fs: take i_mutex during prepare_binprm for set[ug]id executables
[linux/fpc-iii.git] / fs / splice.c
blob75c6058eabf2e37b27df85fafe6e6b2b5b9379dd
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include "internal.h"
39 * Attempt to steal a page from a pipe buffer. This should perhaps go into
40 * a vm helper function, it's already simplified quite a bit by the
41 * addition of remove_mapping(). If success is returned, the caller may
42 * attempt to reuse this page for another destination.
44 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
45 struct pipe_buffer *buf)
47 struct page *page = buf->page;
48 struct address_space *mapping;
50 lock_page(page);
52 mapping = page_mapping(page);
53 if (mapping) {
54 WARN_ON(!PageUptodate(page));
57 * At least for ext2 with nobh option, we need to wait on
58 * writeback completing on this page, since we'll remove it
59 * from the pagecache. Otherwise truncate wont wait on the
60 * page, allowing the disk blocks to be reused by someone else
61 * before we actually wrote our data to them. fs corruption
62 * ensues.
64 wait_on_page_writeback(page);
66 if (page_has_private(page) &&
67 !try_to_release_page(page, GFP_KERNEL))
68 goto out_unlock;
71 * If we succeeded in removing the mapping, set LRU flag
72 * and return good.
74 if (remove_mapping(mapping, page)) {
75 buf->flags |= PIPE_BUF_FLAG_LRU;
76 return 0;
81 * Raced with truncate or failed to remove page from current
82 * address space, unlock and return failure.
84 out_unlock:
85 unlock_page(page);
86 return 1;
89 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
92 page_cache_release(buf->page);
93 buf->flags &= ~PIPE_BUF_FLAG_LRU;
97 * Check whether the contents of buf is OK to access. Since the content
98 * is a page cache page, IO may be in flight.
100 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
101 struct pipe_buffer *buf)
103 struct page *page = buf->page;
104 int err;
106 if (!PageUptodate(page)) {
107 lock_page(page);
110 * Page got truncated/unhashed. This will cause a 0-byte
111 * splice, if this is the first page.
113 if (!page->mapping) {
114 err = -ENODATA;
115 goto error;
119 * Uh oh, read-error from disk.
121 if (!PageUptodate(page)) {
122 err = -EIO;
123 goto error;
127 * Page is ok afterall, we are done.
129 unlock_page(page);
132 return 0;
133 error:
134 unlock_page(page);
135 return err;
138 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
139 .can_merge = 0,
140 .confirm = page_cache_pipe_buf_confirm,
141 .release = page_cache_pipe_buf_release,
142 .steal = page_cache_pipe_buf_steal,
143 .get = generic_pipe_buf_get,
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147 struct pipe_buffer *buf)
149 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 return 1;
152 buf->flags |= PIPE_BUF_FLAG_LRU;
153 return generic_pipe_buf_steal(pipe, buf);
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 .can_merge = 0,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 smp_mb();
167 if (waitqueue_active(&pipe->wait))
168 wake_up_interruptible(&pipe->wait);
169 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
173 * splice_to_pipe - fill passed data into a pipe
174 * @pipe: pipe to fill
175 * @spd: data to fill
177 * Description:
178 * @spd contains a map of pages and len/offset tuples, along with
179 * the struct pipe_buf_operations associated with these pages. This
180 * function will link that data to the pipe.
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 struct splice_pipe_desc *spd)
186 unsigned int spd_pages = spd->nr_pages;
187 int ret, do_wakeup, page_nr;
189 ret = 0;
190 do_wakeup = 0;
191 page_nr = 0;
193 pipe_lock(pipe);
195 for (;;) {
196 if (!pipe->readers) {
197 send_sig(SIGPIPE, current, 0);
198 if (!ret)
199 ret = -EPIPE;
200 break;
203 if (pipe->nrbufs < pipe->buffers) {
204 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
205 struct pipe_buffer *buf = pipe->bufs + newbuf;
207 buf->page = spd->pages[page_nr];
208 buf->offset = spd->partial[page_nr].offset;
209 buf->len = spd->partial[page_nr].len;
210 buf->private = spd->partial[page_nr].private;
211 buf->ops = spd->ops;
212 if (spd->flags & SPLICE_F_GIFT)
213 buf->flags |= PIPE_BUF_FLAG_GIFT;
215 pipe->nrbufs++;
216 page_nr++;
217 ret += buf->len;
219 if (pipe->files)
220 do_wakeup = 1;
222 if (!--spd->nr_pages)
223 break;
224 if (pipe->nrbufs < pipe->buffers)
225 continue;
227 break;
230 if (spd->flags & SPLICE_F_NONBLOCK) {
231 if (!ret)
232 ret = -EAGAIN;
233 break;
236 if (signal_pending(current)) {
237 if (!ret)
238 ret = -ERESTARTSYS;
239 break;
242 if (do_wakeup) {
243 smp_mb();
244 if (waitqueue_active(&pipe->wait))
245 wake_up_interruptible_sync(&pipe->wait);
246 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
247 do_wakeup = 0;
250 pipe->waiting_writers++;
251 pipe_wait(pipe);
252 pipe->waiting_writers--;
255 pipe_unlock(pipe);
257 if (do_wakeup)
258 wakeup_pipe_readers(pipe);
260 while (page_nr < spd_pages)
261 spd->spd_release(spd, page_nr++);
263 return ret;
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 page_cache_release(spd->pages[i]);
272 * Check if we need to grow the arrays holding pages and partial page
273 * descriptions.
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
279 spd->nr_pages_max = buffers;
280 if (buffers <= PIPE_DEF_BUFFERS)
281 return 0;
283 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
286 if (spd->pages && spd->partial)
287 return 0;
289 kfree(spd->pages);
290 kfree(spd->partial);
291 return -ENOMEM;
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 return;
299 kfree(spd->pages);
300 kfree(spd->partial);
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 struct pipe_inode_info *pipe, size_t len,
306 unsigned int flags)
308 struct address_space *mapping = in->f_mapping;
309 unsigned int loff, nr_pages, req_pages;
310 struct page *pages[PIPE_DEF_BUFFERS];
311 struct partial_page partial[PIPE_DEF_BUFFERS];
312 struct page *page;
313 pgoff_t index, end_index;
314 loff_t isize;
315 int error, page_nr;
316 struct splice_pipe_desc spd = {
317 .pages = pages,
318 .partial = partial,
319 .nr_pages_max = PIPE_DEF_BUFFERS,
320 .flags = flags,
321 .ops = &page_cache_pipe_buf_ops,
322 .spd_release = spd_release_page,
325 if (splice_grow_spd(pipe, &spd))
326 return -ENOMEM;
328 index = *ppos >> PAGE_CACHE_SHIFT;
329 loff = *ppos & ~PAGE_CACHE_MASK;
330 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331 nr_pages = min(req_pages, spd.nr_pages_max);
334 * Lookup the (hopefully) full range of pages we need.
