2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
16 * Handles page cache pages in various states. The tricky part
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
38 #include <linux/kernel.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
60 int sysctl_memory_failure_early_kill __read_mostly
= 0;
62 int sysctl_memory_failure_recovery __read_mostly
= 1;
64 atomic_long_t num_poisoned_pages __read_mostly
= ATOMIC_LONG_INIT(0);
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
68 u32 hwpoison_filter_enable
= 0;
69 u32 hwpoison_filter_dev_major
= ~0U;
70 u32 hwpoison_filter_dev_minor
= ~0U;
71 u64 hwpoison_filter_flags_mask
;
72 u64 hwpoison_filter_flags_value
;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable
);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major
);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor
);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask
);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value
);
79 static int hwpoison_filter_dev(struct page
*p
)
81 struct address_space
*mapping
;
84 if (hwpoison_filter_dev_major
== ~0U &&
85 hwpoison_filter_dev_minor
== ~0U)
89 * page_mapping() does not accept slab pages.
94 mapping
= page_mapping(p
);
95 if (mapping
== NULL
|| mapping
->host
== NULL
)
98 dev
= mapping
->host
->i_sb
->s_dev
;
99 if (hwpoison_filter_dev_major
!= ~0U &&
100 hwpoison_filter_dev_major
!= MAJOR(dev
))
102 if (hwpoison_filter_dev_minor
!= ~0U &&
103 hwpoison_filter_dev_minor
!= MINOR(dev
))
109 static int hwpoison_filter_flags(struct page
*p
)
111 if (!hwpoison_filter_flags_mask
)
114 if ((stable_page_flags(p
) & hwpoison_filter_flags_mask
) ==
115 hwpoison_filter_flags_value
)
122 * This allows stress tests to limit test scope to a collection of tasks
123 * by putting them under some memcg. This prevents killing unrelated/important
124 * processes such as /sbin/init. Note that the target task may share clean
125 * pages with init (eg. libc text), which is harmless. If the target task
126 * share _dirty_ pages with another task B, the test scheme must make sure B
127 * is also included in the memcg. At last, due to race conditions this filter
128 * can only guarantee that the page either belongs to the memcg tasks, or is
131 #ifdef CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg
;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg
);
134 static int hwpoison_filter_task(struct page
*p
)
136 struct mem_cgroup
*mem
;
137 struct cgroup_subsys_state
*css
;
140 if (!hwpoison_filter_memcg
)
143 mem
= try_get_mem_cgroup_from_page(p
);
147 css
= mem_cgroup_css(mem
);
148 ino
= cgroup_ino(css
->cgroup
);
151 if (ino
!= hwpoison_filter_memcg
)
157 static int hwpoison_filter_task(struct page
*p
) { return 0; }
160 int hwpoison_filter(struct page
*p
)
162 if (!hwpoison_filter_enable
)
165 if (hwpoison_filter_dev(p
))
168 if (hwpoison_filter_flags(p
))
171 if (hwpoison_filter_task(p
))
177 int hwpoison_filter(struct page
*p
)
183 EXPORT_SYMBOL_GPL(hwpoison_filter
);
186 * Send all the processes who have the page mapped a signal.
187 * ``action optional'' if they are not immediately affected by the error
188 * ``action required'' if error happened in current execution context
190 static int kill_proc(struct task_struct
*t
, unsigned long addr
, int trapno
,
191 unsigned long pfn
, struct page
*page
, int flags
)
197 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 pfn
, t
->comm
, t
->pid
);
199 si
.si_signo
= SIGBUS
;
201 si
.si_addr
= (void *)addr
;
202 #ifdef __ARCH_SI_TRAPNO
203 si
.si_trapno
= trapno
;
205 si
.si_addr_lsb
= compound_order(compound_head(page
)) + PAGE_SHIFT
;
207 if ((flags
& MF_ACTION_REQUIRED
) && t
->mm
== current
->mm
) {
208 si
.si_code
= BUS_MCEERR_AR
;
209 ret
= force_sig_info(SIGBUS
, &si
, current
);
212 * Don't use force here, it's convenient if the signal
213 * can be temporarily blocked.
214 * This could cause a loop when the user sets SIGBUS
215 * to SIG_IGN, but hopefully no one will do that?
217 si
.si_code
= BUS_MCEERR_AO
;
218 ret
= send_sig_info(SIGBUS
, &si
, t
); /* synchronous? */
221 printk(KERN_INFO
"MCE: Error sending signal to %s:%d: %d\n",
222 t
->comm
, t
->pid
, ret
);
227 * When a unknown page type is encountered drain as many buffers as possible
228 * in the hope to turn the page into a LRU or free page, which we can handle.
230 void shake_page(struct page
*p
, int access
)
236 drain_all_pages(page_zone(p
));
237 if (PageLRU(p
) || is_free_buddy_page(p
))
242 * Only call shrink_node_slabs here (which would also shrink
243 * other caches) if access is not potentially fatal.
246 drop_slab_node(page_to_nid(p
));
248 EXPORT_SYMBOL_GPL(shake_page
);
251 * Kill all processes that have a poisoned page mapped and then isolate
255 * Find all processes having the page mapped and kill them.
256 * But we keep a page reference around so that the page is not
257 * actually freed yet.
258 * Then stash the page away
260 * There's no convenient way to get back to mapped processes
261 * from the VMAs. So do a brute-force search over all
264 * Remember that machine checks are not common (or rather
265 * if they are common you have other problems), so this shouldn't
266 * be a performance issue.
268 * Also there are some races possible while we get from the
269 * error detection to actually handle it.
274 struct task_struct
*tsk
;
280 * Failure handling: if we can't find or can't kill a process there's
281 * not much we can do. We just print a message and ignore otherwise.
285 * Schedule a process for later kill.
