1 #include <linux/ceph/ceph_debug.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
14 #include "mds_client.h"
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
24 * A cluster of MDS (metadata server) daemons is responsible for
25 * managing the file system namespace (the directory hierarchy and
26 * inodes) and for coordinating shared access to storage. Metadata is
27 * partitioning hierarchically across a number of servers, and that
28 * partition varies over time as the cluster adjusts the distribution
29 * in order to balance load.
31 * The MDS client is primarily responsible to managing synchronous
32 * metadata requests for operations like open, unlink, and so forth.
33 * If there is a MDS failure, we find out about it when we (possibly
34 * request and) receive a new MDS map, and can resubmit affected
37 * For the most part, though, we take advantage of a lossless
38 * communications channel to the MDS, and do not need to worry about
39 * timing out or resubmitting requests.
41 * We maintain a stateful "session" with each MDS we interact with.
42 * Within each session, we sent periodic heartbeat messages to ensure
43 * any capabilities or leases we have been issues remain valid. If
44 * the session times out and goes stale, our leases and capabilities
45 * are no longer valid.
48 struct ceph_reconnect_state
{
50 struct ceph_pagelist
*pagelist
;
54 static void __wake_requests(struct ceph_mds_client
*mdsc
,
55 struct list_head
*head
);
57 static const struct ceph_connection_operations mds_con_ops
;
65 * parse individual inode info
67 static int parse_reply_info_in(void **p
, void *end
,
68 struct ceph_mds_reply_info_in
*info
,
74 *p
+= sizeof(struct ceph_mds_reply_inode
) +
75 sizeof(*info
->in
->fragtree
.splits
) *
76 le32_to_cpu(info
->in
->fragtree
.nsplits
);
78 ceph_decode_32_safe(p
, end
, info
->symlink_len
, bad
);
79 ceph_decode_need(p
, end
, info
->symlink_len
, bad
);
81 *p
+= info
->symlink_len
;
83 if (features
& CEPH_FEATURE_DIRLAYOUTHASH
)
84 ceph_decode_copy_safe(p
, end
, &info
->dir_layout
,
85 sizeof(info
->dir_layout
), bad
);
87 memset(&info
->dir_layout
, 0, sizeof(info
->dir_layout
));
89 ceph_decode_32_safe(p
, end
, info
->xattr_len
, bad
);
90 ceph_decode_need(p
, end
, info
->xattr_len
, bad
);
91 info
->xattr_data
= *p
;
92 *p
+= info
->xattr_len
;
94 if (features
& CEPH_FEATURE_MDS_INLINE_DATA
) {
95 ceph_decode_64_safe(p
, end
, info
->inline_version
, bad
);
96 ceph_decode_32_safe(p
, end
, info
->inline_len
, bad
);
97 ceph_decode_need(p
, end
, info
->inline_len
, bad
);
98 info
->inline_data
= *p
;
99 *p
+= info
->inline_len
;
101 info
->inline_version
= CEPH_INLINE_NONE
;
109 * parse a normal reply, which may contain a (dir+)dentry and/or a
112 static int parse_reply_info_trace(void **p
, void *end
,
113 struct ceph_mds_reply_info_parsed
*info
,
118 if (info
->head
->is_dentry
) {
119 err
= parse_reply_info_in(p
, end
, &info
->diri
, features
);
123 if (unlikely(*p
+ sizeof(*info
->dirfrag
) > end
))
126 *p
+= sizeof(*info
->dirfrag
) +
127 sizeof(u32
)*le32_to_cpu(info
->dirfrag
->ndist
);
128 if (unlikely(*p
> end
))
131 ceph_decode_32_safe(p
, end
, info
->dname_len
, bad
);
132 ceph_decode_need(p
, end
, info
->dname_len
, bad
);
134 *p
+= info
->dname_len
;
136 *p
+= sizeof(*info
->dlease
);
139 if (info
->head
->is_target
) {
140 err
= parse_reply_info_in(p
, end
, &info
->targeti
, features
);
145 if (unlikely(*p
!= end
))
152 pr_err("problem parsing mds trace %d\n", err
);
157 * parse readdir results
159 static int parse_reply_info_dir(void **p
, void *end
,
160 struct ceph_mds_reply_info_parsed
*info
,
167 if (*p
+ sizeof(*info
->dir_dir
) > end
)
169 *p
+= sizeof(*info
->dir_dir
) +
170 sizeof(u32
)*le32_to_cpu(info
->dir_dir
->ndist
);
174 ceph_decode_need(p
, end
, sizeof(num
) + 2, bad
);
175 num
= ceph_decode_32(p
);
176 info
->dir_end
= ceph_decode_8(p
);
177 info
->dir_complete
= ceph_decode_8(p
);
181 BUG_ON(!info
->dir_in
);
182 info
->dir_dname
= (void *)(info
->dir_in
+ num
);
183 info
->dir_dname_len
= (void *)(info
->dir_dname
+ num
);
184 info
->dir_dlease
= (void *)(info
->dir_dname_len
+ num
);
185 if ((unsigned long)(info
->dir_dlease
+ num
) >
186 (unsigned long)info
->dir_in
+ info
->dir_buf_size
) {
187 pr_err("dir contents are larger than expected\n");
195 ceph_decode_need(p
, end
, sizeof(u32
)*2, bad
);
196 info
->dir_dname_len
[i
] = ceph_decode_32(p
);
197 ceph_decode_need(p
, end
, info
->dir_dname_len
[i
], bad
);
198 info
->dir_dname
[i
] = *p
;
199 *p
+= info
->dir_dname_len
[i
];
200 dout("parsed dir dname '%.*s'\n", info
->dir_dname_len
[i
],
202 info
->dir_dlease
[i
] = *p
;
203 *p
+= sizeof(struct ceph_mds_reply_lease
);
206 err
= parse_reply_info_in(p
, end
, &info
->dir_in
[i
], features
);
221 pr_err("problem parsing dir contents %d\n", err
);
226 * parse fcntl F_GETLK results
228 static int parse_reply_info_filelock(void **p
, void *end
,
229 struct ceph_mds_reply_info_parsed
*info
,
232 if (*p
+ sizeof(*info
->filelock_reply
) > end
)
235 info
->filelock_reply
= *p
;
236 *p
+= sizeof(*info
->filelock_reply
);
238 if (unlikely(*p
!= end
))
247 * parse create results
249 static int parse_reply_info_create(void **p
, void *end
,
250 struct ceph_mds_reply_info_parsed
*info
,
253 if (features
& CEPH_FEATURE_REPLY_CREATE_INODE
) {
255 info
->has_create_ino
= false;
257 info
->has_create_ino
= true;
258 info
->ino
= ceph_decode_64(p
);
262 if (unlikely(*p
!= end
))
271 * parse extra results
273 static int parse_reply_info_extra(void **p
, void *end
,
274 struct ceph_mds_reply_info_parsed
*info
,
277 if (info
->head
->op
== CEPH_MDS_OP_GETFILELOCK
)
278 return parse_reply_info_filelock(p
, end
, info
, features
);
279 else if (info
->head
->op
== CEPH_MDS_OP_READDIR
||
280 info
->head
->op
== CEPH_MDS_OP_LSSNAP
)
281 return parse_reply_info_dir(p
, end
, info
, features
);
282 else if (info
->head
->op
== CEPH_MDS_OP_CREATE
)
283 return parse_reply_info_create(p
, end
, info
, features
);
289 * parse entire mds reply
291 static int parse_reply_info(struct ceph_msg
*msg
,
292 struct ceph_mds_reply_info_parsed
*info
,
299 info
->head
= msg
->front
.iov_base
;
300 p
= msg
->front
.iov_base
+ sizeof(struct ceph_mds_reply_head
);
301 end
= p
+ msg
->front
.iov_len
- sizeof(struct ceph_mds_reply_head
);
304 ceph_decode_32_safe(&p
, end
, len
, bad
);
306 ceph_decode_need(&p
, end
, len
, bad
);
307 err
= parse_reply_info_trace(&p
, p
+len
, info
, features
);
313 ceph_decode_32_safe(&p
, end
, len
, bad
);
315 ceph_decode_need(&p
, end
, len
, bad
);
316 err
= parse_reply_info_extra(&p
, p
+len
, info
, features
);
322 ceph_decode_32_safe(&p
, end
, len
, bad
);
323 info
->snapblob_len
= len
;
334 pr_err("mds parse_reply err %d\n", err
);
338 static void destroy_reply_info(struct ceph_mds_reply_info_parsed
*info
)
342 free_pages((unsigned long)info
->dir_in
, get_order(info
->dir_buf_size
));
349 const char *ceph_session_state_name(int s
)
352 case CEPH_MDS_SESSION_NEW
: return "new";
353 case CEPH_MDS_SESSION_OPENING
: return "opening";
354 case CEPH_MDS_SESSION_OPEN
: return "open";
355 case CEPH_MDS_SESSION_HUNG
: return "hung";
356 case CEPH_MDS_SESSION_CLOSING
: return "closing";
357 case CEPH_MDS_SESSION_RESTARTING
: return "restarting";
358 case CEPH_MDS_SESSION_RECONNECTING
: return "reconnecting";
359 default: return "???";
363 static struct ceph_mds_session
*get_session(struct ceph_mds_session
*s
)
365 if (atomic_inc_not_zero(&s
->s_ref
)) {
366 dout("mdsc get_session %p %d -> %d\n", s
,
367 atomic_read(&s
->s_ref
)-1, atomic_read(&s
->s_ref
));
370 dout("mdsc get_session %p 0 -- FAIL", s
);
375 void ceph_put_mds_session(struct ceph_mds_session
*s
)
377 dout("mdsc put_session %p %d -> %d\n", s
,
378 atomic_read(&s
->s_ref
), atomic_read(&s
->s_ref
)-1);
379 if (atomic_dec_and_test(&s
->s_ref
)) {
380 if (s
->s_auth
.authorizer
)
381 ceph_auth_destroy_authorizer(
382 s
->s_mdsc
->fsc
->client
->monc
.auth
,
383 s
->s_auth
.authorizer
);
389 * called under mdsc->mutex
391 struct ceph_mds_session
*__ceph_lookup_mds_session(struct ceph_mds_client
*mdsc
,
394 struct ceph_mds_session
*session
;
396 if (mds
>= mdsc
->max_sessions
|| mdsc
->sessions
[mds
] == NULL
)
398 session
= mdsc
->sessions
[mds
];
399 dout("lookup_mds_session %p %d\n", session
,
400 atomic_read(&session
->s_ref
));
401 get_session(session
);
405 static bool __have_session(struct ceph_mds_client
*mdsc
, int mds
)
407 if (mds
>= mdsc
->max_sessions
)
409 return mdsc
->sessions
[mds
];
412 static int __verify_registered_session(struct ceph_mds_client
*mdsc
,
413 struct ceph_mds_session
*s
)
415 if (s
->s_mds
>= mdsc
->max_sessions
||
416 mdsc
->sessions
[s
->s_mds
] != s
)
422 * create+register a new session for given mds.
423 * called under mdsc->mutex.
425 static struct ceph_mds_session
*register_session(struct ceph_mds_client
*mdsc
,
428 struct ceph_mds_session
*s
;
430 if (mds
>= mdsc
->mdsmap
->m_max_mds
)
431 return ERR_PTR(-EINVAL
);
433 s
= kzalloc(sizeof(*s
), GFP_NOFS
);
435 return ERR_PTR(-ENOMEM
);
438 s
->s_state
= CEPH_MDS_SESSION_NEW
;
441 mutex_init(&s
->s_mutex
);
443 ceph_con_init(&s
->s_con
, s
, &mds_con_ops
, &mdsc
->fsc
->client
->msgr
);
445 spin_lock_init(&s
->s_gen_ttl_lock
);
447 s
->s_cap_ttl
= jiffies
- 1;
449 spin_lock_init(&s
->s_cap_lock
);
450 s
->s_renew_requested
= 0;
452 INIT_LIST_HEAD(&s
->s_caps
);
455 atomic_set(&s
->s_ref
, 1);
456 INIT_LIST_HEAD(&s
->s_waiting
);
457 INIT_LIST_HEAD(&s
->s_unsafe
);
458 s
->s_num_cap_releases
= 0;
459 s
->s_cap_reconnect
= 0;
460 s
->s_cap_iterator
= NULL
;
461 INIT_LIST_HEAD(&s
->s_cap_releases
);
462 INIT_LIST_HEAD(&s
->s_cap_flushing
);
463 INIT_LIST_HEAD(&s
->s_cap_snaps_flushing
);
465 dout("register_session mds%d\n", mds
);
466 if (mds
>= mdsc
->max_sessions
) {
467 int newmax
= 1 << get_count_order(mds
+1);
468 struct ceph_mds_session
**sa
;
470 dout("register_session realloc to %d\n", newmax
);
471 sa
= kcalloc(newmax
, sizeof(void *), GFP_NOFS
);
474 if (mdsc
->sessions
) {
475 memcpy(sa
, mdsc
->sessions
,
476 mdsc
->max_sessions
* sizeof(void *));
477 kfree(mdsc
->sessions
);
480 mdsc
->max_sessions
= newmax
;
482 mdsc
->sessions
[mds
] = s
;
483 atomic_inc(&mdsc
->num_sessions
);
484 atomic_inc(&s
->s_ref
); /* one ref to sessions[], one to caller */
486 ceph_con_open(&s
->s_con
, CEPH_ENTITY_TYPE_MDS
, mds
,
487 ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
493 return ERR_PTR(-ENOMEM
);
497 * called under mdsc->mutex
499 static void __unregister_session(struct ceph_mds_client
*mdsc
,
500 struct ceph_mds_session
*s
)
502 dout("__unregister_session mds%d %p\n", s
->s_mds
, s
);
503 BUG_ON(mdsc
->sessions
[s
->s_mds
] != s
);
504 mdsc
->sessions
[s
->s_mds
] = NULL
;
505 ceph_con_close(&s
->s_con
);
506 ceph_put_mds_session(s
);
507 atomic_dec(&mdsc
->num_sessions
);
511 * drop session refs in request.
513 * should be last request ref, or hold mdsc->mutex
515 static void put_request_session(struct ceph_mds_request
*req
)
517 if (req
->r_session
) {
518 ceph_put_mds_session(req
->r_session
);
519 req
->r_session
= NULL
;
523 void ceph_mdsc_release_request(struct kref
*kref
)
525 struct ceph_mds_request
*req
= container_of(kref
,
526 struct ceph_mds_request
,
528 destroy_reply_info(&req
->r_reply_info
);
530 ceph_msg_put(req
->r_request
);
532 ceph_msg_put(req
->r_reply
);
534 ceph_put_cap_refs(ceph_inode(req
->r_inode
), CEPH_CAP_PIN
);
537 if (req
->r_locked_dir
)
538 ceph_put_cap_refs(ceph_inode(req
->r_locked_dir
), CEPH_CAP_PIN
);
539 iput(req
->r_target_inode
);
542 if (req
->r_old_dentry
)
543 dput(req
->r_old_dentry
);
544 if (req
->r_old_dentry_dir
) {
546 * track (and drop pins for) r_old_dentry_dir
547 * separately, since r_old_dentry's d_parent may have
548 * changed between the dir mutex being dropped and
549 * this request being freed.
551 ceph_put_cap_refs(ceph_inode(req
->r_old_dentry_dir
),
553 iput(req
->r_old_dentry_dir
);
558 ceph_pagelist_release(req
->r_pagelist
);
559 put_request_session(req
);
560 ceph_unreserve_caps(req
->r_mdsc
, &req
->r_caps_reservation
);
565 * lookup session, bump ref if found.
567 * called under mdsc->mutex.
