->ins_contig == CONTIG_LEFT) {
3852 rec->e_blkno = insert_rec->e_blkno;
3853 rec->e_cpos = insert_rec->e_cpos;
3855 le16_add_cpu(&rec->e_leaf_clusters,
3856 le16_to_cpu(insert_rec->e_leaf_clusters));
3857 return;
3861 * Handle insert into an empty leaf.
3863 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3864 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3865 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3866 el->l_recs[0] = *insert_rec;
3867 el->l_next_free_rec = cpu_to_le16(1);
3868 return;
3872 * Appending insert.
3874 if (insert->ins_appending == APPEND_TAIL) {
3875 i = le16_to_cpu(el->l_next_free_rec) - 1;
3876 rec = &el->l_recs[i];
3877 range = le32_to_cpu(rec->e_cpos)
3878 + le16_to_cpu(rec->e_leaf_clusters);
3879 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3881 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3882 le16_to_cpu(el->l_count),
3883 "owner %llu, depth %u, count %u, next free %u, "
3884 "rec.cpos %u, rec.clusters %u, "
3885 "insert.cpos %u, insert.clusters %u\n",
3886 ocfs2_metadata_cache_owner(et->et_ci),
3887 le16_to_cpu(el->l_tree_depth),
3888 le16_to_cpu(el->l_count),
3889 le16_to_cpu(el->l_next_free_rec),
3890 le32_to_cpu(el->l_recs[i].e_cpos),
3891 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3892 le32_to_cpu(insert_rec->e_cpos),
3893 le16_to_cpu(insert_rec->e_leaf_clusters));
3894 i++;
3895 el->l_recs[i] = *insert_rec;
3896 le16_add_cpu(&el->l_next_free_rec, 1);
3897 return;
3900 rotate:
3902 * Ok, we have to rotate.
3904 * At this point, it is safe to assume that inserting into an
3905 * empty leaf and appending to a leaf have both been handled
3906 * above.
3908 * This leaf needs to have space, either by the empty 1st
3909 * extent record, or by virtue of an l_next_rec < l_count.
3911 ocfs2_rotate_leaf(el, insert_rec);
3914 static void ocfs2_adjust_rightmost_records(handle_t *handle,
3915 struct ocfs2_extent_tree *et,
3916 struct ocfs2_path *path,
3917 struct ocfs2_extent_rec *insert_rec)
3919 int ret, i, next_free;
3920 struct buffer_head *bh;
3921 struct ocfs2_extent_list *el;
3922 struct ocfs2_extent_rec *rec;
3925 * Update everything except the leaf block.
3927 for (i = 0; i < path->p_tree_depth; i++) {
3928 bh = path->p_node[i].bh;
3929 el = path->p_node[i].el;
3931 next_free = le16_to_cpu(el->l_next_free_rec);
3932 if (next_free == 0) {
3933 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
3934 "Owner %llu has a bad extent list",
3935 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci));
3936 ret = -EIO;
3937 return;
3940 rec = &el->l_recs[next_free - 1];
3942 rec->e_int_clusters = insert_rec->e_cpos;
3943 le32_add_cpu(&rec->e_int_clusters,
3944 le16_to_cpu(insert_rec->e_leaf_clusters));
3945 le32_add_cpu(&rec->e_int_clusters,
3946 -le32_to_cpu(rec->e_cpos));
3948 ocfs2_journal_dirty(handle, bh);
3952 static int ocfs2_append_rec_to_path(handle_t *handle,
3953 struct ocfs2_extent_tree *et,
3954 struct ocfs2_extent_rec *insert_rec,
3955 struct ocfs2_path *right_path,
3956 struct ocfs2_path **ret_left_path)
3958 int ret, next_free;
3959 struct ocfs2_extent_list *el;
3960 struct ocfs2_path *left_path = NULL;
3962 *ret_left_path = NULL;
3965 * This shouldn't happen for non-trees. The extent rec cluster
3966 * count manipulation below only works for interior nodes.
3968 BUG_ON(right_path->p_tree_depth == 0);
3971 * If our appending insert is at the leftmost edge of a leaf,
3972 * then we might need to update the rightmost records of the
3973 * neighboring path.
3975 el = path_leaf_el(right_path);
3976 next_free = le16_to_cpu(el->l_next_free_rec);
3977 if (next_free == 0 ||
3978 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3979 u32 left_cpos;
3981 ret = ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et->et_ci),
3982 right_path, &left_cpos);
3983 if (ret) {
3984 mlog_errno(ret);
3985 goto out;
3988 trace_ocfs2_append_rec_to_path(
3989 (unsigned long long)
3990 ocfs2_metadata_cache_owner(et->et_ci),
3991 le32_to_cpu(insert_rec->e_cpos),
3992 left_cpos);
3995 * No need to worry if the append is already in the
3996 * leftmost leaf.
3998 if (left_cpos) {
3999 left_path = ocfs2_new_path_from_path(right_path);
4000 if (!left_path) {
4001 ret = -ENOMEM;
4002 mlog_errno(ret);
4003 goto out;
4006 ret = ocfs2_find_path(et->et_ci, left_path,
4007 left_cpos);
4008 if (ret) {
4009 mlog_errno(ret);
4010 goto out;
4014 * ocfs2_insert_path() will pass the left_path to the
4015 * journal for us.
4020 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4021 if (ret) {
4022 mlog_errno(ret);
4023 goto out;
4026 ocfs2_adjust_rightmost_records(handle, et, right_path, insert_rec);
4028 *ret_left_path = left_path;
4029 ret = 0;
4030 out:
4031 if (ret != 0)
4032 ocfs2_free_path(left_path);
4034 return ret;
4037 static void ocfs2_split_record(struct ocfs2_extent_tree *et,
4038 struct ocfs2_path *left_path,
4039 struct ocfs2_path *right_path,
4040 struct ocfs2_extent_rec *split_rec,
4041 enum ocfs2_split_type split)
4043 int index;
4044 u32 cpos = le32_to_cpu(split_rec->e_cpos);
4045 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
4046 struct ocfs2_extent_rec *rec, *tmprec;
4048 right_el = path_leaf_el(right_path);
4049 if (left_path)
4050 left_el = path_leaf_el(left_path);
4052 el = right_el;
4053 insert_el = right_el;
4054 index = ocfs2_search_extent_list(el, cpos);
4055 if (index != -1) {
4056 if (index == 0 && left_path) {
4057 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
4060 * This typically means that the record
4061 * started in the left path but moved to the
4062 * right as a result of rotation. We either
4063 * move the existing record to the left, or we
4064 * do the later insert there.
4066 * In this case, the left path should always
4067 * exist as the rotate code will have passed
4068 * it back for a post-insert update.
4071 if (split == SPLIT_LEFT) {
4073 * It's a left split. Since we know
4074 * that the rotate code gave us an
4075 * empty extent in the left path, we
4076 * can just do the insert there.
4078 insert_el = left_el;
4079 } else {
4081 * Right split - we have to move the
4082 * existing record over to the left
4083 * leaf. The insert will be into the
4084 * newly created empty extent in the
4085 * right leaf.
4087 tmprec = &right_el->l_recs[index];
4088 ocfs2_rotate_leaf(left_el, tmprec);
4089 el = left_el;
4091 memset(tmprec, 0, sizeof(*tmprec));
4092 index = ocfs2_search_extent_list(left_el, cpos);
4093 BUG_ON(index == -1);
4096 } else {
4097 BUG_ON(!left_path);
4098 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
4100 * Left path is easy - we can just allow the insert to
4101 * happen.
4103 el = left_el;
4104 insert_el = left_el;
4105 index = ocfs2_search_extent_list(el, cpos);
4106 BUG_ON(index == -1);
4109 rec = &el->l_recs[index];
4110 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4111 split, rec, split_rec);
4112 ocfs2_rotate_leaf(insert_el, split_rec);
4116 * This function only does inserts on an allocation b-tree. For tree
4117 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4119 * right_path is the path we want to do the actual insert
4120 * in. left_path should only be passed in if we need to update that
4121 * portion of the tree after an edge insert.
4123 static int ocfs2_insert_path(handle_t *handle,
4124 struct ocfs2_extent_tree *et,
4125 struct ocfs2_path *left_path,
4126 struct ocfs2_path *right_path,
4127 struct ocfs2_extent_rec *insert_rec,
4128 struct ocfs2_insert_type *insert)
4130 int ret, subtree_index;
4131 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
4133 if (left_path) {
4135 * There's a chance that left_path got passed back to
4136 * us without being accounted for in the
4137 * journal. Extend our transaction here to be sure we
4138 * can change those blocks.
4140 ret = ocfs2_extend_trans(handle, left_path->p_tree_depth);
4141 if (ret < 0) {
4142 mlog_errno(ret);
4143 goto out;
4146 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
4147 if (ret < 0) {
4148 mlog_errno(ret);
4149 goto out;
4154 * Pass both paths to the journal. The majority of inserts
4155 * will be touching all components anyway.
4157 ret = ocfs2_journal_access_path(et->et_ci, handle, right_path);
4158 if (ret < 0) {
4159 mlog_errno(ret);
4160 goto out;
4163 if (insert->ins_split != SPLIT_NONE) {
4165 * We could call ocfs2_insert_at_leaf() for some types
4166 * of splits, but it's easier to just let one separate
4167 * function sort it all out.
4169 ocfs2_split_record(et, left_path, right_path,
4170 insert_rec, insert->ins_split);
4173 * Split might have modified either leaf and we don't
4174 * have a guarantee that the later edge insert will
4175 * dirty this for us.
4177 if (left_path)
4178 ocfs2_journal_dirty(handle,
4179 path_leaf_bh(left_path));
4180 } else
4181 ocfs2_insert_at_leaf(et, insert_rec, path_leaf_el(right_path),
4182 insert);
4184 ocfs2_journal_dirty(handle, leaf_bh);
4186 if (left_path) {
4188 * The rotate code has indicated that we need to fix
4189 * up portions of the tree after the insert.
4191 * XXX: Should we extend the transaction here?
4193 subtree_index = ocfs2_find_subtree_root(et, left_path,
4194 right_path);
4195 ocfs2_complete_edge_insert(handle, left_path, right_path,
4196 subtree_index);
4199 ret = 0;
4200 out:
4201 return ret;
4204 static int ocfs2_do_insert_extent(handle_t *handle,
4205 struct ocfs2_extent_tree *et,
4206 struct ocfs2_extent_rec *insert_rec,
4207 struct ocfs2_insert_type *type)
4209 int ret, rotate = 0;
4210 u32 cpos;
4211 struct ocfs2_path *right_path = NULL;
4212 struct ocfs2_path *left_path = NULL;
4213 struct ocfs2_extent_list *el;
4215 el = et->et_root_el;
4217 ret = ocfs2_et_root_journal_access(handle, et,
4218 OCFS2_JOURNAL_ACCESS_WRITE);
4219 if (ret) {
4220 mlog_errno(ret);
4221 goto out;
4224 if (le16_to_cpu(el->l_tree_depth) == 0) {
4225 ocfs2_insert_at_leaf(et, insert_rec, el, type);
4226 goto out_update_clusters;
4229 right_path = ocfs2_new_path_from_et(et);
4230 if (!right_path) {
4231 ret = -ENOMEM;
4232 mlog_errno(ret);
4233 goto out;
4237 * Determine the path to start with. Rotations need the
4238 * rightmost path, everything else can go directly to the
4239 * target leaf.
4241 cpos = le32_to_cpu(insert_rec->e_cpos);
4242 if (type->ins_appending == APPEND_NONE &&
4243 type->ins_contig == CONTIG_NONE) {
4244 rotate = 1;
4245 cpos = UINT_MAX;
4248 ret = ocfs2_find_path(et->et_ci, right_path, cpos);
4249 if (ret) {
4250 mlog_errno(ret);
4251 goto out;
4255 * Rotations and appends need special treatment - they modify
4256 * parts of the tree's above them.
4258 * Both might pass back a path immediate to the left of the
4259 * one being inserted to. This will be cause
4260 * ocfs2_insert_path() to modify the rightmost records of
4261 * left_path to account for an edge insert.
4263 * XXX: When modifying this code, keep in mind that an insert
4264 * can wind up skipping both of these two special cases...
4266 if (rotate) {
4267 ret = ocfs2_rotate_tree_right(handle, et, type->ins_split,
4268 le32_to_cpu(insert_rec->e_cpos),
4269 right_path, &left_path);
4270 if (ret) {
4271 mlog_errno(ret);
4272 goto out;
4276 * ocfs2_rotate_tree_right() might have extended the
4277 * transaction without re-journaling our tree root.
