2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004,2005 by Thiemo Seufer
9 * Copyright (C) 2005 Maciej W. Rozycki
14 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
21 #include <asm/pgtable.h>
22 #include <asm/cacheflush.h>
23 #include <asm/mmu_context.h>
29 /* #define DEBUG_TLB */
31 static __init
int __attribute__((unused
)) r45k_bvahwbug(void)
33 /* XXX: We should probe for the presence of this bug, but we don't. */
37 static __init
int __attribute__((unused
)) r4k_250MHZhwbug(void)
39 /* XXX: We should probe for the presence of this bug, but we don't. */
43 static __init
int __attribute__((unused
)) bcm1250_m3_war(void)
45 return BCM1250_M3_WAR
;
48 static __init
int __attribute__((unused
)) r10000_llsc_war(void)
50 return R10000_LLSC_WAR
;
54 * A little micro-assembler, intended for TLB refill handler
55 * synthesizing. It is intentionally kept simple, does only support
56 * a subset of instructions, and does not try to hide pipeline effects
57 * like branch delay slots.
83 #define IMM_MASK 0xffff
85 #define JIMM_MASK 0x3ffffff
87 #define FUNC_MASK 0x2f
92 insn_addu
, insn_addiu
, insn_and
, insn_andi
, insn_beq
,
93 insn_beql
, insn_bgez
, insn_bgezl
, insn_bltz
, insn_bltzl
,
94 insn_bne
, insn_daddu
, insn_daddiu
, insn_dmfc0
, insn_dmtc0
,
95 insn_dsll
, insn_dsll32
, insn_dsra
, insn_dsrl
,
96 insn_dsubu
, insn_eret
, insn_j
, insn_jal
, insn_jr
, insn_ld
,
97 insn_ll
, insn_lld
, insn_lui
, insn_lw
, insn_mfc0
, insn_mtc0
,
98 insn_ori
, insn_rfe
, insn_sc
, insn_scd
, insn_sd
, insn_sll
,
99 insn_sra
, insn_srl
, insn_subu
, insn_sw
, insn_tlbp
, insn_tlbwi
,
100 insn_tlbwr
, insn_xor
, insn_xori
109 /* This macro sets the non-variable bits of an instruction. */
110 #define M(a, b, c, d, e, f) \
118 static __initdata
struct insn insn_table
[] = {
119 { insn_addiu
, M(addiu_op
,0,0,0,0,0), RS
| RT
| SIMM
},
120 { insn_addu
, M(spec_op
,0,0,0,0,addu_op
), RS
| RT
| RD
},
121 { insn_and
, M(spec_op
,0,0,0,0,and_op
), RS
| RT
| RD
},
122 { insn_andi
, M(andi_op
,0,0,0,0,0), RS
| RT
| UIMM
},
123 { insn_beq
, M(beq_op
,0,0,0,0,0), RS
| RT
| BIMM
},
124 { insn_beql
, M(beql_op
,0,0,0,0,0), RS
| RT
| BIMM
},
125 { insn_bgez
, M(bcond_op
,0,bgez_op
,0,0,0), RS
| BIMM
},
126 { insn_bgezl
, M(bcond_op
,0,bgezl_op
,0,0,0), RS
| BIMM
},
127 { insn_bltz
, M(bcond_op
,0,bltz_op
,0,0,0), RS
| BIMM
},
128 { insn_bltzl
, M(bcond_op
,0,bltzl_op
,0,0,0), RS
| BIMM
},
129 { insn_bne
, M(bne_op
,0,0,0,0,0), RS
| RT
| BIMM
},
130 { insn_daddiu
, M(daddiu_op
,0,0,0,0,0), RS
| RT
| SIMM
},
131 { insn_daddu
, M(spec_op
,0,0,0,0,daddu_op
), RS
| RT
| RD
},
132 { insn_dmfc0
, M(cop0_op
,dmfc_op
,0,0,0,0), RT
| RD
},
133 { insn_dmtc0
, M(cop0_op
,dmtc_op
,0,0,0,0), RT
| RD
},
134 { insn_dsll
, M(spec_op
,0,0,0,0,dsll_op
), RT
| RD
| RE
},
135 { insn_dsll32
, M(spec_op
,0,0,0,0,dsll32_op
), RT
| RD
| RE
},
136 { insn_dsra
, M(spec_op
,0,0,0,0,dsra_op
), RT
| RD
| RE
},
137 { insn_dsrl
, M(spec_op
,0,0,0,0,dsrl_op
), RT
| RD
| RE
},
138 { insn_dsubu
, M(spec_op
,0,0,0,0,dsubu_op
), RS
| RT
| RD
},
139 { insn_eret
, M(cop0_op
,cop_op
,0,0,0,eret_op
), 0 },
140 { insn_j
, M(j_op
,0,0,0,0,0), JIMM
},
141 { insn_jal
, M(jal_op
,0,0,0,0,0), JIMM
},
142 { insn_jr
, M(spec_op
,0,0,0,0,jr_op
), RS
},
143 { insn_ld
, M(ld_op
,0,0,0,0,0), RS
| RT
| SIMM
},
144 { insn_ll
, M(ll_op
,0,0,0,0,0), RS
| RT
| SIMM
},
145 { insn_lld
, M(lld_op
,0,0,0,0,0), RS
| RT
| SIMM
},
146 { insn_lui
, M(lui_op
,0,0,0,0,0), RT
| SIMM
},
147 { insn_lw
, M(lw_op
,0,0,0,0,0), RS
| RT
| SIMM
},
148 { insn_mfc0
, M(cop0_op
,mfc_op
,0,0,0,0), RT
| RD
},
149 { insn_mtc0
, M(cop0_op
,mtc_op
,0,0,0,0), RT
| RD
},
150 { insn_ori
, M(ori_op
,0,0,0,0,0), RS
| RT
| UIMM
},
151 { insn_rfe
, M(cop0_op
,cop_op
,0,0,0,rfe_op
), 0 },
152 { insn_sc
, M(sc_op
,0,0,0,0,0), RS
| RT
| SIMM
},
153 { insn_scd
, M(scd_op
,0,0,0,0,0), RS
| RT
| SIMM
},
154 { insn_sd
, M(sd_op
,0,0,0,0,0), RS
| RT
| SIMM
},
155 { insn_sll
, M(spec_op
,0,0,0,0,sll_op
), RT
| RD
| RE
},
156 { insn_sra
, M(spec_op
,0,0,0,0,sra_op
), RT
| RD
| RE
},
157 { insn_srl
, M(spec_op
,0,0,0,0,srl_op
), RT
| RD
| RE
},
158 { insn_subu
, M(spec_op
,0,0,0,0,subu_op
), RS
| RT
| RD
},
159 { insn_sw
, M(sw_op
,0,0,0,0,0), RS
| RT
| SIMM
},
160 { insn_tlbp
, M(cop0_op
,cop_op
,0,0,0,tlbp_op
), 0 },
161 { insn_tlbwi
, M(cop0_op
,cop_op
,0,0,0,tlbwi_op
), 0 },
162 { insn_tlbwr
, M(cop0_op
,cop_op
,0,0,0,tlbwr_op
), 0 },
163 { insn_xor
, M(spec_op
,0,0,0,0,xor_op
), RS
| RT
| RD
},
164 { insn_xori
, M(xori_op
,0,0,0,0,0), RS
| RT
| UIMM
},
165 { insn_invalid
, 0, 0 }
170 static __init u32
build_rs(u32 arg
)
173 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
175 return (arg
& RS_MASK
) << RS_SH
;
178 static __init u32
build_rt(u32 arg
)
181 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
183 return (arg
& RT_MASK
) << RT_SH
;
186 static __init u32
build_rd(u32 arg
)
189 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
191 return (arg
& RD_MASK
) << RD_SH
;
194 static __init u32
build_re(u32 arg
)
197 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
199 return (arg
& RE_MASK
) << RE_SH
;
202 static __init u32
build_simm(s32 arg
)
204 if (arg
> 0x7fff || arg
< -0x8000)
205 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
210 static __init u32
build_uimm(u32 arg
)
213 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
215 return arg
& IMM_MASK
;
218 static __init u32
build_bimm(s32 arg
)
220 if (arg
> 0x1ffff || arg