569 static struct ceph_mds_request
*__lookup_request(struct ceph_mds_client
*mdsc
,
572 struct ceph_mds_request
*req
;
573 struct rb_node
*n
= mdsc
->request_tree
.rb_node
;
576 req
= rb_entry(n
, struct ceph_mds_request
, r_node
);
577 if (tid
< req
->r_tid
)
579 else if (tid
> req
->r_tid
)
582 ceph_mdsc_get_request(req
);
589 static void __insert_request(struct ceph_mds_client
*mdsc
,
590 struct ceph_mds_request
*new)
592 struct rb_node
**p
= &mdsc
->request_tree
.rb_node
;
593 struct rb_node
*parent
= NULL
;
594 struct ceph_mds_request
*req
= NULL
;
598 req
= rb_entry(parent
, struct ceph_mds_request
, r_node
);
599 if (new->r_tid
< req
->r_tid
)
601 else if (new->r_tid
> req
->r_tid
)
607 rb_link_node(&new->r_node
, parent
, p
);
608 rb_insert_color(&new->r_node
, &mdsc
->request_tree
);
612 * Register an in-flight request, and assign a tid. Link to directory
613 * are modifying (if any).
615 * Called under mdsc->mutex.
617 static void __register_request(struct ceph_mds_client
*mdsc
,
618 struct ceph_mds_request
*req
,
621 req
->r_tid
= ++mdsc
->last_tid
;
623 ceph_reserve_caps(mdsc
, &req
->r_caps_reservation
,
625 dout("__register_request %p tid %lld\n", req
, req
->r_tid
);
626 ceph_mdsc_get_request(req
);
627 __insert_request(mdsc
, req
);
629 req
->r_uid
= current_fsuid();
630 req
->r_gid
= current_fsgid();
632 if (mdsc
->oldest_tid
== 0 && req
->r_op
!= CEPH_MDS_OP_SETFILELOCK
)
633 mdsc
->oldest_tid
= req
->r_tid
;
636 struct ceph_inode_info
*ci
= ceph_inode(dir
);
639 spin_lock(&ci
->i_unsafe_lock
);
640 req
->r_unsafe_dir
= dir
;
641 list_add_tail(&req
->r_unsafe_dir_item
, &ci
->i_unsafe_dirops
);
642 spin_unlock(&ci
->i_unsafe_lock
);
646 static void __unregister_request(struct ceph_mds_client
*mdsc
,
647 struct ceph_mds_request
*req
)
649 dout("__unregister_request %p tid %lld\n", req
, req
->r_tid
);
651 if (req
->r_tid
== mdsc
->oldest_tid
) {
652 struct rb_node
*p
= rb_next(&req
->r_node
);
653 mdsc
->oldest_tid
= 0;
655 struct ceph_mds_request
*next_req
=
656 rb_entry(p
, struct ceph_mds_request
, r_node
);
657 if (next_req
->r_op
!= CEPH_MDS_OP_SETFILELOCK
) {
658 mdsc
->oldest_tid
= next_req
->r_tid
;
665 rb_erase(&req
->r_node
, &mdsc
->request_tree
);
666 RB_CLEAR_NODE(&req
->r_node
);
668 if (req
->r_unsafe_dir
) {
669 struct ceph_inode_info
*ci
= ceph_inode(req
->r_unsafe_dir
);
671 spin_lock(&ci
->i_unsafe_lock
);
672 list_del_init(&req
->r_unsafe_dir_item
);
673 spin_unlock(&ci
->i_unsafe_lock
);
675 iput(req
->r_unsafe_dir
);
676 req
->r_unsafe_dir
= NULL
;
679 complete_all(&req
->r_safe_completion
);
681 ceph_mdsc_put_request(req
);
685 * Choose mds to send request to next. If there is a hint set in the
686 * request (e.g., due to a prior forward hint from the mds), use that.
687 * Otherwise, consult frag tree and/or caps to identify the
688 * appropriate mds. If all else fails, choose randomly.
690 * Called under mdsc->mutex.
692 static struct dentry
*get_nonsnap_parent(struct dentry
*dentry
)
695 * we don't need to worry about protecting the d_parent access
696 * here because we never renaming inside the snapped namespace
697 * except to resplice to another snapdir, and either the old or new
698 * result is a valid result.
700 while (!IS_ROOT(dentry
) && ceph_snap(d_inode(dentry
)) != CEPH_NOSNAP
)
701 dentry
= dentry
->d_parent
;
705 static int __choose_mds(struct ceph_mds_client
*mdsc
,
706 struct ceph_mds_request
*req
)
709 struct ceph_inode_info
*ci
;
710 struct ceph_cap
*cap
;
711 int mode
= req
->r_direct_mode
;
713 u32 hash
= req
->r_direct_hash
;
714 bool is_hash
= req
->r_direct_is_hash
;
717 * is there a specific mds we should try? ignore hint if we have
718 * no session and the mds is not up (active or recovering).
720 if (req
->r_resend_mds
>= 0 &&
721 (__have_session(mdsc
, req
->r_resend_mds
) ||
722 ceph_mdsmap_get_state(mdsc
->mdsmap
, req
->r_resend_mds
) > 0)) {
723 dout("choose_mds using resend_mds mds%d\n",
725 return req
->r_resend_mds
;
728 if (mode
== USE_RANDOM_MDS
)
733 inode
= req
->r_inode
;
734 } else if (req
->r_dentry
) {
735 /* ignore race with rename; old or new d_parent is okay */
736 struct dentry
*parent
= req
->r_dentry
->d_parent
;
737 struct inode
*dir
= d_inode(parent
);
739 if (dir
->i_sb
!= mdsc
->fsc
->sb
) {
741 inode
= d_inode(req
->r_dentry
);
742 } else if (ceph_snap(dir
) != CEPH_NOSNAP
) {
743 /* direct snapped/virtual snapdir requests
744 * based on parent dir inode */
745 struct dentry
*dn
= get_nonsnap_parent(parent
);
747 dout("__choose_mds using nonsnap parent %p\n", inode
);
750 inode
= d_inode(req
->r_dentry
);
751 if (!inode
|| mode
== USE_AUTH_MDS
) {
754 hash
= ceph_dentry_hash(dir
, req
->r_dentry
);
760 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode
, (int)is_hash
,
764 ci
= ceph_inode(inode
);
766 if (is_hash
&& S_ISDIR(inode
->i_mode
)) {
767 struct ceph_inode_frag frag
;
770 ceph_choose_frag(ci
, hash
, &frag
, &found
);
772 if (mode
== USE_ANY_MDS
&& frag
.ndist
> 0) {
775 /* choose a random replica */
776 get_random_bytes(&r
, 1);
779 dout("choose_mds %p %llx.%llx "
780 "frag %u mds%d (%d/%d)\n",
781 inode
, ceph_vinop(inode
),
784 if (ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) >=
785 CEPH_MDS_STATE_ACTIVE
)
789 /* since this file/dir wasn't known to be
790 * replicated, then we want to look for the
791 * authoritative mds. */
794 /* choose auth mds */
796 dout("choose_mds %p %llx.%llx "
797 "frag %u mds%d (auth)\n",
798 inode
, ceph_vinop(inode
), frag
.frag
, mds
);
799 if (ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) >=
800 CEPH_MDS_STATE_ACTIVE
)
806 spin_lock(&ci
->i_ceph_lock
);
808 if (mode
== USE_AUTH_MDS
)
809 cap
= ci
->i_auth_cap
;
810 if (!cap
&& !RB_EMPTY_ROOT(&ci
->i_caps
))
811 cap
= rb_entry(rb_first(&ci
->i_caps
), struct ceph_cap
, ci_node
);
813 spin_unlock(&ci
->i_ceph_lock
);
816 mds
= cap
->session
->s_mds
;
817 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
818 inode
, ceph_vinop(inode
), mds
,
819 cap
== ci
->i_auth_cap
? "auth " : "", cap
);
820 spin_unlock(&ci
->i_ceph_lock
);
824 mds
= ceph_mdsmap_get_random_mds(mdsc
->mdsmap
);
825 dout("choose_mds chose random mds%d\n", mds
);
833 static struct ceph_msg
*create_session_msg(u32 op
, u64 seq
)
835 struct ceph_msg
*msg
;
836 struct ceph_mds_session_head
*h
;
838 msg
= ceph_msg_new(CEPH_MSG_CLIENT_SESSION
, sizeof(*h
), GFP_NOFS
,
841 pr_err("create_session_msg ENOMEM creating msg\n");
844 h
= msg
->front
.iov_base
;
845 h
->op
= cpu_to_le32(op
);
846 h
->seq
= cpu_to_le64(seq
);
852 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
853 * to include additional client metadata fields.
855 static struct ceph_msg
*create_session_open_msg(struct ceph_mds_client
*mdsc
, u64 seq
)
857 struct ceph_msg
*msg
;
858 struct ceph_mds_session_head
*h
;
860 int metadata_bytes
= 0;
861 int metadata_key_count
= 0;
862 struct ceph_options
*opt
= mdsc
->fsc
->client
->options
;
865 const char* metadata
[][2] = {
866 {"hostname", utsname()->nodename
},
867 {"kernel_version", utsname()->release
},
868 {"entity_id", opt
->name
? opt
->name
: ""},
872 /* Calculate serialized length of metadata */
873 metadata_bytes
= 4; /* map length */
874 for (i
= 0; metadata
[i
][0] != NULL
; ++i
) {
875 metadata_bytes
+= 8 + strlen(metadata
[i
][0]) +
876 strlen(metadata
[i
][1]);
877 metadata_key_count
++;
880 /* Allocate the message */
881 msg
= ceph_msg_new(CEPH_MSG_CLIENT_SESSION
, sizeof(*h
) + metadata_bytes
,
884 pr_err("create_session_msg ENOMEM creating msg\n");
887 h
= msg
->front
.iov_base
;
888 h
->op
= cpu_to_le32(CEPH_SESSION_REQUEST_OPEN
);
889 h
->seq
= cpu_to_le64(seq
);
892 * Serialize client metadata into waiting buffer space, using
893 * the format that userspace expects for map<string, string>
895 * ClientSession messages with metadata are v2
897 msg
->hdr
.version
= cpu_to_le16(2);
898 msg
->hdr
.compat_version
= cpu_to_le16(1);
900 /* The write pointer, following the session_head structure */
901 p
= msg
->front
.iov_base
+ sizeof(*h
);
903 /* Number of entries in the map */
904 ceph_encode_32(&p
, metadata_key_count
);
906 /* Two length-prefixed strings for each entry in the map */
907 for (i
= 0; metadata
[i
][0] != NULL
; ++i
) {
908 size_t const key_len
= strlen(metadata
[i
][0]);
909 size_t const val_len
= strlen(metadata
[i
][1]);
911 ceph_encode_32(&p
, key_len
);
912 memcpy(p
, metadata
[i
][0], key_len
);
914 ceph_encode_32(&p
, val_len
);
915 memcpy(p
, metadata
[i
][1], val_len
);
923 * send session open request.
925 * called under mdsc->mutex
927 static int __open_session(struct ceph_mds_client
*mdsc
,
928 struct ceph_mds_session
*session
)
930 struct ceph_msg
*msg
;
932 int mds
= session
->s_mds
;
934 /* wait for mds to go active? */
935 mstate
= ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
);
936 dout("open_session to mds%d (%s)\n", mds
,
937 ceph_mds_state_name(mstate
));
938 session
->s_state
= CEPH_MDS_SESSION_OPENING
;
939 session
->s_renew_requested
= jiffies
;
941 /* send connect message */
942 msg
= create_session_open_msg(mdsc
, session
->s_seq
);
945 ceph_con_send(&session
->s_con
, msg
);
950 * open sessions for any export targets for the given mds
952 * called under mdsc->mutex
954 static struct ceph_mds_session
*
955 __open_export_target_session(struct ceph_mds_client
*mdsc
, int target
)
957 struct ceph_mds_session
*session
;
959 session
= __ceph_lookup_mds_session(mdsc
, target
);
961 session
= register_session(mdsc
, target
);
965 if (session
->s_state
== CEPH_MDS_SESSION_NEW
||
966 session
->s_state
== CEPH_MDS_SESSION_CLOSING
)
967 __open_session(mdsc
, session
);
972 struct ceph_mds_session
*
973 ceph_mdsc_open_export_target_session(struct ceph_mds_client
*mdsc
, int target
)
975 struct ceph_mds_session
*session
;
977 dout("open_export_target_session to mds%d\n", target
);
979 mutex_lock(&mdsc
->mutex
);
980 session
= __open_export_target_session(mdsc
, target
);
981 mutex_unlock(&mdsc
->mutex
);
986 static void __open_export_target_sessions(struct ceph_mds_client
*mdsc
,
987 struct ceph_mds_session
*session
)
989 struct ceph_mds_info
*mi
;
990 struct ceph_mds_session
*ts
;
991 int i
, mds
= session
->s_mds
;
993 if (mds
>= mdsc
->mdsmap
->m_max_mds
)
996 mi
= &mdsc
->mdsmap
->m_info
[mds
];
997 dout("open_export_target_sessions for mds%d (%d targets)\n",
998 session
->s_mds
, mi
->num_export_targets
);
1000 for (i
= 0; i
< mi
->num_export_targets
; i
++) {
1001 ts
= __open_export_target_session(mdsc
, mi
->export_targets
[i
]);
1003 ceph_put_mds_session(ts
);
1007 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client
*mdsc
,
1008 struct ceph_mds_session
*session
)
1010 mutex_lock(&mdsc
->mutex
);
1011 __open_export_target_sessions(mdsc
, session
);
1012 mutex_unlock(&mdsc
->mutex
);
1019 /* caller holds s_cap_lock, we drop it */
1020 static void cleanup_cap_releases(struct ceph_mds_client
*mdsc
,
1021 struct ceph_mds_session
*session
)
1022 __releases(session
->s_cap_lock
)
1024 LIST_HEAD(tmp_list
);
1025 list_splice_init(&session
->s_cap_releases
, &tmp_list
);
1026 session
->s_num_cap_releases
= 0;
1027 spin_unlock(&session
->s_cap_lock
);
1029 dout("cleanup_cap_releases mds%d\n", session
->s_mds
);
1030 while (!list_empty(&tmp_list
)) {
1031 struct ceph_cap
*cap
;
1032 /* zero out the in-progress message */
1033 cap
= list_first_entry(&tmp_list
,
1034 struct ceph_cap
, session_caps
);
1035 list_del(&cap
->session_caps
);
1036 ceph_put_cap(mdsc
, cap
);
1040 static void cleanup_session_requests(struct ceph_mds_client
*mdsc
,
1041 struct ceph_mds_session
*session
)
1043 struct ceph_mds_request
*req
;
1046 dout("cleanup_session_requests mds%d\n", session
->s_mds
);
1047 mutex_lock(&mdsc
->mutex
);
1048 while (!list_empty(&session
->s_unsafe
)) {
1049 req
= list_first_entry(&session
->s_unsafe
,
1050 struct ceph_mds_request
, r_unsafe_item
);
1051 list_del_init(&req
->r_unsafe_item
);
1052 pr_warn_ratelimited(" dropping unsafe request %llu\n",
1054 __unregister_request(mdsc
, req
);
1056 /* zero r_attempts, so kick_requests() will re-send requests */
1057 p
= rb_first(&mdsc
->request_tree
);
1059 req
= rb_entry(p
, struct ceph_mds_request
, r_node
);
1061 if (req
->r_session
&&
1062 req
->r_session
->s_mds
== session
->s_mds
)
1063 req
->r_attempts
= 0;
1065 mutex_unlock(&mdsc
->mutex
);
1069 * Helper to safely iterate over all caps associated with a session, with
1070 * special care taken to handle a racing __ceph_remove_cap().
1072 * Caller must hold session s_mutex.