4279 ret = ocfs2_et_root_journal_access(handle, et,
4280 OCFS2_JOURNAL_ACCESS_WRITE);
4281 if (ret) {
4282 mlog_errno(ret);
4283 goto out;
4285 } else if (type->ins_appending == APPEND_TAIL
4286 && type->ins_contig != CONTIG_LEFT) {
4287 ret = ocfs2_append_rec_to_path(handle, et, insert_rec,
4288 right_path, &left_path);
4289 if (ret) {
4290 mlog_errno(ret);
4291 goto out;
4295 ret = ocfs2_insert_path(handle, et, left_path, right_path,
4296 insert_rec, type);
4297 if (ret) {
4298 mlog_errno(ret);
4299 goto out;
4302 out_update_clusters:
4303 if (type->ins_split == SPLIT_NONE)
4304 ocfs2_et_update_clusters(et,
4305 le16_to_cpu(insert_rec->e_leaf_clusters));
4307 ocfs2_journal_dirty(handle, et->et_root_bh);
4309 out:
4310 ocfs2_free_path(left_path);
4311 ocfs2_free_path(right_path);
4313 return ret;
4316 static enum ocfs2_contig_type
4317 ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree *et,
4318 struct ocfs2_path *path,
4319 struct ocfs2_extent_list *el, int index,
4320 struct ocfs2_extent_rec *split_rec)
4322 int status;
4323 enum ocfs2_contig_type ret = CONTIG_NONE;
4324 u32 left_cpos, right_cpos;
4325 struct ocfs2_extent_rec *rec = NULL;
4326 struct ocfs2_extent_list *new_el;
4327 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4328 struct buffer_head *bh;
4329 struct ocfs2_extent_block *eb;
4330 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
4332 if (index > 0) {
4333 rec = &el->l_recs[index - 1];
4334 } else if (path->p_tree_depth > 0) {
4335 status = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
4336 if (status)
4337 goto out;
4339 if (left_cpos != 0) {
4340 left_path = ocfs2_new_path_from_path(path);
4341 if (!left_path)
4342 goto out;
4344 status = ocfs2_find_path(et->et_ci, left_path,
4345 left_cpos);
4346 if (status)
4347 goto out;
4349 new_el = path_leaf_el(left_path);
4351 if (le16_to_cpu(new_el->l_next_free_rec) !=
4352 le16_to_cpu(new_el->l_count)) {
4353 bh = path_leaf_bh(left_path);
4354 eb = (struct ocfs2_extent_block *)bh->b_data;
4355 ocfs2_error(sb,
4356 "Extent block #%llu has an "
4357 "invalid l_next_free_rec of "
4358 "%d. It should have "
4359 "matched the l_count of %d",
4360 (unsigned long long)le64_to_cpu(eb->h_blkno),
4361 le16_to_cpu(new_el->l_next_free_rec),
4362 le16_to_cpu(new_el->l_count));
4363 status = -EINVAL;
4364 goto out;
4366 rec = &new_el->l_recs[
4367 le16_to_cpu(new_el->l_next_free_rec) - 1];
4372 * We're careful to check for an empty extent record here -
4373 * the merge code will know what to do if it sees one.
4375 if (rec) {
4376 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4377 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4378 ret = CONTIG_RIGHT;
4379 } else {
4380 ret = ocfs2_et_extent_contig(et, rec, split_rec);
4384 rec = NULL;
4385 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4386 rec = &el->l_recs[index + 1];
4387 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4388 path->p_tree_depth > 0) {
4389 status = ocfs2_find_cpos_for_right_leaf(sb, path, &right_cpos);
4390 if (status)
4391 goto out;
4393 if (right_cpos == 0)
4394 goto out;
4396 right_path = ocfs2_new_path_from_path(path);
4397 if (!right_path)
4398 goto out;
4400 status = ocfs2_find_path(et->et_ci, right_path, right_cpos);
4401 if (status)
4402 goto out;
4404 new_el = path_leaf_el(right_path);
4405 rec = &new_el->l_recs[0];
4406 if (ocfs2_is_empty_extent(rec)) {
4407 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4408 bh = path_leaf_bh(right_path);
4409 eb = (struct ocfs2_extent_block *)bh->b_data;
4410 ocfs2_error(sb,
4411 "Extent block #%llu has an "
4412 "invalid l_next_free_rec of %d",
4413 (unsigned long long)le64_to_cpu(eb->h_blkno),
4414 le16_to_cpu(new_el->l_next_free_rec));
4415 status = -EINVAL;
4416 goto out;
4418 rec = &new_el->l_recs[1];
4422 if (rec) {
4423 enum ocfs2_contig_type contig_type;
4425 contig_type = ocfs2_et_extent_contig(et, rec, split_rec);
4427 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4428 ret = CONTIG_LEFTRIGHT;
4429 else if (ret == CONTIG_NONE)
4430 ret = contig_type;
4433 out:
4434 if (left_path)
4435 ocfs2_free_path(left_path);
4436 if (right_path)
4437 ocfs2_free_path(right_path);
4439 return ret;
4442 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree *et,
4443 struct ocfs2_insert_type *insert,
4444 struct ocfs2_extent_list *el,
4445 struct ocfs2_extent_rec *insert_rec)
4447 int i;
4448 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4450 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4452 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4453 contig_type = ocfs2_et_extent_contig(et, &el->l_recs[i],
4454 insert_rec);
4455 if (contig_type != CONTIG_NONE) {
4456 insert->ins_contig_index = i;
4457 break;
4460 insert->ins_contig = contig_type;
4462 if (insert->ins_contig != CONTIG_NONE) {
4463 struct ocfs2_extent_rec *rec =
4464 &el->l_recs[insert->ins_contig_index];
4465 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4466 le16_to_cpu(insert_rec->e_leaf_clusters);
4469 * Caller might want us to limit the size of extents, don't
4470 * calculate contiguousness if we might exceed that limit.
4472 if (et->et_max_leaf_clusters &&
4473 (len > et->et_max_leaf_clusters))
4474 insert->ins_contig = CONTIG_NONE;
4479 * This should only be called against the righmost leaf extent list.
4481 * ocfs2_figure_appending_type() will figure out whether we'll have to
4482 * insert at the tail of the rightmost leaf.
4484 * This should also work against the root extent list for tree's with 0
4485 * depth. If we consider the root extent list to be the rightmost leaf node
4486 * then the logic here makes sense.
4488 static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4489 struct ocfs2_extent_list *el,
4490 struct ocfs2_extent_rec *insert_rec)
4492 int i;
4493 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4494 struct ocfs2_extent_rec *rec;
4496 insert->ins_appending = APPEND_NONE;
4498 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4500 if (!el->l_next_free_rec)
4501 goto set_tail_append;
4503 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4504 /* Were all records empty? */
4505 if (le16_to_cpu(el->l_next_free_rec) == 1)
4506 goto set_tail_append;
4509 i = le16_to_cpu(el->l_next_free_rec) - 1;
4510 rec = &el->l_recs[i];
4512 if (cpos >=
4513 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
4514 goto set_tail_append;
4516 return;
4518 set_tail_append:
4519 insert->ins_appending = APPEND_TAIL;
4523 * Helper function called at the beginning of an insert.
4525 * This computes a few things that are commonly used in the process of
4526 * inserting into the btree:
4527 * - Whether the new extent is contiguous with an existing one.
4528 * - The current tree depth.
4529 * - Whether the insert is an appending one.
4530 * - The total # of free records in the tree.
4532 * All of the information is stored on the ocfs2_insert_type
4533 * structure.
4535 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree *et,
4536 struct buffer_head **last_eb_bh,
4537 struct ocfs2_extent_rec *insert_rec,
4538 int *free_records,
4539 struct ocfs2_insert_type *insert)
4541 int ret;
4542 struct ocfs2_extent_block *eb;
4543 struct ocfs2_extent_list *el;
4544 struct ocfs2_path *path = NULL;
4545 struct buffer_head *bh = NULL;
4547 insert->ins_split = SPLIT_NONE;
4549 el = et->et_root_el;
4550 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4552 if (el->l_tree_depth) {
4554 * If we have tree depth, we read in the
4555 * rightmost extent block ahead of time as
4556 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4557 * may want it later.
4559 ret = ocfs2_read_extent_block(et->et_ci,
4560 ocfs2_et_get_last_eb_blk(et),
4561 &bh);
4562 if (ret) {
4563 mlog_errno(ret);
4564 goto out;
4566 eb = (struct ocfs2_extent_block *) bh->b_data;
4567 el = &eb->h_list;
4571 * Unless we have a contiguous insert, we'll need to know if
4572 * there is room left in our allocation tree for another
4573 * extent record.
4575 * XXX: This test is simplistic, we can search for empty
4576 * extent records too.
4578 *free_records = le16_to_cpu(el->l_count) -
4579 le16_to_cpu(el->l_next_free_rec);
4581 if (!insert->ins_tree_depth) {
4582 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4583 ocfs2_figure_appending_type(insert, el, insert_rec);
4584 return 0;
4587 path = ocfs2_new_path_from_et(et);
4588 if (!path) {
4589 ret = -ENOMEM;
4590 mlog_errno(ret);
4591 goto out;
4595 * In the case that we're inserting past what the tree
4596 * currently accounts for, ocfs2_find_path() will return for
4597 * us the rightmost tree path. This is accounted for below in
4598 * the appending code.
4600 ret = ocfs2_find_path(et->et_ci, path, le32_to_cpu(insert_rec->e_cpos));
4601 if (ret) {
4602 mlog_errno(ret);
4603 goto out;
4606 el = path_leaf_el(path);
4609 * Now that we have the path, there's two things we want to determine:
4610 * 1) Contiguousness (also set contig_index if this is so)
4612 * 2) Are we doing an append? We can trivially break this up
4613 * into two types of appends: simple record append, or a
4614 * rotate inside the tail leaf.
4616 ocfs2_figure_contig_type(et, insert, el, insert_rec);
4619 * The insert code isn't quite ready to deal with all cases of
4620 * left contiguousness. Specifically, if it's an insert into
4621 * the 1st record in a leaf, it will require the adjustment of
4622 * cluster count on the last record of the path directly to it's
4623 * left. For now, just catch that case and fool the layers
4624 * above us. This works just fine for tree_depth == 0, which
4625 * is why we allow that above.
4627 if (insert->ins_contig == CONTIG_LEFT &&
4628 insert->ins_contig_index == 0)
4629 insert->ins_contig = CONTIG_NONE;
4632 * Ok, so we can simply compare against last_eb to figure out
4633 * whether the path doesn't exist. This will only happen in
4634 * the case that we're doing a tail append, so maybe we can
4635 * take advantage of that information somehow.
4637 if (ocfs2_et_get_last_eb_blk(et) ==
4638 path_leaf_bh(path)->b_blocknr) {
4640 * Ok, ocfs2_find_path() returned us the rightmost
4641 * tree path. This might be an appending insert. There are
4642 * two cases:
4643 * 1) We're doing a true append at the tail:
4644 * -This might even be off the end of the leaf
4645 * 2) We're "appending" by rotating in the tail
4647 ocfs2_figure_appending_type(insert, el, insert_rec);
4650 out:
4651 ocfs2_free_path(path);
4653 if (ret == 0)
4654 *last_eb_bh = bh;
4655 else
4656 brelse(bh);
4657 return ret;
4661 * Insert an extent into a btree.
4663 * The caller needs to update the owning btree's cluster count.
4665 int ocfs2_insert_extent(handle_t *handle,
4666 struct ocfs2_extent_tree *et,
4667 u32 cpos,
4668 u64 start_blk,
4669 u32 new_clusters,
4670 u8 flags,
4671 struct ocfs2_alloc_context *meta_ac)
4673 int status;
4674 int uninitialized_var(free_records);
4675 struct buffer_head *last_eb_bh = NULL;
4676 struct ocfs2_insert_type insert = {0, };
4677 struct ocfs2_extent_rec rec;
4679 trace_ocfs2_insert_extent_start(
4680 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4681 cpos, new_clusters);
4683 memset(&rec, 0, sizeof(rec));
4684 rec.e_cpos = cpu_to_le32(cpos);
4685 rec.e_blkno = cpu_to_le64(start_blk);
4686 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
4687 rec.e_flags = flags;
4688 status = ocfs2_et_insert_check(et, &rec);
4689 if (status) {
4690 mlog_errno(status);
4691 goto bail;
4694 status = ocfs2_figure_insert_type(et, &last_eb_bh, &rec,
4695 &free_records, &insert);
4696 if (status < 0) {
4697 mlog_errno(status);
4698 goto bail;
4701 trace_ocfs2_insert_extent(insert.ins_appending, insert.ins_contig,
4702 insert.ins_contig_index, free_records,
4703 insert.ins_tree_depth);
4705 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
4706 status = ocfs2_grow_tree(handle, et,
4707 &insert.ins_tree_depth, &last_eb_bh,
4708 meta_ac);
4709 if (status) {
4710 mlog_errno(status);
4711 goto bail;
4715 /* Finally, we can add clusters. This might rotate the tree for us. */
4716 status = ocfs2_do_insert_extent(handle, et, &rec, &insert);
4717 if (status < 0)
4718 mlog_errno(status);
4719 else
4720 ocfs2_et_extent_map_insert(et, &rec);
4722 bail:
4723 brelse(last_eb_bh);
4725 return status;
4729 * Allcate and add clusters into the extent b-tree.