286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287 * TBD would GFP_NOIO be enough?
289 static void add_to_kill(struct task_struct
*tsk
, struct page
*p
,
290 struct vm_area_struct
*vma
,
291 struct list_head
*to_kill
,
292 struct to_kill
**tkc
)
300 tk
= kmalloc(sizeof(struct to_kill
), GFP_ATOMIC
);
303 "MCE: Out of memory while machine check handling\n");
307 tk
->addr
= page_address_in_vma(p
, vma
);
311 * In theory we don't have to kill when the page was
312 * munmaped. But it could be also a mremap. Since that's
313 * likely very rare kill anyways just out of paranoia, but use
314 * a SIGKILL because the error is not contained anymore.
316 if (tk
->addr
== -EFAULT
) {
317 pr_info("MCE: Unable to find user space address %lx in %s\n",
318 page_to_pfn(p
), tsk
->comm
);
321 get_task_struct(tsk
);
323 list_add_tail(&tk
->nd
, to_kill
);
327 * Kill the processes that have been collected earlier.
329 * Only do anything when DOIT is set, otherwise just free the list
330 * (this is used for clean pages which do not need killing)
331 * Also when FAIL is set do a force kill because something went
334 static void kill_procs(struct list_head
*to_kill
, int forcekill
, int trapno
,
335 int fail
, struct page
*page
, unsigned long pfn
,
338 struct to_kill
*tk
, *next
;
340 list_for_each_entry_safe (tk
, next
, to_kill
, nd
) {
343 * In case something went wrong with munmapping
344 * make sure the process doesn't catch the
345 * signal and then access the memory. Just kill it.
347 if (fail
|| tk
->addr_valid
== 0) {
349 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
350 pfn
, tk
->tsk
->comm
, tk
->tsk
->pid
);
351 force_sig(SIGKILL
, tk
->tsk
);
355 * In theory the process could have mapped
356 * something else on the address in-between. We could
357 * check for that, but we need to tell the
360 else if (kill_proc(tk
->tsk
, tk
->addr
, trapno
,
361 pfn
, page
, flags
) < 0)
363 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
364 pfn
, tk
->tsk
->comm
, tk
->tsk
->pid
);
366 put_task_struct(tk
->tsk
);
372 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
373 * on behalf of the thread group. Return task_struct of the (first found)
374 * dedicated thread if found, and return NULL otherwise.
376 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
377 * have to call rcu_read_lock/unlock() in this function.
379 static struct task_struct
*find_early_kill_thread(struct task_struct
*tsk
)
381 struct task_struct
*t
;
383 for_each_thread(tsk
, t
)
384 if ((t
->flags
& PF_MCE_PROCESS
) && (t
->flags
& PF_MCE_EARLY
))
390 * Determine whether a given process is "early kill" process which expects
391 * to be signaled when some page under the process is hwpoisoned.
392 * Return task_struct of the dedicated thread (main thread unless explicitly
393 * specified) if the process is "early kill," and otherwise returns NULL.
395 static struct task_struct
*task_early_kill(struct task_struct
*tsk
,
398 struct task_struct
*t
;
403 t
= find_early_kill_thread(tsk
);
406 if (sysctl_memory_failure_early_kill
)
412 * Collect processes when the error hit an anonymous page.
414 static void collect_procs_anon(struct page
*page
, struct list_head
*to_kill
,
415 struct to_kill
**tkc
, int force_early
)
417 struct vm_area_struct
*vma
;
418 struct task_struct
*tsk
;
422 av
= page_lock_anon_vma_read(page
);
423 if (av
== NULL
) /* Not actually mapped anymore */
426 pgoff
= page_to_pgoff(page
);
427 read_lock(&tasklist_lock
);
428 for_each_process (tsk
) {
429 struct anon_vma_chain
*vmac
;
430 struct task_struct
*t
= task_early_kill(tsk
, force_early
);
434 anon_vma_interval_tree_foreach(vmac
, &av
->rb_root
,
437 if (!page_mapped_in_vma(page
, vma
))
439 if (vma
->vm_mm
== t
->mm
)
440 add_to_kill(t
, page
, vma
, to_kill
, tkc
);
443 read_unlock(&tasklist_lock
);
444 page_unlock_anon_vma_read(av
);
448 * Collect processes when the error hit a file mapped page.
450 static void collect_procs_file(struct page
*page
, struct list_head
*to_kill
,
451 struct to_kill
**tkc
, int force_early
)
453 struct vm_area_struct
*vma
;
454 struct task_struct
*tsk
;
455 struct address_space
*mapping
= page
->mapping
;
457 i_mmap_lock_read(mapping
);
458 read_lock(&tasklist_lock
);
459 for_each_process(tsk
) {
460 pgoff_t pgoff
= page_to_pgoff(page
);
461 struct task_struct
*t
= task_early_kill(tsk
, force_early
);
465 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
,
468 * Send early kill signal to tasks where a vma covers
469 * the page but the corrupted page is not necessarily
470 * mapped it in its pte.
471 * Assume applications who requested early kill want
472 * to be informed of all such data corruptions.
474 if (vma
->vm_mm
== t
->mm
)
475 add_to_kill(t
, page
, vma
, to_kill
, tkc
);
478 read_unlock(&tasklist_lock
);
479 i_mmap_unlock_read(mapping
);
483 * Collect the processes who have the corrupted page mapped to kill.
484 * This is done in two steps for locking reasons.
485 * First preallocate one tokill structure outside the spin locks,
486 * so that we can kill at least one process reasonably reliable.
488 static void collect_procs(struct page
*page
, struct list_head
*tokill
,
496 tk
= kmalloc(sizeof(struct to_kill
), GFP_NOIO
);
500 collect_procs_anon(page
, tokill
, &tk
, force_early
);
502 collect_procs_file(page
, tokill
, &tk
, force_early
);
507 * Error handlers for various types of pages.