1074 static int iterate_session_caps(struct ceph_mds_session
*session
,
1075 int (*cb
)(struct inode
*, struct ceph_cap
*,
1078 struct list_head
*p
;
1079 struct ceph_cap
*cap
;
1080 struct inode
*inode
, *last_inode
= NULL
;
1081 struct ceph_cap
*old_cap
= NULL
;
1084 dout("iterate_session_caps %p mds%d\n", session
, session
->s_mds
);
1085 spin_lock(&session
->s_cap_lock
);
1086 p
= session
->s_caps
.next
;
1087 while (p
!= &session
->s_caps
) {
1088 cap
= list_entry(p
, struct ceph_cap
, session_caps
);
1089 inode
= igrab(&cap
->ci
->vfs_inode
);
1094 session
->s_cap_iterator
= cap
;
1095 spin_unlock(&session
->s_cap_lock
);
1102 ceph_put_cap(session
->s_mdsc
, old_cap
);
1106 ret
= cb(inode
, cap
, arg
);
1109 spin_lock(&session
->s_cap_lock
);
1111 if (cap
->ci
== NULL
) {
1112 dout("iterate_session_caps finishing cap %p removal\n",
1114 BUG_ON(cap
->session
!= session
);
1115 cap
->session
= NULL
;
1116 list_del_init(&cap
->session_caps
);
1117 session
->s_nr_caps
--;
1118 if (cap
->queue_release
) {
1119 list_add_tail(&cap
->session_caps
,
1120 &session
->s_cap_releases
);
1121 session
->s_num_cap_releases
++;
1123 old_cap
= cap
; /* put_cap it w/o locks held */
1131 session
->s_cap_iterator
= NULL
;
1132 spin_unlock(&session
->s_cap_lock
);
1136 ceph_put_cap(session
->s_mdsc
, old_cap
);
1141 static int remove_session_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
1144 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1145 LIST_HEAD(to_remove
);
1148 dout("removing cap %p, ci is %p, inode is %p\n",
1149 cap
, ci
, &ci
->vfs_inode
);
1150 spin_lock(&ci
->i_ceph_lock
);
1151 __ceph_remove_cap(cap
, false);
1152 if (!ci
->i_auth_cap
) {
1153 struct ceph_cap_flush
*cf
;
1154 struct ceph_mds_client
*mdsc
=
1155 ceph_sb_to_client(inode
->i_sb
)->mdsc
;
1158 struct rb_node
*n
= rb_first(&ci
->i_cap_flush_tree
);
1161 cf
= rb_entry(n
, struct ceph_cap_flush
, i_node
);
1162 rb_erase(&cf
->i_node
, &ci
->i_cap_flush_tree
);
1163 list_add(&cf
->list
, &to_remove
);
1166 spin_lock(&mdsc
->cap_dirty_lock
);
1168 list_for_each_entry(cf
, &to_remove
, list
)
1169 rb_erase(&cf
->g_node
, &mdsc
->cap_flush_tree
);
1171 if (!list_empty(&ci
->i_dirty_item
)) {
1172 pr_warn_ratelimited(
1173 " dropping dirty %s state for %p %lld\n",
1174 ceph_cap_string(ci
->i_dirty_caps
),
1175 inode
, ceph_ino(inode
));
1176 ci
->i_dirty_caps
= 0;
1177 list_del_init(&ci
->i_dirty_item
);
1180 if (!list_empty(&ci
->i_flushing_item
)) {
1181 pr_warn_ratelimited(
1182 " dropping dirty+flushing %s state for %p %lld\n",
1183 ceph_cap_string(ci
->i_flushing_caps
),
1184 inode
, ceph_ino(inode
));
1185 ci
->i_flushing_caps
= 0;
1186 list_del_init(&ci
->i_flushing_item
);
1187 mdsc
->num_cap_flushing
--;
1190 spin_unlock(&mdsc
->cap_dirty_lock
);
1192 if (!ci
->i_dirty_caps
&& ci
->i_prealloc_cap_flush
) {
1193 list_add(&ci
->i_prealloc_cap_flush
->list
, &to_remove
);
1194 ci
->i_prealloc_cap_flush
= NULL
;
1197 spin_unlock(&ci
->i_ceph_lock
);
1198 while (!list_empty(&to_remove
)) {
1199 struct ceph_cap_flush
*cf
;
1200 cf
= list_first_entry(&to_remove
,
1201 struct ceph_cap_flush
, list
);
1202 list_del(&cf
->list
);
1203 ceph_free_cap_flush(cf
);
1211 * caller must hold session s_mutex
1213 static void remove_session_caps(struct ceph_mds_session
*session
)
1215 dout("remove_session_caps on %p\n", session
);
1216 iterate_session_caps(session
, remove_session_caps_cb
, NULL
);
1218 spin_lock(&session
->s_cap_lock
);
1219 if (session
->s_nr_caps
> 0) {
1220 struct super_block
*sb
= session
->s_mdsc
->fsc
->sb
;
1221 struct inode
*inode
;
1222 struct ceph_cap
*cap
, *prev
= NULL
;
1223 struct ceph_vino vino
;
1225 * iterate_session_caps() skips inodes that are being
1226 * deleted, we need to wait until deletions are complete.
1227 * __wait_on_freeing_inode() is designed for the job,
1228 * but it is not exported, so use lookup inode function
1231 while (!list_empty(&session
->s_caps
)) {
1232 cap
= list_entry(session
->s_caps
.next
,
1233 struct ceph_cap
, session_caps
);
1237 vino
= cap
->ci
->i_vino
;
1238 spin_unlock(&session
->s_cap_lock
);
1240 inode
= ceph_find_inode(sb
, vino
);
1243 spin_lock(&session
->s_cap_lock
);
1247 // drop cap expires and unlock s_cap_lock
1248 cleanup_cap_releases(session
->s_mdsc
, session
);
1250 BUG_ON(session
->s_nr_caps
> 0);
1251 BUG_ON(!list_empty(&session
->s_cap_flushing
));
1255 * wake up any threads waiting on this session's caps. if the cap is
1256 * old (didn't get renewed on the client reconnect), remove it now.
1258 * caller must hold s_mutex.
1260 static int wake_up_session_cb(struct inode
*inode
, struct ceph_cap
*cap
,
1263 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1265 wake_up_all(&ci
->i_cap_wq
);
1267 spin_lock(&ci
->i_ceph_lock
);
1268 ci
->i_wanted_max_size
= 0;
1269 ci
->i_requested_max_size
= 0;
1270 spin_unlock(&ci
->i_ceph_lock
);
1275 static void wake_up_session_caps(struct ceph_mds_session
*session
,
1278 dout("wake_up_session_caps %p mds%d\n", session
, session
->s_mds
);
1279 iterate_session_caps(session
, wake_up_session_cb
,
1280 (void *)(unsigned long)reconnect
);
1284 * Send periodic message to MDS renewing all currently held caps. The
1285 * ack will reset the expiration for all caps from this session.
1287 * caller holds s_mutex
1289 static int send_renew_caps(struct ceph_mds_client
*mdsc
,
1290 struct ceph_mds_session
*session
)
1292 struct ceph_msg
*msg
;
1295 if (time_after_eq(jiffies
, session
->s_cap_ttl
) &&
1296 time_after_eq(session
->s_cap_ttl
, session
->s_renew_requested
))
1297 pr_info("mds%d caps stale\n", session
->s_mds
);
1298 session
->s_renew_requested
= jiffies
;
1300 /* do not try to renew caps until a recovering mds has reconnected
1301 * with its clients. */
1302 state
= ceph_mdsmap_get_state(mdsc
->mdsmap
, session
->s_mds
);
1303 if (state
< CEPH_MDS_STATE_RECONNECT
) {
1304 dout("send_renew_caps ignoring mds%d (%s)\n",
1305 session
->s_mds
, ceph_mds_state_name(state
));
1309 dout("send_renew_caps to mds%d (%s)\n", session
->s_mds
,
1310 ceph_mds_state_name(state
));
1311 msg
= create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS
,
1312 ++session
->s_renew_seq
);
1315 ceph_con_send(&session
->s_con
, msg
);
1319 static int send_flushmsg_ack(struct ceph_mds_client
*mdsc
,
1320 struct ceph_mds_session
*session
, u64 seq
)
1322 struct ceph_msg
*msg
;
1324 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1325 session
->s_mds
, ceph_session_state_name(session
->s_state
), seq
);
1326 msg
= create_session_msg(CEPH_SESSION_FLUSHMSG_ACK
, seq
);
1329 ceph_con_send(&session
->s_con
, msg
);
1335 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1337 * Called under session->s_mutex
1339 static void renewed_caps(struct ceph_mds_client
*mdsc
,
1340 struct ceph_mds_session
*session
, int is_renew
)
1345 spin_lock(&session
->s_cap_lock
);
1346 was_stale
= is_renew
&& time_after_eq(jiffies
, session
->s_cap_ttl
);
1348 session
->s_cap_ttl
= session
->s_renew_requested
+
1349 mdsc
->mdsmap
->m_session_timeout
*HZ
;
1352 if (time_before(jiffies
, session
->s_cap_ttl
)) {
1353 pr_info("mds%d caps renewed\n", session
->s_mds
);
1356 pr_info("mds%d caps still stale\n", session
->s_mds
);
1359 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1360 session
->s_mds
, session
->s_cap_ttl
, was_stale
? "stale" : "fresh",
1361 time_before(jiffies
, session
->s_cap_ttl
) ? "stale" : "fresh");
1362 spin_unlock(&session
->s_cap_lock
);
1365 wake_up_session_caps(session
, 0);
1369 * send a session close request
1371 static int request_close_session(struct ceph_mds_client
*mdsc
,
1372 struct ceph_mds_session
*session
)
1374 struct ceph_msg
*msg
;
1376 dout("request_close_session mds%d state %s seq %lld\n",
1377 session
->s_mds
, ceph_session_state_name(session
->s_state
),
1379 msg
= create_session_msg(CEPH_SESSION_REQUEST_CLOSE
, session
->s_seq
);
1382 ceph_con_send(&session
->s_con
, msg
);
1387 * Called with s_mutex held.
1389 static int __close_session(struct ceph_mds_client
*mdsc
,
1390 struct ceph_mds_session
*session
)
1392 if (session
->s_state
>= CEPH_MDS_SESSION_CLOSING
)
1394 session
->s_state
= CEPH_MDS_SESSION_CLOSING
;
1395 return request_close_session(mdsc
, session
);
1399 * Trim old(er) caps.
1401 * Because we can't cache an inode without one or more caps, we do
1402 * this indirectly: if a cap is unused, we prune its aliases, at which
1403 * point the inode will hopefully get dropped to.
1405 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1406 * memory pressure from the MDS, though, so it needn't be perfect.
1408 static int trim_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
, void *arg
)
1410 struct ceph_mds_session
*session
= arg
;
1411 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1412 int used
, wanted
, oissued
, mine
;
1414 if (session
->s_trim_caps
<= 0)
1417 spin_lock(&ci
->i_ceph_lock
);
1418 mine
= cap
->issued
| cap
->implemented
;
1419 used
= __ceph_caps_used(ci
);
1420 wanted
= __ceph_caps_file_wanted(ci
);
1421 oissued
= __ceph_caps_issued_other(ci
, cap
);
1423 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1424 inode
, cap
, ceph_cap_string(mine
), ceph_cap_string(oissued
),
1425 ceph_cap_string(used
), ceph_cap_string(wanted
));
1426 if (cap
== ci
->i_auth_cap
) {
1427 if (ci
->i_dirty_caps
|| ci
->i_flushing_caps
||
1428 !list_empty(&ci
->i_cap_snaps
))
1430 if ((used
| wanted
) & CEPH_CAP_ANY_WR
)
1433 if ((used
| wanted
) & ~oissued
& mine
)
1434 goto out
; /* we need these caps */
1436 session
->s_trim_caps
--;
1438 /* we aren't the only cap.. just remove us */
1439 __ceph_remove_cap(cap
, true);
1441 /* try to drop referring dentries */
1442 spin_unlock(&ci
->i_ceph_lock
);
1443 d_prune_aliases(inode
);
1444 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1445 inode
, cap
, atomic_read(&inode
->i_count
));
1450 spin_unlock(&ci
->i_ceph_lock
);
1455 * Trim session cap count down to some max number.
1457 static int trim_caps(struct ceph_mds_client
*mdsc
,
1458 struct ceph_mds_session
*session
,
1461 int trim_caps
= session
->s_nr_caps
- max_caps
;
1463 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1464 session
->s_mds
, session
->s_nr_caps
, max_caps
, trim_caps
);
1465 if (trim_caps
> 0) {
1466 session
->s_trim_caps
= trim_caps
;
1467 iterate_session_caps(session
, trim_caps_cb
, session
);
1468 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1469 session
->s_mds
, session
->s_nr_caps
, max_caps
,
1470 trim_caps
- session
->s_trim_caps
);
1471 session
->s_trim_caps
= 0;
1474 ceph_send_cap_releases(mdsc
, session
);
1478 static int check_capsnap_flush(struct ceph_inode_info
*ci
,
1482 spin_lock(&ci
->i_ceph_lock
);
1483 if (want_snap_seq
> 0 && !list_empty(&ci
->i_cap_snaps
)) {
1484 struct ceph_cap_snap
*capsnap
=
1485 list_first_entry(&ci
->i_cap_snaps
,
1486 struct ceph_cap_snap
, ci_item
);
1487 ret
= capsnap
->follows
>= want_snap_seq
;
1489 spin_unlock(&ci
->i_ceph_lock
);
1493 static int check_caps_flush(struct ceph_mds_client
*mdsc
,
1497 struct ceph_cap_flush
*cf
;
1500 spin_lock(&mdsc
->cap_dirty_lock
);
1501 n
= rb_first(&mdsc
->cap_flush_tree
);
1502 cf
= n
? rb_entry(n
, struct ceph_cap_flush
, g_node
) : NULL
;
1503 if (cf
&& cf
->tid
<= want_flush_tid
) {
1504 dout("check_caps_flush still flushing tid %llu <= %llu\n",
1505 cf
->tid
, want_flush_tid
);
1508 spin_unlock(&mdsc
->cap_dirty_lock
);
1513 * flush all dirty inode data to disk.
