4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #define __DISABLE_GUP_DEPRECATED
20 #include <linux/export.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
40 #include <asm/uaccess.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
47 EXPORT_SYMBOL(high_memory
);
49 unsigned long max_mapnr
;
50 EXPORT_SYMBOL(max_mapnr
);
51 unsigned long highest_memmap_pfn
;
52 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
53 int heap_stack_gap
= 0;
55 atomic_long_t mmap_pages_allocated
;
57 EXPORT_SYMBOL(mem_map
);
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache
*vm_region_jar
;
61 struct rb_root nommu_region_tree
= RB_ROOT
;
62 DECLARE_RWSEM(nommu_region_sem
);
64 const struct vm_operations_struct generic_file_vm_ops
= {
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
71 * Doesn't have to be accurate, i.e. may have races.
73 unsigned int kobjsize(const void *objp
)
78 * If the object we have should not have ksize performed on it,
81 if (!objp
|| !virt_addr_valid(objp
))
84 page
= virt_to_head_page(objp
);
87 * If the allocator sets PageSlab, we know the pointer came from
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
99 if (!PageCompound(page
)) {
100 struct vm_area_struct
*vma
;
102 vma
= find_vma(current
->mm
, (unsigned long)objp
);
104 return vma
->vm_end
- vma
->vm_start
;
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
111 return PAGE_SIZE
<< compound_order(page
);
114 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
115 unsigned long start
, unsigned long nr_pages
,
116 unsigned int foll_flags
, struct page
**pages
,
117 struct vm_area_struct
**vmas
, int *nonblocking
)
119 struct vm_area_struct
*vma
;
120 unsigned long vm_flags
;
123 /* calculate required read or write permissions.
124 * If FOLL_FORCE is set, we only require the "MAY" flags.
126 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
127 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
128 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
129 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
131 for (i
= 0; i
< nr_pages
; i
++) {
132 vma
= find_vma(mm
, start
);
134 goto finish_or_fault
;
136 /* protect what we can, including chardevs */
137 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
138 !(vm_flags
& vma
->vm_flags
))
139 goto finish_or_fault
;
142 pages
[i
] = virt_to_page(start
);
148 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
154 return i
? : -EFAULT
;
158 * get a list of pages in an address range belonging to the specified process
159 * and indicate the VMA that covers each page
160 * - this is potentially dodgy as we may end incrementing the page count of a
161 * slab page or a secondary page from a compound page
162 * - don't permit access to VMAs that don't support it, such as I/O mappings
164 long get_user_pages6(unsigned long start
, unsigned long nr_pages
,
165 int write
, int force
, struct page
**pages
,
166 struct vm_area_struct
**vmas
)
175 return __get_user_pages(current
, current
->mm
, start
, nr_pages
, flags
,
178 EXPORT_SYMBOL(get_user_pages6
);
180 long get_user_pages_locked6(unsigned long start
, unsigned long nr_pages
,
181 int write
, int force
, struct page
**pages
,
184 return get_user_pages6(start
, nr_pages
, write
, force
, pages
, NULL
);
186 EXPORT_SYMBOL(get_user_pages_locked6
);
188 long __get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
189 unsigned long start
, unsigned long nr_pages
,
190 int write
, int force
, struct page
**pages
,
191 unsigned int gup_flags
)
194 down_read(&mm
->mmap_sem
);
195 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, gup_flags
, pages
,
197 up_read(&mm
->mmap_sem
);
200 EXPORT_SYMBOL(__get_user_pages_unlocked
);
202 long get_user_pages_unlocked5(unsigned long start
, unsigned long nr_pages
,
203 int write
, int force
, struct page
**pages
)
205 return __get_user_pages_unlocked(current
, current
->mm
, start
, nr_pages
,
206 write
, force
, pages
, 0);
208 EXPORT_SYMBOL(get_user_pages_unlocked5
);
211 * follow_pfn - look up PFN at a user virtual address
212 * @vma: memory mapping
213 * @address: user virtual address
214 * @pfn: location to store found PFN
216 * Only IO mappings and raw PFN mappings are allowed.
218 * Returns zero and the pfn at @pfn on success, -ve otherwise.
220 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
223 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
226 *pfn
= address
>> PAGE_SHIFT
;
229 EXPORT_SYMBOL(follow_pfn
);
231 LIST_HEAD(vmap_area_list
);
233 void vfree(const void *addr
)
237 EXPORT_SYMBOL(vfree
);
239 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
242 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
243 * returns only a logical address.
245 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
247 EXPORT_SYMBOL(__vmalloc
);
249 void *vmalloc_user(unsigned long size
)
253 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
256 struct vm_area_struct
*vma
;
258 down_write(¤t
->mm
->mmap_sem
);
259 vma
= find_vma(current
->mm
, (unsigned long)ret
);
261 vma
->vm_flags
|= VM_USERMAP
;
262 up_write(¤t
->mm
->mmap_sem
);
267 EXPORT_SYMBOL(vmalloc_user
);
269 struct page
*vmalloc_to_page(const void *addr
)
271 return virt_to_page(addr
);
273 EXPORT_SYMBOL(vmalloc_to_page
);
275 unsigned long vmalloc_to_pfn(const void *addr
)
277 return page_to_pfn(virt_to_page(addr
));
279 EXPORT_SYMBOL(vmalloc_to_pfn
);
281 long vread(char *buf
, char *addr
, unsigned long count
)
283 /* Don't allow overflow */
284 if ((unsigned long) buf
+ count
< count
)
285 count
= -(unsigned long) buf
;
287 memcpy(buf
, addr
, count
);
291 long vwrite(char *buf
, char *addr
, unsigned long count
)
293 /* Don't allow overflow */
294 if ((unsigned long) addr
+ count
< count
)
295 count
= -(unsigned long) addr
;
297 memcpy(addr
, buf
, count
);
302 * vmalloc - allocate virtually contiguous memory
304 * @size: allocation size
306 * Allocate enough pages to cover @size from the page level
307 * allocator and map them into contiguous kernel virtual space.