511 IGNORED
, /* Error: cannot be handled */
512 FAILED
, /* Error: handling failed */
513 DELAYED
, /* Will be handled later */
514 RECOVERED
, /* Successfully recovered */
517 static const char *action_name
[] = {
518 [IGNORED
] = "Ignored",
520 [DELAYED
] = "Delayed",
521 [RECOVERED
] = "Recovered",
525 * XXX: It is possible that a page is isolated from LRU cache,
526 * and then kept in swap cache or failed to remove from page cache.
527 * The page count will stop it from being freed by unpoison.
528 * Stress tests should be aware of this memory leak problem.
530 static int delete_from_lru_cache(struct page
*p
)
532 if (!isolate_lru_page(p
)) {
534 * Clear sensible page flags, so that the buddy system won't
535 * complain when the page is unpoison-and-freed.
538 ClearPageUnevictable(p
);
540 * drop the page count elevated by isolate_lru_page()
542 page_cache_release(p
);
549 * Error hit kernel page.
550 * Do nothing, try to be lucky and not touch this instead. For a few cases we
551 * could be more sophisticated.
553 static int me_kernel(struct page
*p
, unsigned long pfn
)
559 * Page in unknown state. Do nothing.
561 static int me_unknown(struct page
*p
, unsigned long pfn
)
563 printk(KERN_ERR
"MCE %#lx: Unknown page state\n", pfn
);
568 * Clean (or cleaned) page cache page.
570 static int me_pagecache_clean(struct page
*p
, unsigned long pfn
)
574 struct address_space
*mapping
;
576 delete_from_lru_cache(p
);
579 * For anonymous pages we're done the only reference left
580 * should be the one m_f() holds.
586 * Now truncate the page in the page cache. This is really
587 * more like a "temporary hole punch"
588 * Don't do this for block devices when someone else
589 * has a reference, because it could be file system metadata
590 * and that's not safe to truncate.
592 mapping
= page_mapping(p
);
595 * Page has been teared down in the meanwhile
601 * Truncation is a bit tricky. Enable it per file system for now.
603 * Open: to take i_mutex or not for this? Right now we don't.
605 if (mapping
->a_ops
->error_remove_page
) {
606 err
= mapping
->a_ops
->error_remove_page(mapping
, p
);
608 printk(KERN_INFO
"MCE %#lx: Failed to punch page: %d\n",
610 } else if (page_has_private(p
) &&
611 !try_to_release_page(p
, GFP_NOIO
)) {
612 pr_info("MCE %#lx: failed to release buffers\n", pfn
);
618 * If the file system doesn't support it just invalidate
619 * This fails on dirty or anything with private pages
621 if (invalidate_inode_page(p
))
624 printk(KERN_INFO
"MCE %#lx: Failed to invalidate\n",
631 * Dirty pagecache page
632 * Issues: when the error hit a hole page the error is not properly
635 static int me_pagecache_dirty(struct page
*p
, unsigned long pfn
)
637 struct address_space
*mapping
= page_mapping(p
);
640 /* TBD: print more information about the file. */
643 * IO error will be reported by write(), fsync(), etc.
644 * who check the mapping.
645 * This way the application knows that something went
646 * wrong with its dirty file data.
648 * There's one open issue:
650 * The EIO will be only reported on the next IO
651 * operation and then cleared through the IO map.
652 * Normally Linux has two mechanisms to pass IO error
653 * first through the AS_EIO flag in the address space
654 * and then through the PageError flag in the page.
655 * Since we drop pages on memory failure handling the
656 * only mechanism open to use is through AS_AIO.
658 * This has the disadvantage that it gets cleared on
659 * the first operation that returns an error, while
660 * the PageError bit is more sticky and only cleared
661 * when the page is reread or dropped. If an
662 * application assumes it will always get error on
663 * fsync, but does other operations on the fd before
664 * and the page is dropped between then the error
665 * will not be properly reported.
667 * This can already happen even without hwpoisoned
668 * pages: first on metadata IO errors (which only
669 * report through AS_EIO) or when the page is dropped
672 * So right now we assume that the application DTRT on
673 * the first EIO, but we're not worse than other parts
676 mapping_set_error(mapping
, EIO
);
679 return me_pagecache_clean(p
, pfn
);
683 * Clean and dirty swap cache.
685 * Dirty swap cache page is tricky to handle. The page could live both in page
686 * cache and swap cache(ie. page is freshly swapped in). So it could be
687 * referenced concurrently by 2 types of PTEs:
688 * normal PTEs and swap PTEs. We try to handle them consistently by calling
689 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
691 * - clear dirty bit to prevent IO
693 * - but keep in the swap cache, so that when we return to it on
694 * a later page fault, we know the application is accessing
695 * corrupted data and shall be killed (we installed simple
696 * interception code in do_swap_page to catch it).
698 * Clean swap cache pages can be directly isolated. A later page fault will
699 * bring in the known good data from disk.
701 static int me_swapcache_dirty(struct page
*p
, unsigned long pfn
)
704 /* Trigger EIO in shmem: */
705 ClearPageUptodate(p
);
707 if (!delete_from_lru_cache(p
))
713 static int me_swapcache_clean(struct page
*p
, unsigned long pfn
)
715 delete_from_swap_cache(p
);
717 if (!delete_from_lru_cache(p
))
724 * Huge pages. Needs work.
726 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
727 * To narrow down kill region to one page, we need to break up pmd.
729 static int me_huge_page(struct page
*p
, unsigned long pfn
)
732 struct page
*hpage
= compound_head(p
);
734 * We can safely recover from error on free or reserved (i.e.
735 * not in-use) hugepage by dequeuing it from freelist.