< -0x20000)
221 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
224 printk(KERN_WARNING
"Invalid TLB synthesizer branch target\n");
226 return ((arg
< 0) ? (1 << 15) : 0) | ((arg
>> 2) & 0x7fff);
229 static __init u32
build_jimm(u32 arg
)
231 if (arg
& ~((JIMM_MASK
) << 2))
232 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
234 return (arg
>> 2) & JIMM_MASK
;
237 static __init u32
build_func(u32 arg
)
239 if (arg
& ~FUNC_MASK
)
240 printk(KERN_WARNING
"TLB synthesizer field overflow\n");
242 return arg
& FUNC_MASK
;
246 * The order of opcode arguments is implicitly left to right,
247 * starting with RS and ending with FUNC or IMM.
249 static void __init
build_insn(u32
**buf
, enum opcode opc
, ...)
251 struct insn
*ip
= NULL
;
256 for (i
= 0; insn_table
[i
].opcode
!= insn_invalid
; i
++)
257 if (insn_table
[i
].opcode
== opc
) {
263 panic("Unsupported TLB synthesizer instruction %d", opc
);
267 if (ip
->fields
& RS
) op
|= build_rs(va_arg(ap
, u32
));
268 if (ip
->fields
& RT
) op
|= build_rt(va_arg(ap
, u32
));
269 if (ip
->fields
& RD
) op
|= build_rd(va_arg(ap
, u32
));
270 if (ip
->fields
& RE
) op
|= build_re(va_arg(ap
, u32
));
271 if (ip
->fields
& SIMM
) op
|= build_simm(va_arg(ap
, s32
));
272 if (ip
->fields
& UIMM
) op
|= build_uimm(va_arg(ap
, u32
));
273 if (ip
->fields
& BIMM
) op
|= build_bimm(va_arg(ap
, s32
));
274 if (ip
->fields
& JIMM
) op
|= build_jimm(va_arg(ap
, u32
));
275 if (ip
->fields
& FUNC
) op
|= build_func(va_arg(ap
, u32
));
282 #define I_u1u2u3(op) \
283 static inline void __init i##op(u32 **buf, unsigned int a, \
284 unsigned int b, unsigned int c) \
286 build_insn(buf, insn##op, a, b, c); \
289 #define I_u2u1u3(op) \
290 static inline void __init i##op(u32 **buf, unsigned int a, \
291 unsigned int b, unsigned int c) \
293 build_insn(buf, insn##op, b, a, c); \
296 #define I_u3u1u2(op) \
297 static inline void __init i##op(u32 **buf, unsigned int a, \
298 unsigned int b, unsigned int c) \
300 build_insn(buf, insn##op, b, c, a); \
303 #define I_u1u2s3(op) \
304 static inline void __init i##op(u32 **buf, unsigned int a, \
305 unsigned int b, signed int c) \
307 build_insn(buf, insn##op, a, b, c); \
310 #define I_u2s3u1(op) \
311 static inline void __init i##op(u32 **buf, unsigned int a, \
312 signed int b, unsigned int c) \
314 build_insn(buf, insn##op, c, a, b); \
317 #define I_u2u1s3(op) \
318 static inline void __init i##op(u32 **buf, unsigned int a, \
319 unsigned int b, signed int c) \
321 build_insn(buf, insn##op, b, a, c); \
325 static inline void __init i##op(u32 **buf, unsigned int a, \
328 build_insn(buf, insn##op, a, b); \
332 static inline void __init i##op(u32 **buf, unsigned int a, \
335 build_insn(buf, insn##op, a, b); \
339 static inline void __init i##op(u32 **buf, unsigned int a) \
341 build_insn(buf, insn##op, a); \
345 static inline void __init i##op(u32 **buf) \
347 build_insn(buf, insn##op); \
412 label_smp_pgtable_change
,
413 label_r3000_write_probe_fail
,
421 static __init
void build_label(struct label
**lab
, u32
*addr
,
430 static inline void l##lb(struct label **lab, u32 *addr) \
432 build_label(lab, addr, label##lb); \
444 L_LA(_smp_pgtable_change
)
445 L_LA(_r3000_write_probe_fail
)
447 /* convenience macros for instructions */
449 # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off)
450 # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off)
451 # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh)
452 # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh)
453 # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh)
454 # define i_MFC0(buf, rt, rd) i_dmfc0(buf, rt, rd)
455 # define i_MTC0(buf, rt, rd) i_dmtc0(buf, rt, rd)
456 # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val)
457 # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd)
458 # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd)
459 # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off)
460 # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off)
462 # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off)
463 # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off)
464 # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh)
465 # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh)
466 # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh)
467 # define i_MFC0(buf, rt, rd) i_mfc0(buf, rt, rd)
468 # define i_MTC0(buf, rt, rd) i_mtc0(buf, rt, rd)
469 # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val)
470 # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd)
471 # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd)
472 # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off)
473 # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off)
476 #define i_b(buf, off) i_beq(buf, 0, 0, off)
477 #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off)
478 #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off)
479 #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off)
480 #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off)
481 #define i_move(buf, a, b) i_ADDU(buf, a, 0, b)
482 #define i_nop(buf) i_sll(buf, 0, 0, 0)
483 #define i_ssnop(buf) i_sll(buf, 0, 0, 1)
484 #define i_ehb(buf) i_sll(buf, 0, 0, 3)
487 static __init
int __attribute__((unused
)) in_compat_space_p(long addr
)
489 /* Is this address in 32bit compat space? */
490 return (((addr
) & 0xffffffff00000000L
) == 0xffffffff00000000L
);
493 static __init
int __attribute__((unused