309 * For tight control over page level allocator and protection flags
310 * use __vmalloc() instead.
312 void *vmalloc(unsigned long size
)
314 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
316 EXPORT_SYMBOL(vmalloc
);
319 * vzalloc - allocate virtually contiguous memory with zero fill
321 * @size: allocation size
323 * Allocate enough pages to cover @size from the page level
324 * allocator and map them into contiguous kernel virtual space.
325 * The memory allocated is set to zero.
327 * For tight control over page level allocator and protection flags
328 * use __vmalloc() instead.
330 void *vzalloc(unsigned long size
)
332 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
335 EXPORT_SYMBOL(vzalloc
);
338 * vmalloc_node - allocate memory on a specific node
339 * @size: allocation size
342 * Allocate enough pages to cover @size from the page level
343 * allocator and map them into contiguous kernel virtual space.
345 * For tight control over page level allocator and protection flags
346 * use __vmalloc() instead.
348 void *vmalloc_node(unsigned long size
, int node
)
350 return vmalloc(size
);
352 EXPORT_SYMBOL(vmalloc_node
);
355 * vzalloc_node - allocate memory on a specific node with zero fill
356 * @size: allocation size
359 * Allocate enough pages to cover @size from the page level
360 * allocator and map them into contiguous kernel virtual space.
361 * The memory allocated is set to zero.
363 * For tight control over page level allocator and protection flags
364 * use __vmalloc() instead.
366 void *vzalloc_node(unsigned long size
, int node
)
368 return vzalloc(size
);
370 EXPORT_SYMBOL(vzalloc_node
);
372 #ifndef PAGE_KERNEL_EXEC
373 # define PAGE_KERNEL_EXEC PAGE_KERNEL
377 * vmalloc_exec - allocate virtually contiguous, executable memory
378 * @size: allocation size
380 * Kernel-internal function to allocate enough pages to cover @size
381 * the page level allocator and map them into contiguous and
382 * executable kernel virtual space.
384 * For tight control over page level allocator and protection flags
385 * use __vmalloc() instead.
388 void *vmalloc_exec(unsigned long size
)
390 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
394 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
395 * @size: allocation size
397 * Allocate enough 32bit PA addressable pages to cover @size from the
398 * page level allocator and map them into contiguous kernel virtual space.
400 void *vmalloc_32(unsigned long size
)
402 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
404 EXPORT_SYMBOL(vmalloc_32
);
407 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
408 * @size: allocation size
410 * The resulting memory area is 32bit addressable and zeroed so it can be
411 * mapped to userspace without leaking data.
413 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
414 * remap_vmalloc_range() are permissible.
416 void *vmalloc_32_user(unsigned long size
)
419 * We'll have to sort out the ZONE_DMA bits for 64-bit,
420 * but for now this can simply use vmalloc_user() directly.
422 return vmalloc_user(size
);
424 EXPORT_SYMBOL(vmalloc_32_user
);
426 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
433 void vunmap(const void *addr
)
437 EXPORT_SYMBOL(vunmap
);
439 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
444 EXPORT_SYMBOL(vm_map_ram
);
446 void vm_unmap_ram(const void *mem
, unsigned int count
)
450 EXPORT_SYMBOL(vm_unmap_ram
);
452 void vm_unmap_aliases(void)
455 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
458 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
461 void __weak
vmalloc_sync_all(void)
466 * alloc_vm_area - allocate a range of kernel address space
467 * @size: size of the area
469 * Returns: NULL on failure, vm_struct on success
471 * This function reserves a range of kernel address space, and
472 * allocates pagetables to map that range. No actual mappings
473 * are created. If the kernel address space is not shared
474 * between processes, it syncs the pagetable across all
477 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
482 EXPORT_SYMBOL_GPL(alloc_vm_area
);
484 void free_vm_area(struct vm_struct
*area
)
488 EXPORT_SYMBOL_GPL(free_vm_area
);
490 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
495 EXPORT_SYMBOL(vm_insert_page
);
498 * sys_brk() for the most part doesn't need the global kernel
499 * lock, except when an application is doing something nasty
500 * like trying to un-brk an area that has already been mapped
501 * to a regular file. in this case, the unmapping will need
502 * to invoke file system routines that need the global lock.
504 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
506 struct mm_struct
*mm
= current
->mm
;
508 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
515 * Always allow shrinking brk
517 if (brk
<= mm
->brk
) {
523 * Ok, looks good - let it rip.