1515 * returns true if we've flushed through want_flush_tid
1517 static void wait_caps_flush(struct ceph_mds_client
*mdsc
,
1518 u64 want_flush_tid
, u64 want_snap_seq
)
1522 dout("check_caps_flush want %llu snap want %llu\n",
1523 want_flush_tid
, want_snap_seq
);
1524 mutex_lock(&mdsc
->mutex
);
1525 for (mds
= 0; mds
< mdsc
->max_sessions
; ) {
1526 struct ceph_mds_session
*session
= mdsc
->sessions
[mds
];
1527 struct inode
*inode
= NULL
;
1533 get_session(session
);
1534 mutex_unlock(&mdsc
->mutex
);
1536 mutex_lock(&session
->s_mutex
);
1537 if (!list_empty(&session
->s_cap_snaps_flushing
)) {
1538 struct ceph_cap_snap
*capsnap
=
1539 list_first_entry(&session
->s_cap_snaps_flushing
,
1540 struct ceph_cap_snap
,
1542 struct ceph_inode_info
*ci
= capsnap
->ci
;
1543 if (!check_capsnap_flush(ci
, want_snap_seq
)) {
1544 dout("check_cap_flush still flushing snap %p "
1545 "follows %lld <= %lld to mds%d\n",
1546 &ci
->vfs_inode
, capsnap
->follows
,
1547 want_snap_seq
, mds
);
1548 inode
= igrab(&ci
->vfs_inode
);
1551 mutex_unlock(&session
->s_mutex
);
1552 ceph_put_mds_session(session
);
1555 wait_event(mdsc
->cap_flushing_wq
,
1556 check_capsnap_flush(ceph_inode(inode
),
1563 mutex_lock(&mdsc
->mutex
);
1565 mutex_unlock(&mdsc
->mutex
);
1567 wait_event(mdsc
->cap_flushing_wq
,
1568 check_caps_flush(mdsc
, want_flush_tid
));
1570 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid
);
1574 * called under s_mutex
1576 void ceph_send_cap_releases(struct ceph_mds_client
*mdsc
,
1577 struct ceph_mds_session
*session
)
1579 struct ceph_msg
*msg
= NULL
;
1580 struct ceph_mds_cap_release
*head
;
1581 struct ceph_mds_cap_item
*item
;
1582 struct ceph_cap
*cap
;
1583 LIST_HEAD(tmp_list
);
1584 int num_cap_releases
;
1586 spin_lock(&session
->s_cap_lock
);
1588 list_splice_init(&session
->s_cap_releases
, &tmp_list
);
1589 num_cap_releases
= session
->s_num_cap_releases
;
1590 session
->s_num_cap_releases
= 0;
1591 spin_unlock(&session
->s_cap_lock
);
1593 while (!list_empty(&tmp_list
)) {
1595 msg
= ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE
,
1596 PAGE_CACHE_SIZE
, GFP_NOFS
, false);
1599 head
= msg
->front
.iov_base
;
1600 head
->num
= cpu_to_le32(0);
1601 msg
->front
.iov_len
= sizeof(*head
);
1603 cap
= list_first_entry(&tmp_list
, struct ceph_cap
,
1605 list_del(&cap
->session_caps
);
1608 head
= msg
->front
.iov_base
;
1609 le32_add_cpu(&head
->num
, 1);
1610 item
= msg
->front
.iov_base
+ msg
->front
.iov_len
;
1611 item
->ino
= cpu_to_le64(cap
->cap_ino
);
1612 item
->cap_id
= cpu_to_le64(cap
->cap_id
);
1613 item
->migrate_seq
= cpu_to_le32(cap
->mseq
);
1614 item
->seq
= cpu_to_le32(cap
->issue_seq
);
1615 msg
->front
.iov_len
+= sizeof(*item
);
1617 ceph_put_cap(mdsc
, cap
);
1619 if (le32_to_cpu(head
->num
) == CEPH_CAPS_PER_RELEASE
) {
1620 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1621 dout("send_cap_releases mds%d %p\n", session
->s_mds
, msg
);
1622 ceph_con_send(&session
->s_con
, msg
);
1627 BUG_ON(num_cap_releases
!= 0);
1629 spin_lock(&session
->s_cap_lock
);
1630 if (!list_empty(&session
->s_cap_releases
))
1632 spin_unlock(&session
->s_cap_lock
);
1635 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1636 dout("send_cap_releases mds%d %p\n", session
->s_mds
, msg
);
1637 ceph_con_send(&session
->s_con
, msg
);
1641 pr_err("send_cap_releases mds%d, failed to allocate message\n",
1643 spin_lock(&session
->s_cap_lock
);
1644 list_splice(&tmp_list
, &session
->s_cap_releases
);
1645 session
->s_num_cap_releases
+= num_cap_releases
;
1646 spin_unlock(&session
->s_cap_lock
);
1653 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request
*req
,
1656 struct ceph_inode_info
*ci
= ceph_inode(dir
);
1657 struct ceph_mds_reply_info_parsed
*rinfo
= &req
->r_reply_info
;
1658 struct ceph_mount_options
*opt
= req
->r_mdsc
->fsc
->mount_options
;
1659 size_t size
= sizeof(*rinfo
->dir_in
) + sizeof(*rinfo
->dir_dname_len
) +
1660 sizeof(*rinfo
->dir_dname
) + sizeof(*rinfo
->dir_dlease
);
1661 int order
, num_entries
;
1663 spin_lock(&ci
->i_ceph_lock
);
1664 num_entries
= ci
->i_files
+ ci
->i_subdirs
;
1665 spin_unlock(&ci
->i_ceph_lock
);
1666 num_entries
= max(num_entries
, 1);
1667 num_entries
= min(num_entries
, opt
->max_readdir
);
1669 order
= get_order(size
* num_entries
);
1670 while (order
>= 0) {
1671 rinfo
->dir_in
= (void*)__get_free_pages(GFP_KERNEL
|
1681 num_entries
= (PAGE_SIZE
<< order
) / size
;
1682 num_entries
= min(num_entries
, opt
->max_readdir
);
1684 rinfo
->dir_buf_size
= PAGE_SIZE
<< order
;
1685 req
->r_num_caps
= num_entries
+ 1;
1686 req
->r_args
.readdir
.max_entries
= cpu_to_le32(num_entries
);
1687 req
->r_args
.readdir
.max_bytes
= cpu_to_le32(opt
->max_readdir_bytes
);
1692 * Create an mds request.
1694 struct ceph_mds_request
*
1695 ceph_mdsc_create_request(struct ceph_mds_client
*mdsc
, int op
, int mode
)
1697 struct ceph_mds_request
*req
= kzalloc(sizeof(*req
), GFP_NOFS
);
1700 return ERR_PTR(-ENOMEM
);
1702 mutex_init(&req
->r_fill_mutex
);
1704 req
->r_started
= jiffies
;
1705 req
->r_resend_mds
= -1;
1706 INIT_LIST_HEAD(&req
->r_unsafe_dir_item
);
1708 kref_init(&req
->r_kref
);
1709 INIT_LIST_HEAD(&req
->r_wait
);
1710 init_completion(&req
->r_completion
);
1711 init_completion(&req
->r_safe_completion
);
1712 INIT_LIST_HEAD(&req
->r_unsafe_item
);
1714 req
->r_stamp
= CURRENT_TIME
;
1717 req
->r_direct_mode
= mode
;
1722 * return oldest (lowest) request, tid in request tree, 0 if none.
1724 * called under mdsc->mutex.
1726 static struct ceph_mds_request
*__get_oldest_req(struct ceph_mds_client
*mdsc
)
1728 if (RB_EMPTY_ROOT(&mdsc
->request_tree
))
1730 return rb_entry(rb_first(&mdsc
->request_tree
),
1731 struct ceph_mds_request
, r_node
);
1734 static inline u64
__get_oldest_tid(struct ceph_mds_client
*mdsc
)
1736 return mdsc
->oldest_tid
;
1740 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1741 * on build_path_from_dentry in fs/cifs/dir.c.
1743 * If @stop_on_nosnap, generate path relative to the first non-snapped
1746 * Encode hidden .snap dirs as a double /, i.e.
1747 * foo/.snap/bar -> foo//bar
1749 char *ceph_mdsc_build_path(struct dentry
*dentry
, int *plen
, u64
*base
,
1752 struct dentry
*temp
;
1758 return ERR_PTR(-EINVAL
);
1762 seq
= read_seqbegin(&rename_lock
);
1764 for (temp
= dentry
; !IS_ROOT(temp
);) {
1765 struct inode
*inode
= d_inode(temp
);
1766 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
)
1767 len
++; /* slash only */
1768 else if (stop_on_nosnap
&& inode
&&
1769 ceph_snap(inode
) == CEPH_NOSNAP
)
1772 len
+= 1 + temp
->d_name
.len
;
1773 temp
= temp
->d_parent
;
1777 len
--; /* no leading '/' */
1779 path
= kmalloc(len
+1, GFP_NOFS
);
1781 return ERR_PTR(-ENOMEM
);
1783 path
[pos
] = 0; /* trailing null */
1785 for (temp
= dentry
; !IS_ROOT(temp
) && pos
!= 0; ) {
1786 struct inode
*inode
;
1788 spin_lock(&temp
->d_lock
);
1789 inode
= d_inode(temp
);
1790 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
) {
1791 dout("build_path path+%d: %p SNAPDIR\n",
1793 } else if (stop_on_nosnap
&& inode
&&
1794 ceph_snap(inode
) == CEPH_NOSNAP
) {
1795 spin_unlock(&temp
->d_lock
);
1798 pos
-= temp
->d_name
.len
;
1800 spin_unlock(&temp
->d_lock
);
1803 strncpy(path
+ pos
, temp
->d_name
.name
,
1806 spin_unlock(&temp
->d_lock
);
1809 temp
= temp
->d_parent
;
1812 if (pos
!= 0 || read_seqretry(&rename_lock
, seq
)) {
1813 pr_err("build_path did not end path lookup where "
1814 "expected, namelen is %d, pos is %d\n", len
, pos
);
1815 /* presumably this is only possible if racing with a
1816 rename of one of the parent directories (we can not
1817 lock the dentries above us to prevent this, but
1818 retrying should be harmless) */
1823 *base
= ceph_ino(d_inode(temp
));
1825 dout("build_path on %p %d built %llx '%.*s'\n",
1826 dentry
, d_count(dentry
), *base
, len
, path
);
1830 static int build_dentry_path(struct dentry
*dentry
,
1831 const char **ppath
, int *ppathlen
, u64
*pino
,
1836 if (ceph_snap(d_inode(dentry
->d_parent
)) == CEPH_NOSNAP
) {
1837 *pino
= ceph_ino(d_inode(dentry
->d_parent
));
1838 *ppath
= dentry
->d_name
.name
;
1839 *ppathlen
= dentry
->d_name
.len
;
1842 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1844 return PTR_ERR(path
);
1850 static int build_inode_path(struct inode
*inode
,
1851 const char **ppath
, int *ppathlen
, u64
*pino
,
1854 struct dentry
*dentry
;
1857 if (ceph_snap(inode
) == CEPH_NOSNAP
) {
1858 *pino
= ceph_ino(inode
);
1862 dentry
= d_find_alias(inode
);
1863 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1866 return PTR_ERR(path
);
1873 * request arguments may be specified via an inode *, a dentry *, or
1874 * an explicit ino+path.
1876 static int set_request_path_attr(struct inode
*rinode
, struct dentry
*rdentry
,
1877 const char *rpath
, u64 rino
,
1878 const char **ppath
, int *pathlen
,
1879 u64
*ino
, int *freepath
)
1884 r
= build_inode_path(rinode
, ppath
, pathlen
, ino
, freepath
);
1885 dout(" inode %p %llx.%llx\n", rinode
, ceph_ino(rinode
),
1887 } else if (rdentry
) {
1888 r
= build_dentry_path(rdentry
, ppath
, pathlen
, ino
, freepath
);
1889 dout(" dentry %p %llx/%.*s\n", rdentry
, *ino
, *pathlen
,
1891 } else if (rpath
|| rino
) {
1894 *pathlen
= rpath
? strlen(rpath
) : 0;
1895 dout(" path %.*s\n", *pathlen
, rpath
);
1902 * called under mdsc->mutex
1904 static struct ceph_msg
*create_request_message(struct ceph_mds_client
*mdsc
,
1905 struct ceph_mds_request
*req
,
1906 int mds
, bool drop_cap_releases
)
1908 struct ceph_msg
*msg
;
1909 struct ceph_mds_request_head
*head
;
1910 const char *path1
= NULL
;
1911 const char *path2
= NULL
;
1912 u64 ino1
= 0, ino2
= 0;
1913 int pathlen1
= 0, pathlen2
= 0;
1914 int freepath1
= 0, freepath2
= 0;
1920 ret
= set_request_path_attr(req
->r_inode
, req
->r_dentry
,
1921 req
->r_path1
, req
->r_ino1
.ino
,
1922 &path1
, &pathlen1
, &ino1
, &freepath1
);
1928 ret
= set_request_path_attr(NULL
, req
->r_old_dentry
,
1929 req
->r_path2
, req
->r_ino2
.ino
,
1930 &path2
, &pathlen2
, &ino2
, &freepath2
);
1936 len
= sizeof(*head
) +
1937 pathlen1
+ pathlen2
+ 2*(1 + sizeof(u32
) + sizeof(u64
)) +
1938 sizeof(struct timespec
);
1940 /* calculate (max) length for cap releases */
1941 len
+= sizeof(struct ceph_mds_request_release
) *
1942 (!!req
->r_inode_drop
+ !!req
->r_dentry_drop
+
1943 !!req
->r_old_inode_drop
+ !!req
->r_old_dentry_drop
);
1944 if (req
->r_dentry_drop
)
1945 len
+= req
->r_dentry
->d_name
.len
;
1946 if (req
->r_old_dentry_drop
)
1947 len
+= req
->r_old_dentry
->d_name
.len
;
1949 msg
= ceph_msg_new(CEPH_MSG_CLIENT_REQUEST
, len
, GFP_NOFS
, false);
1951 msg
= ERR_PTR(-ENOMEM
);
1955 msg
->hdr
.version
= cpu_to_le16(2);
1956 msg
->hdr
.tid
= cpu_to_le64(req
->r_tid
);
1958 head
= msg
->front
.iov_base
;
1959 p
= msg
->front
.iov_base
+ sizeof(*head
);
1960 end
= msg
->front
.iov_base
+ msg
->front
.iov_len
;
1962 head
->mdsmap_epoch
= cpu_to_le32(mdsc
->mdsmap
->m_epoch
);
1963 head
->op
= cpu_to_le32(req
->r_op
);
1964 head
->caller_uid
= cpu_to_le32(from_kuid(&init_user_ns
, req
->r_uid
));
1965 head
->caller_gid
= cpu_to_le32(from_kgid(&init_user_ns
, req
->r_gid
));
1966 head
->args
= req
->r_args
;
1968 ceph_encode_filepath(&p
, end
, ino1
, path1
);
1969 ceph_encode_filepath(&p
, end
, ino2
, path2
);
1971 /* make note of release offset, in case we need to replay */
1972 req
->r_request_release_offset
= p
- msg
->front
.iov_base
;
1976 if (req
->r_inode_drop
)
1977 releases
+= ceph_encode_inode_release(&p
,
1978 req
->r_inode
? req
->r_inode
: d_inode(req
->r_dentry
),
1979 mds
, req
->r_inode_drop
, req
->r_inode_unless
, 0);
1980 if (req
->r_dentry_drop
)
1981 releases
+= ceph_encode_dentry_release(&p
, req
->r_dentry
,
1982 mds
, req
->r_dentry_drop
, req
->r_dentry_unless
);
1983 if (req
->r_old_dentry_drop
)
1984 releases
+= ceph_encode_dentry_release(&p
, req
->r_old_dentry
,
1985 mds
, req
->r_old_dentry_drop
, req
->r_old_dentry_unless
);
1986 if (req
->r_old_inode_drop
)
1987 releases
+= ceph_encode_inode_release(&p
,
1988 d_inode(req
->r_old_dentry
),
1989 mds
, req
->r_old_inode_drop
, req
->r_old_inode_unless
, 0);
1991 if (drop_cap_releases
) {
1993 p
= msg
->front
.iov_base
+ req
->r_request_release_offset
;
1996 head
->num_releases
= cpu_to_le16(releases
);
2000 struct ceph_timespec ts
;
2001 ceph_encode_timespec(&ts
, &req
->r_stamp
);
2002 ceph_encode_copy(&p
, &ts
, sizeof(ts
));
2006 msg
->front
.iov_len
= p
- msg
->front
.iov_base
;
2007 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
2009 if (req
->r_pagelist
) {
2010 struct ceph_pagelist
*pagelist
= req
->r_pagelist
;
2011 atomic_inc(&pagelist
->refcnt
);
2012 ceph_msg_data_add_pagelist(msg
, pagelist
);
2013 msg
->hdr
.data_len
= cpu_to_le32(pagelist
->length
);
2015 msg
->hdr
.data_len
= 0;
2018 msg
->hdr
.data_off
= cpu_to_le16(0);
2022 kfree((char *)path2
);
2025 kfree((char *)path1
);
2031 * called under mdsc->mutex if error, under no mutex if
2034 static void complete_request(struct ceph_mds_client
*mdsc
,
2035 struct ceph_mds_request
*req
)
2037 if (req
->r_callback
)
2038 req
->r_callback(mdsc
, req
);
2040 complete_all(&req
->r_completion
);
2044 * called under mdsc->mutex
2046 static int __prepare_send_request(struct ceph_mds_client
*mdsc
,
2047 struct ceph_mds_request
*req
,
2048 int mds
, bool drop_cap_releases
)
2050 struct ceph_mds_request_head
*rhead
;
2051 struct ceph_msg
*msg
;
2056 struct ceph_cap
*cap
=
2057 ceph_get_cap_for_mds(ceph_inode(req
->r_inode
), mds
);
2060 req
->r_sent_on_mseq
= cap
->mseq
;
2062 req
->r_sent_on_mseq
= -1;
2064 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req
,
2065 req
->r_tid
, ceph_mds_op_name(req
->r_op
), req
->r_attempts
);
2067 if (req
->r_got_unsafe
) {
2070 * Replay. Do not regenerate message (and rebuild
2071 * paths, etc.); just use the original message.