)) rel_highest(long val
)
495 return ((((val
+ 0x800080008000L
) >> 48) & 0xffff) ^ 0x8000) - 0x8000;
498 static __init
int __attribute__((unused
)) rel_higher(long val
)
500 return ((((val
+ 0x80008000L
) >> 32) & 0xffff) ^ 0x8000) - 0x8000;
504 static __init
int rel_hi(long val
)
506 return ((((val
+ 0x8000L
) >> 16) & 0xffff) ^ 0x8000) - 0x8000;
509 static __init
int rel_lo(long val
)
511 return ((val
& 0xffff) ^ 0x8000) - 0x8000;
514 static __init
void i_LA_mostly(u32
**buf
, unsigned int rs
, long addr
)
517 if (!in_compat_space_p(addr
)) {
518 i_lui(buf
, rs
, rel_highest(addr
));
519 if (rel_higher(addr
))
520 i_daddiu(buf
, rs
, rs
, rel_higher(addr
));
522 i_dsll(buf
, rs
, rs
, 16);
523 i_daddiu(buf
, rs
, rs
, rel_hi(addr
));
524 i_dsll(buf
, rs
, rs
, 16);
526 i_dsll32(buf
, rs
, rs
, 0);
529 i_lui(buf
, rs
, rel_hi(addr
));
532 static __init
void __attribute__((unused
)) i_LA(u32
**buf
, unsigned int rs
,
535 i_LA_mostly(buf
, rs
, addr
);
537 i_ADDIU(buf
, rs
, rs
, rel_lo(addr
));
550 static __init
void r_mips_pc16(struct reloc
**rel
, u32
*addr
,
554 (*rel
)->type
= R_MIPS_PC16
;
559 static inline void __resolve_relocs(struct reloc
*rel
, struct label
*lab
)
561 long laddr
= (long)lab
->addr
;
562 long raddr
= (long)rel
->addr
;
566 *rel
->addr
|= build_bimm(laddr
- (raddr
+ 4));
570 panic("Unsupported TLB synthesizer relocation %d",
575 static __init
void resolve_relocs(struct reloc
*rel
, struct label
*lab
)
579 for (; rel
->lab
!= label_invalid
; rel
++)
580 for (l
= lab
; l
->lab
!= label_invalid
; l
++)
581 if (rel
->lab
== l
->lab
)
582 __resolve_relocs(rel
, l
);
585 static __init
void move_relocs(struct reloc
*rel
, u32
*first
, u32
*end
,
588 for (; rel
->lab
!= label_invalid
; rel
++)
589 if (rel
->addr
>= first
&& rel
->addr
< end
)
593 static __init
void move_labels(struct label
*lab
, u32
*first
, u32
*end
,
596 for (; lab
->lab
!= label_invalid
; lab
++)
597 if (lab
->addr
>= first
&& lab
->addr
< end
)
601 static __init
void copy_handler(struct reloc
*rel
, struct label
*lab
,
602 u32
*first
, u32
*end
, u32
*target
)
604 long off
= (long)(target
- first
);
606 memcpy(target
, first
, (end
- first
) * sizeof(u32
));
608 move_relocs(rel
, first
, end
, off
);
609 move_labels(lab
, first
, end
, off
);
612 static __init
int __attribute__((unused
)) insn_has_bdelay(struct reloc
*rel
,
615 for (; rel
->lab
!= label_invalid
; rel
++) {
616 if (rel
->addr
== addr
617 && (rel
->type
== R_MIPS_PC16
618 || rel
->type
== R_MIPS_26
))
625 /* convenience functions for labeled branches */
626 static void __init
__attribute__((unused
))
627 il_bltz(u32
**p
, struct reloc
**r
, unsigned int reg
, enum label_id l
)
629 r_mips_pc16(r
, *p
, l
);
633 static void __init
__attribute__((unused
)) il_b(u32
**p
, struct reloc
**r
,
636 r_mips_pc16(r
, *p
, l
);
640 static void __init
il_beqz(u32
**p
, struct reloc
**r
, unsigned int reg
,
643 r_mips_pc16(r
, *p
, l
);
647 static void __init
__attribute__((unused
))
648 il_beqzl(u32
**p
, struct reloc
**r
, unsigned int reg
, enum label_id l
)
650 r_mips_pc16(r
, *p
, l
);
654 static void __init
il_bnez(u32
**p
, struct reloc
**r
, unsigned int reg
,
657 r_mips_pc16(r
, *p
, l
);
661 static void __init
il_bgezl(u32
**p
, struct reloc
**r
, unsigned int reg
,
664 r_mips_pc16(r
, *p
, l
);
668 /* The only general purpose registers allowed in TLB handlers. */
672 /* Some CP0 registers */
674 #define C0_ENTRYLO0 2
675 #define C0_ENTRYLO1 3
677 #define C0_BADVADDR 8
678 #define C0_ENTRYHI 10
680 #define C0_XCONTEXT 20
683 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT)
685 # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT)
688 /* The worst case length of the handler is around 18 instructions for
689 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
690 * Maximum space available is 32 instructions for R3000 and 64
691 * instructions for R4000.
693 * We deliberately chose a buffer size of 128, so we won't scribble
694 * over anything important on overflow before we panic.
696 static __initdata u32 tlb_handler
[128];
698 /* simply assume worst case size for labels and relocs */
699 static __initdata
struct label labels
[128];
700 static __initdata
struct reloc relocs
[128];
703 * The R3000 TLB handler is simple.
705 static void __init
build_r3000_tlb_refill_handler(void)
707 long pgdc
= (long)pgd_current
;
710 memset(tlb_handler
, 0, sizeof(tlb_handler
));
713 i_mfc0(&p
, K0
, C0_BADVADDR
);
714 i_lui(&p
, K1
, rel_hi(pgdc
)); /* cp0 delay */
715 i_lw(&p
, K1
, rel_lo(pgdc
), K1
);
716 i_srl(&p
, K0
, K0
, 22); /* load delay */
717 i_sll(&p
, K0
, K0
, 2);
718 i_addu(&p
, K1
, K1
, K0
);
719 i_mfc0(&p
, K0
, C0_CONTEXT
);
720 i_lw(&p
, K1
, 0, K1
); /* cp0 delay */
721 i_andi(&p
, K0
, K0
, 0xffc); /* load delay */
722 i_addu(&p
, K1
, K1
, K0
);
724 i_nop(&p
); /* load delay */
725 i_mtc0(&p
, K0
, C0_ENTRYLO0
);
726 i_mfc0(&p
, K1
, C0_EPC
); /* cp0 delay */
727 i_tlbwr(&p
); /* cp0 delay */
729 i_rfe(&p
); /* branch delay */
731 if (p
> tlb_handler
+ 32)
732 panic("TLB refill handler space exceeded");
734 printk("Synthesized TLB refill handler (%u instructions).\n",
735 (unsigned int)(p
- tlb_handler
));
740 for (i
= 0; i
< (p
- tlb_handler
); i
++)
741 printk("%08x\n", tlb_handler
[i
]);
745 memcpy((void *)CAC_BASE
, tlb_handler
, 0x80);
749 * The R4000 TLB handler is much more complicated. We have two
750 * consecutive handler areas with 32 instructions space each.