525 flush_icache_range(mm
->brk
, brk
);
526 return mm
->brk
= brk
;
530 * initialise the VMA and region record slabs
532 void __init
mmap_init(void)
536 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
538 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
|SLAB_ACCOUNT
);
542 * validate the region tree
543 * - the caller must hold the region lock
545 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
546 static noinline
void validate_nommu_regions(void)
548 struct vm_region
*region
, *last
;
549 struct rb_node
*p
, *lastp
;
551 lastp
= rb_first(&nommu_region_tree
);
555 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
556 BUG_ON(last
->vm_end
<= last
->vm_start
);
557 BUG_ON(last
->vm_top
< last
->vm_end
);
559 while ((p
= rb_next(lastp
))) {
560 region
= rb_entry(p
, struct vm_region
, vm_rb
);
561 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
563 BUG_ON(region
->vm_end
<= region
->vm_start
);
564 BUG_ON(region
->vm_top
< region
->vm_end
);
565 BUG_ON(region
->vm_start
< last
->vm_top
);
571 static void validate_nommu_regions(void)
577 * add a region into the global tree
579 static void add_nommu_region(struct vm_region
*region
)
581 struct vm_region
*pregion
;
582 struct rb_node
**p
, *parent
;
584 validate_nommu_regions();
587 p
= &nommu_region_tree
.rb_node
;
590 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
591 if (region
->vm_start
< pregion
->vm_start
)
593 else if (region
->vm_start
> pregion
->vm_start
)
595 else if (pregion
== region
)
601 rb_link_node(®ion
->vm_rb
, parent
, p
);
602 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
604 validate_nommu_regions();
608 * delete a region from the global tree
610 static void delete_nommu_region(struct vm_region
*region
)
612 BUG_ON(!nommu_region_tree
.rb_node
);
614 validate_nommu_regions();
615 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
616 validate_nommu_regions();
620 * free a contiguous series of pages
622 static void free_page_series(unsigned long from
, unsigned long to
)
624 for (; from
< to
; from
+= PAGE_SIZE
) {
625 struct page
*page
= virt_to_page(from
);
627 atomic_long_dec(&mmap_pages_allocated
);
633 * release a reference to a region
634 * - the caller must hold the region semaphore for writing, which this releases
635 * - the region may not have been added to the tree yet, in which case vm_top
636 * will equal vm_start
638 static void __put_nommu_region(struct vm_region
*region
)
639 __releases(nommu_region_sem
)
641 BUG_ON(!nommu_region_tree
.rb_node
);
643 if (--region
->vm_usage
== 0) {
644 if (region
->vm_top
> region
->vm_start
)
645 delete_nommu_region(region
);
646 up_write(&nommu_region_sem
);
649 fput(region
->vm_file
);
651 /* IO memory and memory shared directly out of the pagecache
652 * from ramfs/tmpfs mustn't be released here */
653 if (region
->vm_flags
& VM_MAPPED_COPY
)
654 free_page_series(region
->vm_start
, region
->vm_top
);
655 kmem_cache_free(vm_region_jar
, region
);
657 up_write(&nommu_region_sem
);
662 * release a reference to a region
664 static void put_nommu_region(struct vm_region
*region
)
666 down_write(&nommu_region_sem
);
667 __put_nommu_region(region
);
671 * update protection on a vma
673 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
676 struct mm_struct
*mm
= vma
->vm_mm
;
677 long start
= vma
->vm_start
& PAGE_MASK
;
678 while (start
< vma
->vm_end
) {
679 protect_page(mm
, start
, flags
);
682 update_protections(mm
);
687 * add a VMA into a process's mm_struct in the appropriate place in the list
688 * and tree and add to the address space's page tree also if not an anonymous
690 * - should be called with mm->mmap_sem held writelocked
692 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
694 struct vm_area_struct
*pvma
, *prev
;
695 struct address_space
*mapping
;
696 struct rb_node
**p
, *parent
, *rb_prev
;
698 BUG_ON(!vma
->vm_region
);
703 protect_vma(vma
, vma
->vm_flags
);
705 /* add the VMA to the mapping */
707 mapping
= vma
->vm_file
->f_mapping
;
709 i_mmap_lock_write(mapping
);
710 flush_dcache_mmap_lock(mapping
);
711 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
712 flush_dcache_mmap_unlock(mapping
);
713 i_mmap_unlock_write(mapping
);
716 /* add the VMA to the tree */
717 parent
= rb_prev
= NULL
;
718 p
= &mm
->mm_rb
.rb_node
;
721 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
723 /* sort by: start addr, end addr, VMA struct addr in that order
724 * (the latter is necessary as we may get identical VMAs) */
725 if (vma
->vm_start
< pvma
->vm_start
)
727 else if (vma
->vm_start
> pvma
->vm_start
) {
730 } else if (vma
->vm_end
< pvma
->vm_end
)
732 else if (vma
->vm_end
> pvma
->vm_end
) {
735 } else if (vma
< pvma
)
737 else if (vma
> pvma
) {
744 rb_link_node(&vma
->vm_rb
, parent
, p
);
745 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
747 /* add VMA to the VMA list also */
750 prev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
752 __vma_link_list(mm
, vma
, prev
, parent
);
756 * delete a VMA from its owning mm_struct and address space
758 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
761 struct address_space
*mapping
;
762 struct mm_struct
*mm
= vma
->vm_mm
;
763 struct task_struct
*curr
= current
;
768 for (i
= 0; i
< VMACACHE_SIZE
; i
++) {