4730 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4731 * The extent b-tree's root is specified by et, and
4732 * it is not limited to the file storage. Any extent tree can use this
4733 * function if it implements the proper ocfs2_extent_tree.
4735 int ocfs2_add_clusters_in_btree(handle_t *handle,
4736 struct ocfs2_extent_tree *et,
4737 u32 *logical_offset,
4738 u32 clusters_to_add,
4739 int mark_unwritten,
4740 struct ocfs2_alloc_context *data_ac,
4741 struct ocfs2_alloc_context *meta_ac,
4742 enum ocfs2_alloc_restarted *reason_ret)
4744 int status = 0, err = 0;
4745 int need_free = 0;
4746 int free_extents;
4747 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4748 u32 bit_off, num_bits;
4749 u64 block;
4750 u8 flags = 0;
4751 struct ocfs2_super *osb =
4752 OCFS2_SB(ocfs2_metadata_cache_get_super(et->et_ci));
4754 BUG_ON(!clusters_to_add);
4756 if (mark_unwritten)
4757 flags = OCFS2_EXT_UNWRITTEN;
4759 free_extents = ocfs2_num_free_extents(osb, et);
4760 if (free_extents < 0) {
4761 status = free_extents;
4762 mlog_errno(status);
4763 goto leave;
4766 /* there are two cases which could cause us to EAGAIN in the
4767 * we-need-more-metadata case:
4768 * 1) we haven't reserved *any*
4769 * 2) we are so fragmented, we've needed to add metadata too
4770 * many times. */
4771 if (!free_extents && !meta_ac) {
4772 err = -1;
4773 status = -EAGAIN;
4774 reason = RESTART_META;
4775 goto leave;
4776 } else if ((!free_extents)
4777 && (ocfs2_alloc_context_bits_left(meta_ac)
4778 < ocfs2_extend_meta_needed(et->et_root_el))) {
4779 err = -2;
4780 status = -EAGAIN;
4781 reason = RESTART_META;
4782 goto leave;
4785 status = __ocfs2_claim_clusters(handle, data_ac, 1,
4786 clusters_to_add, &bit_off, &num_bits);
4787 if (status < 0) {
4788 if (status != -ENOSPC)
4789 mlog_errno(status);
4790 goto leave;
4793 BUG_ON(num_bits > clusters_to_add);
4795 /* reserve our write early -- insert_extent may update the tree root */
4796 status = ocfs2_et_root_journal_access(handle, et,
4797 OCFS2_JOURNAL_ACCESS_WRITE);
4798 if (status < 0) {
4799 mlog_errno(status);
4800 need_free = 1;
4801 goto bail;
4804 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4805 trace_ocfs2_add_clusters_in_btree(
4806 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4807 bit_off, num_bits);
4808 status = ocfs2_insert_extent(handle, et, *logical_offset, block,
4809 num_bits, flags, meta_ac);
4810 if (status < 0) {
4811 mlog_errno(status);
4812 need_free = 1;
4813 goto bail;
4816 ocfs2_journal_dirty(handle, et->et_root_bh);
4818 clusters_to_add -= num_bits;
4819 *logical_offset += num_bits;
4821 if (clusters_to_add) {
4822 err = clusters_to_add;
4823 status = -EAGAIN;
4824 reason = RESTART_TRANS;
4827 bail:
4828 if (need_free) {
4829 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
4830 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
4831 bit_off, num_bits);
4832 else
4833 ocfs2_free_clusters(handle,
4834 data_ac->ac_inode,
4835 data_ac->ac_bh,
4836 ocfs2_clusters_to_blocks(osb->sb, bit_off),
4837 num_bits);
4840 leave:
4841 if (reason_ret)
4842 *reason_ret = reason;
4843 trace_ocfs2_add_clusters_in_btree_ret(status, reason, err);
4844 return status;
4847 static void ocfs2_make_right_split_rec(struct super_block *sb,
4848 struct ocfs2_extent_rec *split_rec,
4849 u32 cpos,
4850 struct ocfs2_extent_rec *rec)
4852 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4853 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4855 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4857 split_rec->e_cpos = cpu_to_le32(cpos);
4858 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4860 split_rec->e_blkno = rec->e_blkno;
4861 le64_add_cpu(&split_rec->e_blkno,
4862 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4864 split_rec->e_flags = rec->e_flags;
4867 static int ocfs2_split_and_insert(handle_t *handle,
4868 struct ocfs2_extent_tree *et,
4869 struct ocfs2_path *path,
4870 struct buffer_head **last_eb_bh,
4871 int split_index,
4872 struct ocfs2_extent_rec *orig_split_rec,
4873 struct ocfs2_alloc_context *meta_ac)
4875 int ret = 0, depth;
4876 unsigned int insert_range, rec_range, do_leftright = 0;
4877 struct ocfs2_extent_rec tmprec;
4878 struct ocfs2_extent_list *rightmost_el;
4879 struct ocfs2_extent_rec rec;
4880 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4881 struct ocfs2_insert_type insert;
4882 struct ocfs2_extent_block *eb;
4884 leftright:
4886 * Store a copy of the record on the stack - it might move
4887 * around as the tree is manipulated below.
4889 rec = path_leaf_el(path)->l_recs[split_index];
4891 rightmost_el = et->et_root_el;
4893 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4894 if (depth) {
4895 BUG_ON(!(*last_eb_bh));
4896 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4897 rightmost_el = &eb->h_list;
4900 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4901 le16_to_cpu(rightmost_el->l_count)) {
4902 ret = ocfs2_grow_tree(handle, et,
4903 &depth, last_eb_bh, meta_ac);
4904 if (ret) {
4905 mlog_errno(ret);
4906 goto out;
4910 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4911 insert.ins_appending = APPEND_NONE;
4912 insert.ins_contig = CONTIG_NONE;
4913 insert.ins_tree_depth = depth;
4915 insert_range = le32_to_cpu(split_rec.e_cpos) +
4916 le16_to_cpu(split_rec.e_leaf_clusters);
4917 rec_range = le32_to_cpu(rec.e_cpos) +
4918 le16_to_cpu(rec.e_leaf_clusters);
4920 if (split_rec.e_cpos == rec.e_cpos) {
4921 insert.ins_split = SPLIT_LEFT;
4922 } else if (insert_range == rec_range) {
4923 insert.ins_split = SPLIT_RIGHT;
4924 } else {
4926 * Left/right split. We fake this as a right split
4927 * first and then make a second pass as a left split.
4929 insert.ins_split = SPLIT_RIGHT;
4931 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
4932 &tmprec, insert_range, &rec);
4934 split_rec = tmprec;
4936 BUG_ON(do_leftright);
4937 do_leftright = 1;
4940 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
4941 if (ret) {
4942 mlog_errno(ret);
4943 goto out;
4946 if (do_leftright == 1) {
4947 u32 cpos;
4948 struct ocfs2_extent_list *el;
4950 do_leftright++;
4951 split_rec = *orig_split_rec;
4953 ocfs2_reinit_path(path, 1);
4955 cpos = le32_to_cpu(split_rec.e_cpos);
4956 ret = ocfs2_find_path(et->et_ci, path, cpos);
4957 if (ret) {
4958 mlog_errno(ret);
4959 goto out;
4962 el = path_leaf_el(path);
4963 split_index = ocfs2_search_extent_list(el, cpos);
4964 if (split_index == -1) {
4965 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
4966 "Owner %llu has an extent at cpos %u "
4967 "which can no longer be found.\n",
4968 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
4969 cpos);
4970 ret = -EROFS;
4971 goto out;
4973 goto leftright;
4975 out:
4977 return ret;
4980 static int ocfs2_replace_extent_rec(handle_t *handle,
4981 struct ocfs2_extent_tree *et,
4982 struct ocfs2_path *path,
4983 struct ocfs2_extent_list *el,
4984 int split_index,
4985 struct ocfs2_extent_rec *split_rec)
4987 int ret;
4989 ret = ocfs2_path_bh_journal_access(handle, et->et_ci, path,
4990 path_num_items(path) - 1);
4991 if (ret) {
4992 mlog_errno(ret);
4993 goto out;
4996 el->l_recs[split_index] = *split_rec;
4998 ocfs2_journal_dirty(handle, path_leaf_bh(path));
4999 out:
5000 return ret;
5004 * Split part or all of the extent record at split_index in the leaf
5005 * pointed to by path. Merge with the contiguous extent record if needed.
5007 * Care is taken to handle contiguousness so as to not grow the tree.
5009 * meta_ac is not strictly necessary - we only truly need it if growth
5010 * of the tree is required. All other cases will degrade into a less
5011 * optimal tree layout.
5013 * last_eb_bh should be the rightmost leaf block for any extent
5014 * btree. Since a split may grow the tree or a merge might shrink it,
5015 * the caller cannot trust the contents of that buffer after this call.
5017 * This code is optimized for readability - several passes might be
5018 * made over certain portions of the tree. All of those blocks will
5019 * have been brought into cache (and pinned via the journal), so the
5020 * extra overhead is not expressed in terms of disk reads.
5022 int ocfs2_split_extent(handle_t *handle,
5023 struct ocfs2_extent_tree *et,
5024 struct ocfs2_path *path,
5025 int split_index,
5026 struct ocfs2_extent_rec *split_rec,
5027 struct ocfs2_alloc_context *meta_ac,
5028 struct ocfs2_cached_dealloc_ctxt *dealloc)
5030 int ret = 0;
5031 struct ocfs2_extent_list *el = path_leaf_el(path);
5032 struct buffer_head *last_eb_bh = NULL;
5033 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
5034 struct ocfs2_merge_ctxt ctxt;
5035 struct ocfs2_extent_list *rightmost_el;
5037 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
5038 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
5039 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
5040 ret = -EIO;
5041 mlog_errno(ret);
5042 goto out;
5045 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(et, path, el,
5046 split_index,
5047 split_rec);
5050 * The core merge / split code wants to know how much room is
5051 * left in this allocation tree, so we pass the
5052 * rightmost extent list.
5054 if (path->p_tree_depth) {
5055 struct ocfs2_extent_block *eb;
5057 ret = ocfs2_read_extent_block(et->et_ci,
5058 ocfs2_et_get_last_eb_blk(et),
5059 &last_eb_bh);
5060 if (ret) {
5061 mlog_errno(ret);
5062 goto out;
5065 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5066 rightmost_el = &eb->h_list;
5067 } else
5068 rightmost_el = path_root_el(path);
5070 if (rec->e_cpos == split_rec->e_cpos &&
5071 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
5072 ctxt.c_split_covers_rec = 1;
5073 else
5074 ctxt.c_split_covers_rec = 0;
5076 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
5078 trace_ocfs2_split_extent(split_index, ctxt.c_contig_type,
5079 ctxt.c_has_empty_extent,
5080 ctxt.c_split_covers_rec);
5082 if (ctxt.c_contig_type == CONTIG_NONE) {
5083 if (ctxt.c_split_covers_rec)
5084 ret = ocfs2_replace_extent_rec(handle, et, path, el,
5085 split_index, split_rec);
5086 else
5087 ret = ocfs2_split_and_insert(handle, et, path,
5088 &last_eb_bh, split_index,
5089 split_rec, meta_ac);
5090 if (ret)
5091 mlog_errno(ret);
5092 } else {
5093 ret = ocfs2_try_to_merge_extent(handle, et, path,
5094 split_index, split_rec,
5095 dealloc, &ctxt);
5096 if (ret)
5097 mlog_errno(ret);
5100 out:
5101 brelse(last_eb_bh);
5102 return ret;
5106 * Change the flags of the already-existing extent at cpos for len clusters.
5108 * new_flags: the flags we want to set.
5109 * clear_flags: the flags we want to clear.
5110 * phys: the new physical offset we want this new extent starts from.
5112 * If the existing extent is larger than the request, initiate a
5113 * split. An attempt will be made at merging with adjacent extents.
5115 * The caller is responsible for passing down meta_ac if we'll need it.