751 * Since they aren't used at the same time, we can overflow in the
752 * other one.To keep things simple, we first assume linear space,
753 * then we relocate it to the final handler layout as needed.
755 static __initdata u32 final_handler
[64];
760 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
761 * 2. A timing hazard exists for the TLBP instruction.
763 * stalling_instruction
766 * The JTLB is being read for the TLBP throughout the stall generated by the
767 * previous instruction. This is not really correct as the stalling instruction
768 * can modify the address used to access the JTLB. The failure symptom is that
769 * the TLBP instruction will use an address created for the stalling instruction
770 * and not the address held in C0_ENHI and thus report the wrong results.
772 * The software work-around is to not allow the instruction preceding the TLBP
773 * to stall - make it an NOP or some other instruction guaranteed not to stall.
775 * Errata 2 will not be fixed. This errata is also on the R5000.
777 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
779 static __init
void __attribute__((unused
)) build_tlb_probe_entry(u32
**p
)
781 switch (current_cpu_data
.cputype
) {
782 /* Found by experiment: R4600 v2.0 needs this, too. */
798 * Write random or indexed TLB entry, and care about the hazards from
799 * the preceeding mtc0 and for the following eret.
801 enum tlb_write_entry
{ tlb_random
, tlb_indexed
};
803 static __init
void build_tlb_write_entry(u32
**p
, struct label
**l
,
805 enum tlb_write_entry wmode
)
807 void(*tlbw
)(u32
**) = NULL
;
810 case tlb_random
: tlbw
= i_tlbwr
; break;
811 case tlb_indexed
: tlbw
= i_tlbwi
; break;
814 switch (current_cpu_data
.cputype
) {
822 * This branch uses up a mtc0 hazard nop slot and saves
823 * two nops after the tlbw instruction.
825 il_bgezl(p
, r
, 0, label_tlbw_hazard
);
827 l_tlbw_hazard(l
, *p
);
865 i_nop(p
); /* QED specifies 2 nops hazard */
867 * This branch uses up a mtc0 hazard nop slot and saves
868 * a nop after the tlbw instruction.
870 il_bgezl(p
, r
, 0, label_tlbw_hazard
);
872 l_tlbw_hazard(l
, *p
);
892 * When the JTLB is updated by tlbwi or tlbwr, a subsequent
893 * use of the JTLB for instructions should not occur for 4
894 * cpu cycles and use for data translations should not occur
929 panic("No TLB refill handler yet (CPU type: %d)",
930 current_cpu_data
.cputype
);
937 * TMP and PTR are scratch.
938 * TMP will be clobbered, PTR will hold the pmd entry.
941 build_get_pmde64(u32
**p
, struct label
**l
, struct reloc
**r
,
942 unsigned int tmp
, unsigned int ptr
)
944 long pgdc
= (long)pgd_current
;
947 * The vmalloc handling is not in the hotpath.
949 i_dmfc0(p
, tmp
, C0_BADVADDR
);
950 il_bltz(p
, r
, tmp
, label_vmalloc
);
951 /* No i_nop needed here, since the next insn doesn't touch TMP. */
955 * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
958 i_dmfc0(p
, ptr
, C0_CONTEXT
);
959 i_dsrl(p
, ptr
, ptr
, 23);
960 i_LA_mostly(p
, tmp
, pgdc
);
961 i_daddu(p
, ptr
, ptr
, tmp
);
962 i_dmfc0(p
, tmp
, C0_BADVADDR
);
963 i_ld(p
, ptr
, rel_lo(pgdc
), ptr
);
965 i_LA_mostly(p
, ptr
, pgdc
);
966 i_ld(p
, ptr
, rel_lo(pgdc
), ptr
);
969 l_vmalloc_done(l
, *p
);
970 i_dsrl(p
, tmp
, tmp
, PGDIR_SHIFT
-3); /* get pgd offset in bytes */
971 i_andi(p
, tmp
, tmp
, (PTRS_PER_PGD
- 1)<<3);
972 i_daddu(p
, ptr
, ptr
, tmp
); /* add in pgd offset */
973 i_dmfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
974 i_ld(p
, ptr
, 0, ptr
); /* get pmd pointer */
975 i_dsrl(p
, tmp
, tmp
, PMD_SHIFT
-3); /* get pmd offset in bytes */
976 i_andi(p
, tmp
, tmp
, (PTRS_PER_PMD
- 1)<<3);
977 i_daddu(p
, ptr
, ptr
, tmp
); /* add in pmd offset */
981 * BVADDR is the faulting address, PTR is scratch.
982 * PTR will hold the pgd for vmalloc.
985 build_get_pgd_vmalloc64(u32
**p
, struct label
**l
, struct reloc
**r
,
986 unsigned int bvaddr
, unsigned int ptr
)
988 long swpd
= (long)swapper_pg_dir
;
991 i_LA(p
, ptr
, VMALLOC_START
);
992 i_dsubu(p
, bvaddr
, bvaddr
, ptr
);
994 if (in_compat_space_p(swpd
) && !rel_lo(swpd
)) {
995 il_b(p
, r
, label_vmalloc_done
);
996 i_lui(p
, ptr
, rel_hi(swpd
));
998 i_LA_mostly(p
, ptr
, swpd
);
999 il_b(p
, r
, label_vmalloc_done
);
1000 i_daddiu(p
, ptr
, ptr
, rel_lo(swpd
));
1004 #else /* !CONFIG_64BIT */
1007 * TMP and PTR are scratch.
1008 * TMP will be clobbered, PTR will hold the pgd entry.