769 /* if the vma is cached, invalidate the entire cache */
770 if (curr
->vmacache
[i
] == vma
) {
771 vmacache_invalidate(mm
);
776 /* remove the VMA from the mapping */
778 mapping
= vma
->vm_file
->f_mapping
;
780 i_mmap_lock_write(mapping
);
781 flush_dcache_mmap_lock(mapping
);
782 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
783 flush_dcache_mmap_unlock(mapping
);
784 i_mmap_unlock_write(mapping
);
787 /* remove from the MM's tree and list */
788 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
791 vma
->vm_prev
->vm_next
= vma
->vm_next
;
793 mm
->mmap
= vma
->vm_next
;
796 vma
->vm_next
->vm_prev
= vma
->vm_prev
;
800 * destroy a VMA record
802 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
804 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
805 vma
->vm_ops
->close(vma
);
808 put_nommu_region(vma
->vm_region
);
809 kmem_cache_free(vm_area_cachep
, vma
);
813 * look up the first VMA in which addr resides, NULL if none
814 * - should be called with mm->mmap_sem at least held readlocked
816 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
818 struct vm_area_struct
*vma
;
820 /* check the cache first */
821 vma
= vmacache_find(mm
, addr
);
825 /* trawl the list (there may be multiple mappings in which addr
827 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
828 if (vma
->vm_start
> addr
)
830 if (vma
->vm_end
> addr
) {
831 vmacache_update(addr
, vma
);
838 EXPORT_SYMBOL(find_vma
);
842 * - we don't extend stack VMAs under NOMMU conditions
844 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
846 return find_vma(mm
, addr
);
850 * expand a stack to a given address
851 * - not supported under NOMMU conditions
853 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
859 * look up the first VMA exactly that exactly matches addr
860 * - should be called with mm->mmap_sem at least held readlocked
862 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
866 struct vm_area_struct
*vma
;
867 unsigned long end
= addr
+ len
;
869 /* check the cache first */
870 vma
= vmacache_find_exact(mm
, addr
, end
);
874 /* trawl the list (there may be multiple mappings in which addr
876 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
877 if (vma
->vm_start
< addr
)
879 if (vma
->vm_start
> addr
)
881 if (vma
->vm_end
== end
) {
882 vmacache_update(addr
, vma
);
891 * determine whether a mapping should be permitted and, if so, what sort of
892 * mapping we're capable of supporting
894 static int validate_mmap_request(struct file
*file
,
900 unsigned long *_capabilities
)
902 unsigned long capabilities
, rlen
;
905 /* do the simple checks first */
906 if (flags
& MAP_FIXED
)
909 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
910 (flags
& MAP_TYPE
) != MAP_SHARED
)
916 /* Careful about overflows.. */
917 rlen
= PAGE_ALIGN(len
);
918 if (!rlen
|| rlen
> TASK_SIZE
)
921 /* offset overflow? */
922 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
926 /* files must support mmap */
927 if (!file
->f_op
->mmap
)
930 /* work out if what we've got could possibly be shared
931 * - we support chardevs that provide their own "memory"
932 * - we support files/blockdevs that are memory backed
934 if (file
->f_op
->mmap_capabilities
) {
935 capabilities
= file
->f_op
->mmap_capabilities(file
);
937 /* no explicit capabilities set, so assume some
939 switch (file_inode(file
)->i_mode
& S_IFMT
) {
942 capabilities
= NOMMU_MAP_COPY
;
957 /* eliminate any capabilities that we can't support on this
959 if (!file
->f_op
->get_unmapped_area
)
960 capabilities
&= ~NOMMU_MAP_DIRECT
;
961 if (!(file
->f_mode
& FMODE_CAN_READ
))
962 capabilities
&= ~NOMMU_MAP_COPY
;
964 /* The file shall have been opened with read permission. */
965 if (!(file
->f_mode
& FMODE_READ
))
968 if (flags
& MAP_SHARED
) {
969 /* do checks for writing, appending and locking */
970 if ((prot
& PROT_WRITE
) &&
971 !(file
->f_mode
& FMODE_WRITE
))
974 if (IS_APPEND(file_inode(file
)) &&
975 (file
->f_mode
& FMODE_WRITE
))
978 if (locks_verify_locked(file
))
981 if (!(capabilities
& NOMMU_MAP_DIRECT
))
984 /* we mustn't privatise shared mappings */
985 capabilities
&= ~NOMMU_MAP_COPY
;
987 /* we're going to read the file into private memory we
989 if (!(capabilities
& NOMMU_MAP_COPY
))
992 /* we don't permit a private writable mapping to be
993 * shared with the backing device */
994 if (prot
& PROT_WRITE
)
995 capabilities
&= ~NOMMU_MAP_DIRECT
;
998 if (capabilities
& NOMMU_MAP_DIRECT
) {
999 if (((prot
& PROT_READ
) && !(capabilities
& NOMMU_MAP_READ
)) ||
1000 ((prot
& PROT_WRITE
) && !(capabilities
& NOMMU_MAP_WRITE
)) ||
1001 ((prot
& PROT_EXEC
) && !(capabilities
& NOMMU_MAP_EXEC
))
1003 capabilities
&= ~NOMMU_MAP_DIRECT
;
1004 if (flags
& MAP_SHARED
) {
1005 pr_warn("MAP_SHARED not completely supported on !MMU\n");
1011 /* handle executable mappings and implied executable
1013 if (path_noexec(&file
->f_path
)) {
1014 if (prot
& PROT_EXEC
)
1016 } else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1017 /* handle implication of PROT_EXEC by PROT_READ */
1018 if (current
->personality
& READ_IMPLIES_EXEC
) {
1019 if (capabilities
& NOMMU_MAP_EXEC
)
1022 } else if ((prot
& PROT_READ
) &&
1023 (prot
& PROT_EXEC
) &&
1024 !(capabilities
& NOMMU_MAP_EXEC
)
1026 /* backing file is not executable, try to copy */
1027 capabilities