336 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337 index += spd.nr_pages;
340 * If find_get_pages_contig() returned fewer pages than we needed,
341 * readahead/allocate the rest and fill in the holes.
343 if (spd.nr_pages < nr_pages)
344 page_cache_sync_readahead(mapping, &in->f_ra, in,
345 index, req_pages - spd.nr_pages);
347 error = 0;
348 while (spd.nr_pages < nr_pages) {
350 * Page could be there, find_get_pages_contig() breaks on
351 * the first hole.
353 page = find_get_page(mapping, index);
354 if (!page) {
356 * page didn't exist, allocate one.
358 page = page_cache_alloc_cold(mapping);
359 if (!page)
360 break;
362 error = add_to_page_cache_lru(page, mapping, index,
363 GFP_KERNEL);
364 if (unlikely(error)) {
365 page_cache_release(page);
366 if (error == -EEXIST)
367 continue;
368 break;
371 * add_to_page_cache() locks the page, unlock it
372 * to avoid convoluting the logic below even more.
374 unlock_page(page);
377 spd.pages[spd.nr_pages++] = page;
378 index++;
382 * Now loop over the map and see if we need to start IO on any
383 * pages, fill in the partial map, etc.
385 index = *ppos >> PAGE_CACHE_SHIFT;
386 nr_pages = spd.nr_pages;
387 spd.nr_pages = 0;
388 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389 unsigned int this_len;
391 if (!len)
392 break;
395 * this_len is the max we'll use from this page
397 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398 page = spd.pages[page_nr];
400 if (PageReadahead(page))
401 page_cache_async_readahead(mapping, &in->f_ra, in,
402 page, index, req_pages - page_nr);
405 * If the page isn't uptodate, we may need to start io on it
407 if (!PageUptodate(page)) {
408 lock_page(page);
411 * Page was truncated, or invalidated by the
412 * filesystem. Redo the find/create, but this time the
413 * page is kept locked, so there's no chance of another
414 * race with truncate/invalidate.
416 if (!page->mapping) {
417 unlock_page(page);
418 page = find_or_create_page(mapping, index,
419 mapping_gfp_mask(mapping));
421 if (!page) {
422 error = -ENOMEM;
423 break;
425 page_cache_release(spd.pages[page_nr]);
426 spd.pages[page_nr] = page;
429 * page was already under io and is now done, great
431 if (PageUptodate(page)) {
432 unlock_page(page);
433 goto fill_it;
437 * need to read in the page
439 error = mapping->a_ops->readpage(in, page);
440 if (unlikely(error)) {
442 * We really should re-lookup the page here,
443 * but it complicates things a lot. Instead
444 * lets just do what we already stored, and
445 * we'll get it the next time we are called.
447 if (error == AOP_TRUNCATED_PAGE)
448 error = 0;
450 break;
453 fill_it:
455 * i_size must be checked after PageUptodate.
457 isize = i_size_read(mapping->host);
458 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
459 if (unlikely(!isize || index > end_index))
460 break;
463 * if this is the last page, see if we need to shrink
464 * the length and stop
466 if (end_index == index) {
467 unsigned int plen;
470 * max good bytes in this page
472 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
473 if (plen <= loff)
474 break;
477 * force quit after adding this page
479 this_len = min(this_len, plen - loff);
480 len = this_len;
483 spd.partial[page_nr].offset = loff;
484 spd.partial[page_nr].len = this_len;
485 len -= this_len;
486 loff = 0;
487 spd.nr_pages++;
488 index++;
492 * Release any pages at the end, if we quit early. 'page_nr' is how far
493 * we got, 'nr_pages' is how many pages are in the map.
495 while (page_nr < nr_pages)
496 page_cache_release(spd.pages[page_nr++]);
497 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
499 if (spd.nr_pages)
500 error = splice_to_pipe(pipe, &spd);
502 splice_shrink_spd(&spd);
503 return error;
507 * generic_file_splice_read - splice data from file to a pipe
508 * @in: file to splice from
509 * @ppos: position in @in
510 * @pipe: pipe to splice to
511 * @len: number of bytes to splice
512 * @flags: splice modifier flags
514 * Description:
515 * Will read pages from given file and fill them into a pipe. Can be
516 * used as long as the address_space operations for the source implements
517 * a readpage() hook.