1010 static __init
void __attribute__((unused
))
1011 build_get_pgde32(u32
**p
, unsigned int tmp
, unsigned int ptr
)
1013 long pgdc
= (long)pgd_current
;
1015 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
1017 i_mfc0(p
, ptr
, C0_CONTEXT
);
1018 i_LA_mostly(p
, tmp
, pgdc
);
1019 i_srl(p
, ptr
, ptr
, 23);
1020 i_addu(p
, ptr
, tmp
, ptr
);
1022 i_LA_mostly(p
, ptr
, pgdc
);
1024 i_mfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
1025 i_lw(p
, ptr
, rel_lo(pgdc
), ptr
);
1026 i_srl(p
, tmp
, tmp
, PGDIR_SHIFT
); /* get pgd only bits */
1027 i_sll(p
, tmp
, tmp
, PGD_T_LOG2
);
1028 i_addu(p
, ptr
, ptr
, tmp
); /* add in pgd offset */
1031 #endif /* !CONFIG_64BIT */
1033 static __init
void build_adjust_context(u32
**p
, unsigned int ctx
)
1035 unsigned int shift
= 4 - (PTE_T_LOG2
+ 1);
1036 unsigned int mask
= (PTRS_PER_PTE
/ 2 - 1) << (PTE_T_LOG2
+ 1);
1038 switch (current_cpu_data
.cputype
) {
1055 i_SRL(p
, ctx
, ctx
, shift
);
1056 i_andi(p
, ctx
, ctx
, mask
);
1059 static __init
void build_get_ptep(u32
**p
, unsigned int tmp
, unsigned int ptr
)
1062 * Bug workaround for the Nevada. It seems as if under certain
1063 * circumstances the move from cp0_context might produce a
1064 * bogus result when the mfc0 instruction and its consumer are
1065 * in a different cacheline or a load instruction, probably any
1066 * memory reference, is between them.
1068 switch (current_cpu_data
.cputype
) {
1070 i_LW(p
, ptr
, 0, ptr
);
1071 GET_CONTEXT(p
, tmp
); /* get context reg */
1075 GET_CONTEXT(p
, tmp
); /* get context reg */
1076 i_LW(p
, ptr
, 0, ptr
);
1080 build_adjust_context(p
, tmp
);
1081 i_ADDU(p
, ptr
, ptr
, tmp
); /* add in offset */
1084 static __init
void build_update_entries(u32
**p
, unsigned int tmp
,
1088 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1089 * Kernel is a special case. Only a few CPUs use it.
1091 #ifdef CONFIG_64BIT_PHYS_ADDR
1092 if (cpu_has_64bits
) {
1093 i_ld(p
, tmp
, 0, ptep
); /* get even pte */
1094 i_ld(p
, ptep
, sizeof(pte_t
), ptep
); /* get odd pte */
1095 i_dsrl(p
, tmp
, tmp
, 6); /* convert to entrylo0 */
1096 i_mtc0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1097 i_dsrl(p
, ptep
, ptep
, 6); /* convert to entrylo1 */
1098 i_mtc0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1100 int pte_off_even
= sizeof(pte_t
) / 2;
1101 int pte_off_odd
= pte_off_even
+ sizeof(pte_t
);
1103 /* The pte entries are pre-shifted */
1104 i_lw(p
, tmp
, pte_off_even
, ptep
); /* get even pte */
1105 i_mtc0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1106 i_lw(p
, ptep
, pte_off_odd
, ptep
); /* get odd pte */
1107 i_mtc0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1110 i_LW(p
, tmp
, 0, ptep
); /* get even pte */
1111 i_LW(p
, ptep
, sizeof(pte_t
), ptep
); /* get odd pte */
1112 if (r45k_bvahwbug())
1113 build_tlb_probe_entry(p
);
1114 i_SRL(p
, tmp
, tmp
, 6); /* convert to entrylo0 */
1115 if (r4k_250MHZhwbug())
1116 i_mtc0(p
, 0, C0_ENTRYLO0
);
1117 i_mtc0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1118 i_SRL(p
, ptep
, ptep
, 6); /* convert to entrylo1 */
1119 if (r45k_bvahwbug())
1120 i_mfc0(p
, tmp
, C0_INDEX
);
1121 if (r4k_250MHZhwbug())
1122 i_mtc0(p
, 0, C0_ENTRYLO1
);
1123 i_mtc0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1127 static void __init
build_r4000_tlb_refill_handler(void)
1129 u32
*p
= tlb_handler
;
1130 struct label
*l
= labels
;
1131 struct reloc
*r
= relocs
;
1133 unsigned int final_len
;
1135 memset(tlb_handler
, 0, sizeof(tlb_handler
));
1136 memset(labels
, 0, sizeof(labels
));
1137 memset(relocs
, 0, sizeof(relocs
));
1138 memset(final_handler
, 0, sizeof(final_handler
));
1141 * create the plain linear handler
1143 if (bcm1250_m3_war()) {
1144 i_MFC0(&p
, K0
, C0_BADVADDR
);
1145 i_MFC0(&p
, K1
, C0_ENTRYHI
);
1146 i_xor(&p
, K0
, K0
, K1
);
1147 i_SRL(&p
, K0
, K0
, PAGE_SHIFT
+ 1);
1148 il_bnez(&p
, &r
, K0
, label_leave
);
1149 /* No need for i_nop */
1153 build_get_pmde64(&p
, &l
, &r
, K0
, K1
); /* get pmd in K1 */
1155 build_get_pgde32(&p
, K0
, K1
); /* get pgd in K1 */
1158 build_get_ptep(&p
, K0
, K1
);
1159 build_update_entries(&p
, K0
, K1
);
1160 build_tlb_write_entry(&p
, &l
, &r
, tlb_random
);
1162 i_eret(&p
); /* return from trap */
1165 build_get_pgd_vmalloc64(&p
, &l
, &r
, K0
, K1
);
1169 * Overflow check: For the 64bit handler, we need at least one
1170 * free instruction slot for the wrap-around branch. In worst
1171 * case, if the intended insertion point is a delay slot, we
1172 * need three, with the the second nop'ed and the third being
1176 if ((p
- tlb_handler
) > 64)
1177 panic("TLB refill handler space exceeded");
1179 if (((p
- tlb_handler
) > 63)
1180 || (((p
- tlb_handler
) > 61)
1181 && insn_has_bdelay(relocs
, tlb_handler
+ 29)))
1182 panic("TLB refill handler space exceeded");
1186 * Now fold the handler in the TLB refill handler space.
1190 /* Simplest case, just copy the handler. */
1191 copy_handler(relocs
, labels
, tlb_handler
, p
, f
);
1192 final_len
= p
- tlb_handler
;
1193 #else /* CONFIG_64BIT */
1194 f
= final_handler
+ 32;
1195 if ((p
- tlb_handler
) <= 32) {
1196 /* Just copy the handler. */
1197 copy_handler(relocs
, labels
, tlb_handler
, p
, f
);
1198 final_len
= p
- tlb_handler
;
1200 u32
*split
= tlb_handler
+ 30;
1203 * Find the split point.