5117 int ocfs2_change_extent_flag(handle_t *handle,
5118 struct ocfs2_extent_tree *et,
5119 u32 cpos, u32 len, u32 phys,
5120 struct ocfs2_alloc_context *meta_ac,
5121 struct ocfs2_cached_dealloc_ctxt *dealloc,
5122 int new_flags, int clear_flags)
5124 int ret, index;
5125 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5126 u64 start_blkno = ocfs2_clusters_to_blocks(sb, phys);
5127 struct ocfs2_extent_rec split_rec;
5128 struct ocfs2_path *left_path = NULL;
5129 struct ocfs2_extent_list *el;
5130 struct ocfs2_extent_rec *rec;
5132 left_path = ocfs2_new_path_from_et(et);
5133 if (!left_path) {
5134 ret = -ENOMEM;
5135 mlog_errno(ret);
5136 goto out;
5139 ret = ocfs2_find_path(et->et_ci, left_path, cpos);
5140 if (ret) {
5141 mlog_errno(ret);
5142 goto out;
5144 el = path_leaf_el(left_path);
5146 index = ocfs2_search_extent_list(el, cpos);
5147 if (index == -1) {
5148 ocfs2_error(sb,
5149 "Owner %llu has an extent at cpos %u which can no "
5150 "longer be found.\n",
5151 (unsigned long long)
5152 ocfs2_metadata_cache_owner(et->et_ci), cpos);
5153 ret = -EROFS;
5154 goto out;
5157 ret = -EIO;
5158 rec = &el->l_recs[index];
5159 if (new_flags && (rec->e_flags & new_flags)) {
5160 mlog(ML_ERROR, "Owner %llu tried to set %d flags on an "
5161 "extent that already had them",
5162 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5163 new_flags);
5164 goto out;
5167 if (clear_flags && !(rec->e_flags & clear_flags)) {
5168 mlog(ML_ERROR, "Owner %llu tried to clear %d flags on an "
5169 "extent that didn't have them",
5170 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5171 clear_flags);
5172 goto out;
5175 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
5176 split_rec.e_cpos = cpu_to_le32(cpos);
5177 split_rec.e_leaf_clusters = cpu_to_le16(len);
5178 split_rec.e_blkno = cpu_to_le64(start_blkno);
5179 split_rec.e_flags = rec->e_flags;
5180 if (new_flags)
5181 split_rec.e_flags |= new_flags;
5182 if (clear_flags)
5183 split_rec.e_flags &= ~clear_flags;
5185 ret = ocfs2_split_extent(handle, et, left_path,
5186 index, &split_rec, meta_ac,
5187 dealloc);
5188 if (ret)
5189 mlog_errno(ret);
5191 out:
5192 ocfs2_free_path(left_path);
5193 return ret;
5198 * Mark the already-existing extent at cpos as written for len clusters.
5199 * This removes the unwritten extent flag.
5201 * If the existing extent is larger than the request, initiate a
5202 * split. An attempt will be made at merging with adjacent extents.
5204 * The caller is responsible for passing down meta_ac if we'll need it.
5206 int ocfs2_mark_extent_written(struct inode *inode,
5207 struct ocfs2_extent_tree *et,
5208 handle_t *handle, u32 cpos, u32 len, u32 phys,
5209 struct ocfs2_alloc_context *meta_ac,
5210 struct ocfs2_cached_dealloc_ctxt *dealloc)
5212 int ret;
5214 trace_ocfs2_mark_extent_written(
5215 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5216 cpos, len, phys);
5218 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
5219 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
5220 "that are being written to, but the feature bit "
5221 "is not set in the super block.",
5222 (unsigned long long)OCFS2_I(inode)->ip_blkno);
5223 ret = -EROFS;
5224 goto out;
5228 * XXX: This should be fixed up so that we just re-insert the
5229 * next extent records.
5231 ocfs2_et_extent_map_truncate(et, 0);
5233 ret = ocfs2_change_extent_flag(handle, et, cpos,
5234 len, phys, meta_ac, dealloc,
5235 0, OCFS2_EXT_UNWRITTEN);
5236 if (ret)
5237 mlog_errno(ret);
5239 out:
5240 return ret;
5243 static int ocfs2_split_tree(handle_t *handle, struct ocfs2_extent_tree *et,
5244 struct ocfs2_path *path,
5245 int index, u32 new_range,
5246 struct ocfs2_alloc_context *meta_ac)
5248 int ret, depth, credits;
5249 struct buffer_head *last_eb_bh = NULL;
5250 struct ocfs2_extent_block *eb;
5251 struct ocfs2_extent_list *rightmost_el, *el;
5252 struct ocfs2_extent_rec split_rec;
5253 struct ocfs2_extent_rec *rec;
5254 struct ocfs2_insert_type insert;
5257 * Setup the record to split before we grow the tree.
5259 el = path_leaf_el(path);
5260 rec = &el->l_recs[index];
5261 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et->et_ci),
5262 &split_rec, new_range, rec);
5264 depth = path->p_tree_depth;
5265 if (depth > 0) {
5266 ret = ocfs2_read_extent_block(et->et_ci,
5267 ocfs2_et_get_last_eb_blk(et),
5268 &last_eb_bh);
5269 if (ret < 0) {
5270 mlog_errno(ret);
5271 goto out;
5274 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5275 rightmost_el = &eb->h_list;
5276 } else
5277 rightmost_el = path_leaf_el(path);
5279 credits = path->p_tree_depth +
5280 ocfs2_extend_meta_needed(et->et_root_el);
5281 ret = ocfs2_extend_trans(handle, credits);
5282 if (ret) {
5283 mlog_errno(ret);
5284 goto out;
5287 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
5288 le16_to_cpu(rightmost_el->l_count)) {
5289 ret = ocfs2_grow_tree(handle, et, &depth, &last_eb_bh,
5290 meta_ac);
5291 if (ret) {
5292 mlog_errno(ret);
5293 goto out;
5297 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
5298 insert.ins_appending = APPEND_NONE;
5299 insert.ins_contig = CONTIG_NONE;
5300 insert.ins_split = SPLIT_RIGHT;
5301 insert.ins_tree_depth = depth;
5303 ret = ocfs2_do_insert_extent(handle, et, &split_rec, &insert);
5304 if (ret)
5305 mlog_errno(ret);
5307 out:
5308 brelse(last_eb_bh);
5309 return ret;
5312 static int ocfs2_truncate_rec(handle_t *handle,
5313 struct ocfs2_extent_tree *et,
5314 struct ocfs2_path *path, int index,
5315 struct ocfs2_cached_dealloc_ctxt *dealloc,
5316 u32 cpos, u32 len)
5318 int ret;
5319 u32 left_cpos, rec_range, trunc_range;
5320 int wants_rotate = 0, is_rightmost_tree_rec = 0;
5321 struct super_block *sb = ocfs2_metadata_cache_get_super(et->et_ci);
5322 struct ocfs2_path *left_path = NULL;
5323 struct ocfs2_extent_list *el = path_leaf_el(path);
5324 struct ocfs2_extent_rec *rec;
5325 struct ocfs2_extent_block *eb;
5327 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
5328 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5329 if (ret) {
5330 mlog_errno(ret);
5331 goto out;
5334 index--;
5337 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5338 path->p_tree_depth) {
5340 * Check whether this is the rightmost tree record. If
5341 * we remove all of this record or part of its right
5342 * edge then an update of the record lengths above it
5343 * will be required.
5345 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5346 if (eb->h_next_leaf_blk == 0)
5347 is_rightmost_tree_rec = 1;
5350 rec = &el->l_recs[index];
5351 if (index == 0 && path->p_tree_depth &&
5352 le32_to_cpu(rec->e_cpos) == cpos) {
5354 * Changing the leftmost offset (via partial or whole
5355 * record truncate) of an interior (or rightmost) path
5356 * means we have to update the subtree that is formed
5357 * by this leaf and the one to it's left.
5359 * There are two cases we can skip:
5360 * 1) Path is the leftmost one in our btree.
5361 * 2) The leaf is rightmost and will be empty after
5362 * we remove the extent record - the rotate code
5363 * knows how to update the newly formed edge.
5366 ret = ocfs2_find_cpos_for_left_leaf(sb, path, &left_cpos);
5367 if (ret) {
5368 mlog_errno(ret);
5369 goto out;
5372 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5373 left_path = ocfs2_new_path_from_path(path);
5374 if (!left_path) {
5375 ret = -ENOMEM;
5376 mlog_errno(ret);
5377 goto out;
5380 ret = ocfs2_find_path(et->et_ci, left_path,
5381 left_cpos);
5382 if (ret) {
5383 mlog_errno(ret);
5384 goto out;
5389 ret = ocfs2_extend_rotate_transaction(handle, 0,
5390 handle->h_buffer_credits,
5391 path);
5392 if (ret) {
5393 mlog_errno(ret);
5394 goto out;
5397 ret = ocfs2_journal_access_path(et->et_ci, handle, path);
5398 if (ret) {
5399 mlog_errno(ret);
5400 goto out;
5403 ret = ocfs2_journal_access_path(et->et_ci, handle, left_path);
5404 if (ret) {
5405 mlog_errno(ret);
5406 goto out;
5409 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5410 trunc_range = cpos + len;
5412 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5413 int next_free;
5415 memset(rec, 0, sizeof(*rec));
5416 ocfs2_cleanup_merge(el, index);
5417 wants_rotate = 1;
5419 next_free = le16_to_cpu(el->l_next_free_rec);
5420 if (is_rightmost_tree_rec && next_free > 1) {
5422 * We skip the edge update if this path will
5423 * be deleted by the rotate code.
5425 rec = &el->l_recs[next_free - 1];
5426 ocfs2_adjust_rightmost_records(handle, et, path,
5427 rec);
5429 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5430 /* Remove leftmost portion of the record. */
5431 le32_add_cpu(&rec->e_cpos, len);
5432 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5433 le16_add_cpu(&rec->e_leaf_clusters, -len);
5434 } else if (rec_range == trunc_range) {
5435 /* Remove rightmost portion of the record */
5436 le16_add_cpu(&rec->e_leaf_clusters, -len);
5437 if (is_rightmost_tree_rec)
5438 ocfs2_adjust_rightmost_records(handle, et, path, rec);
5439 } else {
5440 /* Caller should have trapped this. */
5441 mlog(ML_ERROR, "Owner %llu: Invalid record truncate: (%u, %u) "
5442 "(%u, %u)\n",
5443 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5444 le32_to_cpu(rec->e_cpos),
5445 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5446 BUG();
5449 if (left_path) {
5450 int subtree_index;
5452 subtree_index = ocfs2_find_subtree_root(et, left_path, path);
5453 ocfs2_complete_edge_insert(handle, left_path, path,
5454 subtree_index);
5457 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5459 ret = ocfs2_rotate_tree_left(handle, et, path, dealloc);
5460 if (ret) {
5461 mlog_errno(ret);
5462 goto out;
5465 out:
5466 ocfs2_free_path(left_path);
5467 return ret;
5470 int ocfs2_remove_extent(handle_t *handle,
5471 struct ocfs2_extent_tree *et,
5472 u32 cpos, u32 len,
5473 struct ocfs2_alloc_context *meta_ac,
5474 struct ocfs2_cached_dealloc_ctxt *dealloc)
5476 int ret, index;
5477 u32 rec_range, trunc_range;
5478 struct ocfs2_extent_rec *rec;
5479 struct ocfs2_extent_list *el;
5480 struct ocfs2_path *path = NULL;
5483 * XXX: Why are we truncating to 0 instead of wherever this
5484 * affects us?
5486 ocfs2_et_extent_map_truncate(et, 0);
5488 path = ocfs2_new_path_from_et(et);
5489 if (!path) {
5490 ret = -ENOMEM;
5491 mlog_errno(ret);
5492 goto out;
5495 ret = ocfs2_find_path(et->et_ci, path, cpos);
5496 if (ret) {
5497 mlog_errno(ret);
5498 goto out;
5501 el = path_leaf_el(path);
5502 index = ocfs2_search_extent_list(el, cpos);
5503 if (index == -1) {
5504 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5505 "Owner %llu has an extent at cpos %u which can no "
5506 "longer be found.\n",
5507 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5508 cpos);
5509 ret = -EROFS;
5510 goto out;
5514 * We have 3 cases of extent removal:
5515 * 1) Range covers the entire extent rec
5516 * 2) Range begins or ends on one edge of the extent rec
5517 * 3) Range is in the middle of the extent rec (no shared edges)
5519 * For case 1 we remove the extent rec and left rotate to
5520 * fill the hole.
5522 * For case 2 we just shrink the existing extent rec, with a
5523 * tree update if the shrinking edge is also the edge of an
5524 * extent block.
5526 * For case 3 we do a right split to turn the extent rec into
5527 * something case 2 can handle.
5529 rec = &el->l_recs[index];
5530 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5531 trunc_range = cpos + len;
5533 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5535 trace_ocfs2_remove_extent(
5536 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5537 cpos, len, index, le32_to_cpu(rec->e_cpos),
5538 ocfs2_rec_clusters(el, rec));
5540 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5541 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5542 cpos, len);
5543 if (ret) {
5544 mlog_errno(ret);
5545 goto out;
5547 } else {
5548 ret = ocfs2_split_tree(handle, et, path, index,
5549 trunc_range, meta_ac);
5550 if (ret) {
5551 mlog_errno(ret);
5552 goto out;
5556 * The split could have manipulated the tree enough to
5557 * move the record location, so we have to look for it again.