736 * To check whether a hugepage is in-use or not, we can't use
737 * page->lru because it can be used in other hugepage operations,
738 * such as __unmap_hugepage_range() and gather_surplus_pages().
739 * So instead we use page_mapping() and PageAnon().
740 * We assume that this function is called with page lock held,
741 * so there is no race between isolation and mapping/unmapping.
743 if (!(page_mapping(hpage
) || PageAnon(hpage
))) {
744 res
= dequeue_hwpoisoned_huge_page(hpage
);
752 * Various page states we can handle.
754 * A page state is defined by its current page->flags bits.
755 * The table matches them in order and calls the right handler.
757 * This is quite tricky because we can access page at any time
758 * in its live cycle, so all accesses have to be extremely careful.
760 * This is not complete. More states could be added.
761 * For any missing state don't attempt recovery.
764 #define dirty (1UL << PG_dirty)
765 #define sc (1UL << PG_swapcache)
766 #define unevict (1UL << PG_unevictable)
767 #define mlock (1UL << PG_mlocked)
768 #define writeback (1UL << PG_writeback)
769 #define lru (1UL << PG_lru)
770 #define swapbacked (1UL << PG_swapbacked)
771 #define head (1UL << PG_head)
772 #define tail (1UL << PG_tail)
773 #define compound (1UL << PG_compound)
774 #define slab (1UL << PG_slab)
775 #define reserved (1UL << PG_reserved)
777 static struct page_state
{
781 int (*action
)(struct page
*p
, unsigned long pfn
);
783 { reserved
, reserved
, "reserved kernel", me_kernel
},
785 * free pages are specially detected outside this table:
786 * PG_buddy pages only make a small fraction of all free pages.
790 * Could in theory check if slab page is free or if we can drop
791 * currently unused objects without touching them. But just
792 * treat it as standard kernel for now.
794 { slab
, slab
, "kernel slab", me_kernel
},
796 #ifdef CONFIG_PAGEFLAGS_EXTENDED
797 { head
, head
, "huge", me_huge_page
},
798 { tail
, tail
, "huge", me_huge_page
},
800 { compound
, compound
, "huge", me_huge_page
},
803 { sc
|dirty
, sc
|dirty
, "dirty swapcache", me_swapcache_dirty
},
804 { sc
|dirty
, sc
, "clean swapcache", me_swapcache_clean
},
806 { mlock
|dirty
, mlock
|dirty
, "dirty mlocked LRU", me_pagecache_dirty
},
807 { mlock
|dirty
, mlock
, "clean mlocked LRU", me_pagecache_clean
},
809 { unevict
|dirty
, unevict
|dirty
, "dirty unevictable LRU", me_pagecache_dirty
},
810 { unevict
|dirty
, unevict
, "clean unevictable LRU", me_pagecache_clean
},
812 { lru
|dirty
, lru
|dirty
, "dirty LRU", me_pagecache_dirty
},
813 { lru
|dirty
, lru
, "clean LRU", me_pagecache_clean
},
816 * Catchall entry: must be at end.
818 { 0, 0, "unknown page state", me_unknown
},
835 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
836 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
838 static void action_result(unsigned long pfn
, char *msg
, int result
)
840 pr_err("MCE %#lx: %s page recovery: %s\n",
841 pfn
, msg
, action_name
[result
]);
844 static int page_action(struct page_state
*ps
, struct page
*p
,
850 result
= ps
->action(p
, pfn
);
852 count
= page_count(p
) - 1;
853 if (ps
->action
== me_swapcache_dirty
&& result
== DELAYED
)
857 "MCE %#lx: %s page still referenced by %d users\n",
858 pfn
, ps
->msg
, count
);
861 action_result(pfn
, ps
->msg
, result
);
863 /* Could do more checks here if page looks ok */
865 * Could adjust zone counters here to correct for the missing page.
868 return (result
== RECOVERED
|| result
== DELAYED
) ? 0 : -EBUSY
;
872 * Do all that is necessary to remove user space mappings. Unmap
873 * the pages and send SIGBUS to the processes if the data was dirty.
875 static int hwpoison_user_mappings(struct page
*p
, unsigned long pfn
,
876 int trapno
, int flags
, struct page
**hpagep
)
878 enum ttu_flags ttu
= TTU_UNMAP
| TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
;
879 struct address_space
*mapping
;
882 int kill
= 1, forcekill
;
883 struct page
*hpage
= *hpagep
;
887 * Here we are interested only in user-mapped pages, so skip any
888 * other types of pages.
890 if (PageReserved(p
) || PageSlab(p
))
892 if (!(PageLRU(hpage
) || PageHuge(p
)))
896 * This check implies we don't kill processes if their pages
897 * are in the swap cache early. Those are always late kills.
899 if (!page_mapped(hpage
))
903 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn
);
907 if (PageSwapCache(p
)) {
909 "MCE %#lx: keeping poisoned page in swap cache\n", pfn
);
910 ttu
|= TTU_IGNORE_HWPOISON
;
914 * Propagate the dirty bit from PTEs to struct page first, because we
915 * need this to decide if we should kill or just drop the page.
916 * XXX: the dirty test could be racy: set_page_dirty() may not always
917 * be called inside page lock (it's recommended but not enforced).
919 mapping
= page_mapping(hpage
);
920 if (!(flags
& MF_MUST_KILL
) && !PageDirty(hpage
) && mapping
&&
921 mapping_cap_writeback_dirty(mapping
)) {
922 if (page_mkclean(hpage
)) {
926 ttu
|= TTU_IGNORE_HWPOISON
;
928 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
934 * ppage: poisoned page
935 * if p is regular page(4k page)
936 * ppage == real poisoned page;
937 * else p is hugetlb or THP, ppage == head page.