1205 if (insn_has_bdelay(relocs
, split
- 1))
1208 /* Copy first part of the handler. */
1209 copy_handler(relocs
, labels
, tlb_handler
, split
, f
);
1210 f
+= split
- tlb_handler
;
1212 /* Insert branch. */
1213 l_split(&l
, final_handler
);
1214 il_b(&f
, &r
, label_split
);
1215 if (insn_has_bdelay(relocs
, split
))
1218 copy_handler(relocs
, labels
, split
, split
+ 1, f
);
1219 move_labels(labels
, f
, f
+ 1, -1);
1224 /* Copy the rest of the handler. */
1225 copy_handler(relocs
, labels
, split
, p
, final_handler
);
1226 final_len
= (f
- (final_handler
+ 32)) + (p
- split
);
1228 #endif /* CONFIG_64BIT */
1230 resolve_relocs(relocs
, labels
);
1231 printk("Synthesized TLB refill handler (%u instructions).\n",
1243 f
= final_handler
+ 32;
1244 #endif /* CONFIG_64BIT */
1245 for (i
= 0; i
< final_len
; i
++)
1246 printk("%08x\n", f
[i
]);
1250 memcpy((void *)CAC_BASE
, final_handler
, 0x100);
1254 * TLB load/store/modify handlers.
1256 * Only the fastpath gets synthesized at runtime, the slowpath for
1257 * do_page_fault remains normal asm.
1259 extern void tlb_do_page_fault_0(void);
1260 extern void tlb_do_page_fault_1(void);
1262 #define __tlb_handler_align \
1263 __attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT)))
1266 * 128 instructions for the fastpath handler is generous and should
1267 * never be exceeded.
1269 #define FASTPATH_SIZE 128
1271 u32 __tlb_handler_align handle_tlbl
[FASTPATH_SIZE
];
1272 u32 __tlb_handler_align handle_tlbs
[FASTPATH_SIZE
];
1273 u32 __tlb_handler_align handle_tlbm
[FASTPATH_SIZE
];
1276 iPTE_LW(u32
**p
, struct label
**l
, unsigned int pte
, unsigned int ptr
)
1279 # ifdef CONFIG_64BIT_PHYS_ADDR
1281 i_lld(p
, pte
, 0, ptr
);
1284 i_LL(p
, pte
, 0, ptr
);
1286 # ifdef CONFIG_64BIT_PHYS_ADDR
1288 i_ld(p
, pte
, 0, ptr
);
1291 i_LW(p
, pte
, 0, ptr
);
1296 iPTE_SW(u32
**p
, struct reloc
**r
, unsigned int pte
, unsigned int ptr
,
1299 #ifdef CONFIG_64BIT_PHYS_ADDR
1300 unsigned int hwmode
= mode
& (_PAGE_VALID
| _PAGE_DIRTY
);
1303 i_ori(p
, pte
, pte
, mode
);
1305 # ifdef CONFIG_64BIT_PHYS_ADDR
1307 i_scd(p
, pte
, 0, ptr
);
1310 i_SC(p
, pte
, 0, ptr
);
1312 if (r10000_llsc_war())
1313 il_beqzl(p
, r
, pte
, label_smp_pgtable_change
);
1315 il_beqz(p
, r
, pte
, label_smp_pgtable_change
);
1317 # ifdef CONFIG_64BIT_PHYS_ADDR
1318 if (!cpu_has_64bits
) {
1319 /* no i_nop needed */
1320 i_ll(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1321 i_ori(p
, pte
, pte
, hwmode
);
1322 i_sc(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1323 il_beqz(p
, r
, pte
, label_smp_pgtable_change
);
1324 /* no i_nop needed */
1325 i_lw(p
, pte
, 0, ptr
);
1332 # ifdef CONFIG_64BIT_PHYS_ADDR
1334 i_sd(p
, pte
, 0, ptr
);
1337 i_SW(p
, pte
, 0, ptr
);
1339 # ifdef CONFIG_64BIT_PHYS_ADDR
1340 if (!cpu_has_64bits
) {
1341 i_lw(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1342 i_ori(p
, pte
, pte
, hwmode
);
1343 i_sw(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1344 i_lw(p
, pte
, 0, ptr
);
1351 * Check if PTE is present, if not then jump to LABEL. PTR points to
1352 * the page table where this PTE is located, PTE will be re-loaded
1353 * with it's original value.
1356 build_pte_present(u32
**p
, struct label
**l
, struct reloc
**r
,
1357 unsigned int pte
, unsigned int ptr
, enum label_id lid
)
1359 i_andi(p
, pte
, pte
, _PAGE_PRESENT
| _PAGE_READ
);
1360 i_xori(p
, pte
, pte
, _PAGE_PRESENT
| _PAGE_READ
);
1361 il_bnez(p
, r
, pte
, lid
);
1362 iPTE_LW(p
, l
, pte
, ptr
);
1365 /* Make PTE valid, store result in PTR. */
1367 build_make_valid(u32
**p
, struct reloc
**r
, unsigned int pte
,
1370 unsigned int mode
= _PAGE_VALID
| _PAGE_ACCESSED
;
1372 iPTE_SW(p
, r
, pte
, ptr
, mode
);
1376 * Check if PTE can be written to, if not branch to LABEL. Regardless
1377 * restore PTE with value from PTR when done.
1380 build_pte_writable(u32
**p
, struct label
**l
, struct reloc
**r
,
1381 unsigned int pte
, unsigned int ptr
, enum label_id lid
)
1383 i_andi(p
, pte
, pte
, _PAGE_PRESENT
| _PAGE_WRITE
);
1384 i_xori(p
, pte
, pte
, _PAGE_PRESENT
| _PAGE_WRITE
);
1385 il_bnez(p
, r
, pte
, lid
);
1386 iPTE_LW(p
, l
, pte
, ptr
);
1389 /* Make PTE writable, update software status bits as well, then store
1393 build_make_write(u32
**p
, struct reloc
**r
, unsigned int pte
,
1396 unsigned int mode
= (_PAGE_ACCESSED
| _PAGE_MODIFIED
| _PAGE_VALID
1399 iPTE_SW(p
, r
, pte
, ptr
, mode
);
1403 * Check if PTE can be modified, if not branch to LABEL. Regardless
1404 * restore PTE with value from PTR when done.
1407 build_pte_modifiable(u32
**p
, struct label
**l
, struct reloc
**r
,
1408 unsigned int pte
, unsigned int ptr
, enum label_id lid
)
1410 i_andi(p
, pte
, pte
, _PAGE_WRITE
);
1411 il_beqz(p
, r
, pte
, lid
);
1412 iPTE_LW(p
, l
, pte
, ptr
);
1416 * R3000 style TLB load/store/modify handlers.