5559 ocfs2_reinit_path(path, 1);
5561 ret = ocfs2_find_path(et->et_ci, path, cpos);
5562 if (ret) {
5563 mlog_errno(ret);
5564 goto out;
5567 el = path_leaf_el(path);
5568 index = ocfs2_search_extent_list(el, cpos);
5569 if (index == -1) {
5570 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5571 "Owner %llu: split at cpos %u lost record.",
5572 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5573 cpos);
5574 ret = -EROFS;
5575 goto out;
5579 * Double check our values here. If anything is fishy,
5580 * it's easier to catch it at the top level.
5582 rec = &el->l_recs[index];
5583 rec_range = le32_to_cpu(rec->e_cpos) +
5584 ocfs2_rec_clusters(el, rec);
5585 if (rec_range != trunc_range) {
5586 ocfs2_error(ocfs2_metadata_cache_get_super(et->et_ci),
5587 "Owner %llu: error after split at cpos %u"
5588 "trunc len %u, existing record is (%u,%u)",
5589 (unsigned long long)ocfs2_metadata_cache_owner(et->et_ci),
5590 cpos, len, le32_to_cpu(rec->e_cpos),
5591 ocfs2_rec_clusters(el, rec));
5592 ret = -EROFS;
5593 goto out;
5596 ret = ocfs2_truncate_rec(handle, et, path, index, dealloc,
5597 cpos, len);
5598 if (ret) {
5599 mlog_errno(ret);
5600 goto out;
5604 out:
5605 ocfs2_free_path(path);
5606 return ret;
5610 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5611 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5612 * number to reserve some extra blocks, and it only handles meta
5613 * data allocations.
5615 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5616 * and punching holes.
5618 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode *inode,
5619 struct ocfs2_extent_tree *et,
5620 u32 extents_to_split,
5621 struct ocfs2_alloc_context **ac,
5622 int extra_blocks)
5624 int ret = 0, num_free_extents;
5625 unsigned int max_recs_needed = 2 * extents_to_split;
5626 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5628 *ac = NULL;
5630 num_free_extents = ocfs2_num_free_extents(osb, et);
5631 if (num_free_extents < 0) {
5632 ret = num_free_extents;
5633 mlog_errno(ret);
5634 goto out;
5637 if (!num_free_extents ||
5638 (ocfs2_sparse_alloc(osb) && num_free_extents < max_recs_needed))
5639 extra_blocks += ocfs2_extend_meta_needed(et->et_root_el);
5641 if (extra_blocks) {
5642 ret = ocfs2_reserve_new_metadata_blocks(osb, extra_blocks, ac);
5643 if (ret < 0) {
5644 if (ret != -ENOSPC)
5645 mlog_errno(ret);
5646 goto out;
5650 out:
5651 if (ret) {
5652 if (*ac) {
5653 ocfs2_free_alloc_context(*ac);
5654 *ac = NULL;
5658 return ret;
5661 int ocfs2_remove_btree_range(struct inode *inode,
5662 struct ocfs2_extent_tree *et,
5663 u32 cpos, u32 phys_cpos, u32 len, int flags,
5664 struct ocfs2_cached_dealloc_ctxt *dealloc,
5665 u64 refcount_loc, bool refcount_tree_locked)
5667 int ret, credits = 0, extra_blocks = 0;
5668 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5669 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5670 struct inode *tl_inode = osb->osb_tl_inode;
5671 handle_t *handle;
5672 struct ocfs2_alloc_context *meta_ac = NULL;
5673 struct ocfs2_refcount_tree *ref_tree = NULL;
5675 if ((flags & OCFS2_EXT_REFCOUNTED) && len) {
5676 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features &
5677 OCFS2_HAS_REFCOUNT_FL));
5679 if (!refcount_tree_locked) {
5680 ret = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
5681 &ref_tree, NULL);
5682 if (ret) {
5683 mlog_errno(ret);
5684 goto bail;
5688 ret = ocfs2_prepare_refcount_change_for_del(inode,
5689 refcount_loc,
5690 phys_blkno,
5691 len,
5692 &credits,
5693 &extra_blocks);
5694 if (ret < 0) {
5695 mlog_errno(ret);
5696 goto bail;
5700 ret = ocfs2_reserve_blocks_for_rec_trunc(inode, et, 1, &meta_ac,
5701 extra_blocks);
5702 if (ret) {
5703 mlog_errno(ret);
5704 goto bail;
5707 mutex_lock(&tl_inode->i_mutex);
5709 if (ocfs2_truncate_log_needs_flush(osb)) {
5710 ret = __ocfs2_flush_truncate_log(osb);
5711 if (ret < 0) {
5712 mlog_errno(ret);
5713 goto out;
5717 handle = ocfs2_start_trans(osb,
5718 ocfs2_remove_extent_credits(osb->sb) + credits);
5719 if (IS_ERR(handle)) {
5720 ret = PTR_ERR(handle);
5721 mlog_errno(ret);
5722 goto out;
5725 ret = ocfs2_et_root_journal_access(handle, et,
5726 OCFS2_JOURNAL_ACCESS_WRITE);
5727 if (ret) {
5728 mlog_errno(ret);
5729 goto out_commit;
5732 dquot_free_space_nodirty(inode,
5733 ocfs2_clusters_to_bytes(inode->i_sb, len));
5735 ret = ocfs2_remove_extent(handle, et, cpos, len, meta_ac, dealloc);
5736 if (ret) {
5737 mlog_errno(ret);
5738 goto out_commit;
5741 ocfs2_et_update_clusters(et, -len);
5742 ocfs2_update_inode_fsync_trans(handle, inode, 1);
5744 ocfs2_journal_dirty(handle, et->et_root_bh);
5746 if (phys_blkno) {
5747 if (flags & OCFS2_EXT_REFCOUNTED)
5748 ret = ocfs2_decrease_refcount(inode, handle,
5749 ocfs2_blocks_to_clusters(osb->sb,
5750 phys_blkno),
5751 len, meta_ac,
5752 dealloc, 1);
5753 else
5754 ret = ocfs2_truncate_log_append(osb, handle,
5755 phys_blkno, len);
5756 if (ret)
5757 mlog_errno(ret);
5761 out_commit:
5762 ocfs2_commit_trans(osb, handle);
5763 out:
5764 mutex_unlock(&tl_inode->i_mutex);
5765 bail:
5766 if (meta_ac)
5767 ocfs2_free_alloc_context(meta_ac);
5769 if (ref_tree)
5770 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
5772 return ret;
5775 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
5777 struct buffer_head *tl_bh = osb->osb_tl_bh;
5778 struct ocfs2_dinode *di;
5779 struct ocfs2_truncate_log *tl;
5781 di = (struct ocfs2_dinode *) tl_bh->b_data;
5782 tl = &di->id2.i_dealloc;
5784 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5785 "slot %d, invalid truncate log parameters: used = "
5786 "%u, count = %u\n", osb->slot_num,
5787 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5788 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5791 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5792 unsigned int new_start)
5794 unsigned int tail_index;
5795 unsigned int current_tail;
5797 /* No records, nothing to coalesce */
5798 if (!le16_to_cpu(tl->tl_used))
5799 return 0;
5801 tail_index = le16_to_cpu(tl->tl_used) - 1;
5802 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5803 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5805 return current_tail == new_start;
5808 int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5809 handle_t *handle,
5810 u64 start_blk,
5811 unsigned int num_clusters)
5813 int status, index;
5814 unsigned int start_cluster, tl_count;
5815 struct inode *tl_inode = osb->osb_tl_inode;
5816 struct buffer_head *tl_bh = osb->osb_tl_bh;
5817 struct ocfs2_dinode *di;
5818 struct ocfs2_truncate_log *tl;
5820 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5822 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5824 di = (struct ocfs2_dinode *) tl_bh->b_data;
5826 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5827 * by the underlying call to ocfs2_read_inode_block(), so any
5828 * corruption is a code bug */
5829 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5831 tl = &di->id2.i_dealloc;
5832 tl_count = le16_to_cpu(tl->tl_count);
5833 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5834 tl_count == 0,
5835 "Truncate record count on #%llu invalid "
5836 "wanted %u, actual %u\n",
5837 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5838 ocfs2_truncate_recs_per_inode(osb->sb),
5839 le16_to_cpu(tl->tl_count));
5841 /* Caller should have known to flush before calling us. */
5842 index = le16_to_cpu(tl->tl_used);
5843 if (index >= tl_count) {
5844 status = -ENOSPC;
5845 mlog_errno(status);
5846 goto bail;
5849 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5850 OCFS2_JOURNAL_ACCESS_WRITE);
5851 if (status < 0) {
5852 mlog_errno(status);
5853 goto bail;
5856 trace_ocfs2_truncate_log_append(
5857 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index,
5858 start_cluster, num_clusters);
5859 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5861 * Move index back to the record we are coalescing with.
5862 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5864 index--;
5866 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5867 trace_ocfs2_truncate_log_append(
5868 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5869 index, le32_to_cpu(tl->tl_recs[index].t_start),
5870 num_clusters);
5871 } else {
5872 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5873 tl->tl_used = cpu_to_le16(index + 1);
5875 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5877 ocfs2_journal_dirty(handle, tl_bh);
5879 osb->truncated_clusters += num_clusters;
5880 bail:
5881 return status;
5884 static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
5885 handle_t *handle,
5886 struct inode *data_alloc_inode,
5887 struct buffer_head *data_alloc_bh)
5889 int status = 0;
5890 int i;
5891 unsigned int num_clusters;
5892 u64 start_blk;
5893 struct ocfs2_truncate_rec rec;
5894 struct ocfs2_dinode *di;
5895 struct ocfs2_truncate_log *tl;
5896 struct inode *tl_inode = osb->osb_tl_inode;
5897 struct buffer_head *tl_bh = osb->osb_tl_bh;
5899 di = (struct ocfs2_dinode *) tl_bh->b_data;
5900 tl = &di->id2.i_dealloc;
5901 i = le16_to_cpu(tl->tl_used) - 1;
5902 while (i >= 0) {
5903 /* Caller has given us at least enough credits to
5904 * update the truncate log dinode */
5905 status = ocfs2_journal_access_di(handle, INODE_CACHE(tl_inode), tl_bh,
5906 OCFS2_JOURNAL_ACCESS_WRITE);
5907 if (status < 0) {
5908 mlog_errno(status);
5909 goto bail;
5912 tl->tl_used = cpu_to_le16(i);
5914 ocfs2_journal_dirty(handle, tl_bh);
5916 /* TODO: Perhaps we can calculate the bulk of the
5917 * credits up front rather than extending like
5918 * this. */
5919 status = ocfs2_extend_trans(handle,
5920 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5921 if (status < 0) {
5922 mlog_errno(status);
5923 goto bail;
5926 rec = tl->tl_recs[i];
5927 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5928 le32_to_cpu(rec.t_start));
5929 num_clusters = le32_to_cpu(rec.t_clusters);
5931 /* if start_blk is not set, we ignore the record as
5932 * invalid. */
5933 if (start_blk) {
5934 trace_ocfs2_replay_truncate_records(
5935 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5936 i, le32_to_cpu(rec.t_start), num_clusters);
5938 status = ocfs2_free_clusters(handle, data_alloc_inode,
5939 data_alloc_bh, start_blk,
5940 num_clusters);
5941 if (status < 0) {
5942 mlog_errno(status);
5943 goto bail;
5946 i--;
5949 osb->truncated_clusters = 0;
5951 bail:
5952 return status;
5955 /* Expects you to already be holding tl_inode->i_mutex */
5956 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5958 int status;
5959 unsigned int num_to_flush;
5960 handle_t *handle;
5961 struct inode *tl_inode = osb->osb_tl_inode;
5962 struct inode *data_alloc_inode = NULL;
5963 struct buffer_head *tl_bh = osb->osb_tl_bh;
5964 struct buffer_head *data_alloc_bh = NULL;
5965 struct ocfs2_dinode *di;
5966 struct ocfs2_truncate_log *tl;
5968 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
5970 di = (struct ocfs2_dinode *) tl_bh->b_data;
5972 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5973 * by the underlying call to ocfs2_read_inode_block(), so any
5974 * corruption is a code bug */
5975 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5977 tl = &di->id2.i_dealloc;
5978 num_to_flush = le16_to_cpu(tl->tl_used);
5979 trace_ocfs2_flush_truncate_log(
5980 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
5981 num_to_flush);
5982 if (!num_to_flush) {
5983 status = 0;
5984 goto out;
5987 data_alloc_inode = ocfs2_get_system_file_inode(osb,
5988 GLOBAL_BITMAP_SYSTEM_INODE,
5989 OCFS2_INVALID_SLOT);
5990 if (!data_alloc_inode) {
5991 status = -EINVAL;
5992 mlog(ML_ERROR, "Could not get bitmap inode!\n");
5993 goto out;
5996 mutex_lock(&data_alloc_inode->i_mutex);
5998 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
5999 if (status < 0) {
6000 mlog_errno(status);
6001 goto out_mutex;
6004 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6005 if (IS_ERR(handle)) {
6006 status = PTR_ERR(handle);
6007 mlog_errno(status);
6008 goto out_unlock;
6011 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