941 if (PageTransHuge(hpage
)) {
943 * Verify that this isn't a hugetlbfs head page, the check for
944 * PageAnon is just for avoid tripping a split_huge_page
945 * internal debug check, as split_huge_page refuses to deal with
946 * anything that isn't an anon page. PageAnon can't go away fro
947 * under us because we hold a refcount on the hpage, without a
948 * refcount on the hpage. split_huge_page can't be safely called
949 * in the first place, having a refcount on the tail isn't
950 * enough * to be safe.
952 if (!PageHuge(hpage
) && PageAnon(hpage
)) {
953 if (unlikely(split_huge_page(hpage
))) {
955 * FIXME: if splitting THP is failed, it is
956 * better to stop the following operation rather
957 * than causing panic by unmapping. System might
958 * survive if the page is freed later.
961 "MCE %#lx: failed to split THP\n", pfn
);
963 BUG_ON(!PageHWPoison(p
));
967 * We pinned the head page for hwpoison handling,
968 * now we split the thp and we are interested in
969 * the hwpoisoned raw page, so move the refcount
970 * to it. Similarly, page lock is shifted.
973 if (!(flags
& MF_COUNT_INCREASED
)) {
981 /* THP is split, so ppage should be the real poisoned page. */
987 * First collect all the processes that have the page
988 * mapped in dirty form. This has to be done before try_to_unmap,
989 * because ttu takes the rmap data structures down.
991 * Error handling: We ignore errors here because
992 * there's nothing that can be done.
995 collect_procs(ppage
, &tokill
, flags
& MF_ACTION_REQUIRED
);
997 ret
= try_to_unmap(ppage
, ttu
);
998 if (ret
!= SWAP_SUCCESS
)
999 printk(KERN_ERR
"MCE %#lx: failed to unmap page (mapcount=%d)\n",
1000 pfn
, page_mapcount(ppage
));
1003 * Now that the dirty bit has been propagated to the
1004 * struct page and all unmaps done we can decide if
1005 * killing is needed or not. Only kill when the page
1006 * was dirty or the process is not restartable,
1007 * otherwise the tokill list is merely
1008 * freed. When there was a problem unmapping earlier
1009 * use a more force-full uncatchable kill to prevent
1010 * any accesses to the poisoned memory.
1012 forcekill
= PageDirty(ppage
) || (flags
& MF_MUST_KILL
);
1013 kill_procs(&tokill
, forcekill
, trapno
,
1014 ret
!= SWAP_SUCCESS
, p
, pfn
, flags
);
1019 static void set_page_hwpoison_huge_page(struct page
*hpage
)
1022 int nr_pages
= 1 << compound_order(hpage
);
1023 for (i
= 0; i
< nr_pages
; i
++)
1024 SetPageHWPoison(hpage
+ i
);
1027 static void clear_page_hwpoison_huge_page(struct page
*hpage
)
1030 int nr_pages
= 1 << compound_order(hpage
);
1031 for (i
= 0; i
< nr_pages
; i
++)
1032 ClearPageHWPoison(hpage
+ i
);
1036 * memory_failure - Handle memory failure of a page.
1037 * @pfn: Page Number of the corrupted page
1038 * @trapno: Trap number reported in the signal to user space.
1039 * @flags: fine tune action taken
1041 * This function is called by the low level machine check code
1042 * of an architecture when it detects hardware memory corruption
1043 * of a page. It tries its best to recover, which includes
1044 * dropping pages, killing processes etc.
1046 * The function is primarily of use for corruptions that
1047 * happen outside the current execution context (e.g. when
1048 * detected by a background scrubber)
1050 * Must run in process context (e.g. a work queue) with interrupts
1051 * enabled and no spinlocks hold.
1053 int memory_failure(unsigned long pfn
, int trapno
, int flags
)
1055 struct page_state
*ps
;
1059 unsigned int nr_pages
;
1060 unsigned long page_flags
;
1062 if (!sysctl_memory_failure_recovery
)
1063 panic("Memory failure from trap %d on page %lx", trapno
, pfn
);
1065 if (!pfn_valid(pfn
)) {
1067 "MCE %#lx: memory outside kernel control\n",
1072 p
= pfn_to_page(pfn
);
1073 hpage
= compound_head(p
);
1074 if (TestSetPageHWPoison(p
)) {
1075 printk(KERN_ERR
"MCE %#lx: already hardware poisoned\n", pfn
);
1080 * Currently errors on hugetlbfs pages are measured in hugepage units,
1081 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1082 * transparent hugepages, they are supposed to be split and error
1083 * measurement is done in normal page units. So nr_pages should be one
1087 nr_pages
= 1 << compound_order(hpage
);
1088 else /* normal page or thp */
1090 atomic_long_add(nr_pages
, &num_poisoned_pages
);
1093 * We need/can do nothing about count=0 pages.
1094 * 1) it's a free page, and therefore in safe hand:
1095 * prep_new_page() will be the gate keeper.
1096 * 2) it's a free hugepage, which is also safe:
1097 * an affected hugepage will be dequeued from hugepage freelist,
1098 * so there's no concern about reusing it ever after.
1099 * 3) it's part of a non-compound high order page.
1100 * Implies some kernel user: cannot stop them from
1101 * R/W the page; let's pray that the page has been
1102 * used and will be freed some time later.
1103 * In fact it's dangerous to directly bump up page count from 0,
1104 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1106 if (!(flags
& MF_COUNT_INCREASED
) &&
1107 !get_page_unless_zero(hpage
)) {
1108 if (is_free_buddy_page(p
)) {
1109 action_result(pfn
, "free buddy", DELAYED
);
1111 } else if (PageHuge(hpage
)) {
1113 * Check "filter hit" and "race with other subpage."