520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
521 struct pipe_inode_info *pipe, size_t len,
522 unsigned int flags)
524 loff_t isize, left;
525 int ret;
527 isize = i_size_read(in->f_mapping->host);
528 if (unlikely(*ppos >= isize))
529 return 0;
531 left = isize - *ppos;
532 if (unlikely(left < len))
533 len = left;
535 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
536 if (ret > 0) {
537 *ppos += ret;
538 file_accessed(in);
541 return ret;
543 EXPORT_SYMBOL(generic_file_splice_read);
545 static const struct pipe_buf_operations default_pipe_buf_ops = {
546 .can_merge = 0,
547 .confirm = generic_pipe_buf_confirm,
548 .release = generic_pipe_buf_release,
549 .steal = generic_pipe_buf_steal,
550 .get = generic_pipe_buf_get,
553 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
554 struct pipe_buffer *buf)
556 return 1;
559 /* Pipe buffer operations for a socket and similar. */
560 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
561 .can_merge = 0,
562 .confirm = generic_pipe_buf_confirm,
563 .release = generic_pipe_buf_release,
564 .steal = generic_pipe_buf_nosteal,
565 .get = generic_pipe_buf_get,
567 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
569 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
570 unsigned long vlen, loff_t offset)
572 mm_segment_t old_fs;
573 loff_t pos = offset;
574 ssize_t res;
576 old_fs = get_fs();
577 set_fs(get_ds());
578 /* The cast to a user pointer is valid due to the set_fs() */
579 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
580 set_fs(old_fs);
582 return res;
585 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
586 loff_t pos)
588 mm_segment_t old_fs;
589 ssize_t res;
591 old_fs = get_fs();
592 set_fs(get_ds());
593 /* The cast to a user pointer is valid due to the set_fs() */
594 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
595 set_fs(old_fs);
597 return res;
599 EXPORT_SYMBOL(kernel_write);
601 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
602 struct pipe_inode_info *pipe, size_t len,
603 unsigned int flags)
605 unsigned int nr_pages;
606 unsigned int nr_freed;
607 size_t offset;
608 struct page *pages[PIPE_DEF_BUFFERS];
609 struct partial_page partial[PIPE_DEF_BUFFERS];
610 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
611 ssize_t res;
612 size_t this_len;
613 int error;
614 int i;
615 struct splice_pipe_desc spd = {
616 .pages = pages,
617 .partial = partial,
618 .nr_pages_max = PIPE_DEF_BUFFERS,
619 .flags = flags,
620 .ops = &default_pipe_buf_ops,
621 .spd_release = spd_release_page,
624 if (splice_grow_spd(pipe, &spd))
625 return -ENOMEM;
627 res = -ENOMEM;
628 vec = __vec;
629 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
630 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
631 if (!vec)
632 goto shrink_ret;
635 offset = *ppos & ~PAGE_CACHE_MASK;
636 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
638 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
639 struct page *page;
641 page = alloc_page(GFP_USER);
642 error = -ENOMEM;
643 if (!page)
644 goto err;
646 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
647 vec[i].iov_base = (void __user *) page_address(page);
648 vec[i].iov_len = this_len;
649 spd.pages[i] = page;
650 spd.nr_pages++;
651 len -= this_len;
652 offset = 0;
655 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
656 if (res < 0) {
657 error = res;
658 goto err;
661 error = 0;
662 if (!res)
663 goto err;
665 nr_freed = 0;
666 for (i = 0; i < spd.nr_pages; i++) {
667 this_len = min_t(size_t, vec[i].iov_len, res);
668 spd.partial[i].offset = 0;
669 spd.partial[i].len = this_len;
670 if (!this_len) {
671 __free_page(spd.pages[i]);
672 spd.pages[i] = NULL;
673 nr_freed++;
675 res -= this_len;
677 spd.nr_pages -= nr_freed;
679 res = splice_to_pipe(pipe, &spd);
680 if (res > 0)
681 *ppos += res;
683 shrink_ret:
684 if (vec != __vec)
685 kfree(vec);
686 splice_shrink_spd(&spd);
687 return res;
689 err:
690 for (i = 0; i < spd.nr_pages; i++)
691 __free_page(spd.pages[i]);
693 res = error;
694 goto shrink_ret;
696 EXPORT_SYMBOL(default_file_splice_read);
699 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
700 * using sendpage(). Return the number of bytes sent.
702 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
703 struct pipe_buffer *buf, struct splice_desc *sd)
705 struct file *file = sd->u.file;
706 loff_t pos = sd->pos;
707 int more;
709 if (!likely(file->f_op->sendpage))
710 return -EINVAL;
712 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
714 if (sd->len < sd->total_len && pipe->nrbufs > 1)
715 more |= MSG_SENDPAGE_NOTLAST;
717 return file->f_op->sendpage(file, buf->page, buf->offset,
718 sd->len, &pos, more);
721 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
723 smp_mb();
724 if (waitqueue_active(&pipe->wait))
725 wake_up_interruptible(&pipe->wait);
726 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730 * splice_from_pipe_feed - feed available data from a pipe to a file
731 * @pipe: pipe to splice from
732 * @sd: information to @actor
733 * @actor: handler that splices the data
735 * Description:
736 * This function loops over the pipe and calls @actor to do the
737 * actual moving of a single struct pipe_buffer to the desired
738 * destination. It returns when there's no more buffers left in
739 * the pipe or if the requested number of bytes (@sd->total_len)
740 * have been copied. It returns a positive number (one) if the
741 * pipe needs to be filled with more data, zero if the required
742 * number of bytes have been copied and -errno on error.
744 * This, together with splice_from_pipe_{begin,end,next}, may be
745 * used to implement the functionality of __splice_from_pipe() when
746 * locking is required around copying the pipe buffers to the
747 * destination.
749 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
750 splice_actor *actor)
752 int ret;
754 while (pipe->nrbufs) {
755 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
756 const struct pipe_buf_operations *ops = buf->ops;
758 sd->len = buf->len;
759 if (sd->len > sd->total_len)
760 sd->len = sd->total_len;
762 ret = buf->ops->confirm(pipe, buf);
763 if (unlikely(ret)) {
764 if (ret == -ENODATA)
765 ret = 0;
766 return ret;
769 ret = actor(pipe, buf, sd);
770 if (ret <= 0)
771 return ret;
773 buf->offset += ret;
774 buf->len -= ret;
776 sd->num_spliced += ret;
777 sd->len -= ret;
778 sd->pos += ret;
779 sd->total_len -= ret;
781 if (!buf->len) {
782 buf->ops = NULL;
783 ops->release(pipe, buf);
784 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
785 pipe->nrbufs--;
786 if (pipe->files)
787 sd->need_wakeup = true;
790 if (!sd->total_len)
791 return 0;
794 return 1;
798 * splice_from_pipe_next - wait for some data to splice from
799 * @pipe: pipe to splice from
800 * @sd: information about the splice operation
802 * Description:
803 * This function will wait for some data and return a positive
804 * value (one) if pipe buffers are available. It will return zero
805 * or -errno if no more data needs to be spliced.