6012 data_alloc_bh);
6013 if (status < 0)
6014 mlog_errno(status);
6016 ocfs2_commit_trans(osb, handle);
6018 out_unlock:
6019 brelse(data_alloc_bh);
6020 ocfs2_inode_unlock(data_alloc_inode, 1);
6022 out_mutex:
6023 mutex_unlock(&data_alloc_inode->i_mutex);
6024 iput(data_alloc_inode);
6026 out:
6027 return status;
6030 int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
6032 int status;
6033 struct inode *tl_inode = osb->osb_tl_inode;
6035 mutex_lock(&tl_inode->i_mutex);
6036 status = __ocfs2_flush_truncate_log(osb);
6037 mutex_unlock(&tl_inode->i_mutex);
6039 return status;
6042 static void ocfs2_truncate_log_worker(struct work_struct *work)
6044 int status;
6045 struct ocfs2_super *osb =
6046 container_of(work, struct ocfs2_super,
6047 osb_truncate_log_wq.work);
6049 status = ocfs2_flush_truncate_log(osb);
6050 if (status < 0)
6051 mlog_errno(status);
6052 else
6053 ocfs2_init_steal_slots(osb);
6056 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6057 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
6058 int cancel)
6060 if (osb->osb_tl_inode &&
6061 atomic_read(&osb->osb_tl_disable) == 0) {
6062 /* We want to push off log flushes while truncates are
6063 * still running. */
6064 if (cancel)
6065 cancel_delayed_work(&osb->osb_truncate_log_wq);
6067 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
6068 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
6072 static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
6073 int slot_num,
6074 struct inode **tl_inode,
6075 struct buffer_head **tl_bh)
6077 int status;
6078 struct inode *inode = NULL;
6079 struct buffer_head *bh = NULL;
6081 inode = ocfs2_get_system_file_inode(osb,
6082 TRUNCATE_LOG_SYSTEM_INODE,
6083 slot_num);
6084 if (!inode) {
6085 status = -EINVAL;
6086 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
6087 goto bail;
6090 status = ocfs2_read_inode_block(inode, &bh);
6091 if (status < 0) {
6092 iput(inode);
6093 mlog_errno(status);
6094 goto bail;
6097 *tl_inode = inode;
6098 *tl_bh = bh;
6099 bail:
6100 return status;
6103 /* called during the 1st stage of node recovery. we stamp a clean
6104 * truncate log and pass back a copy for processing later. if the
6105 * truncate log does not require processing, a *tl_copy is set to
6106 * NULL. */
6107 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
6108 int slot_num,
6109 struct ocfs2_dinode **tl_copy)
6111 int status;
6112 struct inode *tl_inode = NULL;
6113 struct buffer_head *tl_bh = NULL;
6114 struct ocfs2_dinode *di;
6115 struct ocfs2_truncate_log *tl;
6117 *tl_copy = NULL;
6119 trace_ocfs2_begin_truncate_log_recovery(slot_num);
6121 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
6122 if (status < 0) {
6123 mlog_errno(status);
6124 goto bail;
6127 di = (struct ocfs2_dinode *) tl_bh->b_data;
6129 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6130 * validated by the underlying call to ocfs2_read_inode_block(),
6131 * so any corruption is a code bug */
6132 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
6134 tl = &di->id2.i_dealloc;
6135 if (le16_to_cpu(tl->tl_used)) {
6136 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl->tl_used));
6138 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
6139 if (!(*tl_copy)) {
6140 status = -ENOMEM;
6141 mlog_errno(status);
6142 goto bail;
6145 /* Assuming the write-out below goes well, this copy
6146 * will be passed back to recovery for processing. */
6147 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
6149 /* All we need to do to clear the truncate log is set
6150 * tl_used. */
6151 tl->tl_used = 0;
6153 ocfs2_compute_meta_ecc(osb->sb, tl_bh->b_data, &di->i_check);
6154 status = ocfs2_write_block(osb, tl_bh, INODE_CACHE(tl_inode));
6155 if (status < 0) {
6156 mlog_errno(status);
6157 goto bail;
6161 bail:
6162 if (tl_inode)
6163 iput(tl_inode);
6164 brelse(tl_bh);
6166 if (status < 0 && (*tl_copy)) {
6167 kfree(*tl_copy);
6168 *tl_copy = NULL;
6169 mlog_errno(status);
6172 return status;
6175 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
6176 struct ocfs2_dinode *tl_copy)
6178 int status = 0;
6179 int i;
6180 unsigned int clusters, num_recs, start_cluster;
6181 u64 start_blk;
6182 handle_t *handle;
6183 struct inode *tl_inode = osb->osb_tl_inode;
6184 struct ocfs2_truncate_log *tl;
6186 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
6187 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
6188 return -EINVAL;
6191 tl = &tl_copy->id2.i_dealloc;
6192 num_recs = le16_to_cpu(tl->tl_used);
6193 trace_ocfs2_complete_truncate_log_recovery(
6194 (unsigned long long)le64_to_cpu(tl_copy->i_blkno),
6195 num_recs);
6197 mutex_lock(&tl_inode->i_mutex);
6198 for(i = 0; i < num_recs; i++) {
6199 if (ocfs2_truncate_log_needs_flush(osb)) {
6200 status = __ocfs2_flush_truncate_log(osb);
6201 if (status < 0) {
6202 mlog_errno(status);
6203 goto bail_up;
6207 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6208 if (IS_ERR(handle)) {
6209 status = PTR_ERR(handle);
6210 mlog_errno(status);
6211 goto bail_up;
6214 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
6215 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
6216 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
6218 status = ocfs2_truncate_log_append(osb, handle,
6219 start_blk, clusters);
6220 ocfs2_commit_trans(osb, handle);
6221 if (status < 0) {
6222 mlog_errno(status);
6223 goto bail_up;
6227 bail_up:
6228 mutex_unlock(&tl_inode->i_mutex);
6230 return status;
6233 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
6235 int status;
6236 struct inode *tl_inode = osb->osb_tl_inode;
6238 atomic_set(&osb->osb_tl_disable, 1);
6240 if (tl_inode) {
6241 cancel_delayed_work(&osb->osb_truncate_log_wq);
6242 flush_workqueue(ocfs2_wq);
6244 status = ocfs2_flush_truncate_log(osb);
6245 if (status < 0)
6246 mlog_errno(status);
6248 brelse(osb->osb_tl_bh);
6249 iput(osb->osb_tl_inode);
6253 int ocfs2_truncate_log_init(struct ocfs2_super *osb)
6255 int status;
6256 struct inode *tl_inode = NULL;
6257 struct buffer_head *tl_bh = NULL;
6259 status = ocfs2_get_truncate_log_info(osb,
6260 osb->slot_num,
6261 &tl_inode,
6262 &tl_bh);
6263 if (status < 0)
6264 mlog_errno(status);
6266 /* ocfs2_truncate_log_shutdown keys on the existence of
6267 * osb->osb_tl_inode so we don't set any of the osb variables
6268 * until we're sure all is well. */
6269 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
6270 ocfs2_truncate_log_worker);
6271 atomic_set(&osb->osb_tl_disable, 0);
6272 osb->osb_tl_bh = tl_bh;
6273 osb->osb_tl_inode = tl_inode;
6275 return status;
6279 * Delayed de-allocation of suballocator blocks.
6281 * Some sets of block de-allocations might involve multiple suballocator inodes.
6283 * The locking for this can get extremely complicated, especially when
6284 * the suballocator inodes to delete from aren't known until deep
6285 * within an unrelated codepath.
6287 * ocfs2_extent_block structures are a good example of this - an inode
6288 * btree could have been grown by any number of nodes each allocating
6289 * out of their own suballoc inode.
6291 * These structures allow the delay of block de-allocation until a
6292 * later time, when locking of multiple cluster inodes won't cause
6293 * deadlock.
6297 * Describe a single bit freed from a suballocator. For the block
6298 * suballocators, it represents one block. For the global cluster
6299 * allocator, it represents some clusters and free_bit indicates
6300 * clusters number.
6302 struct ocfs2_cached_block_free {
6303 struct ocfs2_cached_block_free *free_next;
6304 u64 free_bg;
6305 u64 free_blk;
6306 unsigned int free_bit;
6309 struct ocfs2_per_slot_free_list {
6310 struct ocfs2_per_slot_free_list *f_next_suballocator;
6311 int f_inode_type;
6312 int f_slot;
6313 struct ocfs2_cached_block_free *f_first;
6316 static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
6317 int sysfile_type,
6318 int slot,
6319 struct ocfs2_cached_block_free *head)
6321 int ret;
6322 u64 bg_blkno;
6323 handle_t *handle;
6324 struct inode *inode;
6325 struct buffer_head *di_bh = NULL;
6326 struct ocfs2_cached_block_free *tmp;
6328 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
6329 if (!inode) {
6330 ret = -EINVAL;
6331 mlog_errno(ret);
6332 goto out;
6335 mutex_lock(&inode->i_mutex);
6337 ret = ocfs2_inode_lock(inode, &di_bh, 1);
6338 if (ret) {
6339 mlog_errno(ret);
6340 goto out_mutex;
6343 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
6344 if (IS_ERR(handle)) {
6345 ret = PTR_ERR(handle);
6346 mlog_errno(ret);
6347 goto out_unlock;
6350 while (head) {
6351 if (head->free_bg)
6352 bg_blkno = head->free_bg;
6353 else
6354 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
6355 head->free_bit);
6356 trace_ocfs2_free_cached_blocks(
6357 (unsigned long long)head->free_blk, head->free_bit);
6359 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
6360 head->free_bit, bg_blkno, 1);
6361 if (ret) {
6362 mlog_errno(ret);
6363 goto out_journal;
6366 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
6367 if (ret) {
6368 mlog_errno(ret);
6369 goto out_journal;
6372 tmp = head;
6373 head = head->free_next;
6374 kfree(tmp);
6377 out_journal:
6378 ocfs2_commit_trans(osb, handle);
6380 out_unlock:
6381 ocfs2_inode_unlock(inode, 1);
6382 brelse(di_bh);
6383 out_mutex:
6384 mutex_unlock(&inode->i_mutex);
6385 iput(inode);
6386 out:
6387 while(head) {
6388 /* Premature exit may have left some dangling items. */
6389 tmp = head;
6390 head = head->free_next;
6391 kfree(tmp);
6394 return ret;
6397 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6398 u64 blkno, unsigned int bit)
6400 int ret = 0;
6401 struct ocfs2_cached_block_free *item;
6403 item = kzalloc(sizeof(*item), GFP_NOFS);
6404 if (item == NULL) {
6405 ret = -ENOMEM;
6406 mlog_errno(ret);
6407 return ret;
6410 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno, bit);
6412 item->free_blk = blkno;
6413 item->free_bit = bit;
6414 item->free_next = ctxt->c_global_allocator;
6416 ctxt->c_global_allocator = item;
6417 return ret;
6420 static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6421 struct ocfs2_cached_block_free *head)
6423 struct ocfs2_cached_block_free *tmp;
6424 struct inode *tl_inode = osb->osb_tl_inode;
6425 handle_t *handle;
6426 int ret = 0;
6428 mutex_lock(&tl_inode->i_mutex);
6430 while (head) {
6431 if (ocfs2_truncate_log_needs_flush(osb)) {
6432 ret = __ocfs2_flush_truncate_log(osb);
6433 if (ret < 0) {
6434 mlog_errno(ret);
6435 break;
6439 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6440 if (IS_ERR(handle)) {
6441 ret = PTR_ERR(handle);
6442 mlog_errno(ret);
6443 break;
6446 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6447 head->free_bit);
6449 ocfs2_commit_trans(osb, handle);
6450 tmp = head;
6451 head = head->free_next;
6452 kfree(tmp);
6454 if (ret < 0) {
6455 mlog_errno(ret);
6456 break;
6460 mutex_unlock(&tl_inode->i_mutex);
6462 while (head) {
6463 /* Premature exit may have left some dangling items. */
6464 tmp = head;
6465 head = head->free_next;
6466 kfree(tmp);
6469 return ret;
6472 int ocfs2_run_deallocs(struct ocfs2_super *osb,
6473 struct ocfs2_cached_dealloc_ctxt *ctxt)
6475 int ret = 0, ret2;
6476 struct ocfs2_per_slot_free_list *fl;
6478 if (!ctxt)
6479 return 0;
6481 while (ctxt->c_first_suballocator) {
6482 fl = ctxt->c_first_suballocator;
6484 if (fl->f_first) {
6485 trace_ocfs2_run_deallocs(fl->f_inode_type,
6486 fl->f_slot);
6487 ret2 = ocfs2_free_cached_blocks(osb,
6488 fl->f_inode_type,
6489 fl->f_slot,
6490 fl->f_first);
6491 if (ret2)
6492 mlog_errno(ret2);
6493 if (!ret)
6494 ret = ret2;
6497 ctxt->c_first_suballocator = fl->f_next_suballocator;
6498 kfree(fl);
6501 if (ctxt->c_global_allocator) {
6502 ret2 = ocfs2_free_cached_clusters(osb,
6503 ctxt->c_global_allocator);
6504 if (ret2)
6505 mlog_errno(ret2);
6506 if (!ret)
6507 ret = ret2;
6509 ctxt->c_global_allocator = NULL;
6512 return ret;
6515 static struct ocfs2_per_slot_free_list *
6516 ocfs2_find_per_slot_free_list(int type,