2072 * Rebuilding paths will break for renames because
2073 * d_move mangles the src name.
2075 msg
= req
->r_request
;
2076 rhead
= msg
->front
.iov_base
;
2078 flags
= le32_to_cpu(rhead
->flags
);
2079 flags
|= CEPH_MDS_FLAG_REPLAY
;
2080 rhead
->flags
= cpu_to_le32(flags
);
2082 if (req
->r_target_inode
)
2083 rhead
->ino
= cpu_to_le64(ceph_ino(req
->r_target_inode
));
2085 rhead
->num_retry
= req
->r_attempts
- 1;
2087 /* remove cap/dentry releases from message */
2088 rhead
->num_releases
= 0;
2091 p
= msg
->front
.iov_base
+ req
->r_request_release_offset
;
2093 struct ceph_timespec ts
;
2094 ceph_encode_timespec(&ts
, &req
->r_stamp
);
2095 ceph_encode_copy(&p
, &ts
, sizeof(ts
));
2098 msg
->front
.iov_len
= p
- msg
->front
.iov_base
;
2099 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
2103 if (req
->r_request
) {
2104 ceph_msg_put(req
->r_request
);
2105 req
->r_request
= NULL
;
2107 msg
= create_request_message(mdsc
, req
, mds
, drop_cap_releases
);
2109 req
->r_err
= PTR_ERR(msg
);
2110 complete_request(mdsc
, req
);
2111 return PTR_ERR(msg
);
2113 req
->r_request
= msg
;
2115 rhead
= msg
->front
.iov_base
;
2116 rhead
->oldest_client_tid
= cpu_to_le64(__get_oldest_tid(mdsc
));
2117 if (req
->r_got_unsafe
)
2118 flags
|= CEPH_MDS_FLAG_REPLAY
;
2119 if (req
->r_locked_dir
)
2120 flags
|= CEPH_MDS_FLAG_WANT_DENTRY
;
2121 rhead
->flags
= cpu_to_le32(flags
);
2122 rhead
->num_fwd
= req
->r_num_fwd
;
2123 rhead
->num_retry
= req
->r_attempts
- 1;
2126 dout(" r_locked_dir = %p\n", req
->r_locked_dir
);
2131 * send request, or put it on the appropriate wait list.
2133 static int __do_request(struct ceph_mds_client
*mdsc
,
2134 struct ceph_mds_request
*req
)
2136 struct ceph_mds_session
*session
= NULL
;
2140 if (req
->r_err
|| req
->r_got_result
) {
2142 __unregister_request(mdsc
, req
);
2146 if (req
->r_timeout
&&
2147 time_after_eq(jiffies
, req
->r_started
+ req
->r_timeout
)) {
2148 dout("do_request timed out\n");
2153 put_request_session(req
);
2155 mds
= __choose_mds(mdsc
, req
);
2157 ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) < CEPH_MDS_STATE_ACTIVE
) {
2158 dout("do_request no mds or not active, waiting for map\n");
2159 list_add(&req
->r_wait
, &mdsc
->waiting_for_map
);
2163 /* get, open session */
2164 session
= __ceph_lookup_mds_session(mdsc
, mds
);
2166 session
= register_session(mdsc
, mds
);
2167 if (IS_ERR(session
)) {
2168 err
= PTR_ERR(session
);
2172 req
->r_session
= get_session(session
);
2174 dout("do_request mds%d session %p state %s\n", mds
, session
,
2175 ceph_session_state_name(session
->s_state
));
2176 if (session
->s_state
!= CEPH_MDS_SESSION_OPEN
&&
2177 session
->s_state
!= CEPH_MDS_SESSION_HUNG
) {
2178 if (session
->s_state
== CEPH_MDS_SESSION_NEW
||
2179 session
->s_state
== CEPH_MDS_SESSION_CLOSING
)
2180 __open_session(mdsc
, session
);
2181 list_add(&req
->r_wait
, &session
->s_waiting
);
2186 req
->r_resend_mds
= -1; /* forget any previous mds hint */
2188 if (req
->r_request_started
== 0) /* note request start time */
2189 req
->r_request_started
= jiffies
;
2191 err
= __prepare_send_request(mdsc
, req
, mds
, false);
2193 ceph_msg_get(req
->r_request
);
2194 ceph_con_send(&session
->s_con
, req
->r_request
);
2198 ceph_put_mds_session(session
);
2204 complete_request(mdsc
, req
);
2209 * called under mdsc->mutex
2211 static void __wake_requests(struct ceph_mds_client
*mdsc
,
2212 struct list_head
*head
)
2214 struct ceph_mds_request
*req
;
2215 LIST_HEAD(tmp_list
);
2217 list_splice_init(head
, &tmp_list
);
2219 while (!list_empty(&tmp_list
)) {
2220 req
= list_entry(tmp_list
.next
,
2221 struct ceph_mds_request
, r_wait
);
2222 list_del_init(&req
->r_wait
);
2223 dout(" wake request %p tid %llu\n", req
, req
->r_tid
);
2224 __do_request(mdsc
, req
);
2229 * Wake up threads with requests pending for @mds, so that they can
2230 * resubmit their requests to a possibly different mds.
2232 static void kick_requests(struct ceph_mds_client
*mdsc
, int mds
)
2234 struct ceph_mds_request
*req
;
2235 struct rb_node
*p
= rb_first(&mdsc
->request_tree
);
2237 dout("kick_requests mds%d\n", mds
);
2239 req
= rb_entry(p
, struct ceph_mds_request
, r_node
);
2241 if (req
->r_got_unsafe
)
2243 if (req
->r_attempts
> 0)
2244 continue; /* only new requests */
2245 if (req
->r_session
&&
2246 req
->r_session
->s_mds
== mds
) {
2247 dout(" kicking tid %llu\n", req
->r_tid
);
2248 list_del_init(&req
->r_wait
);
2249 __do_request(mdsc
, req
);
2254 void ceph_mdsc_submit_request(struct ceph_mds_client
*mdsc
,
2255 struct ceph_mds_request
*req
)
2257 dout("submit_request on %p\n", req
);
2258 mutex_lock(&mdsc
->mutex
);
2259 __register_request(mdsc
, req
, NULL
);
2260 __do_request(mdsc
, req
);
2261 mutex_unlock(&mdsc
->mutex
);
2265 * Synchrously perform an mds request. Take care of all of the
2266 * session setup, forwarding, retry details.
2268 int ceph_mdsc_do_request(struct ceph_mds_client
*mdsc
,
2270 struct ceph_mds_request
*req
)
2274 dout("do_request on %p\n", req
);
2276 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2278 ceph_get_cap_refs(ceph_inode(req
->r_inode
), CEPH_CAP_PIN
);
2279 if (req
->r_locked_dir
)
2280 ceph_get_cap_refs(ceph_inode(req
->r_locked_dir
), CEPH_CAP_PIN
);
2281 if (req
->r_old_dentry_dir
)
2282 ceph_get_cap_refs(ceph_inode(req
->r_old_dentry_dir
),
2286 mutex_lock(&mdsc
->mutex
);
2287 __register_request(mdsc
, req
, dir
);
2288 __do_request(mdsc
, req
);
2292 __unregister_request(mdsc
, req
);
2293 dout("do_request early error %d\n", err
);
2298 mutex_unlock(&mdsc
->mutex
);
2299 dout("do_request waiting\n");
2300 if (!req
->r_timeout
&& req
->r_wait_for_completion
) {
2301 err
= req
->r_wait_for_completion(mdsc
, req
);
2303 long timeleft
= wait_for_completion_killable_timeout(
2305 ceph_timeout_jiffies(req
->r_timeout
));
2309 err
= -EIO
; /* timed out */
2311 err
= timeleft
; /* killed */
2313 dout("do_request waited, got %d\n", err
);
2314 mutex_lock(&mdsc
->mutex
);
2316 /* only abort if we didn't race with a real reply */
2317 if (req
->r_got_result
) {
2318 err
= le32_to_cpu(req
->r_reply_info
.head
->result
);
2319 } else if (err
< 0) {
2320 dout("aborted request %lld with %d\n", req
->r_tid
, err
);
2323 * ensure we aren't running concurrently with
2324 * ceph_fill_trace or ceph_readdir_prepopulate, which
2325 * rely on locks (dir mutex) held by our caller.
2327 mutex_lock(&req
->r_fill_mutex
);
2329 req
->r_aborted
= true;
2330 mutex_unlock(&req
->r_fill_mutex
);
2332 if (req
->r_locked_dir
&&
2333 (req
->r_op
& CEPH_MDS_OP_WRITE
))
2334 ceph_invalidate_dir_request(req
);
2340 mutex_unlock(&mdsc
->mutex
);
2341 dout("do_request %p done, result %d\n", req
, err
);
2346 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2347 * namespace request.
2349 void ceph_invalidate_dir_request(struct ceph_mds_request
*req
)
2351 struct inode
*inode
= req
->r_locked_dir
;
2353 dout("invalidate_dir_request %p (complete, lease(s))\n", inode
);
2355 ceph_dir_clear_complete(inode
);
2357 ceph_invalidate_dentry_lease(req
->r_dentry
);
2358 if (req
->r_old_dentry
)
2359 ceph_invalidate_dentry_lease(req
->r_old_dentry
);
2365 * We take the session mutex and parse and process the reply immediately.
2366 * This preserves the logical ordering of replies, capabilities, etc., sent
2367 * by the MDS as they are applied to our local cache.
2369 static void handle_reply(struct ceph_mds_session
*session
, struct ceph_msg
*msg
)
2371 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
2372 struct ceph_mds_request
*req
;
2373 struct ceph_mds_reply_head
*head
= msg
->front
.iov_base
;
2374 struct ceph_mds_reply_info_parsed
*rinfo
; /* parsed reply info */
2375 struct ceph_snap_realm
*realm
;
2378 int mds
= session
->s_mds
;
2380 if (msg
->front
.iov_len
< sizeof(*head
)) {
2381 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2386 /* get request, session */
2387 tid
= le64_to_cpu(msg
->hdr
.tid
);
2388 mutex_lock(&mdsc
->mutex
);
2389 req
= __lookup_request(mdsc
, tid
);
2391 dout("handle_reply on unknown tid %llu\n", tid
);
2392 mutex_unlock(&mdsc
->mutex
);
2395 dout("handle_reply %p\n", req
);
2397 /* correct session? */
2398 if (req
->r_session
!= session
) {
2399 pr_err("mdsc_handle_reply got %llu on session mds%d"
2400 " not mds%d\n", tid
, session
->s_mds
,
2401 req
->r_session
? req
->r_session
->s_mds
: -1);
2402 mutex_unlock(&mdsc
->mutex
);
2407 if ((req
->r_got_unsafe
&& !head
->safe
) ||
2408 (req
->r_got_safe
&& head
->safe
)) {
2409 pr_warn("got a dup %s reply on %llu from mds%d\n",
2410 head
->safe
? "safe" : "unsafe", tid
, mds
);
2411 mutex_unlock(&mdsc
->mutex
);
2414 if (req
->r_got_safe
&& !head
->safe
) {
2415 pr_warn("got unsafe after safe on %llu from mds%d\n",
2417 mutex_unlock(&mdsc
->mutex
);
2421 result
= le32_to_cpu(head
->result
);
2425 * if we're not talking to the authority, send to them
2426 * if the authority has changed while we weren't looking,
2427 * send to new authority
2428 * Otherwise we just have to return an ESTALE
2430 if (result
== -ESTALE
) {
2431 dout("got ESTALE on request %llu", req
->r_tid
);
2432 req
->r_resend_mds
= -1;
2433 if (req
->r_direct_mode
!= USE_AUTH_MDS
) {
2434 dout("not using auth, setting for that now");
2435 req
->r_direct_mode
= USE_AUTH_MDS
;
2436 __do_request(mdsc
, req
);
2437 mutex_unlock(&mdsc
->mutex
);
2440 int mds
= __choose_mds(mdsc
, req
);
2441 if (mds
>= 0 && mds
!= req
->r_session
->s_mds
) {
2442 dout("but auth changed, so resending");
2443 __do_request(mdsc
, req
);
2444 mutex_unlock(&mdsc
->mutex
);
2448 dout("have to return ESTALE on request %llu", req
->r_tid
);
2453 req
->r_got_safe
= true;
2454 __unregister_request(mdsc
, req
);
2456 if (req
->r_got_unsafe
) {
2458 * We already handled the unsafe response, now do the
2459 * cleanup. No need to examine the response; the MDS
2460 * doesn't include any result info in the safe
2461 * response. And even if it did, there is nothing
2462 * useful we could do with a revised return value.
2464 dout("got safe reply %llu, mds%d\n", tid
, mds
);
2465 list_del_init(&req
->r_unsafe_item
);
2467 /* last unsafe request during umount? */
2468 if (mdsc
->stopping
&& !__get_oldest_req(mdsc
))
2469 complete_all(&mdsc
->safe_umount_waiters
);
2470 mutex_unlock(&mdsc
->mutex
);
2474 req
->r_got_unsafe
= true;
2475 list_add_tail(&req
->r_unsafe_item
, &req
->r_session
->s_unsafe
);
2478 dout("handle_reply tid %lld result %d\n", tid
, result
);
2479 rinfo
= &req
->r_reply_info
;
2480 err
= parse_reply_info(msg
, rinfo
, session
->s_con
.peer_features
);
2481 mutex_unlock(&mdsc
->mutex
);
2483 mutex_lock(&session
->s_mutex
);
2485 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds
, tid
);
2492 if (rinfo
->snapblob_len
) {
2493 down_write(&mdsc
->snap_rwsem
);
2494 ceph_update_snap_trace(mdsc
, rinfo
->snapblob
,
2495 rinfo
->snapblob
+ rinfo
->snapblob_len
,
2496 le32_to_cpu(head
->op
) == CEPH_MDS_OP_RMSNAP
,
2498 downgrade_write(&mdsc
->snap_rwsem
);
2500 down_read(&mdsc
->snap_rwsem
);
2503 /* insert trace into our cache */
2504 mutex_lock(&req
->r_fill_mutex
);
2505 err
= ceph_fill_trace(mdsc
->fsc
->sb
, req
, req
->r_session
);
2507 if (result
== 0 && (req
->r_op
== CEPH_MDS_OP_READDIR
||
2508 req
->r_op
== CEPH_MDS_OP_LSSNAP
))
2509 ceph_readdir_prepopulate(req
, req
->r_session
);
2510 ceph_unreserve_caps(mdsc
, &req
->r_caps_reservation
);
2512 mutex_unlock(&req
->r_fill_mutex
);
2514 up_read(&mdsc
->snap_rwsem
);
2516 ceph_put_snap_realm(mdsc
, realm
);
2518 mutex_lock(&mdsc
->mutex
);
2519 if (!req
->r_aborted
) {
2525 req
->r_got_result
= true;
2528 dout("reply arrived after request %lld was aborted\n", tid
);
2530 mutex_unlock(&mdsc
->mutex
);
2532 mutex_unlock(&session
->s_mutex
);
2534 /* kick calling process */
2535 complete_request(mdsc
, req
);
2537 ceph_mdsc_put_request(req
);
2544 * handle mds notification that our request has been forwarded.