807 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
809 while (!pipe->nrbufs) {
810 if (!pipe->writers)
811 return 0;
813 if (!pipe->waiting_writers && sd->num_spliced)
814 return 0;
816 if (sd->flags & SPLICE_F_NONBLOCK)
817 return -EAGAIN;
819 if (signal_pending(current))
820 return -ERESTARTSYS;
822 if (sd->need_wakeup) {
823 wakeup_pipe_writers(pipe);
824 sd->need_wakeup = false;
827 pipe_wait(pipe);
830 return 1;
834 * splice_from_pipe_begin - start splicing from pipe
835 * @sd: information about the splice operation
837 * Description:
838 * This function should be called before a loop containing
839 * splice_from_pipe_next() and splice_from_pipe_feed() to
840 * initialize the necessary fields of @sd.
842 static void splice_from_pipe_begin(struct splice_desc *sd)
844 sd->num_spliced = 0;
845 sd->need_wakeup = false;
849 * splice_from_pipe_end - finish splicing from pipe
850 * @pipe: pipe to splice from
851 * @sd: information about the splice operation
853 * Description:
854 * This function will wake up pipe writers if necessary. It should
855 * be called after a loop containing splice_from_pipe_next() and
856 * splice_from_pipe_feed().
858 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
860 if (sd->need_wakeup)
861 wakeup_pipe_writers(pipe);
865 * __splice_from_pipe - splice data from a pipe to given actor
866 * @pipe: pipe to splice from
867 * @sd: information to @actor
868 * @actor: handler that splices the data
870 * Description:
871 * This function does little more than loop over the pipe and call
872 * @actor to do the actual moving of a single struct pipe_buffer to
873 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
874 * pipe_to_user.
877 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
878 splice_actor *actor)
880 int ret;
882 splice_from_pipe_begin(sd);
883 do {
884 ret = splice_from_pipe_next(pipe, sd);
885 if (ret > 0)
886 ret = splice_from_pipe_feed(pipe, sd, actor);
887 } while (ret > 0);
888 splice_from_pipe_end(pipe, sd);
890 return sd->num_spliced ? sd->num_spliced : ret;
892 EXPORT_SYMBOL(__splice_from_pipe);
895 * splice_from_pipe - splice data from a pipe to a file
896 * @pipe: pipe to splice from
897 * @out: file to splice to
898 * @ppos: position in @out
899 * @len: how many bytes to splice
900 * @flags: splice modifier flags
901 * @actor: handler that splices the data
903 * Description:
904 * See __splice_from_pipe. This function locks the pipe inode,
905 * otherwise it's identical to __splice_from_pipe().
908 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
909 loff_t *ppos, size_t len, unsigned int flags,
910 splice_actor *actor)
912 ssize_t ret;
913 struct splice_desc sd = {
914 .total_len = len,
915 .flags = flags,
916 .pos = *ppos,
917 .u.file = out,
920 pipe_lock(pipe);
921 ret = __splice_from_pipe(pipe, &sd, actor);
922 pipe_unlock(pipe);
924 return ret;
928 * iter_file_splice_write - splice data from a pipe to a file
929 * @pipe: pipe info
930 * @out: file to write to
931 * @ppos: position in @out
932 * @len: number of bytes to splice
933 * @flags: splice modifier flags
935 * Description:
936 * Will either move or copy pages (determined by @flags options) from
937 * the given pipe inode to the given file.
938 * This one is ->write_iter-based.
941 ssize_t
942 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
943 loff_t *ppos, size_t len, unsigned int flags)
945 struct splice_desc sd = {
946 .total_len = len,
947 .flags = flags,
948 .pos = *ppos,
949 .u.file = out,
951 int nbufs = pipe->buffers;
952 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
953 GFP_KERNEL);
954 ssize_t ret;
956 if (unlikely(!array))
957 return -ENOMEM;
959 pipe_lock(pipe);
961 splice_from_pipe_begin(&sd);
962 while (sd.total_len) {
963 struct iov_iter from;
964 struct kiocb kiocb;
965 size_t left;
966 int n, idx;
968 ret = splice_from_pipe_next(pipe, &sd);
969 if (ret <= 0)
970 break;
972 if (unlikely(nbufs < pipe->buffers)) {
973 kfree(array);
974 nbufs = pipe->buffers;
975 array = kcalloc(nbufs, sizeof(struct bio_vec),
976 GFP_KERNEL);
977 if (!array) {
978 ret = -ENOMEM;
979 break;
983 /* build the vector */
984 left = sd.total_len;
985 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
986 struct pipe_buffer *buf = pipe->bufs + idx;
987 size_t this_len = buf->len;
989 if (this_len > left)
990 this_len = left;
992 if (idx == pipe->buffers - 1)
993 idx = -1;
995 ret = buf->ops->confirm(pipe, buf);
996 if (unlikely(ret)) {
997 if (ret == -ENODATA)
998 ret = 0;
999 goto done;
1002 array[n].bv_page = buf->page;
1003 array[n].bv_len = this_len;
1004 array[n].bv_offset = buf->offset;
1005 left -= this_len;
1008 /* ... iov_iter */
1009 from.type = ITER_BVEC | WRITE;
1010 from.bvec = array;
1011 from.nr_segs = n;
1012 from.count = sd.total_len - left;
1013 from.iov_offset = 0;
1015 /* ... and iocb */
1016 init_sync_kiocb(&kiocb, out);
1017 kiocb.ki_pos = sd.pos;
1018 kiocb.ki_nbytes = sd.total_len - left;
1020 /* now, send it */
1021 ret = out->f_op->write_iter(&kiocb, &from);
1022 if (-EIOCBQUEUED == ret)
1023 ret = wait_on_sync_kiocb(&kiocb);
1025 if (ret <= 0)
1026 break;
1028 sd.num_spliced += ret;
1029 sd.total_len -= ret;
1030 *ppos = sd.pos = kiocb.ki_pos;
1032 /* dismiss the fully eaten buffers, adjust the partial one */
1033 while (ret) {
1034 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1035 if (ret >= buf->len) {
1036 const struct pipe_buf_operations *ops = buf->ops;
1037 ret -= buf->len;
1038 buf->len = 0;
1039 buf->ops = NULL;
1040 ops->release(pipe, buf);
1041 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1042 pipe->nrbufs--;
1043 if (pipe->files)
1044 sd.need_wakeup = true;
1045 } else {
1046 buf->offset += ret;
1047 buf->len -= ret;
1048 ret = 0;
1052 done:
1053 kfree(array);
1054 splice_from_pipe_end(pipe, &sd);
1056 pipe_unlock(pipe);
1058 if (sd.num_spliced)
1059 ret = sd.num_spliced;
1061 return ret;
1064 EXPORT_SYMBOL(iter_file_splice_write);
1066 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1067 struct splice_desc *sd)
1069 int ret;
1070 void *data;
1071 loff_t tmp = sd->pos;
1073 data = kmap(buf->page);
1074 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1075 kunmap(buf->page);
1077 return ret;
1080 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1081 struct file *out, loff_t *ppos,
1082 size_t len, unsigned int flags)
1084 ssize_t ret;
1086 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1087 if (ret > 0)
1088 *ppos += ret;
1090 return ret;
1094 * generic_splice_sendpage - splice data from a pipe to a socket
1095 * @pipe: pipe to splice from
1096 * @out: socket to write to
1097 * @ppos: position in @out
1098 * @len: number of bytes to splice
1099 * @flags: splice modifier flags
1101 * Description:
1102 * Will send @len bytes from the pipe to a network socket. No data copying
1103 * is involved.