&= ~NOMMU_MAP_DIRECT
;
1030 /* anonymous mappings are always memory backed and can be
1033 capabilities
= NOMMU_MAP_COPY
;
1035 /* handle PROT_EXEC implication by PROT_READ */
1036 if ((prot
& PROT_READ
) &&
1037 (current
->personality
& READ_IMPLIES_EXEC
))
1041 /* allow the security API to have its say */
1042 ret
= security_mmap_addr(addr
);
1047 *_capabilities
= capabilities
;
1052 * we've determined that we can make the mapping, now translate what we
1053 * now know into VMA flags
1055 static unsigned long determine_vm_flags(struct file
*file
,
1057 unsigned long flags
,
1058 unsigned long capabilities
)
1060 unsigned long vm_flags
;
1062 vm_flags
= calc_vm_prot_bits(prot
, 0) | calc_vm_flag_bits(flags
);
1063 /* vm_flags |= mm->def_flags; */
1065 if (!(capabilities
& NOMMU_MAP_DIRECT
)) {
1066 /* attempt to share read-only copies of mapped file chunks */
1067 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1068 if (file
&& !(prot
& PROT_WRITE
))
1069 vm_flags
|= VM_MAYSHARE
;
1071 /* overlay a shareable mapping on the backing device or inode
1072 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1074 vm_flags
|= VM_MAYSHARE
| (capabilities
& NOMMU_VMFLAGS
);
1075 if (flags
& MAP_SHARED
)
1076 vm_flags
|= VM_SHARED
;
1079 /* refuse to let anyone share private mappings with this process if
1080 * it's being traced - otherwise breakpoints set in it may interfere
1081 * with another untraced process
1083 if ((flags
& MAP_PRIVATE
) && current
->ptrace
)
1084 vm_flags
&= ~VM_MAYSHARE
;
1090 * set up a shared mapping on a file (the driver or filesystem provides and
1093 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1097 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1099 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1105 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1106 * opposed to tried but failed) so we can only give a suitable error as
1107 * it's not possible to make a private copy if MAP_SHARED was given */
1112 * set up a private mapping or an anonymous shared mapping
1114 static int do_mmap_private(struct vm_area_struct
*vma
,
1115 struct vm_region
*region
,
1117 unsigned long capabilities
)
1119 unsigned long total
, point
;
1123 /* invoke the file's mapping function so that it can keep track of
1124 * shared mappings on devices or memory
1125 * - VM_MAYSHARE will be set if it may attempt to share
1127 if (capabilities
& NOMMU_MAP_DIRECT
) {
1128 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1130 /* shouldn't return success if we're not sharing */
1131 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1132 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1138 /* getting an ENOSYS error indicates that direct mmap isn't
1139 * possible (as opposed to tried but failed) so we'll try to
1140 * make a private copy of the data and map that instead */
1144 /* allocate some memory to hold the mapping
1145 * - note that this may not return a page-aligned address if the object
1146 * we're allocating is smaller than a page
1148 order
= get_order(len
);
1150 point
= len
>> PAGE_SHIFT
;
1152 /* we don't want to allocate a power-of-2 sized page set */
1153 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
)
1156 base
= alloc_pages_exact(total
<< PAGE_SHIFT
, GFP_KERNEL
);
1160 atomic_long_add(total
, &mmap_pages_allocated
);
1162 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1163 region
->vm_start
= (unsigned long) base
;
1164 region
->vm_end
= region
->vm_start
+ len
;
1165 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1167 vma
->vm_start
= region
->vm_start
;
1168 vma
->vm_end
= region
->vm_start
+ len
;
1171 /* read the contents of a file into the copy */
1172 mm_segment_t old_fs
;
1175 fpos
= vma
->vm_pgoff
;
1176 fpos
<<= PAGE_SHIFT
;
1180 ret
= __vfs_read(vma
->vm_file
, base
, len
, &fpos
);
1186 /* clear the last little bit */
1188 memset(base
+ ret
, 0, len
- ret
);
1195 free_page_series(region
->vm_start
, region
->vm_top
);
1196 region
->vm_start
= vma
->vm_start
= 0;
1197 region
->vm_end
= vma
->vm_end
= 0;
1202 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1203 len
, current
->pid
, current
->comm
);
1209 * handle mapping creation for uClinux
1211 unsigned long do_mmap(struct file
*file
,
1215 unsigned long flags
,
1216 vm_flags_t vm_flags
,
1217 unsigned long pgoff
,
1218 unsigned long *populate
)
1220 struct vm_area_struct
*vma
;
1221 struct vm_region
*region
;
1223 unsigned long capabilities
, result
;
1228 /* decide whether we should attempt the mapping, and if so what sort of
1230 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1235 /* we ignore the address hint */
1237 len
= PAGE_ALIGN(len
);
1239 /* we've determined that we can make the mapping, now translate what we
1240 * now know into VMA flags */
1241 vm_flags
|= determine_vm_flags(file
, prot
, flags
, capabilities
);
1243 /* we're going to need to record the mapping */
1244 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1246 goto error_getting_region
;
1248 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1250 goto error_getting_vma
;
1252 region
->vm_usage
= 1;
1253 region
->vm_flags
= vm_flags
;
1254 region
->vm_pgoff
= pgoff
;
1256 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1257 vma
->vm_flags
= vm_flags
;
1258 vma
->vm_pgoff