2546 static void handle_forward(struct ceph_mds_client
*mdsc
,
2547 struct ceph_mds_session
*session
,
2548 struct ceph_msg
*msg
)
2550 struct ceph_mds_request
*req
;
2551 u64 tid
= le64_to_cpu(msg
->hdr
.tid
);
2555 void *p
= msg
->front
.iov_base
;
2556 void *end
= p
+ msg
->front
.iov_len
;
2558 ceph_decode_need(&p
, end
, 2*sizeof(u32
), bad
);
2559 next_mds
= ceph_decode_32(&p
);
2560 fwd_seq
= ceph_decode_32(&p
);
2562 mutex_lock(&mdsc
->mutex
);
2563 req
= __lookup_request(mdsc
, tid
);
2565 dout("forward tid %llu to mds%d - req dne\n", tid
, next_mds
);
2566 goto out
; /* dup reply? */
2569 if (req
->r_aborted
) {
2570 dout("forward tid %llu aborted, unregistering\n", tid
);
2571 __unregister_request(mdsc
, req
);
2572 } else if (fwd_seq
<= req
->r_num_fwd
) {
2573 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2574 tid
, next_mds
, req
->r_num_fwd
, fwd_seq
);
2576 /* resend. forward race not possible; mds would drop */
2577 dout("forward tid %llu to mds%d (we resend)\n", tid
, next_mds
);
2579 BUG_ON(req
->r_got_result
);
2580 req
->r_attempts
= 0;
2581 req
->r_num_fwd
= fwd_seq
;
2582 req
->r_resend_mds
= next_mds
;
2583 put_request_session(req
);
2584 __do_request(mdsc
, req
);
2586 ceph_mdsc_put_request(req
);
2588 mutex_unlock(&mdsc
->mutex
);
2592 pr_err("mdsc_handle_forward decode error err=%d\n", err
);
2596 * handle a mds session control message
2598 static void handle_session(struct ceph_mds_session
*session
,
2599 struct ceph_msg
*msg
)
2601 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
2604 int mds
= session
->s_mds
;
2605 struct ceph_mds_session_head
*h
= msg
->front
.iov_base
;
2609 if (msg
->front
.iov_len
!= sizeof(*h
))
2611 op
= le32_to_cpu(h
->op
);
2612 seq
= le64_to_cpu(h
->seq
);
2614 mutex_lock(&mdsc
->mutex
);
2615 if (op
== CEPH_SESSION_CLOSE
)
2616 __unregister_session(mdsc
, session
);
2617 /* FIXME: this ttl calculation is generous */
2618 session
->s_ttl
= jiffies
+ HZ
*mdsc
->mdsmap
->m_session_autoclose
;
2619 mutex_unlock(&mdsc
->mutex
);
2621 mutex_lock(&session
->s_mutex
);
2623 dout("handle_session mds%d %s %p state %s seq %llu\n",
2624 mds
, ceph_session_op_name(op
), session
,
2625 ceph_session_state_name(session
->s_state
), seq
);
2627 if (session
->s_state
== CEPH_MDS_SESSION_HUNG
) {
2628 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2629 pr_info("mds%d came back\n", session
->s_mds
);
2633 case CEPH_SESSION_OPEN
:
2634 if (session
->s_state
== CEPH_MDS_SESSION_RECONNECTING
)
2635 pr_info("mds%d reconnect success\n", session
->s_mds
);
2636 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2637 renewed_caps(mdsc
, session
, 0);
2640 __close_session(mdsc
, session
);
2643 case CEPH_SESSION_RENEWCAPS
:
2644 if (session
->s_renew_seq
== seq
)
2645 renewed_caps(mdsc
, session
, 1);
2648 case CEPH_SESSION_CLOSE
:
2649 if (session
->s_state
== CEPH_MDS_SESSION_RECONNECTING
)
2650 pr_info("mds%d reconnect denied\n", session
->s_mds
);
2651 cleanup_session_requests(mdsc
, session
);
2652 remove_session_caps(session
);
2653 wake
= 2; /* for good measure */
2654 wake_up_all(&mdsc
->session_close_wq
);
2657 case CEPH_SESSION_STALE
:
2658 pr_info("mds%d caps went stale, renewing\n",
2660 spin_lock(&session
->s_gen_ttl_lock
);
2661 session
->s_cap_gen
++;
2662 session
->s_cap_ttl
= jiffies
- 1;
2663 spin_unlock(&session
->s_gen_ttl_lock
);
2664 send_renew_caps(mdsc
, session
);
2667 case CEPH_SESSION_RECALL_STATE
:
2668 trim_caps(mdsc
, session
, le32_to_cpu(h
->max_caps
));
2671 case CEPH_SESSION_FLUSHMSG
:
2672 send_flushmsg_ack(mdsc
, session
, seq
);
2675 case CEPH_SESSION_FORCE_RO
:
2676 dout("force_session_readonly %p\n", session
);
2677 spin_lock(&session
->s_cap_lock
);
2678 session
->s_readonly
= true;
2679 spin_unlock(&session
->s_cap_lock
);
2680 wake_up_session_caps(session
, 0);
2684 pr_err("mdsc_handle_session bad op %d mds%d\n", op
, mds
);
2688 mutex_unlock(&session
->s_mutex
);
2690 mutex_lock(&mdsc
->mutex
);
2691 __wake_requests(mdsc
, &session
->s_waiting
);
2693 kick_requests(mdsc
, mds
);
2694 mutex_unlock(&mdsc
->mutex
);
2699 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds
,
2700 (int)msg
->front
.iov_len
);
2707 * called under session->mutex.
2709 static void replay_unsafe_requests(struct ceph_mds_client
*mdsc
,
2710 struct ceph_mds_session
*session
)
2712 struct ceph_mds_request
*req
, *nreq
;
2716 dout("replay_unsafe_requests mds%d\n", session
->s_mds
);
2718 mutex_lock(&mdsc
->mutex
);
2719 list_for_each_entry_safe(req
, nreq
, &session
->s_unsafe
, r_unsafe_item
) {
2720 err
= __prepare_send_request(mdsc
, req
, session
->s_mds
, true);
2722 ceph_msg_get(req
->r_request
);
2723 ceph_con_send(&session
->s_con
, req
->r_request
);
2728 * also re-send old requests when MDS enters reconnect stage. So that MDS
2729 * can process completed request in clientreplay stage.
2731 p
= rb_first(&mdsc
->request_tree
);
2733 req
= rb_entry(p
, struct ceph_mds_request
, r_node
);
2735 if (req
->r_got_unsafe
)
2737 if (req
->r_attempts
== 0)
2738 continue; /* only old requests */
2739 if (req
->r_session
&&
2740 req
->r_session
->s_mds
== session
->s_mds
) {
2741 err
= __prepare_send_request(mdsc
, req
,
2742 session
->s_mds
, true);
2744 ceph_msg_get(req
->r_request
);
2745 ceph_con_send(&session
->s_con
, req
->r_request
);
2749 mutex_unlock(&mdsc
->mutex
);
2753 * Encode information about a cap for a reconnect with the MDS.
2755 static int encode_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
2759 struct ceph_mds_cap_reconnect v2
;
2760 struct ceph_mds_cap_reconnect_v1 v1
;
2763 struct ceph_inode_info
*ci
;
2764 struct ceph_reconnect_state
*recon_state
= arg
;
2765 struct ceph_pagelist
*pagelist
= recon_state
->pagelist
;
2769 struct dentry
*dentry
;
2773 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2774 inode
, ceph_vinop(inode
), cap
, cap
->cap_id
,
2775 ceph_cap_string(cap
->issued
));
2776 err
= ceph_pagelist_encode_64(pagelist
, ceph_ino(inode
));
2780 dentry
= d_find_alias(inode
);
2782 path
= ceph_mdsc_build_path(dentry
, &pathlen
, &pathbase
, 0);
2784 err
= PTR_ERR(path
);
2791 err
= ceph_pagelist_encode_string(pagelist
, path
, pathlen
);
2795 spin_lock(&ci
->i_ceph_lock
);
2796 cap
->seq
= 0; /* reset cap seq */
2797 cap
->issue_seq
= 0; /* and issue_seq */
2798 cap
->mseq
= 0; /* and migrate_seq */
2799 cap
->cap_gen
= cap
->session
->s_cap_gen
;
2801 if (recon_state
->flock
) {
2802 rec
.v2
.cap_id
= cpu_to_le64(cap
->cap_id
);
2803 rec
.v2
.wanted
= cpu_to_le32(__ceph_caps_wanted(ci
));
2804 rec
.v2
.issued
= cpu_to_le32(cap
->issued
);
2805 rec
.v2
.snaprealm
= cpu_to_le64(ci
->i_snap_realm
->ino
);
2806 rec
.v2
.pathbase
= cpu_to_le64(pathbase
);
2807 rec
.v2
.flock_len
= 0;
2808 reclen
= sizeof(rec
.v2
);
2810 rec
.v1
.cap_id
= cpu_to_le64(cap
->cap_id
);
2811 rec
.v1
.wanted
= cpu_to_le32(__ceph_caps_wanted(ci
));
2812 rec
.v1
.issued
= cpu_to_le32(cap
->issued
);
2813 rec
.v1
.size
= cpu_to_le64(inode
->i_size
);
2814 ceph_encode_timespec(&rec
.v1
.mtime
, &inode
->i_mtime
);
2815 ceph_encode_timespec(&rec
.v1
.atime
, &inode
->i_atime
);
2816 rec
.v1
.snaprealm
= cpu_to_le64(ci
->i_snap_realm
->ino
);
2817 rec
.v1
.pathbase
= cpu_to_le64(pathbase
);
2818 reclen
= sizeof(rec
.v1
);
2820 spin_unlock(&ci
->i_ceph_lock
);
2822 if (recon_state
->flock
) {
2823 int num_fcntl_locks
, num_flock_locks
;
2824 struct ceph_filelock
*flocks
;
2827 ceph_count_locks(inode
, &num_fcntl_locks
, &num_flock_locks
);
2828 flocks
= kmalloc((num_fcntl_locks
+num_flock_locks
) *
2829 sizeof(struct ceph_filelock
), GFP_NOFS
);
2834 err
= ceph_encode_locks_to_buffer(inode
, flocks
,
2844 * number of encoded locks is stable, so copy to pagelist
2846 rec
.v2
.flock_len
= cpu_to_le32(2*sizeof(u32
) +
2847 (num_fcntl_locks
+num_flock_locks
) *
2848 sizeof(struct ceph_filelock
));
2849 err
= ceph_pagelist_append(pagelist
, &rec
, reclen
);
2851 err
= ceph_locks_to_pagelist(flocks
, pagelist
,
2856 err
= ceph_pagelist_append(pagelist
, &rec
, reclen
);
2859 recon_state
->nr_caps
++;
2869 * If an MDS fails and recovers, clients need to reconnect in order to
2870 * reestablish shared state. This includes all caps issued through
2871 * this session _and_ the snap_realm hierarchy. Because it's not
2872 * clear which snap realms the mds cares about, we send everything we
2873 * know about.. that ensures we'll then get any new info the
2874 * recovering MDS might have.
2876 * This is a relatively heavyweight operation, but it's rare.
2878 * called with mdsc->mutex held.
2880 static void send_mds_reconnect(struct ceph_mds_client
*mdsc
,
2881 struct ceph_mds_session
*session
)
2883 struct ceph_msg
*reply
;
2885 int mds
= session
->s_mds
;
2888 struct ceph_pagelist
*pagelist
;
2889 struct ceph_reconnect_state recon_state
;
2891 pr_info("mds%d reconnect start\n", mds
);
2893 pagelist
= kmalloc(sizeof(*pagelist
), GFP_NOFS
);
2895 goto fail_nopagelist
;
2896 ceph_pagelist_init(pagelist
);
2898 reply
= ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT
, 0, GFP_NOFS
, false);
2902 mutex_lock(&session
->s_mutex
);
2903 session
->s_state
= CEPH_MDS_SESSION_RECONNECTING
;
2906 dout("session %p state %s\n", session
,
2907 ceph_session_state_name(session
->s_state
));
2909 spin_lock(&session
->s_gen_ttl_lock
);
2910 session
->s_cap_gen
++;
2911 spin_unlock(&session
->s_gen_ttl_lock
);
2913 spin_lock(&session
->s_cap_lock
);
2914 /* don't know if session is readonly */
2915 session
->s_readonly
= 0;
2917 * notify __ceph_remove_cap() that we are composing cap reconnect.
2918 * If a cap get released before being added to the cap reconnect,
2919 * __ceph_remove_cap() should skip queuing cap release.
2921 session
->s_cap_reconnect
= 1;
2922 /* drop old cap expires; we're about to reestablish that state */
2923 cleanup_cap_releases(mdsc
, session
);
2925 /* trim unused caps to reduce MDS's cache rejoin time */
2926 if (mdsc
->fsc
->sb
->s_root
)
2927 shrink_dcache_parent(mdsc
->fsc
->sb
->s_root
);
2929 ceph_con_close(&session
->s_con
);
2930 ceph_con_open(&session
->s_con
,
2931 CEPH_ENTITY_TYPE_MDS
, mds
,
2932 ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
2934 /* replay unsafe requests */
2935 replay_unsafe_requests(mdsc
, session
);
2937 down_read(&mdsc
->snap_rwsem
);
2939 /* traverse this session's caps */
2940 s_nr_caps
= session
->s_nr_caps
;
2941 err
= ceph_pagelist_encode_32(pagelist
, s_nr_caps
);
2945 recon_state
.nr_caps
= 0;
2946 recon_state
.pagelist
= pagelist
;
2947 recon_state
.flock
= session
->s_con
.peer_features
& CEPH_FEATURE_FLOCK
;
2948 err
= iterate_session_caps(session
, encode_caps_cb
, &recon_state
);
2952 spin_lock(&session
->s_cap_lock
);
2953 session
->s_cap_reconnect
= 0;
2954 spin_unlock(&session
->s_cap_lock
);
2957 * snaprealms. we provide mds with the ino, seq (version), and
2958 * parent for all of our realms. If the mds has any newer info,
2961 for (p
= rb_first(&mdsc
->snap_realms
); p
; p
= rb_next(p
)) {
2962 struct ceph_snap_realm
*realm
=
2963 rb_entry(p
, struct ceph_snap_realm
, node
);
2964 struct ceph_mds_snaprealm_reconnect sr_rec
;
2966 dout(" adding snap realm %llx seq %lld parent %llx\n",
2967 realm
->ino
, realm
->seq
, realm
->parent_ino
);
2968 sr_rec
.ino
= cpu_to_le64(realm
->ino
);
2969 sr_rec
.seq
= cpu_to_le64(realm
->seq
);
2970 sr_rec
.parent
= cpu_to_le64(realm
->parent_ino
);
2971 err
= ceph_pagelist_append(pagelist
, &sr_rec
, sizeof(sr_rec
));
2976 if (recon_state
.flock
)
2977 reply
->hdr
.version
= cpu_to_le16(2);
2979 /* raced with cap release? */
2980 if (s_nr_caps
!= recon_state
.nr_caps
) {
2981 struct page
*page
= list_first_entry(&pagelist
->head
,
2983 __le32
*addr
= kmap_atomic(page
);
2984 *addr
= cpu_to_le32(recon_state
.nr_caps
);
2985 kunmap_atomic(addr
);
2988 reply
->hdr
.data_len
= cpu_to_le32(pagelist
->length
);
2989 ceph_msg_data_add_pagelist(reply
, pagelist
);
2991 ceph_early_kick_flushing_caps(mdsc
, session
);
2993 ceph_con_send(&session
->s_con
, reply
);
2995 mutex_unlock(&session
->s_mutex
);
2997 mutex_lock(&mdsc
->mutex
);
2998 __wake_requests(mdsc
, &session
->s_waiting
);
2999 mutex_unlock(&mdsc
->mutex
);
3001 up_read(&mdsc
->snap_rwsem
);
3005 ceph_msg_put(reply
);
3006 up_read(&mdsc
->snap_rwsem
);
3007 mutex_unlock(&session
->s_mutex
);
3009 ceph_pagelist_release(pagelist
);
3011 pr_err("error %d preparing reconnect for mds%d\n", err
, mds
);
3017 * compare old and new mdsmaps, kicking requests
3018 * and closing out old connections as necessary
3020 * called under mdsc->mutex.