1106 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1107 loff_t *ppos, size_t len, unsigned int flags)
1109 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1112 EXPORT_SYMBOL(generic_splice_sendpage);
1115 * Attempt to initiate a splice from pipe to file.
1117 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1118 loff_t *ppos, size_t len, unsigned int flags)
1120 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1121 loff_t *, size_t, unsigned int);
1123 if (out->f_op->splice_write)
1124 splice_write = out->f_op->splice_write;
1125 else
1126 splice_write = default_file_splice_write;
1128 return splice_write(pipe, out, ppos, len, flags);
1132 * Attempt to initiate a splice from a file to a pipe.
1134 static long do_splice_to(struct file *in, loff_t *ppos,
1135 struct pipe_inode_info *pipe, size_t len,
1136 unsigned int flags)
1138 ssize_t (*splice_read)(struct file *, loff_t *,
1139 struct pipe_inode_info *, size_t, unsigned int);
1140 int ret;
1142 if (unlikely(!(in->f_mode & FMODE_READ)))
1143 return -EBADF;
1145 ret = rw_verify_area(READ, in, ppos, len);
1146 if (unlikely(ret < 0))
1147 return ret;
1149 if (in->f_op->splice_read)
1150 splice_read = in->f_op->splice_read;
1151 else
1152 splice_read = default_file_splice_read;
1154 return splice_read(in, ppos, pipe, len, flags);
1158 * splice_direct_to_actor - splices data directly between two non-pipes
1159 * @in: file to splice from
1160 * @sd: actor information on where to splice to
1161 * @actor: handles the data splicing
1163 * Description:
1164 * This is a special case helper to splice directly between two
1165 * points, without requiring an explicit pipe. Internally an allocated
1166 * pipe is cached in the process, and reused during the lifetime of
1167 * that process.
1170 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1171 splice_direct_actor *actor)
1173 struct pipe_inode_info *pipe;
1174 long ret, bytes;
1175 umode_t i_mode;
1176 size_t len;
1177 int i, flags;
1180 * We require the input being a regular file, as we don't want to
1181 * randomly drop data for eg socket -> socket splicing. Use the
1182 * piped splicing for that!
1184 i_mode = file_inode(in)->i_mode;
1185 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1186 return -EINVAL;
1189 * neither in nor out is a pipe, setup an internal pipe attached to
1190 * 'out' and transfer the wanted data from 'in' to 'out' through that
1192 pipe = current->splice_pipe;
1193 if (unlikely(!pipe)) {
1194 pipe = alloc_pipe_info();
1195 if (!pipe)
1196 return -ENOMEM;
1199 * We don't have an immediate reader, but we'll read the stuff
1200 * out of the pipe right after the splice_to_pipe(). So set
1201 * PIPE_READERS appropriately.
1203 pipe->readers = 1;
1205 current->splice_pipe = pipe;
1209 * Do the splice.
1211 ret = 0;
1212 bytes = 0;
1213 len = sd->total_len;
1214 flags = sd->flags;
1217 * Don't block on output, we have to drain the direct pipe.
1219 sd->flags &= ~SPLICE_F_NONBLOCK;
1221 while (len) {
1222 size_t read_len;
1223 loff_t pos = sd->pos, prev_pos = pos;
1225 ret = do_splice_to(in, &pos, pipe, len, flags);
1226 if (unlikely(ret <= 0))
1227 goto out_release;
1229 read_len = ret;
1230 sd->total_len = read_len;
1233 * NOTE: nonblocking mode only applies to the input. We
1234 * must not do the output in nonblocking mode as then we
1235 * could get stuck data in the internal pipe:
1237 ret = actor(pipe, sd);
1238 if (unlikely(ret <= 0)) {
1239 sd->pos = prev_pos;
1240 goto out_release;
1243 bytes += ret;
1244 len -= ret;
1245 sd->pos = pos;
1247 if (ret < read_len) {
1248 sd->pos = prev_pos + ret;
1249 goto out_release;
1253 done:
1254 pipe->nrbufs = pipe->curbuf = 0;
1255 file_accessed(in);
1256 return bytes;
1258 out_release:
1260 * If we did an incomplete transfer we must release
1261 * the pipe buffers in question:
1263 for (i = 0; i < pipe->buffers; i++) {
1264 struct pipe_buffer *buf = pipe->bufs + i;
1266 if (buf->ops) {
1267 buf->ops->release(pipe, buf);
1268 buf->ops = NULL;
1272 if (!bytes)
1273 bytes = ret;
1275 goto done;
1277 EXPORT_SYMBOL(splice_direct_to_actor);
1279 static int direct_splice_actor(struct pipe_inode_info *pipe,
1280 struct splice_desc *sd)
1282 struct file *file = sd->u.file;
1284 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1285 sd->flags);
1289 * do_splice_direct - splices data directly between two files
1290 * @in: file to splice from
1291 * @ppos: input file offset
1292 * @out: file to splice to
1293 * @opos: output file offset
1294 * @len: number of bytes to splice
1295 * @flags: splice modifier flags
1297 * Description:
1298 * For use by do_sendfile(). splice can easily emulate sendfile, but
1299 * doing it in the application would incur an extra system call
1300 * (splice in + splice out, as compared to just sendfile()). So this helper
1301 * can splice directly through a process-private pipe.