= pgoff
;
1261 region
->vm_file
= get_file(file
);
1262 vma
->vm_file
= get_file(file
);
1265 down_write(&nommu_region_sem
);
1267 /* if we want to share, we need to check for regions created by other
1268 * mmap() calls that overlap with our proposed mapping
1269 * - we can only share with a superset match on most regular files
1270 * - shared mappings on character devices and memory backed files are
1271 * permitted to overlap inexactly as far as we are concerned for in
1272 * these cases, sharing is handled in the driver or filesystem rather
1275 if (vm_flags
& VM_MAYSHARE
) {
1276 struct vm_region
*pregion
;
1277 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1279 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1280 pgend
= pgoff
+ pglen
;
1282 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1283 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1285 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1288 /* search for overlapping mappings on the same file */
1289 if (file_inode(pregion
->vm_file
) !=
1293 if (pregion
->vm_pgoff
>= pgend
)
1296 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1297 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1298 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1299 if (pgoff
>= rpgend
)
1302 /* handle inexactly overlapping matches between
1304 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1305 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1306 /* new mapping is not a subset of the region */
1307 if (!(capabilities
& NOMMU_MAP_DIRECT
))
1308 goto sharing_violation
;
1312 /* we've found a region we can share */
1313 pregion
->vm_usage
++;
1314 vma
->vm_region
= pregion
;
1315 start
= pregion
->vm_start
;
1316 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1317 vma
->vm_start
= start
;
1318 vma
->vm_end
= start
+ len
;
1320 if (pregion
->vm_flags
& VM_MAPPED_COPY
)
1321 vma
->vm_flags
|= VM_MAPPED_COPY
;
1323 ret
= do_mmap_shared_file(vma
);
1325 vma
->vm_region
= NULL
;
1328 pregion
->vm_usage
--;
1330 goto error_just_free
;
1333 fput(region
->vm_file
);
1334 kmem_cache_free(vm_region_jar
, region
);
1340 /* obtain the address at which to make a shared mapping
1341 * - this is the hook for quasi-memory character devices to
1342 * tell us the location of a shared mapping
1344 if (capabilities
& NOMMU_MAP_DIRECT
) {
1345 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1347 if (IS_ERR_VALUE(addr
)) {
1350 goto error_just_free
;
1352 /* the driver refused to tell us where to site
1353 * the mapping so we'll have to attempt to copy
1356 if (!(capabilities
& NOMMU_MAP_COPY
))
1357 goto error_just_free
;
1359 capabilities
&= ~NOMMU_MAP_DIRECT
;
1361 vma
->vm_start
= region
->vm_start
= addr
;
1362 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1367 vma
->vm_region
= region
;
1369 /* set up the mapping
1370 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1372 if (file
&& vma
->vm_flags
& VM_SHARED
)
1373 ret
= do_mmap_shared_file(vma
);
1375 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1377 goto error_just_free
;
1378 add_nommu_region(region
);
1380 /* clear anonymous mappings that don't ask for uninitialized data */
1381 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1382 memset((void *)region
->vm_start
, 0,
1383 region
->vm_end
- region
->vm_start
);
1385 /* okay... we have a mapping; now we have to register it */
1386 result
= vma
->vm_start
;
1388 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1391 add_vma_to_mm(current
->mm
, vma
);
1393 /* we flush the region from the icache only when the first executable
1394 * mapping of it is made */
1395 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1396 flush_icache_range(region
->vm_start
, region
->vm_end
);
1397 region
->vm_icache_flushed
= true;
1400 up_write(&nommu_region_sem
);
1405 up_write(&nommu_region_sem
);
1407 if (region
->vm_file
)
1408 fput(region
->vm_file
);
1409 kmem_cache_free(vm_region_jar
, region
);
1412 kmem_cache_free(vm_area_cachep
, vma
);
1416 up_write(&nommu_region_sem
);
1417 pr_warn("Attempt to share mismatched mappings\n");
1422 kmem_cache_free(vm_region_jar
, region
);
1423 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1428 error_getting_region
:
1429 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1435 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1436 unsigned long, prot
, unsigned long, flags
,
1437 unsigned long, fd
, unsigned long, pgoff
)
1439 struct file
*file
= NULL
;
1440 unsigned long retval
= -EBADF
;
1442 audit_mmap_fd(fd
, flags
);
1443 if (!(flags
& MAP_ANONYMOUS
)) {
1449 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1451 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1459 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1460 struct mmap_arg_struct
{
1464 unsigned long flags
;
1466 unsigned long offset
;
1469 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1471 struct mmap_arg_struct a
;
1473 if (copy_from_user(&a
, arg
, sizeof(a
)))
1475 if (offset_in_page(a
.offset
))
1478 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1479 a
.offset
>> PAGE_SHIFT
);
1481 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1484 * split a vma into two pieces at address 'addr', a new vma is allocated either
1485 * for the first part or the tail.