1420 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1424 build_r3000_pte_reload_tlbwi(u32
**p
, unsigned int pte
, unsigned int tmp
)
1426 i_mtc0(p
, pte
, C0_ENTRYLO0
); /* cp0 delay */
1427 i_mfc0(p
, tmp
, C0_EPC
); /* cp0 delay */
1430 i_rfe(p
); /* branch delay */
1434 * This places the pte into ENTRYLO0 and writes it with tlbwi
1435 * or tlbwr as appropriate. This is because the index register
1436 * may have the probe fail bit set as a result of a trap on a
1437 * kseg2 access, i.e. without refill. Then it returns.
1440 build_r3000_tlb_reload_write(u32
**p
, struct label
**l
, struct reloc
**r
,
1441 unsigned int pte
, unsigned int tmp
)
1443 i_mfc0(p
, tmp
, C0_INDEX
);
1444 i_mtc0(p
, pte
, C0_ENTRYLO0
); /* cp0 delay */
1445 il_bltz(p
, r
, tmp
, label_r3000_write_probe_fail
); /* cp0 delay */
1446 i_mfc0(p
, tmp
, C0_EPC
); /* branch delay */
1447 i_tlbwi(p
); /* cp0 delay */
1449 i_rfe(p
); /* branch delay */
1450 l_r3000_write_probe_fail(l
, *p
);
1451 i_tlbwr(p
); /* cp0 delay */
1453 i_rfe(p
); /* branch delay */
1457 build_r3000_tlbchange_handler_head(u32
**p
, unsigned int pte
,
1460 long pgdc
= (long)pgd_current
;
1462 i_mfc0(p
, pte
, C0_BADVADDR
);
1463 i_lui(p
, ptr
, rel_hi(pgdc
)); /* cp0 delay */
1464 i_lw(p
, ptr
, rel_lo(pgdc
), ptr
);
1465 i_srl(p
, pte
, pte
, 22); /* load delay */
1466 i_sll(p
, pte
, pte
, 2);
1467 i_addu(p
, ptr
, ptr
, pte
);
1468 i_mfc0(p
, pte
, C0_CONTEXT
);
1469 i_lw(p
, ptr
, 0, ptr
); /* cp0 delay */
1470 i_andi(p
, pte
, pte
, 0xffc); /* load delay */
1471 i_addu(p
, ptr
, ptr
, pte
);
1472 i_lw(p
, pte
, 0, ptr
);
1473 i_tlbp(p
); /* load delay */
1476 static void __init
build_r3000_tlb_load_handler(void)
1478 u32
*p
= handle_tlbl
;
1479 struct label
*l
= labels
;
1480 struct reloc
*r
= relocs
;
1482 memset(handle_tlbl
, 0, sizeof(handle_tlbl
));
1483 memset(labels
, 0, sizeof(labels
));
1484 memset(relocs
, 0, sizeof(relocs
));
1486 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1487 build_pte_present(&p
, &l
, &r
, K0
, K1
, label_nopage_tlbl
);
1488 i_nop(&p
); /* load delay */
1489 build_make_valid(&p
, &r
, K0
, K1
);
1490 build_r3000_tlb_reload_write(&p
, &l
, &r
, K0
, K1
);
1492 l_nopage_tlbl(&l
, p
);
1493 i_j(&p
, (unsigned long)tlb_do_page_fault_0
& 0x0fffffff);
1496 if ((p
- handle_tlbl
) > FASTPATH_SIZE
)
1497 panic("TLB load handler fastpath space exceeded");
1499 resolve_relocs(relocs
, labels
);
1500 printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1501 (unsigned int)(p
- handle_tlbl
));
1507 for (i
= 0; i
< (p
- handle_tlbl
); i
++)
1508 printk("%08x\n", handle_tlbl
[i
]);
1513 static void __init
build_r3000_tlb_store_handler(void)
1515 u32
*p
= handle_tlbs
;
1516 struct label
*l
= labels
;
1517 struct reloc
*r
= relocs
;
1519 memset(handle_tlbs
, 0, sizeof(handle_tlbs
));
1520 memset(labels
, 0, sizeof(labels
));
1521 memset(relocs
, 0, sizeof(relocs
));
1523 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1524 build_pte_writable(&p
, &l
, &r
, K0
, K1
, label_nopage_tlbs
);
1525 i_nop(&p
); /* load delay */
1526 build_make_write(&p
, &r
, K0
, K1
);
1527 build_r3000_tlb_reload_write(&p
, &l
, &r
, K0
, K1
);
1529 l_nopage_tlbs(&l
, p
);
1530 i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1533 if ((p
- handle_tlbs
) > FASTPATH_SIZE
)
1534 panic("TLB store handler fastpath space exceeded");
1536 resolve_relocs(relocs
, labels
);
1537 printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1538 (unsigned int)(p
- handle_tlbs
));
1544 for (i
= 0; i
< (p
- handle_tlbs
); i
++)
1545 printk("%08x\n", handle_tlbs
[i
]);
1550 static void __init
build_r3000_tlb_modify_handler(void)
1552 u32
*p
= handle_tlbm
;
1553 struct label
*l
= labels
;
1554 struct reloc
*r
= relocs
;
1556 memset(handle_tlbm
, 0, sizeof(handle_tlbm
));
1557 memset(labels
, 0, sizeof(labels
));
1558 memset(relocs
, 0, sizeof(relocs
));
1560 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1561 build_pte_modifiable(&p
, &l
, &r
, K0
, K1
, label_nopage_tlbm
);
1562 i_nop(&p
); /* load delay */
1563 build_make_write(&p
, &r
, K0
, K1
);
1564 build_r3000_pte_reload_tlbwi(&p
, K0
, K1
);
1566 l_nopage_tlbm(&l
, p
);
1567 i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1570 if ((p
- handle_tlbm
) > FASTPATH_SIZE
)
1571 panic("TLB modify handler fastpath space exceeded");
1573 resolve_relocs(relocs
, labels
);
1574 printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1575 (unsigned int)(p
- handle_tlbm
));
1581 for (i
= 0; i
< (p
- handle_tlbm
); i
++)
1582 printk("%08x\n", handle_tlbm
[i
]);
1588 * R4000 style TLB load/store/modify handlers.