1116 if (PageHWPoison(hpage
)) {
1117 if ((hwpoison_filter(p
) && TestClearPageHWPoison(p
))
1118 || (p
!= hpage
&& TestSetPageHWPoison(hpage
))) {
1119 atomic_long_sub(nr_pages
, &num_poisoned_pages
);
1124 set_page_hwpoison_huge_page(hpage
);
1125 res
= dequeue_hwpoisoned_huge_page(hpage
);
1126 action_result(pfn
, "free huge",
1127 res
? IGNORED
: DELAYED
);
1131 action_result(pfn
, "high order kernel", IGNORED
);
1137 * We ignore non-LRU pages for good reasons.
1138 * - PG_locked is only well defined for LRU pages and a few others
1139 * - to avoid races with __set_page_locked()
1140 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1141 * The check (unnecessarily) ignores LRU pages being isolated and
1142 * walked by the page reclaim code, however that's not a big loss.
1144 if (!PageHuge(p
) && !PageTransTail(p
)) {
1149 * shake_page could have turned it free.
1151 if (is_free_buddy_page(p
)) {
1152 if (flags
& MF_COUNT_INCREASED
)
1153 action_result(pfn
, "free buddy", DELAYED
);
1155 action_result(pfn
, "free buddy, 2nd try", DELAYED
);
1164 * The page could have changed compound pages during the locking.
1165 * If this happens just bail out.
1167 if (compound_head(p
) != hpage
) {
1168 action_result(pfn
, "different compound page after locking", IGNORED
);
1174 * We use page flags to determine what action should be taken, but
1175 * the flags can be modified by the error containment action. One
1176 * example is an mlocked page, where PG_mlocked is cleared by
1177 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1178 * correctly, we save a copy of the page flags at this time.
1180 page_flags
= p
->flags
;
1183 * unpoison always clear PG_hwpoison inside page lock
1185 if (!PageHWPoison(p
)) {
1186 printk(KERN_ERR
"MCE %#lx: just unpoisoned\n", pfn
);
1187 atomic_long_sub(nr_pages
, &num_poisoned_pages
);
1192 if (hwpoison_filter(p
)) {
1193 if (TestClearPageHWPoison(p
))
1194 atomic_long_sub(nr_pages
, &num_poisoned_pages
);
1200 if (!PageHuge(p
) && !PageTransTail(p
) && !PageLRU(p
))
1201 goto identify_page_state
;
1204 * For error on the tail page, we should set PG_hwpoison
1205 * on the head page to show that the hugepage is hwpoisoned
1207 if (PageHuge(p
) && PageTail(p
) && TestSetPageHWPoison(hpage
)) {
1208 action_result(pfn
, "hugepage already hardware poisoned",
1215 * Set PG_hwpoison on all pages in an error hugepage,
1216 * because containment is done in hugepage unit for now.
1217 * Since we have done TestSetPageHWPoison() for the head page with
1218 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1221 set_page_hwpoison_huge_page(hpage
);
1224 * It's very difficult to mess with pages currently under IO
1225 * and in many cases impossible, so we just avoid it here.
1227 wait_on_page_writeback(p
);
1230 * Now take care of user space mappings.
1231 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1233 * When the raw error page is thp tail page, hpage points to the raw
1234 * page after thp split.
1236 if (hwpoison_user_mappings(p
, pfn
, trapno
, flags
, &hpage
)
1238 action_result(pfn
, "unmapping failed", IGNORED
);
1244 * Torn down by someone else?
1246 if (PageLRU(p
) && !PageSwapCache(p
) && p
->mapping
== NULL
) {
1247 action_result(pfn
, "already truncated LRU", IGNORED
);
1252 identify_page_state
:
1255 * The first check uses the current page flags which may not have any
1256 * relevant information. The second check with the saved page flagss is
1257 * carried out only if the first check can't determine the page status.
1259 for (ps
= error_states
;; ps
++)
1260 if ((p
->flags
& ps
->mask
) == ps
->res
)
1263 page_flags
|= (p
->flags
& (1UL << PG_dirty
));
1266 for (ps
= error_states
;; ps
++)
1267 if ((page_flags
& ps
->mask
) == ps
->res
)
1269 res
= page_action(ps
, p
, pfn
);
1274 EXPORT_SYMBOL_GPL(memory_failure
);
1276 #define MEMORY_FAILURE_FIFO_ORDER 4
1277 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1279 struct memory_failure_entry
{
1285 struct memory_failure_cpu
{
1286 DECLARE_KFIFO(fifo
, struct memory_failure_entry
,
1287 MEMORY_FAILURE_FIFO_SIZE
);
1289 struct work_struct work
;
1292 static DEFINE_PER_CPU(struct memory_failure_cpu
, memory_failure_cpu
);
1295 * memory_failure_queue - Schedule handling memory failure of a page.
1296 * @pfn: Page Number of the corrupted page
1297 * @trapno: Trap number reported in the signal to user space.
1298 * @flags: Flags for memory failure handling
1300 * This function is called by the low level hardware error handler
1301 * when it detects hardware memory corruption of a page. It schedules
1302 * the recovering of error page, including dropping pages, killing
1305 * The function is primarily of use for corruptions that
1306 * happen outside the current execution context (e.g. when
1307 * detected by a background scrubber)
1309 * Can run in IRQ context.