1304 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1305 loff_t *opos, size_t len, unsigned int flags)
1307 struct splice_desc sd = {
1308 .len = len,
1309 .total_len = len,
1310 .flags = flags,
1311 .pos = *ppos,
1312 .u.file = out,
1313 .opos = opos,
1315 long ret;
1317 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1318 return -EBADF;
1320 if (unlikely(out->f_flags & O_APPEND))
1321 return -EINVAL;
1323 ret = rw_verify_area(WRITE, out, opos, len);
1324 if (unlikely(ret < 0))
1325 return ret;
1327 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1328 if (ret > 0)
1329 *ppos = sd.pos;
1331 return ret;
1333 EXPORT_SYMBOL(do_splice_direct);
1335 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1336 struct pipe_inode_info *opipe,
1337 size_t len, unsigned int flags);
1340 * Determine where to splice to/from.
1342 static long do_splice(struct file *in, loff_t __user *off_in,
1343 struct file *out, loff_t __user *off_out,
1344 size_t len, unsigned int flags)
1346 struct pipe_inode_info *ipipe;
1347 struct pipe_inode_info *opipe;
1348 loff_t offset;
1349 long ret;
1351 ipipe = get_pipe_info(in);
1352 opipe = get_pipe_info(out);
1354 if (ipipe && opipe) {
1355 if (off_in || off_out)
1356 return -ESPIPE;
1358 if (!(in->f_mode & FMODE_READ))
1359 return -EBADF;
1361 if (!(out->f_mode & FMODE_WRITE))
1362 return -EBADF;
1364 /* Splicing to self would be fun, but... */
1365 if (ipipe == opipe)
1366 return -EINVAL;
1368 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1371 if (ipipe) {
1372 if (off_in)
1373 return -ESPIPE;
1374 if (off_out) {
1375 if (!(out->f_mode & FMODE_PWRITE))
1376 return -EINVAL;
1377 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1378 return -EFAULT;
1379 } else {
1380 offset = out->f_pos;
1383 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1384 return -EBADF;
1386 if (unlikely(out->f_flags & O_APPEND))
1387 return -EINVAL;
1389 ret = rw_verify_area(WRITE, out, &offset, len);
1390 if (unlikely(ret < 0))
1391 return ret;
1393 file_start_write(out);
1394 ret = do_splice_from(ipipe, out, &offset, len, flags);
1395 file_end_write(out);
1397 if (!off_out)
1398 out->f_pos = offset;
1399 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1400 ret = -EFAULT;
1402 return ret;
1405 if (opipe) {
1406 if (off_out)
1407 return -ESPIPE;
1408 if (off_in) {
1409 if (!(in->f_mode & FMODE_PREAD))
1410 return -EINVAL;
1411 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1412 return -EFAULT;
1413 } else {
1414 offset = in->f_pos;
1417 ret = do_splice_to(in, &offset, opipe, len, flags);
1419 if (!off_in)
1420 in->f_pos = offset;
1421 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1422 ret = -EFAULT;
1424 return ret;
1427 return -EINVAL;
1431 * Map an iov into an array of pages and offset/length tupples. With the
1432 * partial_page structure, we can map several non-contiguous ranges into
1433 * our ones pages[] map instead of splitting that operation into pieces.
1434 * Could easily be exported as a generic helper for other users, in which
1435 * case one would probably want to add a 'max_nr_pages' parameter as well.
1437 static int get_iovec_page_array(const struct iovec __user *iov,
1438 unsigned int nr_vecs, struct page **pages,
1439 struct partial_page *partial, bool aligned,
1440 unsigned int pipe_buffers)
1442 int buffers = 0, error = 0;
1444 while (nr_vecs) {
1445 unsigned long off, npages;
1446 struct iovec entry;
1447 void __user *base;
1448 size_t len;
1449 int i;
1451 error = -EFAULT;
1452 if (copy_from_user(&entry, iov, sizeof(entry)))
1453 break;
1455 base = entry.iov_base;
1456 len = entry.iov_len;
1459 * Sanity check this iovec. 0 read succeeds.
1461 error = 0;
1462 if (unlikely(!len))
1463 break;
1464 error = -EFAULT;
1465 if (!access_ok(VERIFY_READ, base, len))
1466 break;
1469 * Get this base offset and number of pages, then map
1470 * in the user pages.
1472 off = (unsigned long) base & ~PAGE_MASK;
1475 * If asked for alignment, the offset must be zero and the
1476 * length a multiple of the PAGE_SIZE.
1478 error = -EINVAL;
1479 if (aligned && (off || len & ~PAGE_MASK))
1480 break;
1482 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1483 if (npages > pipe_buffers - buffers)
1484 npages = pipe_buffers - buffers;
1486 error = get_user_pages_fast((unsigned long)base, npages,
1487 0, &pages[buffers]);
1489 if (unlikely(error <= 0))
1490 break;
1493 * Fill this contiguous range into the partial page map.
1495 for (i = 0; i < error; i++) {
1496 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1498 partial[buffers].offset = off;
1499 partial[buffers].len = plen;
1501 off = 0;
1502 len -= plen;
1503 buffers++;
1507 * We didn't complete this iov, stop here since it probably
1508 * means we have to move some of this into a pipe to
1509 * be able to continue.
1511 if (len)
1512 break;
1515 * Don't continue if we mapped fewer pages than we asked for,
1516 * or if we mapped the max number of pages that we have
1517 * room for.
1519 if (error < npages || buffers == pipe_buffers)
1520 break;
1522 nr_vecs--;
1523 iov++;
1526 if (buffers)
1527 return buffers;
1529 return error;
1532 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1533 struct splice_desc *sd)
1535 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1536 return n == sd->len ? n : -EFAULT;
1540 * For lack of a better implementation, implement vmsplice() to userspace
1541 * as a simple copy of the pipes pages to the user iov.