1591 build_r4000_tlbchange_handler_head(u32
**p
, struct label
**l
,
1592 struct reloc
**r
, unsigned int pte
,
1596 build_get_pmde64(p
, l
, r
, pte
, ptr
); /* get pmd in ptr */
1598 build_get_pgde32(p
, pte
, ptr
); /* get pgd in ptr */
1601 i_MFC0(p
, pte
, C0_BADVADDR
);
1602 i_LW(p
, ptr
, 0, ptr
);
1603 i_SRL(p
, pte
, pte
, PAGE_SHIFT
+ PTE_ORDER
- PTE_T_LOG2
);
1604 i_andi(p
, pte
, pte
, (PTRS_PER_PTE
- 1) << PTE_T_LOG2
);
1605 i_ADDU(p
, ptr
, ptr
, pte
);
1608 l_smp_pgtable_change(l
, *p
);
1610 iPTE_LW(p
, l
, pte
, ptr
); /* get even pte */
1611 build_tlb_probe_entry(p
);
1615 build_r4000_tlbchange_handler_tail(u32
**p
, struct label
**l
,
1616 struct reloc
**r
, unsigned int tmp
,
1619 i_ori(p
, ptr
, ptr
, sizeof(pte_t
));
1620 i_xori(p
, ptr
, ptr
, sizeof(pte_t
));
1621 build_update_entries(p
, tmp
, ptr
);
1622 build_tlb_write_entry(p
, l
, r
, tlb_indexed
);
1624 i_eret(p
); /* return from trap */
1627 build_get_pgd_vmalloc64(p
, l
, r
, tmp
, ptr
);
1631 static void __init
build_r4000_tlb_load_handler(void)
1633 u32
*p
= handle_tlbl
;
1634 struct label
*l
= labels
;
1635 struct reloc
*r
= relocs
;
1637 memset(handle_tlbl
, 0, sizeof(handle_tlbl
));
1638 memset(labels
, 0, sizeof(labels
));
1639 memset(relocs
, 0, sizeof(relocs
));
1641 if (bcm1250_m3_war()) {
1642 i_MFC0(&p
, K0
, C0_BADVADDR
);
1643 i_MFC0(&p
, K1
, C0_ENTRYHI
);
1644 i_xor(&p
, K0
, K0
, K1
);
1645 i_SRL(&p
, K0
, K0
, PAGE_SHIFT
+ 1);
1646 il_bnez(&p
, &r
, K0
, label_leave
);
1647 /* No need for i_nop */
1650 build_r4000_tlbchange_handler_head(&p
, &l
, &r
, K0
, K1
);
1651 build_pte_present(&p
, &l
, &r
, K0
, K1
, label_nopage_tlbl
);
1652 build_make_valid(&p
, &r
, K0
, K1
);
1653 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, K0
, K1
);
1655 l_nopage_tlbl(&l
, p
);
1656 i_j(&p
, (unsigned long)tlb_do_page_fault_0
& 0x0fffffff);
1659 if ((p
- handle_tlbl
) > FASTPATH_SIZE
)
1660 panic("TLB load handler fastpath space exceeded");
1662 resolve_relocs(relocs
, labels
);
1663 printk("Synthesized TLB load handler fastpath (%u instructions).\n",
1664 (unsigned int)(p
- handle_tlbl
));
1670 for (i
= 0; i
< (p
- handle_tlbl
); i
++)
1671 printk("%08x\n", handle_tlbl
[i
]);
1676 static void __init
build_r4000_tlb_store_handler(void)
1678 u32
*p
= handle_tlbs
;
1679 struct label
*l
= labels
;
1680 struct reloc
*r
= relocs
;
1682 memset(handle_tlbs
, 0, sizeof(handle_tlbs
));
1683 memset(labels
, 0, sizeof(labels
));
1684 memset(relocs
, 0, sizeof(relocs
));
1686 build_r4000_tlbchange_handler_head(&p
, &l
, &r
, K0
, K1
);
1687 build_pte_writable(&p
, &l
, &r
, K0
, K1
, label_nopage_tlbs
);
1688 build_make_write(&p
, &r
, K0
, K1
);
1689 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, K0
, K1
);
1691 l_nopage_tlbs(&l
, p
);
1692 i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1695 if ((p
- handle_tlbs
) > FASTPATH_SIZE
)
1696 panic("TLB store handler fastpath space exceeded");
1698 resolve_relocs(relocs
, labels
);
1699 printk("Synthesized TLB store handler fastpath (%u instructions).\n",
1700 (unsigned int)(p
- handle_tlbs
));
1706 for (i
= 0; i
< (p
- handle_tlbs
); i
++)
1707 printk("%08x\n", handle_tlbs
[i
]);
1712 static void __init
build_r4000_tlb_modify_handler(void)
1714 u32
*p
= handle_tlbm
;
1715 struct label
*l
= labels
;
1716 struct reloc
*r
= relocs
;
1718 memset(handle_tlbm
, 0, sizeof(handle_tlbm
));
1719 memset(labels
, 0, sizeof(labels
));
1720 memset(relocs
, 0, sizeof(relocs
));
1722 build_r4000_tlbchange_handler_head(&p
, &l
, &r
, K0
, K1
);
1723 build_pte_modifiable(&p
, &l
, &r
, K0
, K1
, label_nopage_tlbm
);
1724 /* Present and writable bits set, set accessed and dirty bits. */
1725 build_make_write(&p
, &r
, K0
, K1
);
1726 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, K0
, K1
);
1728 l_nopage_tlbm(&l
, p
);
1729 i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1732 if ((p
- handle_tlbm
) > FASTPATH_SIZE
)
1733 panic("TLB modify handler fastpath space exceeded");
1735 resolve_relocs(relocs
, labels
);
1736 printk("Synthesized TLB modify handler fastpath (%u instructions).\n",
1737 (unsigned int)(p
- handle_tlbm
));
1743 for (i
= 0; i
< (p
- handle_tlbm
); i
++)
1744 printk("%08x\n", handle_tlbm
[i
]);
1749 void __init
build_tlb_refill_handler(void)
1752 * The refill handler is generated per-CPU, multi-node systems
1753 * may have local storage for it. The other handlers are only
1756 static int run_once
= 0;
1758 switch (current_cpu_data
.cputype
) {
1766 build_r3000_tlb_refill_handler();
1768 build_r3000_tlb_load_handler();
1769 build_r3000_tlb_store_handler();
1770 build_r3000_tlb_modify_handler();
1777 panic("No R6000 TLB refill handler yet");
1781 panic("No R8000 TLB refill handler yet");
1785 build_r4000_tlb_refill_handler();
1787 build_r4000_tlb_load_handler();
1788 build_r4000_tlb_store_handler();
1789 build_r4000_tlb_modify_handler();
1795 void __init
flush_tlb_handlers(void)
1797 flush_icache_range((unsigned long)handle_tlbl
,
1798 (unsigned long)handle_tlbl
+ sizeof(handle_tlbl
));
1799 flush_icache_range((unsigned long)handle_tlbs
,
1800 (unsigned long)handle_tlbs
+ sizeof(handle_tlbs
));
1801 flush_icache_range((unsigned long)handle_tlbm
,
1802 (unsigned long)handle_tlbm
+ sizeof(handle_tlbm
));