3022 static void check_new_map(struct ceph_mds_client
*mdsc
,
3023 struct ceph_mdsmap
*newmap
,
3024 struct ceph_mdsmap
*oldmap
)
3027 int oldstate
, newstate
;
3028 struct ceph_mds_session
*s
;
3030 dout("check_new_map new %u old %u\n",
3031 newmap
->m_epoch
, oldmap
->m_epoch
);
3033 for (i
= 0; i
< oldmap
->m_max_mds
&& i
< mdsc
->max_sessions
; i
++) {
3034 if (mdsc
->sessions
[i
] == NULL
)
3036 s
= mdsc
->sessions
[i
];
3037 oldstate
= ceph_mdsmap_get_state(oldmap
, i
);
3038 newstate
= ceph_mdsmap_get_state(newmap
, i
);
3040 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3041 i
, ceph_mds_state_name(oldstate
),
3042 ceph_mdsmap_is_laggy(oldmap
, i
) ? " (laggy)" : "",
3043 ceph_mds_state_name(newstate
),
3044 ceph_mdsmap_is_laggy(newmap
, i
) ? " (laggy)" : "",
3045 ceph_session_state_name(s
->s_state
));
3047 if (i
>= newmap
->m_max_mds
||
3048 memcmp(ceph_mdsmap_get_addr(oldmap
, i
),
3049 ceph_mdsmap_get_addr(newmap
, i
),
3050 sizeof(struct ceph_entity_addr
))) {
3051 if (s
->s_state
== CEPH_MDS_SESSION_OPENING
) {
3052 /* the session never opened, just close it
3054 __wake_requests(mdsc
, &s
->s_waiting
);
3055 __unregister_session(mdsc
, s
);
3058 mutex_unlock(&mdsc
->mutex
);
3059 mutex_lock(&s
->s_mutex
);
3060 mutex_lock(&mdsc
->mutex
);
3061 ceph_con_close(&s
->s_con
);
3062 mutex_unlock(&s
->s_mutex
);
3063 s
->s_state
= CEPH_MDS_SESSION_RESTARTING
;
3065 } else if (oldstate
== newstate
) {
3066 continue; /* nothing new with this mds */
3072 if (s
->s_state
== CEPH_MDS_SESSION_RESTARTING
&&
3073 newstate
>= CEPH_MDS_STATE_RECONNECT
) {
3074 mutex_unlock(&mdsc
->mutex
);
3075 send_mds_reconnect(mdsc
, s
);
3076 mutex_lock(&mdsc
->mutex
);
3080 * kick request on any mds that has gone active.
3082 if (oldstate
< CEPH_MDS_STATE_ACTIVE
&&
3083 newstate
>= CEPH_MDS_STATE_ACTIVE
) {
3084 if (oldstate
!= CEPH_MDS_STATE_CREATING
&&
3085 oldstate
!= CEPH_MDS_STATE_STARTING
)
3086 pr_info("mds%d recovery completed\n", s
->s_mds
);
3087 kick_requests(mdsc
, i
);
3088 ceph_kick_flushing_caps(mdsc
, s
);
3089 wake_up_session_caps(s
, 1);
3093 for (i
= 0; i
< newmap
->m_max_mds
&& i
< mdsc
->max_sessions
; i
++) {
3094 s
= mdsc
->sessions
[i
];
3097 if (!ceph_mdsmap_is_laggy(newmap
, i
))
3099 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
||
3100 s
->s_state
== CEPH_MDS_SESSION_HUNG
||
3101 s
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
3102 dout(" connecting to export targets of laggy mds%d\n",
3104 __open_export_target_sessions(mdsc
, s
);
3116 * caller must hold session s_mutex, dentry->d_lock
3118 void __ceph_mdsc_drop_dentry_lease(struct dentry
*dentry
)
3120 struct ceph_dentry_info
*di
= ceph_dentry(dentry
);
3122 ceph_put_mds_session(di
->lease_session
);
3123 di
->lease_session
= NULL
;
3126 static void handle_lease(struct ceph_mds_client
*mdsc
,
3127 struct ceph_mds_session
*session
,
3128 struct ceph_msg
*msg
)
3130 struct super_block
*sb
= mdsc
->fsc
->sb
;
3131 struct inode
*inode
;
3132 struct dentry
*parent
, *dentry
;
3133 struct ceph_dentry_info
*di
;
3134 int mds
= session
->s_mds
;
3135 struct ceph_mds_lease
*h
= msg
->front
.iov_base
;
3137 struct ceph_vino vino
;
3141 dout("handle_lease from mds%d\n", mds
);
3144 if (msg
->front
.iov_len
< sizeof(*h
) + sizeof(u32
))
3146 vino
.ino
= le64_to_cpu(h
->ino
);
3147 vino
.snap
= CEPH_NOSNAP
;
3148 seq
= le32_to_cpu(h
->seq
);
3149 dname
.name
= (void *)h
+ sizeof(*h
) + sizeof(u32
);
3150 dname
.len
= msg
->front
.iov_len
- sizeof(*h
) - sizeof(u32
);
3151 if (dname
.len
!= get_unaligned_le32(h
+1))
3155 inode
= ceph_find_inode(sb
, vino
);
3156 dout("handle_lease %s, ino %llx %p %.*s\n",
3157 ceph_lease_op_name(h
->action
), vino
.ino
, inode
,
3158 dname
.len
, dname
.name
);
3160 mutex_lock(&session
->s_mutex
);
3163 if (inode
== NULL
) {
3164 dout("handle_lease no inode %llx\n", vino
.ino
);
3169 parent
= d_find_alias(inode
);
3171 dout("no parent dentry on inode %p\n", inode
);
3173 goto release
; /* hrm... */
3175 dname
.hash
= full_name_hash(dname
.name
, dname
.len
);
3176 dentry
= d_lookup(parent
, &dname
);
3181 spin_lock(&dentry
->d_lock
);
3182 di
= ceph_dentry(dentry
);
3183 switch (h
->action
) {
3184 case CEPH_MDS_LEASE_REVOKE
:
3185 if (di
->lease_session
== session
) {
3186 if (ceph_seq_cmp(di
->lease_seq
, seq
) > 0)
3187 h
->seq
= cpu_to_le32(di
->lease_seq
);
3188 __ceph_mdsc_drop_dentry_lease(dentry
);
3193 case CEPH_MDS_LEASE_RENEW
:
3194 if (di
->lease_session
== session
&&
3195 di
->lease_gen
== session
->s_cap_gen
&&
3196 di
->lease_renew_from
&&
3197 di
->lease_renew_after
== 0) {
3198 unsigned long duration
=
3199 msecs_to_jiffies(le32_to_cpu(h
->duration_ms
));
3201 di
->lease_seq
= seq
;
3202 dentry
->d_time
= di
->lease_renew_from
+ duration
;
3203 di
->lease_renew_after
= di
->lease_renew_from
+
3205 di
->lease_renew_from
= 0;
3209 spin_unlock(&dentry
->d_lock
);
3216 /* let's just reuse the same message */
3217 h
->action
= CEPH_MDS_LEASE_REVOKE_ACK
;
3219 ceph_con_send(&session
->s_con
, msg
);
3223 mutex_unlock(&session
->s_mutex
);
3227 pr_err("corrupt lease message\n");
3231 void ceph_mdsc_lease_send_msg(struct ceph_mds_session
*session
,
3232 struct inode
*inode
,
3233 struct dentry
*dentry
, char action
,
3236 struct ceph_msg
*msg
;
3237 struct ceph_mds_lease
*lease
;
3238 int len
= sizeof(*lease
) + sizeof(u32
);
3241 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3242 inode
, dentry
, ceph_lease_op_name(action
), session
->s_mds
);
3243 dnamelen
= dentry
->d_name
.len
;
3246 msg
= ceph_msg_new(CEPH_MSG_CLIENT_LEASE
, len
, GFP_NOFS
, false);
3249 lease
= msg
->front
.iov_base
;
3250 lease
->action
= action
;
3251 lease
->ino
= cpu_to_le64(ceph_vino(inode
).ino
);
3252 lease
->first
= lease
->last
= cpu_to_le64(ceph_vino(inode
).snap
);
3253 lease
->seq
= cpu_to_le32(seq
);
3254 put_unaligned_le32(dnamelen
, lease
+ 1);
3255 memcpy((void *)(lease
+ 1) + 4, dentry
->d_name
.name
, dnamelen
);
3258 * if this is a preemptive lease RELEASE, no need to
3259 * flush request stream, since the actual request will
3262 msg
->more_to_follow
= (action
== CEPH_MDS_LEASE_RELEASE
);
3264 ceph_con_send(&session
->s_con
, msg
);
3268 * Preemptively release a lease we expect to invalidate anyway.
3269 * Pass @inode always, @dentry is optional.
3271 void ceph_mdsc_lease_release(struct ceph_mds_client
*mdsc
, struct inode
*inode
,
3272 struct dentry
*dentry
)
3274 struct ceph_dentry_info
*di
;
3275 struct ceph_mds_session
*session
;
3278 BUG_ON(inode
== NULL
);
3279 BUG_ON(dentry
== NULL
);
3281 /* is dentry lease valid? */
3282 spin_lock(&dentry
->d_lock
);
3283 di
= ceph_dentry(dentry
);
3284 if (!di
|| !di
->lease_session
||
3285 di
->lease_session
->s_mds
< 0 ||
3286 di
->lease_gen
!= di
->lease_session
->s_cap_gen
||
3287 !time_before(jiffies
, dentry
->d_time
)) {
3288 dout("lease_release inode %p dentry %p -- "
3291 spin_unlock(&dentry
->d_lock
);
3295 /* we do have a lease on this dentry; note mds and seq */
3296 session
= ceph_get_mds_session(di
->lease_session
);
3297 seq
= di
->lease_seq
;
3298 __ceph_mdsc_drop_dentry_lease(dentry
);
3299 spin_unlock(&dentry
->d_lock
);
3301 dout("lease_release inode %p dentry %p to mds%d\n",
3302 inode
, dentry
, session
->s_mds
);
3303 ceph_mdsc_lease_send_msg(session
, inode
, dentry
,
3304 CEPH_MDS_LEASE_RELEASE
, seq
);
3305 ceph_put_mds_session(session
);
3309 * drop all leases (and dentry refs) in preparation for umount
3311 static void drop_leases(struct ceph_mds_client
*mdsc
)
3315 dout("drop_leases\n");
3316 mutex_lock(&mdsc
->mutex
);
3317 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3318 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
3321 mutex_unlock(&mdsc
->mutex
);
3322 mutex_lock(&s
->s_mutex
);
3323 mutex_unlock(&s
->s_mutex
);
3324 ceph_put_mds_session(s
);
3325 mutex_lock(&mdsc
->mutex
);
3327 mutex_unlock(&mdsc
->mutex
);
3333 * delayed work -- periodically trim expired leases, renew caps with mds
3335 static void schedule_delayed(struct ceph_mds_client
*mdsc
)
3338 unsigned hz
= round_jiffies_relative(HZ
* delay
);
3339 schedule_delayed_work(&mdsc
->delayed_work
, hz
);
3342 static void delayed_work(struct work_struct
*work
)
3345 struct ceph_mds_client
*mdsc
=
3346 container_of(work
, struct ceph_mds_client
, delayed_work
.work
);
3350 dout("mdsc delayed_work\n");
3351 ceph_check_delayed_caps(mdsc
);
3353 mutex_lock(&mdsc
->mutex
);
3354 renew_interval
= mdsc
->mdsmap
->m_session_timeout
>> 2;
3355 renew_caps
= time_after_eq(jiffies
, HZ
*renew_interval
+
3356 mdsc
->last_renew_caps
);
3358 mdsc
->last_renew_caps
= jiffies
;
3360 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3361 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
3364 if (s
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
3365 dout("resending session close request for mds%d\n",
3367 request_close_session(mdsc
, s
);
3368 ceph_put_mds_session(s
);
3371 if (s
->s_ttl
&& time_after(jiffies
, s
->s_ttl
)) {
3372 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
) {
3373 s
->s_state
= CEPH_MDS_SESSION_HUNG
;
3374 pr_info("mds%d hung\n", s
->s_mds
);
3377 if (s
->s_state
< CEPH_MDS_SESSION_OPEN
) {
3378 /* this mds is failed or recovering, just wait */
3379 ceph_put_mds_session(s
);
3382 mutex_unlock(&mdsc
->mutex
);
3384 mutex_lock(&s
->s_mutex
);
3386 send_renew_caps(mdsc
, s
);
3388 ceph_con_keepalive(&s
->s_con
);
3389 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
||
3390 s
->s_state
== CEPH_MDS_SESSION_HUNG
)
3391 ceph_send_cap_releases(mdsc
, s
);
3392 mutex_unlock(&s
->s_mutex
);
3393 ceph_put_mds_session(s
);
3395 mutex_lock(&mdsc
->mutex
);
3397 mutex_unlock(&mdsc
->mutex
);
3399 schedule_delayed(mdsc
);
3402 int ceph_mdsc_init(struct ceph_fs_client
*fsc
)
3405 struct ceph_mds_client
*mdsc
;
3407 mdsc
= kzalloc(sizeof(struct ceph_mds_client
), GFP_NOFS
);
3412 mutex_init(&mdsc
->mutex
);
3413 mdsc
->mdsmap
= kzalloc(sizeof(*mdsc
->mdsmap
), GFP_NOFS
);
3414 if (mdsc
->mdsmap
== NULL
) {
3419 init_completion(&mdsc
->safe_umount_waiters
);
3420 init_waitqueue_head(&mdsc
->session_close_wq
);
3421 INIT_LIST_HEAD(&mdsc
->waiting_for_map
);
3422 mdsc
->sessions
= NULL
;
3423 atomic_set(&mdsc
->num_sessions
, 0);
3424 mdsc
->max_sessions
= 0;
3426 mdsc
->last_snap_seq
= 0;
3427 init_rwsem(&mdsc
->snap_rwsem
);
3428 mdsc
->snap_realms
= RB_ROOT
;
3429 INIT_LIST_HEAD(&mdsc
->snap_empty
);
3430 spin_lock_init(&mdsc
->snap_empty_lock
);
3432 mdsc
->oldest_tid
= 0;
3433 mdsc
->request_tree
= RB_ROOT
;
3434 INIT_DELAYED_WORK(&mdsc
->delayed_work
, delayed_work
);
3435 mdsc
->last_renew_caps
= jiffies
;
3436 INIT_LIST_HEAD(&mdsc
->cap_delay_list
);
3437 spin_lock_init(&mdsc
->cap_delay_lock
);
3438 INIT_LIST_HEAD(&mdsc
->snap_flush_list
);
3439 spin_lock_init(&mdsc
->snap_flush_lock
);
3440 mdsc
->last_cap_flush_tid
= 1;
3441 mdsc
->cap_flush_tree
= RB_ROOT
;
3442 INIT_LIST_HEAD(&mdsc
->cap_dirty
);
3443 INIT_LIST_HEAD(&mdsc
->cap_dirty_migrating
);
3444 mdsc
->num_cap_flushing
= 0;
3445 spin_lock_init(&mdsc
->cap_dirty_lock
);
3446 init_waitqueue_head(&mdsc
->cap_flushing_wq
);
3447 spin_lock_init(&mdsc
->dentry_lru_lock
);
3448 INIT_LIST_HEAD(&mdsc
->dentry_lru
);
3450 ceph_caps_init(mdsc
);
3451 ceph_adjust_min_caps(mdsc
, fsc
->min_caps
);
3453 init_rwsem(&mdsc
->pool_perm_rwsem
);
3454 mdsc
->pool_perm_tree
= RB_ROOT
;
3460 * Wait for safe replies on open mds requests. If we time out, drop
3461 * all requests from the tree to avoid dangling dentry refs.