1543 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1544 unsigned long nr_segs, unsigned int flags)
1546 struct pipe_inode_info *pipe;
1547 struct splice_desc sd;
1548 long ret;
1549 struct iovec iovstack[UIO_FASTIOV];
1550 struct iovec *iov = iovstack;
1551 struct iov_iter iter;
1552 ssize_t count;
1554 pipe = get_pipe_info(file);
1555 if (!pipe)
1556 return -EBADF;
1558 ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1559 ARRAY_SIZE(iovstack), iovstack, &iov);
1560 if (ret <= 0)
1561 goto out;
1563 count = ret;
1564 iov_iter_init(&iter, READ, iov, nr_segs, count);
1566 sd.len = 0;
1567 sd.total_len = count;
1568 sd.flags = flags;
1569 sd.u.data = &iter;
1570 sd.pos = 0;
1572 pipe_lock(pipe);
1573 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1574 pipe_unlock(pipe);
1576 out:
1577 if (iov != iovstack)
1578 kfree(iov);
1580 return ret;
1584 * vmsplice splices a user address range into a pipe. It can be thought of
1585 * as splice-from-memory, where the regular splice is splice-from-file (or
1586 * to file). In both cases the output is a pipe, naturally.
1588 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1589 unsigned long nr_segs, unsigned int flags)
1591 struct pipe_inode_info *pipe;
1592 struct page *pages[PIPE_DEF_BUFFERS];
1593 struct partial_page partial[PIPE_DEF_BUFFERS];
1594 struct splice_pipe_desc spd = {
1595 .pages = pages,
1596 .partial = partial,
1597 .nr_pages_max = PIPE_DEF_BUFFERS,
1598 .flags = flags,
1599 .ops = &user_page_pipe_buf_ops,
1600 .spd_release = spd_release_page,
1602 long ret;
1604 pipe = get_pipe_info(file);
1605 if (!pipe)
1606 return -EBADF;
1608 if (splice_grow_spd(pipe, &spd))
1609 return -ENOMEM;
1611 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1612 spd.partial, false,
1613 spd.nr_pages_max);
1614 if (spd.nr_pages <= 0)
1615 ret = spd.nr_pages;
1616 else
1617 ret = splice_to_pipe(pipe, &spd);
1619 splice_shrink_spd(&spd);
1620 return ret;
1624 * Note that vmsplice only really supports true splicing _from_ user memory
1625 * to a pipe, not the other way around. Splicing from user memory is a simple
1626 * operation that can be supported without any funky alignment restrictions
1627 * or nasty vm tricks. We simply map in the user memory and fill them into
1628 * a pipe. The reverse isn't quite as easy, though. There are two possible
1629 * solutions for that:
1631 * - memcpy() the data internally, at which point we might as well just
1632 * do a regular read() on the buffer anyway.
1633 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1634 * has restriction limitations on both ends of the pipe).
1636 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1639 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1640 unsigned long, nr_segs, unsigned int, flags)
1642 struct fd f;
1643 long error;
1645 if (unlikely(nr_segs > UIO_MAXIOV))
1646 return -EINVAL;
1647 else if (unlikely(!nr_segs))
1648 return 0;
1650 error = -EBADF;
1651 f = fdget(fd);
1652 if (f.file) {
1653 if (f.file->f_mode & FMODE_WRITE)
1654 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1655 else if (f.file->f_mode & FMODE_READ)
1656 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1658 fdput(f);
1661 return error;
1664 #ifdef CONFIG_COMPAT
1665 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1666 unsigned int, nr_segs, unsigned int, flags)
1668 unsigned i;
1669 struct iovec __user *iov;
1670 if (nr_segs > UIO_MAXIOV)
1671 return -EINVAL;
1672 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1673 for (i = 0; i < nr_segs; i++) {
1674 struct compat_iovec v;
1675 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1676 get_user(v.iov_len, &iov32[i].iov_len) ||
1677 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1678 put_user(v.iov_len, &iov[i].iov_len))
1679 return -EFAULT;
1681 return sys_vmsplice(fd, iov, nr_segs, flags);
1683 #endif
1685 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1686 int, fd_out, loff_t __user *, off_out,
1687 size_t, len, unsigned int, flags)
1689 struct fd in, out;
1690 long error;
1692 if (unlikely(!len))
1693 return 0;
1695 error = -EBADF;
1696 in = fdget(fd_in);
1697 if (in.file) {
1698 if (in.file->f_mode & FMODE_READ) {
1699 out = fdget(fd_out);
1700 if (out.file) {
1701 if (out.file->f_mode & FMODE_WRITE)
1702 error = do_splice(in.file, off_in,
1703 out.file, off_out,
1704 len, flags);
1705 fdput(out);
1708 fdput(in);
1710 return error;
1714 * Make sure there's data to read. Wait for input if we can, otherwise
1715 * return an appropriate error.
1717 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1719 int ret;
1722 * Check ->nrbufs without the inode lock first. This function
1723 * is speculative anyways, so missing one is ok.
1725 if (pipe->nrbufs)
1726 return 0;
1728 ret = 0;
1729 pipe_lock(pipe);
1731 while (!pipe->nrbufs) {
1732 if (signal_pending(current)) {
1733 ret = -ERESTARTSYS;
1734 break;
1736 if (!pipe->writers)
1737 break;
1738 if (!pipe->waiting_writers) {
1739 if (flags & SPLICE_F_NONBLOCK) {
1740 ret = -EAGAIN;
1741 break;
1744 pipe_wait(pipe);
1747 pipe_unlock(pipe);
1748 return ret;
1752 * Make sure there's writeable room. Wait for room if we can, otherwise
1753 * return an appropriate error.
1755 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757 int ret;
1760 * Check ->nrbufs without the inode lock first. This function
1761 * is speculative anyways, so missing one is ok.
1763 if (pipe->nrbufs < pipe->buffers)
1764 return 0;
1766 ret = 0;
1767 pipe_lock(pipe);
1769 while (pipe->nrbufs >= pipe->buffers) {
1770 if (!pipe->readers) {
1771 send_sig(SIGPIPE, current, 0);
1772 ret = -EPIPE;
1773 break;
1775 if (flags & SPLICE_F_NONBLOCK) {
1776 ret = -EAGAIN;
1777 break;
1779 if (signal_pending(current)) {
1780 ret = -ERESTARTSYS;
1781 break;
1783 pipe->waiting_writers++;
1784 pipe_wait(pipe);
1785 pipe->waiting_writers--;
1788 pipe_unlock(pipe);
1789 return ret;
1793 * Splice contents of ipipe to opipe.