1487 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1488 unsigned long addr
, int new_below
)
1490 struct vm_area_struct
*new;
1491 struct vm_region
*region
;
1492 unsigned long npages
;
1494 /* we're only permitted to split anonymous regions (these should have
1495 * only a single usage on the region) */
1499 if (mm
->map_count
>= sysctl_max_map_count
)
1502 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1506 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1508 kmem_cache_free(vm_region_jar
, region
);
1512 /* most fields are the same, copy all, and then fixup */
1514 *region
= *vma
->vm_region
;
1515 new->vm_region
= region
;
1517 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1520 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1522 region
->vm_start
= new->vm_start
= addr
;
1523 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1526 if (new->vm_ops
&& new->vm_ops
->open
)
1527 new->vm_ops
->open(new);
1529 delete_vma_from_mm(vma
);
1530 down_write(&nommu_region_sem
);
1531 delete_nommu_region(vma
->vm_region
);
1533 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1534 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1536 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1537 vma
->vm_region
->vm_top
= addr
;
1539 add_nommu_region(vma
->vm_region
);
1540 add_nommu_region(new->vm_region
);
1541 up_write(&nommu_region_sem
);
1542 add_vma_to_mm(mm
, vma
);
1543 add_vma_to_mm(mm
, new);
1548 * shrink a VMA by removing the specified chunk from either the beginning or
1551 static int shrink_vma(struct mm_struct
*mm
,
1552 struct vm_area_struct
*vma
,
1553 unsigned long from
, unsigned long to
)
1555 struct vm_region
*region
;
1557 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1559 delete_vma_from_mm(vma
);
1560 if (from
> vma
->vm_start
)
1564 add_vma_to_mm(mm
, vma
);
1566 /* cut the backing region down to size */
1567 region
= vma
->vm_region
;
1568 BUG_ON(region
->vm_usage
!= 1);
1570 down_write(&nommu_region_sem
);
1571 delete_nommu_region(region
);
1572 if (from
> region
->vm_start
) {
1573 to
= region
->vm_top
;
1574 region
->vm_top
= region
->vm_end
= from
;
1576 region
->vm_start
= to
;
1578 add_nommu_region(region
);
1579 up_write(&nommu_region_sem
);
1581 free_page_series(from
, to
);
1587 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1588 * VMA, though it need not cover the whole VMA
1590 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1592 struct vm_area_struct
*vma
;
1596 len
= PAGE_ALIGN(len
);
1602 /* find the first potentially overlapping VMA */
1603 vma
= find_vma(mm
, start
);
1607 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1608 current
->pid
, current
->comm
,
1609 start
, start
+ len
- 1);
1615 /* we're allowed to split an anonymous VMA but not a file-backed one */
1618 if (start
> vma
->vm_start
)
1620 if (end
== vma
->vm_end
)
1621 goto erase_whole_vma
;
1626 /* the chunk must be a subset of the VMA found */
1627 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1628 goto erase_whole_vma
;
1629 if (start
< vma
->vm_start
|| end
> vma
->vm_end
)
1631 if (offset_in_page(start
))
1633 if (end
!= vma
->vm_end
&& offset_in_page(end
))
1635 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1636 ret
= split_vma(mm
, vma
, start
, 1);
1640 return shrink_vma(mm
, vma
, start
, end
);
1644 delete_vma_from_mm(vma
);
1645 delete_vma(mm
, vma
);
1648 EXPORT_SYMBOL(do_munmap
);
1650 int vm_munmap(unsigned long addr
, size_t len
)
1652 struct mm_struct
*mm
= current
->mm
;
1655 down_write(&mm
->mmap_sem
);
1656 ret
= do_munmap(mm
, addr
, len
);
1657 up_write(&mm
->mmap_sem
);
1660 EXPORT_SYMBOL(vm_munmap
);
1662 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1664 return vm_munmap(addr
, len
);
1668 * release all the mappings made in a process's VM space
1670 void exit_mmap(struct mm_struct
*mm
)
1672 struct vm_area_struct
*vma
;
1679 while ((vma
= mm
->mmap
)) {
1680 mm
->mmap
= vma
->vm_next
;
1681 delete_vma_from_mm(vma
);
1682 delete_vma(mm
, vma
);
1687 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
1693 * expand (or shrink) an existing mapping, potentially moving it at the same
1694 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1696 * under NOMMU conditions, we only permit changing a mapping's size, and only
1697 * as long as it stays within the region allocated by do_mmap_private() and the
1698 * block is not shareable
1700 * MREMAP_FIXED is not supported under NOMMU conditions
1702 static unsigned long do_mremap(unsigned long addr
,
1703 unsigned long old_len
, unsigned long new_len
,
1704 unsigned long flags
, unsigned long new_addr
)
1706 struct vm_area_struct
*vma
;
1708 /* insanity checks first */
1709 old_len
= PAGE_ALIGN(old_len
);
1710 new_len
= PAGE_ALIGN(new_len
);
1711 if (old_len
== 0 || new_len
== 0)
1712 return (unsigned long) -EINVAL
;
1714 if (offset_in_page(addr
))
1717 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1718 return (unsigned long) -EINVAL
;
1720 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1722 return (unsigned long) -EINVAL
;
1724 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1725 return (unsigned long) -EFAULT
;
1727 if (vma
->vm_flags
& VM_MAYSHARE
)
1728 return (unsigned long) -EPERM
;
1730 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1731 return (unsigned long) -ENOMEM
;
1733 /* all checks complete - do it */
1734 vma
->vm_end
= vma
->vm_start
+ new_len
;
1735 return vma
->vm_start
;
1738 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1739 unsigned long, new_len
, unsigned long, flags
,
1740 unsigned long, new_addr
)
1744 down_write(¤t
->mm
->mmap_sem
);
1745 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1746 up_write(¤t
->mm
->mmap_sem
);
1750 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1751 unsigned long address
, unsigned int flags
,
1752 unsigned int *page_mask
)
1758 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1759 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1761 if (addr
!= (pfn
<< PAGE_SHIFT
))
1764 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1767 EXPORT_SYMBOL(remap_pfn_range
);
1769 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1771 unsigned long pfn
= start
>> PAGE_SHIFT
;
1772 unsigned long vm_len
= vma
->vm_end
- vma
->vm_start
;
1774 pfn
+= vma
->vm_pgoff
;
1775 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1777 EXPORT_SYMBOL(vm_iomap_memory
);
1779 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1780 unsigned long pgoff
)
1782 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1784 if (!(vma
->vm_flags
& VM_USERMAP
))
1787 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1788 vma
->vm_end
= vma
->vm_start
+ size
;
1792 EXPORT_SYMBOL(remap_vmalloc_range
);
1794 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1795 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1800 void unmap_mapping_range(struct address_space
*mapping
,
1801 loff_t
const holebegin
, loff_t
const holelen
,
1805 EXPORT_SYMBOL(unmap_mapping_range
);
1807 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1812 EXPORT_SYMBOL(filemap_fault
);
1814 void filemap_map_pages(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1818 EXPORT_SYMBOL(filemap_map_pages
);
1820 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
1821 unsigned long addr
, void *buf
, int len
, int write
)
1823 struct vm_area_struct
*vma
;
1825 down_read(&mm
->mmap_sem
);
1827 /* the access must start within one of the target process's mappings */
1828 vma
= find_vma(mm
, addr
);
1830 /* don't overrun this mapping */
1831 if (addr
+ len
>= vma
->vm_end
)
1832 len
= vma
->vm_end
- addr
;
1834 /* only read or write mappings where it is permitted */
1835 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
1836 copy_to_user_page(vma
, NULL
, addr
,
1837 (void *) addr
, buf
, len
);
1838 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
1839 copy_from_user_page(vma
, NULL
, addr
,
1840 buf
, (void *) addr
, len
);
1847 up_read(&mm
->mmap_sem
);
1853 * @access_remote_vm - access another process' address space
1854 * @mm: the mm_struct of the target address space
1855 * @addr: start address to access
1856 * @buf: source or destination buffer
1857 * @len: number of bytes to transfer
1858 * @write: whether the access is a write
1860 * The caller must hold a reference on @mm.