3463 static void wait_requests(struct ceph_mds_client
*mdsc
)
3465 struct ceph_options
*opts
= mdsc
->fsc
->client
->options
;
3466 struct ceph_mds_request
*req
;
3468 mutex_lock(&mdsc
->mutex
);
3469 if (__get_oldest_req(mdsc
)) {
3470 mutex_unlock(&mdsc
->mutex
);
3472 dout("wait_requests waiting for requests\n");
3473 wait_for_completion_timeout(&mdsc
->safe_umount_waiters
,
3474 ceph_timeout_jiffies(opts
->mount_timeout
));
3476 /* tear down remaining requests */
3477 mutex_lock(&mdsc
->mutex
);
3478 while ((req
= __get_oldest_req(mdsc
))) {
3479 dout("wait_requests timed out on tid %llu\n",
3481 __unregister_request(mdsc
, req
);
3484 mutex_unlock(&mdsc
->mutex
);
3485 dout("wait_requests done\n");
3489 * called before mount is ro, and before dentries are torn down.
3490 * (hmm, does this still race with new lookups?)
3492 void ceph_mdsc_pre_umount(struct ceph_mds_client
*mdsc
)
3494 dout("pre_umount\n");
3498 ceph_flush_dirty_caps(mdsc
);
3499 wait_requests(mdsc
);
3502 * wait for reply handlers to drop their request refs and
3503 * their inode/dcache refs
3509 * wait for all write mds requests to flush.
3511 static void wait_unsafe_requests(struct ceph_mds_client
*mdsc
, u64 want_tid
)
3513 struct ceph_mds_request
*req
= NULL
, *nextreq
;
3516 mutex_lock(&mdsc
->mutex
);
3517 dout("wait_unsafe_requests want %lld\n", want_tid
);
3519 req
= __get_oldest_req(mdsc
);
3520 while (req
&& req
->r_tid
<= want_tid
) {
3521 /* find next request */
3522 n
= rb_next(&req
->r_node
);
3524 nextreq
= rb_entry(n
, struct ceph_mds_request
, r_node
);
3527 if (req
->r_op
!= CEPH_MDS_OP_SETFILELOCK
&&
3528 (req
->r_op
& CEPH_MDS_OP_WRITE
)) {
3530 ceph_mdsc_get_request(req
);
3532 ceph_mdsc_get_request(nextreq
);
3533 mutex_unlock(&mdsc
->mutex
);
3534 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3535 req
->r_tid
, want_tid
);
3536 wait_for_completion(&req
->r_safe_completion
);
3537 mutex_lock(&mdsc
->mutex
);
3538 ceph_mdsc_put_request(req
);
3540 break; /* next dne before, so we're done! */
3541 if (RB_EMPTY_NODE(&nextreq
->r_node
)) {
3542 /* next request was removed from tree */
3543 ceph_mdsc_put_request(nextreq
);
3546 ceph_mdsc_put_request(nextreq
); /* won't go away */
3550 mutex_unlock(&mdsc
->mutex
);
3551 dout("wait_unsafe_requests done\n");
3554 void ceph_mdsc_sync(struct ceph_mds_client
*mdsc
)
3556 u64 want_tid
, want_flush
, want_snap
;
3558 if (mdsc
->fsc
->mount_state
== CEPH_MOUNT_SHUTDOWN
)
3562 mutex_lock(&mdsc
->mutex
);
3563 want_tid
= mdsc
->last_tid
;
3564 mutex_unlock(&mdsc
->mutex
);
3566 ceph_flush_dirty_caps(mdsc
);
3567 spin_lock(&mdsc
->cap_dirty_lock
);
3568 want_flush
= mdsc
->last_cap_flush_tid
;
3569 spin_unlock(&mdsc
->cap_dirty_lock
);
3571 down_read(&mdsc
->snap_rwsem
);
3572 want_snap
= mdsc
->last_snap_seq
;
3573 up_read(&mdsc
->snap_rwsem
);
3575 dout("sync want tid %lld flush_seq %lld snap_seq %lld\n",
3576 want_tid
, want_flush
, want_snap
);
3578 wait_unsafe_requests(mdsc
, want_tid
);
3579 wait_caps_flush(mdsc
, want_flush
, want_snap
);
3583 * true if all sessions are closed, or we force unmount
3585 static bool done_closing_sessions(struct ceph_mds_client
*mdsc
)
3587 if (mdsc
->fsc
->mount_state
== CEPH_MOUNT_SHUTDOWN
)
3589 return atomic_read(&mdsc
->num_sessions
) == 0;
3593 * called after sb is ro.
3595 void ceph_mdsc_close_sessions(struct ceph_mds_client
*mdsc
)
3597 struct ceph_options
*opts
= mdsc
->fsc
->client
->options
;
3598 struct ceph_mds_session
*session
;
3601 dout("close_sessions\n");
3603 /* close sessions */
3604 mutex_lock(&mdsc
->mutex
);
3605 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3606 session
= __ceph_lookup_mds_session(mdsc
, i
);
3609 mutex_unlock(&mdsc
->mutex
);
3610 mutex_lock(&session
->s_mutex
);
3611 __close_session(mdsc
, session
);
3612 mutex_unlock(&session
->s_mutex
);
3613 ceph_put_mds_session(session
);
3614 mutex_lock(&mdsc
->mutex
);
3616 mutex_unlock(&mdsc
->mutex
);
3618 dout("waiting for sessions to close\n");
3619 wait_event_timeout(mdsc
->session_close_wq
, done_closing_sessions(mdsc
),
3620 ceph_timeout_jiffies(opts
->mount_timeout
));
3622 /* tear down remaining sessions */
3623 mutex_lock(&mdsc
->mutex
);
3624 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3625 if (mdsc
->sessions
[i
]) {
3626 session
= get_session(mdsc
->sessions
[i
]);
3627 __unregister_session(mdsc
, session
);
3628 mutex_unlock(&mdsc
->mutex
);
3629 mutex_lock(&session
->s_mutex
);
3630 remove_session_caps(session
);
3631 mutex_unlock(&session
->s_mutex
);
3632 ceph_put_mds_session(session
);
3633 mutex_lock(&mdsc
->mutex
);
3636 WARN_ON(!list_empty(&mdsc
->cap_delay_list
));
3637 mutex_unlock(&mdsc
->mutex
);
3639 ceph_cleanup_empty_realms(mdsc
);
3641 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
3646 static void ceph_mdsc_stop(struct ceph_mds_client
*mdsc
)
3649 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
3651 ceph_mdsmap_destroy(mdsc
->mdsmap
);
3652 kfree(mdsc
->sessions
);
3653 ceph_caps_finalize(mdsc
);
3654 ceph_pool_perm_destroy(mdsc
);
3657 void ceph_mdsc_destroy(struct ceph_fs_client
*fsc
)
3659 struct ceph_mds_client
*mdsc
= fsc
->mdsc
;
3661 dout("mdsc_destroy %p\n", mdsc
);
3662 ceph_mdsc_stop(mdsc
);
3664 /* flush out any connection work with references to us */
3669 dout("mdsc_destroy %p done\n", mdsc
);
3674 * handle mds map update.
3676 void ceph_mdsc_handle_map(struct ceph_mds_client
*mdsc
, struct ceph_msg
*msg
)
3680 void *p
= msg
->front
.iov_base
;
3681 void *end
= p
+ msg
->front
.iov_len
;
3682 struct ceph_mdsmap
*newmap
, *oldmap
;
3683 struct ceph_fsid fsid
;
3686 ceph_decode_need(&p
, end
, sizeof(fsid
)+2*sizeof(u32
), bad
);
3687 ceph_decode_copy(&p
, &fsid
, sizeof(fsid
));
3688 if (ceph_check_fsid(mdsc
->fsc
->client
, &fsid
) < 0)
3690 epoch
= ceph_decode_32(&p
);
3691 maplen
= ceph_decode_32(&p
);
3692 dout("handle_map epoch %u len %d\n", epoch
, (int)maplen
);
3694 /* do we need it? */
3695 ceph_monc_got_mdsmap(&mdsc
->fsc
->client
->monc
, epoch
);
3696 mutex_lock(&mdsc
->mutex
);
3697 if (mdsc
->mdsmap
&& epoch
<= mdsc
->mdsmap
->m_epoch
) {
3698 dout("handle_map epoch %u <= our %u\n",
3699 epoch
, mdsc
->mdsmap
->m_epoch
);
3700 mutex_unlock(&mdsc
->mutex
);
3704 newmap
= ceph_mdsmap_decode(&p
, end
);
3705 if (IS_ERR(newmap
)) {
3706 err
= PTR_ERR(newmap
);
3710 /* swap into place */
3712 oldmap
= mdsc
->mdsmap
;
3713 mdsc
->mdsmap
= newmap
;
3714 check_new_map(mdsc
, newmap
, oldmap
);
3715 ceph_mdsmap_destroy(oldmap
);
3717 mdsc
->mdsmap
= newmap
; /* first mds map */
3719 mdsc
->fsc
->sb
->s_maxbytes
= mdsc
->mdsmap
->m_max_file_size
;
3721 __wake_requests(mdsc
, &mdsc
->waiting_for_map
);
3723 mutex_unlock(&mdsc
->mutex
);
3724 schedule_delayed(mdsc
);
3728 mutex_unlock(&mdsc
->mutex
);
3730 pr_err("error decoding mdsmap %d\n", err
);
3734 static struct ceph_connection
*con_get(struct ceph_connection
*con
)
3736 struct ceph_mds_session
*s
= con
->private;
3738 if (get_session(s
)) {
3739 dout("mdsc con_get %p ok (%d)\n", s
, atomic_read(&s
->s_ref
));
3742 dout("mdsc con_get %p FAIL\n", s
);
3746 static void con_put(struct ceph_connection
*con
)
3748 struct ceph_mds_session
*s
= con
->private;
3750 dout("mdsc con_put %p (%d)\n", s
, atomic_read(&s
->s_ref
) - 1);
3751 ceph_put_mds_session(s
);
3755 * if the client is unresponsive for long enough, the mds will kill
3756 * the session entirely.
3758 static void peer_reset(struct ceph_connection
*con
)
3760 struct ceph_mds_session
*s
= con
->private;
3761 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3763 pr_warn("mds%d closed our session\n", s
->s_mds
);
3764 send_mds_reconnect(mdsc
, s
);
3767 static void dispatch(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3769 struct ceph_mds_session
*s
= con
->private;
3770 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3771 int type
= le16_to_cpu(msg
->hdr
.type
);
3773 mutex_lock(&mdsc
->mutex
);
3774 if (__verify_registered_session(mdsc
, s
) < 0) {
3775 mutex_unlock(&mdsc
->mutex
);
3778 mutex_unlock(&mdsc
->mutex
);
3781 case CEPH_MSG_MDS_MAP
:
3782 ceph_mdsc_handle_map(mdsc
, msg
);
3784 case CEPH_MSG_CLIENT_SESSION
:
3785 handle_session(s
, msg
);
3787 case CEPH_MSG_CLIENT_REPLY
:
3788 handle_reply(s
, msg
);
3790 case CEPH_MSG_CLIENT_REQUEST_FORWARD
:
3791 handle_forward(mdsc
, s
, msg
);
3793 case CEPH_MSG_CLIENT_CAPS
:
3794 ceph_handle_caps(s
, msg
);
3796 case CEPH_MSG_CLIENT_SNAP
:
3797 ceph_handle_snap(mdsc
, s
, msg
);
3799 case CEPH_MSG_CLIENT_LEASE
:
3800 handle_lease(mdsc
, s
, msg
);
3804 pr_err("received unknown message type %d %s\n", type
,
3805 ceph_msg_type_name(type
));
3816 * Note: returned pointer is the address of a structure that's
3817 * managed separately. Caller must *not* attempt to free it.
3819 static struct ceph_auth_handshake
*get_authorizer(struct ceph_connection
*con
,
3820 int *proto
, int force_new
)
3822 struct ceph_mds_session
*s
= con
->private;
3823 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3824 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3825 struct ceph_auth_handshake
*auth
= &s
->s_auth
;
3827 if (force_new
&& auth
->authorizer
) {
3828 ceph_auth_destroy_authorizer(ac
, auth
->authorizer
);
3829 auth
->authorizer
= NULL
;
3831 if (!auth
->authorizer
) {
3832 int ret
= ceph_auth_create_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
,
3835 return ERR_PTR(ret
);
3837 int ret
= ceph_auth_update_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
,
3840 return ERR_PTR(ret
);
3842 *proto
= ac
->protocol
;
3848 static int verify_authorizer_reply(struct ceph_connection
*con
, int len
)
3850 struct ceph_mds_session
*s
= con
->private;
3851 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3852 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3854 return ceph_auth_verify_authorizer_reply(ac
, s
->s_auth
.authorizer
, len
);
3857 static int invalidate_authorizer(struct ceph_connection
*con
)
3859 struct ceph_mds_session
*s
= con
->private;
3860 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3861 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3863 ceph_auth_invalidate_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
);
3865 return ceph_monc_validate_auth(&mdsc
->fsc
->client
->monc
);
3868 static struct ceph_msg
*mds_alloc_msg(struct ceph_connection
*con
,
3869 struct ceph_msg_header
*hdr
, int *skip
)
3871 struct ceph_msg
*msg
;
3872 int type
= (int) le16_to_cpu(hdr
->type
);
3873 int front_len
= (int) le32_to_cpu(hdr
->front_len
);
3879 msg
= ceph_msg_new(type
, front_len
, GFP_NOFS
, false);
3881 pr_err("unable to allocate msg type %d len %d\n",
3889 static int sign_message(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3891 struct ceph_mds_session
*s
= con
->private;
3892 struct ceph_auth_handshake
*auth
= &s
->s_auth
;
3893 return ceph_auth_sign_message(auth
, msg
);
3896 static int check_message_signature(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3898 struct ceph_mds_session
*s
= con
->private;
3899 struct ceph_auth_handshake
*auth
= &s
->s_auth
;
3900 return ceph_auth_check_message_signature(auth
, msg
);
3903 static const struct ceph_connection_operations mds_con_ops
= {
3906 .dispatch
= dispatch
,
3907 .get_authorizer
= get_authorizer
,
3908 .verify_authorizer_reply
= verify_authorizer_reply
,
3909 .invalidate_authorizer
= invalidate_authorizer
,
3910 .peer_reset
= peer_reset
,
3911 .alloc_msg
= mds_alloc_msg
,
3912 .sign_message
= sign_message
,
3913 .check_message_signature
= check_message_signature
,