6517 int slot,
6518 struct ocfs2_cached_dealloc_ctxt *ctxt)
6520 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6522 while (fl) {
6523 if (fl->f_inode_type == type && fl->f_slot == slot)
6524 return fl;
6526 fl = fl->f_next_suballocator;
6529 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6530 if (fl) {
6531 fl->f_inode_type = type;
6532 fl->f_slot = slot;
6533 fl->f_first = NULL;
6534 fl->f_next_suballocator = ctxt->c_first_suballocator;
6536 ctxt->c_first_suballocator = fl;
6538 return fl;
6541 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6542 int type, int slot, u64 suballoc,
6543 u64 blkno, unsigned int bit)
6545 int ret;
6546 struct ocfs2_per_slot_free_list *fl;
6547 struct ocfs2_cached_block_free *item;
6549 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6550 if (fl == NULL) {
6551 ret = -ENOMEM;
6552 mlog_errno(ret);
6553 goto out;
6556 item = kzalloc(sizeof(*item), GFP_NOFS);
6557 if (item == NULL) {
6558 ret = -ENOMEM;
6559 mlog_errno(ret);
6560 goto out;
6563 trace_ocfs2_cache_block_dealloc(type, slot,
6564 (unsigned long long)suballoc,
6565 (unsigned long long)blkno, bit);
6567 item->free_bg = suballoc;
6568 item->free_blk = blkno;
6569 item->free_bit = bit;
6570 item->free_next = fl->f_first;
6572 fl->f_first = item;
6574 ret = 0;
6575 out:
6576 return ret;
6579 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6580 struct ocfs2_extent_block *eb)
6582 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6583 le16_to_cpu(eb->h_suballoc_slot),
6584 le64_to_cpu(eb->h_suballoc_loc),
6585 le64_to_cpu(eb->h_blkno),
6586 le16_to_cpu(eb->h_suballoc_bit));
6589 static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
6591 set_buffer_uptodate(bh);
6592 mark_buffer_dirty(bh);
6593 return 0;
6596 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6597 unsigned int from, unsigned int to,
6598 struct page *page, int zero, u64 *phys)
6600 int ret, partial = 0;
6602 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6603 if (ret)
6604 mlog_errno(ret);
6606 if (zero)
6607 zero_user_segment(page, from, to);
6610 * Need to set the buffers we zero'd into uptodate
6611 * here if they aren't - ocfs2_map_page_blocks()
6612 * might've skipped some
6614 ret = walk_page_buffers(handle, page_buffers(page),
6615 from, to, &partial,
6616 ocfs2_zero_func);
6617 if (ret < 0)
6618 mlog_errno(ret);
6619 else if (ocfs2_should_order_data(inode)) {
6620 ret = ocfs2_jbd2_file_inode(handle, inode);
6621 if (ret < 0)
6622 mlog_errno(ret);
6625 if (!partial)
6626 SetPageUptodate(page);
6628 flush_dcache_page(page);
6631 static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6632 loff_t end, struct page **pages,
6633 int numpages, u64 phys, handle_t *handle)
6635 int i;
6636 struct page *page;
6637 unsigned int from, to = PAGE_CACHE_SIZE;
6638 struct super_block *sb = inode->i_sb;
6640 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6642 if (numpages == 0)
6643 goto out;
6645 to = PAGE_CACHE_SIZE;
6646 for(i = 0; i < numpages; i++) {
6647 page = pages[i];
6649 from = start & (PAGE_CACHE_SIZE - 1);
6650 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6651 to = end & (PAGE_CACHE_SIZE - 1);
6653 BUG_ON(from > PAGE_CACHE_SIZE);
6654 BUG_ON(to > PAGE_CACHE_SIZE);
6656 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6657 &phys);
6659 start = (page->index + 1) << PAGE_CACHE_SHIFT;
6661 out:
6662 if (pages)
6663 ocfs2_unlock_and_free_pages(pages, numpages);
6666 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end,
6667 struct page **pages, int *num)
6669 int numpages, ret = 0;
6670 struct address_space *mapping = inode->i_mapping;
6671 unsigned long index;
6672 loff_t last_page_bytes;
6674 BUG_ON(start > end);
6676 numpages = 0;
6677 last_page_bytes = PAGE_ALIGN(end);
6678 index = start >> PAGE_CACHE_SHIFT;
6679 do {
6680 pages[numpages] = find_or_create_page(mapping, index, GFP_NOFS);
6681 if (!pages[numpages]) {
6682 ret = -ENOMEM;
6683 mlog_errno(ret);
6684 goto out;
6687 numpages++;
6688 index++;
6689 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
6691 out:
6692 if (ret != 0) {
6693 if (pages)
6694 ocfs2_unlock_and_free_pages(pages, numpages);
6695 numpages = 0;
6698 *num = numpages;
6700 return ret;
6703 static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
6704 struct page **pages, int *num)
6706 struct super_block *sb = inode->i_sb;
6708 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6709 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6711 return ocfs2_grab_pages(inode, start, end, pages, num);
6715 * Zero the area past i_size but still within an allocated
6716 * cluster. This avoids exposing nonzero data on subsequent file
6717 * extends.
6719 * We need to call this before i_size is updated on the inode because
6720 * otherwise block_write_full_page() will skip writeout of pages past
6721 * i_size. The new_i_size parameter is passed for this reason.
6723 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6724 u64 range_start, u64 range_end)
6726 int ret = 0, numpages;
6727 struct page **pages = NULL;
6728 u64 phys;
6729 unsigned int ext_flags;
6730 struct super_block *sb = inode->i_sb;
6733 * File systems which don't support sparse files zero on every
6734 * extend.
6736 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
6737 return 0;
6739 pages = kcalloc(ocfs2_pages_per_cluster(sb),
6740 sizeof(struct page *), GFP_NOFS);
6741 if (pages == NULL) {
6742 ret = -ENOMEM;
6743 mlog_errno(ret);
6744 goto out;
6747 if (range_start == range_end)
6748 goto out;
6750 ret = ocfs2_extent_map_get_blocks(inode,
6751 range_start >> sb->s_blocksize_bits,
6752 &phys, NULL, &ext_flags);
6753 if (ret) {
6754 mlog_errno(ret);
6755 goto out;
6759 * Tail is a hole, or is marked unwritten. In either case, we
6760 * can count on read and write to return/push zero's.
6762 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
6763 goto out;
6765 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6766 &numpages);
6767 if (ret) {
6768 mlog_errno(ret);
6769 goto out;
6772 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6773 numpages, phys, handle);
6776 * Initiate writeout of the pages we zero'd here. We don't
6777 * wait on them - the truncate_inode_pages() call later will
6778 * do that for us.
6780 ret = filemap_fdatawrite_range(inode->i_mapping, range_start,
6781 range_end - 1);
6782 if (ret)
6783 mlog_errno(ret);
6785 out:
6786 kfree(pages);
6788 return ret;
6791 static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6792 struct ocfs2_dinode *di)
6794 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
6795 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
6797 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6798 memset(&di->id2, 0, blocksize -
6799 offsetof(struct ocfs2_dinode, id2) -
6800 xattrsize);
6801 else
6802 memset(&di->id2, 0, blocksize -
6803 offsetof(struct ocfs2_dinode, id2));
6806 void ocfs2_dinode_new_extent_list(struct inode *inode,
6807 struct ocfs2_dinode *di)
6809 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6810 di->id2.i_list.l_tree_depth = 0;
6811 di->id2.i_list.l_next_free_rec = 0;
6812 di->id2.i_list.l_count = cpu_to_le16(
6813 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
6816 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6818 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6819 struct ocfs2_inline_data *idata = &di->id2.i_data;
6821 spin_lock(&oi->ip_lock);
6822 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6823 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6824 spin_unlock(&oi->ip_lock);
6827 * We clear the entire i_data structure here so that all
6828 * fields can be properly initialized.
6830 ocfs2_zero_dinode_id2_with_xattr(inode, di);
6832 idata->id_count = cpu_to_le16(
6833 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
6836 int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6837 struct buffer_head *di_bh)
6839 int ret, i, has_data, num_pages = 0;
6840 int need_free = 0;
6841 u32 bit_off, num;
6842 handle_t *handle;
6843 u64 uninitialized_var(block);
6844 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6845 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6846 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
6847 struct ocfs2_alloc_context *data_ac = NULL;
6848 struct page **pages = NULL;
6849 loff_t end = osb->s_clustersize;
6850 struct ocfs2_extent_tree et;
6851 int did_quota = 0;
6853 has_data = i_size_read(inode) ? 1 : 0;
6855 if (has_data) {
6856 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6857 sizeof(struct page *), GFP_NOFS);
6858 if (pages == NULL) {
6859 ret = -ENOMEM;
6860 mlog_errno(ret);
6861 goto out;
6864 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6865 if (ret) {
6866 mlog_errno(ret);
6867 goto out;
6871 handle = ocfs2_start_trans(osb,
6872 ocfs2_inline_to_extents_credits(osb->sb));
6873 if (IS_ERR(handle)) {
6874 ret = PTR_ERR(handle);
6875 mlog_errno(ret);
6876 goto out_unlock;
6879 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
6880 OCFS2_JOURNAL_ACCESS_WRITE);
6881 if (ret) {
6882 mlog_errno(ret);
6883 goto out_commit;
6886 if (has_data) {
6887 unsigned int page_end;
6888 u64 phys;
6890 ret = dquot_alloc_space_nodirty(inode,
6891 ocfs2_clusters_to_bytes(osb->sb, 1));
6892 if (ret)
6893 goto out_commit;
6894 did_quota = 1;
6896 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
6898 ret = ocfs2_claim_clusters(handle, data_ac, 1, &bit_off,
6899 &num);
6900 if (ret) {
6901 mlog_errno(ret);
6902 goto out_commit;
6906 * Save two copies, one for insert, and one that can
6907 * be changed by ocfs2_map_and_dirty_page() below.
6909 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6912 * Non sparse file systems zero on extend, so no need
6913 * to do that now.
6915 if (!ocfs2_sparse_alloc(osb) &&
6916 PAGE_CACHE_SIZE < osb->s_clustersize)
6917 end = PAGE_CACHE_SIZE;
6919 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6920 if (ret) {
6921 mlog_errno(ret);
6922 need_free = 1;
6923 goto out_commit;
6927 * This should populate the 1st page for us and mark
6928 * it up to date.
6930 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6931 if (ret) {
6932 mlog_errno(ret);
6933 need_free = 1;
6934 goto out_commit;
6937 page_end = PAGE_CACHE_SIZE;
6938 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6939 page_end = osb->s_clustersize;
6941 for (i = 0; i < num_pages; i++)
6942 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6943 pages[i], i > 0, &phys);
6946 spin_lock(&oi->ip_lock);
6947 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6948 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6949 spin_unlock(&oi->ip_lock);
6951 ocfs2_update_inode_fsync_trans(handle, inode, 1);
6952 ocfs2_dinode_new_extent_list(inode, di);
6954 ocfs2_journal_dirty(handle, di_bh);
6956 if (has_data) {
6958 * An error at this point should be extremely rare. If
6959 * this proves to be false, we could always re-build
6960 * the in-inode data from our pages.
6962 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
6963 ret = ocfs2_insert_extent(handle, &et, 0, block, 1, 0, NULL);
6964 if (ret) {
6965 mlog_errno(ret);
6966 need_free = 1;
6967 goto out_commit;
6970 inode->i_blocks = ocfs2_inode_sector_count(inode);
6973 out_commit:
6974 if (ret < 0 && did_quota)
6975 dquot_free_space_nodirty(inode,
6976 ocfs2_clusters_to_bytes(osb->sb, 1));
6978 if (need_free) {
6979 if (data_ac->ac_which == OCFS2_AC_USE_LOCAL)
6980 ocfs2_free_local_alloc_bits(osb, handle, data_ac,
6981 bit_off, num);
6982 else
6983 ocfs2_free_clusters(handle,
6984 data_ac->ac_inode,
6985 data_ac->ac_bh,
6986 ocfs2_clusters_to_blocks(osb->sb, bit_off),
6987 num);
6990 ocfs2_commit_trans(osb, handle);
6992 out_unlock:
6993 if (data_ac)
6994 ocfs2_free_alloc_context(data_ac);
6996 out:
6997 if (pages) {
6998 ocfs2_unlock_and_free_pages(pages, num_pages);
6999 kfree(pages);
7002 return ret;
7006 * It is expected, that by the time you call this function,
7007 * inode->i_size and fe->i_size have been adjusted.