1311 void memory_failure_queue(unsigned long pfn
, int trapno
, int flags
)
1313 struct memory_failure_cpu
*mf_cpu
;
1314 unsigned long proc_flags
;
1315 struct memory_failure_entry entry
= {
1321 mf_cpu
= &get_cpu_var(memory_failure_cpu
);
1322 spin_lock_irqsave(&mf_cpu
->lock
, proc_flags
);
1323 if (kfifo_put(&mf_cpu
->fifo
, entry
))
1324 schedule_work_on(smp_processor_id(), &mf_cpu
->work
);
1326 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1328 spin_unlock_irqrestore(&mf_cpu
->lock
, proc_flags
);
1329 put_cpu_var(memory_failure_cpu
);
1331 EXPORT_SYMBOL_GPL(memory_failure_queue
);
1333 static void memory_failure_work_func(struct work_struct
*work
)
1335 struct memory_failure_cpu
*mf_cpu
;
1336 struct memory_failure_entry entry
= { 0, };
1337 unsigned long proc_flags
;
1340 mf_cpu
= this_cpu_ptr(&memory_failure_cpu
);
1342 spin_lock_irqsave(&mf_cpu
->lock
, proc_flags
);
1343 gotten
= kfifo_get(&mf_cpu
->fifo
, &entry
);
1344 spin_unlock_irqrestore(&mf_cpu
->lock
, proc_flags
);
1347 if (entry
.flags
& MF_SOFT_OFFLINE
)
1348 soft_offline_page(pfn_to_page(entry
.pfn
), entry
.flags
);
1350 memory_failure(entry
.pfn
, entry
.trapno
, entry
.flags
);
1354 static int __init
memory_failure_init(void)
1356 struct memory_failure_cpu
*mf_cpu
;
1359 for_each_possible_cpu(cpu
) {
1360 mf_cpu
= &per_cpu(memory_failure_cpu
, cpu
);
1361 spin_lock_init(&mf_cpu
->lock
);
1362 INIT_KFIFO(mf_cpu
->fifo
);
1363 INIT_WORK(&mf_cpu
->work
, memory_failure_work_func
);
1368 core_initcall(memory_failure_init
);
1371 * unpoison_memory - Unpoison a previously poisoned page
1372 * @pfn: Page number of the to be unpoisoned page
1374 * Software-unpoison a page that has been poisoned by
1375 * memory_failure() earlier.
1377 * This is only done on the software-level, so it only works
1378 * for linux injected failures, not real hardware failures
1380 * Returns 0 for success, otherwise -errno.
1382 int unpoison_memory(unsigned long pfn
)
1387 unsigned int nr_pages
;
1389 if (!pfn_valid(pfn
))
1392 p
= pfn_to_page(pfn
);
1393 page
= compound_head(p
);
1395 if (!PageHWPoison(p
)) {
1396 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn
);
1401 * unpoison_memory() can encounter thp only when the thp is being
1402 * worked by memory_failure() and the page lock is not held yet.
1403 * In such case, we yield to memory_failure() and make unpoison fail.
1405 if (!PageHuge(page
) && PageTransHuge(page
)) {
1406 pr_info("MCE: Memory failure is now running on %#lx\n", pfn
);
1410 nr_pages
= 1 << compound_order(page
);
1412 if (!get_page_unless_zero(page
)) {
1414 * Since HWPoisoned hugepage should have non-zero refcount,
1415 * race between memory failure and unpoison seems to happen.
1416 * In such case unpoison fails and memory failure runs
1419 if (PageHuge(page
)) {
1420 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn
);
1423 if (TestClearPageHWPoison(p
))
1424 atomic_long_dec(&num_poisoned_pages
);
1425 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn
);
1431 * This test is racy because PG_hwpoison is set outside of page lock.
1432 * That's acceptable because that won't trigger kernel panic. Instead,
1433 * the PG_hwpoison page will be caught and isolated on the entrance to
1434 * the free buddy page pool.
1436 if (TestClearPageHWPoison(page
)) {
1437 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn
);
1438 atomic_long_sub(nr_pages
, &num_poisoned_pages
);
1441 clear_page_hwpoison_huge_page(page
);
1446 if (freeit
&& !(pfn
== my_zero_pfn(0) && page_count(p
) == 1))
1451 EXPORT_SYMBOL(unpoison_memory
);
1453 static struct page
*new_page(struct page
*p
, unsigned long private, int **x
)
1455 int nid
= page_to_nid(p
);
1457 return alloc_huge_page_node(page_hstate(compound_head(p
)),
1460 return alloc_pages_exact_node(nid
, GFP_HIGHUSER_MOVABLE
, 0);
1464 * Safely get reference count of an arbitrary page.
1465 * Returns 0 for a free page, -EIO for a zero refcount page
1466 * that is not free, and 1 for any other page type.
1467 * For 1 the page is returned with increased page count, otherwise not.
1469 static int __get_any_page(struct page
*p
, unsigned long pfn
, int flags
)
1473 if (flags
& MF_COUNT_INCREASED
)
1477 * When the target page is a free hugepage, just remove it
1478 * from free hugepage list.
1480 if (!get_page_unless_zero(compound_head(p
))) {
1482 pr_info("%s: %#lx free huge page\n", __func__
, pfn
);
1484 } else if (is_free_buddy_page(p
)) {
1485 pr_info("%s: %#lx free buddy page\n", __func__
, pfn
);
1488 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1489 __func__
, pfn
, p
->flags
);
1493 /* Not a free page */
1499 static int get_any_page(struct page
*page
, unsigned long pfn
, int flags
)
1501 int ret
= __get_any_page(page
, pfn
, flags
);
1503 if (ret
== 1 && !PageHuge(page
) && !PageLRU(page
)) {
1508 shake_page(page
, 1);
1513 ret
= __get_any_page(page
, pfn
, 0);
1514 if (!PageLRU(page
)) {
1515 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1523 static int soft_offline_huge_page(struct page
*page
, int flags
)
1526 unsigned long pfn
= page_to_pfn(page
);
1527 struct page
*hpage
= compound_head(page
);
1528 LIST_HEAD(pagelist
);
1531 * This double-check of PageHWPoison is to avoid the race with
1532 * memory_failure(). See also comment in __soft_offline_page().