1795 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1796 struct pipe_inode_info *opipe,
1797 size_t len, unsigned int flags)
1799 struct pipe_buffer *ibuf, *obuf;
1800 int ret = 0, nbuf;
1801 bool input_wakeup = false;
1804 retry:
1805 ret = ipipe_prep(ipipe, flags);
1806 if (ret)
1807 return ret;
1809 ret = opipe_prep(opipe, flags);
1810 if (ret)
1811 return ret;
1814 * Potential ABBA deadlock, work around it by ordering lock
1815 * grabbing by pipe info address. Otherwise two different processes
1816 * could deadlock (one doing tee from A -> B, the other from B -> A).
1818 pipe_double_lock(ipipe, opipe);
1820 do {
1821 if (!opipe->readers) {
1822 send_sig(SIGPIPE, current, 0);
1823 if (!ret)
1824 ret = -EPIPE;
1825 break;
1828 if (!ipipe->nrbufs && !ipipe->writers)
1829 break;
1832 * Cannot make any progress, because either the input
1833 * pipe is empty or the output pipe is full.
1835 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1836 /* Already processed some buffers, break */
1837 if (ret)
1838 break;
1840 if (flags & SPLICE_F_NONBLOCK) {
1841 ret = -EAGAIN;
1842 break;
1846 * We raced with another reader/writer and haven't
1847 * managed to process any buffers. A zero return
1848 * value means EOF, so retry instead.
1850 pipe_unlock(ipipe);
1851 pipe_unlock(opipe);
1852 goto retry;
1855 ibuf = ipipe->bufs + ipipe->curbuf;
1856 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1857 obuf = opipe->bufs + nbuf;
1859 if (len >= ibuf->len) {
1861 * Simply move the whole buffer from ipipe to opipe
1863 *obuf = *ibuf;
1864 ibuf->ops = NULL;
1865 opipe->nrbufs++;
1866 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1867 ipipe->nrbufs--;
1868 input_wakeup = true;
1869 } else {
1871 * Get a reference to this pipe buffer,
1872 * so we can copy the contents over.
1874 ibuf->ops->get(ipipe, ibuf);
1875 *obuf = *ibuf;
1878 * Don't inherit the gift flag, we need to
1879 * prevent multiple steals of this page.
1881 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1883 obuf->len = len;
1884 opipe->nrbufs++;
1885 ibuf->offset += obuf->len;
1886 ibuf->len -= obuf->len;
1888 ret += obuf->len;
1889 len -= obuf->len;
1890 } while (len);
1892 pipe_unlock(ipipe);
1893 pipe_unlock(opipe);
1896 * If we put data in the output pipe, wakeup any potential readers.
1898 if (ret > 0)
1899 wakeup_pipe_readers(opipe);
1901 if (input_wakeup)
1902 wakeup_pipe_writers(ipipe);
1904 return ret;
1908 * Link contents of ipipe to opipe.
1910 static int link_pipe(struct pipe_inode_info *ipipe,
1911 struct pipe_inode_info *opipe,
1912 size_t len, unsigned int flags)
1914 struct pipe_buffer *ibuf, *obuf;
1915 int ret = 0, i = 0, nbuf;
1918 * Potential ABBA deadlock, work around it by ordering lock
1919 * grabbing by pipe info address. Otherwise two different processes
1920 * could deadlock (one doing tee from A -> B, the other from B -> A).
1922 pipe_double_lock(ipipe, opipe);
1924 do {
1925 if (!opipe->readers) {
1926 send_sig(SIGPIPE, current, 0);
1927 if (!ret)
1928 ret = -EPIPE;
1929 break;
1933 * If we have iterated all input buffers or ran out of
1934 * output room, break.
1936 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1937 break;
1939 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1940 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1943 * Get a reference to this pipe buffer,
1944 * so we can copy the contents over.
1946 ibuf->ops->get(ipipe, ibuf);
1948 obuf = opipe->bufs + nbuf;
1949 *obuf = *ibuf;
1952 * Don't inherit the gift flag, we need to
1953 * prevent multiple steals of this page.
1955 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1957 if (obuf->len > len)
1958 obuf->len = len;
1960 opipe->nrbufs++;
1961 ret += obuf->len;
1962 len -= obuf->len;
1963 i++;
1964 } while (len);
1967 * return EAGAIN if we have the potential of some data in the
1968 * future, otherwise just return 0
1970 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1971 ret = -EAGAIN;
1973 pipe_unlock(ipipe);
1974 pipe_unlock(opipe);
1977 * If we put data in the output pipe, wakeup any potential readers.
1979 if (ret > 0)
1980 wakeup_pipe_readers(opipe);
1982 return ret;
1986 * This is a tee(1) implementation that works on pipes. It doesn't copy
1987 * any data, it simply references the 'in' pages on the 'out' pipe.
1988 * The 'flags' used are the SPLICE_F_* variants, currently the only
1989 * applicable one is SPLICE_F_NONBLOCK.
1991 static long do_tee(struct file *in, struct file *out, size_t len,
1992 unsigned int flags)
1994 struct pipe_inode_info *ipipe = get_pipe_info(in);
1995 struct pipe_inode_info *opipe = get_pipe_info(out);
1996 int ret = -EINVAL;
1999 * Duplicate the contents of ipipe to opipe without actually
2000 * copying the data.
2002 if (ipipe && opipe && ipipe != opipe) {
2004 * Keep going, unless we encounter an error. The ipipe/opipe
2005 * ordering doesn't really matter.
2007 ret = ipipe_prep(ipipe, flags);
2008 if (!ret) {
2009 ret = opipe_prep(opipe, flags);
2010 if (!ret)
2011 ret = link_pipe(ipipe, opipe, len, flags);
2015 return ret;
2018 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2020 struct fd in;
2021 int error;
2023 if (unlikely(!len))
2024 return 0;
2026 error = -EBADF;
2027 in = fdget(fdin);
2028 if (in.file) {
2029 if (in.file->f_mode & FMODE_READ) {
2030 struct fd out = fdget(fdout);
2031 if (out.file) {
2032 if (out.file->f_mode & FMODE_WRITE)
2033 error = do_tee(in.file, out.file,
2034 len, flags);
2035 fdput(out);
2038 fdput(in);
2041 return error;