7009 * WARNING: This will kfree the truncate context
7011 int ocfs2_commit_truncate(struct ocfs2_super *osb,
7012 struct inode *inode,
7013 struct buffer_head *di_bh)
7015 int status = 0, i, flags = 0;
7016 u32 new_highest_cpos, range, trunc_cpos, trunc_len, phys_cpos, coff;
7017 u64 blkno = 0;
7018 struct ocfs2_extent_list *el;
7019 struct ocfs2_extent_rec *rec;
7020 struct ocfs2_path *path = NULL;
7021 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7022 struct ocfs2_extent_list *root_el = &(di->id2.i_list);
7023 u64 refcount_loc = le64_to_cpu(di->i_refcount_loc);
7024 struct ocfs2_extent_tree et;
7025 struct ocfs2_cached_dealloc_ctxt dealloc;
7026 struct ocfs2_refcount_tree *ref_tree = NULL;
7028 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
7029 ocfs2_init_dealloc_ctxt(&dealloc);
7031 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
7032 i_size_read(inode));
7034 path = ocfs2_new_path(di_bh, &di->id2.i_list,
7035 ocfs2_journal_access_di);
7036 if (!path) {
7037 status = -ENOMEM;
7038 mlog_errno(status);
7039 goto bail;
7042 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7044 start:
7046 * Check that we still have allocation to delete.
7048 if (OCFS2_I(inode)->ip_clusters == 0) {
7049 status = 0;
7050 goto bail;
7054 * Truncate always works against the rightmost tree branch.
7056 status = ocfs2_find_path(INODE_CACHE(inode), path, UINT_MAX);
7057 if (status) {
7058 mlog_errno(status);
7059 goto bail;
7062 trace_ocfs2_commit_truncate(
7063 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7064 new_highest_cpos,
7065 OCFS2_I(inode)->ip_clusters,
7066 path->p_tree_depth);
7069 * By now, el will point to the extent list on the bottom most
7070 * portion of this tree. Only the tail record is considered in
7071 * each pass.
7073 * We handle the following cases, in order:
7074 * - empty extent: delete the remaining branch
7075 * - remove the entire record
7076 * - remove a partial record
7077 * - no record needs to be removed (truncate has completed)
7079 el = path_leaf_el(path);
7080 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7081 ocfs2_error(inode->i_sb,
7082 "Inode %llu has empty extent block at %llu\n",
7083 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7084 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7085 status = -EROFS;
7086 goto bail;
7089 i = le16_to_cpu(el->l_next_free_rec) - 1;
7090 rec = &el->l_recs[i];
7091 flags = rec->e_flags;
7092 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
7094 if (i == 0 && ocfs2_is_empty_extent(rec)) {
7096 * Lower levels depend on this never happening, but it's best
7097 * to check it up here before changing the tree.
7099 if (root_el->l_tree_depth && rec->e_int_clusters == 0) {
7100 ocfs2_error(inode->i_sb, "Inode %lu has an empty "
7101 "extent record, depth %u\n", inode->i_ino,
7102 le16_to_cpu(root_el->l_tree_depth));
7103 status = -EROFS;
7104 goto bail;
7106 trunc_cpos = le32_to_cpu(rec->e_cpos);
7107 trunc_len = 0;
7108 blkno = 0;
7109 } else if (le32_to_cpu(rec->e_cpos) >= new_highest_cpos) {
7111 * Truncate entire record.
7113 trunc_cpos = le32_to_cpu(rec->e_cpos);
7114 trunc_len = ocfs2_rec_clusters(el, rec);
7115 blkno = le64_to_cpu(rec->e_blkno);
7116 } else if (range > new_highest_cpos) {
7118 * Partial truncate. it also should be
7119 * the last truncate we're doing.
7121 trunc_cpos = new_highest_cpos;
7122 trunc_len = range - new_highest_cpos;
7123 coff = new_highest_cpos - le32_to_cpu(rec->e_cpos);
7124 blkno = le64_to_cpu(rec->e_blkno) +
7125 ocfs2_clusters_to_blocks(inode->i_sb, coff);
7126 } else {
7128 * Truncate completed, leave happily.
7130 status = 0;
7131 goto bail;
7134 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
7136 if ((flags & OCFS2_EXT_REFCOUNTED) && trunc_len && !ref_tree) {
7137 status = ocfs2_lock_refcount_tree(osb, refcount_loc, 1,
7138 &ref_tree, NULL);
7139 if (status) {
7140 mlog_errno(status);
7141 goto bail;
7145 status = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
7146 phys_cpos, trunc_len, flags, &dealloc,
7147 refcount_loc, true);
7148 if (status < 0) {
7149 mlog_errno(status);
7150 goto bail;
7153 ocfs2_reinit_path(path, 1);
7156 * The check above will catch the case where we've truncated
7157 * away all allocation.
7159 goto start;
7161 bail:
7162 if (ref_tree)
7163 ocfs2_unlock_refcount_tree(osb, ref_tree, 1);
7165 ocfs2_schedule_truncate_log_flush(osb, 1);
7167 ocfs2_run_deallocs(osb, &dealloc);
7169 ocfs2_free_path(path);
7171 return status;
7175 * 'start' is inclusive, 'end' is not.
7177 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7178 unsigned int start, unsigned int end, int trunc)
7180 int ret;
7181 unsigned int numbytes;
7182 handle_t *handle;
7183 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7184 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7185 struct ocfs2_inline_data *idata = &di->id2.i_data;
7187 if (end > i_size_read(inode))
7188 end = i_size_read(inode);
7190 BUG_ON(start > end);
7192 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7193 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7194 !ocfs2_supports_inline_data(osb)) {
7195 ocfs2_error(inode->i_sb,
7196 "Inline data flags for inode %llu don't agree! "
7197 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7198 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7199 le16_to_cpu(di->i_dyn_features),
7200 OCFS2_I(inode)->ip_dyn_features,
7201 osb->s_feature_incompat);
7202 ret = -EROFS;
7203 goto out;
7206 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7207 if (IS_ERR(handle)) {
7208 ret = PTR_ERR(handle);
7209 mlog_errno(ret);
7210 goto out;
7213 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
7214 OCFS2_JOURNAL_ACCESS_WRITE);
7215 if (ret) {
7216 mlog_errno(ret);
7217 goto out_commit;
7220 numbytes = end - start;
7221 memset(idata->id_data + start, 0, numbytes);
7224 * No need to worry about the data page here - it's been
7225 * truncated already and inline data doesn't need it for
7226 * pushing zero's to disk, so we'll let readpage pick it up
7227 * later.
7229 if (trunc) {
7230 i_size_write(inode, start);
7231 di->i_size = cpu_to_le64(start);
7234 inode->i_blocks = ocfs2_inode_sector_count(inode);
7235 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7237 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7238 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7240 ocfs2_update_inode_fsync_trans(handle, inode, 1);
7241 ocfs2_journal_dirty(handle, di_bh);
7243 out_commit:
7244 ocfs2_commit_trans(osb, handle);
7246 out:
7247 return ret;
7250 static int ocfs2_trim_extent(struct super_block *sb,
7251 struct ocfs2_group_desc *gd,
7252 u32 start, u32 count)
7254 u64 discard, bcount;
7256 bcount = ocfs2_clusters_to_blocks(sb, count);
7257 discard = le64_to_cpu(gd->bg_blkno) +
7258 ocfs2_clusters_to_blocks(sb, start);
7260 trace_ocfs2_trim_extent(sb, (unsigned long long)discard, bcount);
7262 return sb_issue_discard(sb, discard, bcount, GFP_NOFS, 0);
7265 static int ocfs2_trim_group(struct super_block *sb,
7266 struct ocfs2_group_desc *gd,
7267 u32 start, u32 max, u32 minbits)
7269 int ret = 0, count = 0, next;
7270 void *bitmap = gd->bg_bitmap;
7272 if (le16_to_cpu(gd->bg_free_bits_count) < minbits)
7273 return 0;
7275 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd->bg_blkno),
7276 start, max, minbits);
7278 while (start < max) {
7279 start = ocfs2_find_next_zero_bit(bitmap, max, start);
7280 if (start >= max)
7281 break;
7282 next = ocfs2_find_next_bit(bitmap, max, start);
7284 if ((next - start) >= minbits) {
7285 ret = ocfs2_trim_extent(sb, gd,
7286 start, next - start);
7287 if (ret < 0) {
7288 mlog_errno(ret);
7289 break;
7291 count += next - start;
7293 start = next + 1;
7295 if (fatal_signal_pending(current)) {
7296 count = -ERESTARTSYS;
7297 break;
7300 if ((le16_to_cpu(gd->bg_free_bits_count) - count) < minbits)
7301 break;
7304 if (ret < 0)
7305 count = ret;
7307 return count;
7310 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range)
7312 struct ocfs2_super *osb = OCFS2_SB(sb);
7313 u64 start, len, trimmed, first_group, last_group, group;
7314 int ret, cnt;
7315 u32 first_bit, last_bit, minlen;
7316 struct buffer_head *main_bm_bh = NULL;
7317 struct inode *main_bm_inode = NULL;
7318 struct buffer_head *gd_bh = NULL;
7319 struct ocfs2_dinode *main_bm;
7320 struct ocfs2_group_desc *gd = NULL;
7322 start = range->start >> osb->s_clustersize_bits;
7323 len = range->len >> osb->s_clustersize_bits;
7324 minlen = range->minlen >> osb->s_clustersize_bits;
7326 if (minlen >= osb->bitmap_cpg || range->len < sb->s_blocksize)
7327 return -EINVAL;
7329 main_bm_inode = ocfs2_get_system_file_inode(osb,
7330 GLOBAL_BITMAP_SYSTEM_INODE,
7331 OCFS2_INVALID_SLOT);
7332 if (!main_bm_inode) {
7333 ret = -EIO;
7334 mlog_errno(ret);
7335 goto out;
7338 mutex_lock(&main_bm_inode->i_mutex);
7340 ret = ocfs2_inode_lock(main_bm_inode, &main_bm_bh, 0);
7341 if (ret < 0) {
7342 mlog_errno(ret);
7343 goto out_mutex;
7345 main_bm = (struct ocfs2_dinode *)main_bm_bh->b_data;
7347 if (start >= le32_to_cpu(main_bm->i_clusters)) {
7348 ret = -EINVAL;
7349 goto out_unlock;
7352 len = range->len >> osb->s_clustersize_bits;
7353 if (start + len > le32_to_cpu(main_bm->i_clusters))
7354 len = le32_to_cpu(main_bm->i_clusters) - start;
7356 trace_ocfs2_trim_fs(start, len, minlen);
7358 /* Determine first and last group to examine based on start and len */
7359 first_group = ocfs2_which_cluster_group(main_bm_inode, start);
7360 if (first_group == osb->first_cluster_group_blkno)
7361 first_bit = start;
7362 else
7363 first_bit = start - ocfs2_blocks_to_clusters(sb, first_group);
7364 last_group = ocfs2_which_cluster_group(main_bm_inode, start + len - 1);
7365 last_bit = osb->bitmap_cpg;
7367 trimmed = 0;
7368 for (group = first_group; group <= last_group;) {
7369 if (first_bit + len >= osb->bitmap_cpg)
7370 last_bit = osb->bitmap_cpg;
7371 else
7372 last_bit = first_bit + len;
7374 ret = ocfs2_read_group_descriptor(main_bm_inode,
7375 main_bm, group,
7376 &gd_bh);
7377 if (ret < 0) {
7378 mlog_errno(ret);
7379 break;
7382 gd = (struct ocfs2_group_desc *)gd_bh->b_data;
7383 cnt = ocfs2_trim_group(sb, gd, first_bit, last_bit, minlen);
7384 brelse(gd_bh);
7385 gd_bh = NULL;
7386 if (cnt < 0) {
7387 ret = cnt;
7388 mlog_errno(ret);
7389 break;
7392 trimmed += cnt;
7393 len -= osb->bitmap_cpg - first_bit;
7394 first_bit = 0;
7395 if (group == osb->first_cluster_group_blkno)
7396 group = ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7397 else
7398 group += ocfs2_clusters_to_blocks(sb, osb->bitmap_cpg);
7400 range->len = trimmed * sb->s_blocksize;
7401 out_unlock:
7402 ocfs2_inode_unlock(main_bm_inode, 0);
7403 brelse(main_bm_bh);
7404 out_mutex:
7405 mutex_unlock(&main_bm_inode->i_mutex);
7406 iput(main_bm_inode);
7407 out:
7408 return ret;