1535 if (PageHWPoison(hpage
)) {
1538 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn
);
1543 /* Keep page count to indicate a given hugepage is isolated. */
1544 list_move(&hpage
->lru
, &pagelist
);
1545 ret
= migrate_pages(&pagelist
, new_page
, NULL
, MPOL_MF_MOVE_ALL
,
1546 MIGRATE_SYNC
, MR_MEMORY_FAILURE
);
1548 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1549 pfn
, ret
, page
->flags
);
1551 * We know that soft_offline_huge_page() tries to migrate
1552 * only one hugepage pointed to by hpage, so we need not
1553 * run through the pagelist here.
1555 putback_active_hugepage(hpage
);
1559 /* overcommit hugetlb page will be freed to buddy */
1560 if (PageHuge(page
)) {
1561 set_page_hwpoison_huge_page(hpage
);
1562 dequeue_hwpoisoned_huge_page(hpage
);
1563 atomic_long_add(1 << compound_order(hpage
),
1564 &num_poisoned_pages
);
1566 SetPageHWPoison(page
);
1567 atomic_long_inc(&num_poisoned_pages
);
1573 static int __soft_offline_page(struct page
*page
, int flags
)
1576 unsigned long pfn
= page_to_pfn(page
);
1579 * Check PageHWPoison again inside page lock because PageHWPoison
1580 * is set by memory_failure() outside page lock. Note that
1581 * memory_failure() also double-checks PageHWPoison inside page lock,
1582 * so there's no race between soft_offline_page() and memory_failure().
1585 wait_on_page_writeback(page
);
1586 if (PageHWPoison(page
)) {
1589 pr_info("soft offline: %#lx page already poisoned\n", pfn
);
1593 * Try to invalidate first. This should work for
1594 * non dirty unmapped page cache pages.
1596 ret
= invalidate_inode_page(page
);
1599 * RED-PEN would be better to keep it isolated here, but we
1600 * would need to fix isolation locking first.
1604 pr_info("soft_offline: %#lx: invalidated\n", pfn
);
1605 SetPageHWPoison(page
);
1606 atomic_long_inc(&num_poisoned_pages
);
1611 * Simple invalidation didn't work.
1612 * Try to migrate to a new page instead. migrate.c
1613 * handles a large number of cases for us.
1615 ret
= isolate_lru_page(page
);
1617 * Drop page reference which is came from get_any_page()
1618 * successful isolate_lru_page() already took another one.
1622 LIST_HEAD(pagelist
);
1623 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
1624 page_is_file_cache(page
));
1625 list_add(&page
->lru
, &pagelist
);
1626 ret
= migrate_pages(&pagelist
, new_page
, NULL
, MPOL_MF_MOVE_ALL
,
1627 MIGRATE_SYNC
, MR_MEMORY_FAILURE
);
1629 if (!list_empty(&pagelist
)) {
1630 list_del(&page
->lru
);
1631 dec_zone_page_state(page
, NR_ISOLATED_ANON
+
1632 page_is_file_cache(page
));
1633 putback_lru_page(page
);
1636 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1637 pfn
, ret
, page
->flags
);
1642 * After page migration succeeds, the source page can
1643 * be trapped in pagevec and actual freeing is delayed.
1644 * Freeing code works differently based on PG_hwpoison,
1645 * so there's a race. We need to make sure that the
1646 * source page should be freed back to buddy before
1647 * setting PG_hwpoison.
1649 if (!is_free_buddy_page(page
))
1650 drain_all_pages(page_zone(page
));
1651 SetPageHWPoison(page
);
1652 if (!is_free_buddy_page(page
))
1653 pr_info("soft offline: %#lx: page leaked\n",
1655 atomic_long_inc(&num_poisoned_pages
);
1658 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1659 pfn
, ret
, page_count(page
), page
->flags
);
1665 * soft_offline_page - Soft offline a page.
1666 * @page: page to offline
1667 * @flags: flags. Same as memory_failure().
1669 * Returns 0 on success, otherwise negated errno.
1671 * Soft offline a page, by migration or invalidation,
1672 * without killing anything. This is for the case when
1673 * a page is not corrupted yet (so it's still valid to access),
1674 * but has had a number of corrected errors and is better taken
1677 * The actual policy on when to do that is maintained by
1680 * This should never impact any application or cause data loss,
1681 * however it might take some time.
1683 * This is not a 100% solution for all memory, but tries to be
1684 * ``good enough'' for the majority of memory.
1686 int soft_offline_page(struct page
*page
, int flags
)
1689 unsigned long pfn
= page_to_pfn(page
);
1690 struct page
*hpage
= compound_head(page
);
1692 if (PageHWPoison(page
)) {
1693 pr_info("soft offline: %#lx page already poisoned\n", pfn
);
1696 if (!PageHuge(page
) && PageTransHuge(hpage
)) {
1697 if (PageAnon(hpage
) && unlikely(split_huge_page(hpage
))) {
1698 pr_info("soft offline: %#lx: failed to split THP\n",
1707 * Isolate the page, so that it doesn't get reallocated if it
1708 * was free. This flag should be kept set until the source page
1709 * is freed and PG_hwpoison on it is set.
1711 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
1712 set_migratetype_isolate(page
, true);
1714 ret
= get_any_page(page
, pfn
, flags
);
1716 if (ret
> 0) { /* for in-use pages */
1718 ret
= soft_offline_huge_page(page
, flags
);
1720 ret
= __soft_offline_page(page
, flags
);
1721 } else if (ret
== 0) { /* for free pages */
1722 if (PageHuge(page
)) {
1723 set_page_hwpoison_huge_page(hpage
);
1724 dequeue_hwpoisoned_huge_page(hpage
);
1725 atomic_long_add(1 << compound_order(hpage
),
1726 &num_poisoned_pages
);
1728 SetPageHWPoison(page
);
1729 atomic_long_inc(&num_poisoned_pages
);
1732 unset_migratetype_isolate(page
, MIGRATE_MOVABLE
);