1862 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
1863 void *buf
, int len
, int write
)
1865 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
1869 * Access another process' address space.
1870 * - source/target buffer must be kernel space
1872 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
1874 struct mm_struct
*mm
;
1876 if (addr
+ len
< addr
)
1879 mm
= get_task_mm(tsk
);
1883 len
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
1890 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1891 * @inode: The inode to check
1892 * @size: The current filesize of the inode
1893 * @newsize: The proposed filesize of the inode
1895 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1896 * make sure that that any outstanding VMAs aren't broken and then shrink the
1897 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1898 * automatically grant mappings that are too large.
1900 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
1903 struct vm_area_struct
*vma
;
1904 struct vm_region
*region
;
1906 size_t r_size
, r_top
;
1908 low
= newsize
>> PAGE_SHIFT
;
1909 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1911 down_write(&nommu_region_sem
);
1912 i_mmap_lock_read(inode
->i_mapping
);
1914 /* search for VMAs that fall within the dead zone */
1915 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, low
, high
) {
1916 /* found one - only interested if it's shared out of the page
1918 if (vma
->vm_flags
& VM_SHARED
) {
1919 i_mmap_unlock_read(inode
->i_mapping
);
1920 up_write(&nommu_region_sem
);
1921 return -ETXTBSY
; /* not quite true, but near enough */
1925 /* reduce any regions that overlap the dead zone - if in existence,
1926 * these will be pointed to by VMAs that don't overlap the dead zone
1928 * we don't check for any regions that start beyond the EOF as there
1931 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, 0, ULONG_MAX
) {
1932 if (!(vma
->vm_flags
& VM_SHARED
))
1935 region
= vma
->vm_region
;
1936 r_size
= region
->vm_top
- region
->vm_start
;
1937 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
1939 if (r_top
> newsize
) {
1940 region
->vm_top
-= r_top
- newsize
;
1941 if (region
->vm_end
> region
->vm_top
)
1942 region
->vm_end
= region
->vm_top
;
1946 i_mmap_unlock_read(inode
->i_mapping
);
1947 up_write(&nommu_region_sem
);
1952 * Initialise sysctl_user_reserve_kbytes.
1954 * This is intended to prevent a user from starting a single memory hogging
1955 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1958 * The default value is min(3% of free memory, 128MB)
1959 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1961 static int __meminit
init_user_reserve(void)
1963 unsigned long free_kbytes
;
1965 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
1967 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
1970 subsys_initcall(init_user_reserve
);
1973 * Initialise sysctl_admin_reserve_kbytes.
1975 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1976 * to log in and kill a memory hogging process.
1978 * Systems with more than 256MB will reserve 8MB, enough to recover
1979 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1980 * only reserve 3% of free pages by default.
1982 static int __meminit
init_admin_reserve(void)
1984 unsigned long free_kbytes
;
1986 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
1988 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
1991 subsys_initcall(init_admin_reserve
);
1993 long get_user_pages8(struct task_struct
*tsk
, struct mm_struct
*mm
,
1994 unsigned long start
, unsigned long nr_pages
,
1995 int write
, int force
, struct page
**pages
,
1996 struct vm_area_struct
**vmas
)
1998 return get_user_pages6(start
, nr_pages
, write
, force
, pages
, vmas
);
2000 EXPORT_SYMBOL(get_user_pages8
);
2002 long get_user_pages_locked8(struct task_struct
*tsk
, struct mm_struct
*mm
,
2003 unsigned long start
, unsigned long nr_pages
,
2004 int write
, int force
, struct page
**pages
,
2007 return get_user_pages_locked6(start
, nr_pages
, write
,
2008 force
, pages
, locked
);
2010 EXPORT_SYMBOL(get_user_pages_locked8
);
2012 long get_user_pages_unlocked7(struct task_struct
*tsk
, struct mm_struct
*mm
,
2013 unsigned long start
, unsigned long nr_pages
,
2014 int write
, int force
, struct page
**pages
)
2016 return get_user_pages_unlocked5(start
, nr_pages
, write
, force
, pages
);
2018 EXPORT_SYMBOL(get_user_pages_unlocked7
);