2 * mm/truncate.c - code for taking down pages from address_spaces
4 * Copyright (C) 2002, Linus Torvalds
6 * 10Sep2002 Andrew Morton
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h> /* grr. try_to_release_page,
22 #include <linux/cleancache.h>
23 #include <linux/rmap.h>
26 static void clear_exceptional_entry(struct address_space
*mapping
,
27 pgoff_t index
, void *entry
)
29 struct radix_tree_node
*node
;
32 /* Handled by shmem itself */
33 if (shmem_mapping(mapping
))
36 spin_lock_irq(&mapping
->tree_lock
);
38 * Regular page slots are stabilized by the page lock even
39 * without the tree itself locked. These unlocked entries
40 * need verification under the tree lock.
42 if (!__radix_tree_lookup(&mapping
->page_tree
, index
, &node
, &slot
))
46 radix_tree_replace_slot(slot
, NULL
);
50 workingset_node_shadows_dec(node
);
52 * Don't track node without shadow entries.
54 * Avoid acquiring the list_lru lock if already untracked.
55 * The list_empty() test is safe as node->private_list is
56 * protected by mapping->tree_lock.
58 if (!workingset_node_shadows(node
) &&
59 !list_empty(&node
->private_list
))
60 list_lru_del(&workingset_shadow_nodes
, &node
->private_list
);
61 __radix_tree_delete_node(&mapping
->page_tree
, node
);
63 spin_unlock_irq(&mapping
->tree_lock
);
67 * do_invalidatepage - invalidate part or all of a page
68 * @page: the page which is affected
69 * @offset: start of the range to invalidate
70 * @length: length of the range to invalidate
72 * do_invalidatepage() is called when all or part of the page has become
73 * invalidated by a truncate operation.
75 * do_invalidatepage() does not have to release all buffers, but it must
76 * ensure that no dirty buffer is left outside @offset and that no I/O
77 * is underway against any of the blocks which are outside the truncation
78 * point. Because the caller is about to free (and possibly reuse) those
81 void do_invalidatepage(struct page
*page
, unsigned int offset
,
84 void (*invalidatepage
)(struct page
*, unsigned int, unsigned int);
86 invalidatepage
= page
->mapping
->a_ops
->invalidatepage
;
89 invalidatepage
= block_invalidatepage
;
92 (*invalidatepage
)(page
, offset
, length
);
96 * This cancels just the dirty bit on the kernel page itself, it
97 * does NOT actually remove dirty bits on any mmap's that may be
98 * around. It also leaves the page tagged dirty, so any sync
99 * activity will still find it on the dirty lists, and in particular,
100 * clear_page_dirty_for_io() will still look at the dirty bits in
103 * Doing this should *normally* only ever be done when a page
104 * is truncated, and is not actually mapped anywhere at all. However,
105 * fs/buffer.c does this when it notices that somebody has cleaned
106 * out all the buffers on a page without actually doing it through
107 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
109 void cancel_dirty_page(struct page
*page
, unsigned int account_size
)
111 if (TestClearPageDirty(page
)) {
112 struct address_space
*mapping
= page
->mapping
;
113 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
114 dec_zone_page_state(page
, NR_FILE_DIRTY
);
115 dec_bdi_stat(inode_to_bdi(mapping
->host
),
118 task_io_account_cancelled_write(account_size
);
122 EXPORT_SYMBOL(cancel_dirty_page
);
125 * If truncate cannot remove the fs-private metadata from the page, the page
126 * becomes orphaned. It will be left on the LRU and may even be mapped into
127 * user pagetables if we're racing with filemap_fault().
129 * We need to bale out if page->mapping is no longer equal to the original
130 * mapping. This happens a) when the VM reclaimed the page while we waited on
131 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
132 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
135 truncate_complete_page(struct address_space
*mapping
, struct page
*page
)
137 if (page
->mapping
!= mapping
)
140 if (page_has_private(page
))
141 do_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
143 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
145 ClearPageMappedToDisk(page
);
146 delete_from_page_cache(page
);
151 * This is for invalidate_mapping_pages(). That function can be called at
152 * any time, and is not supposed to throw away dirty pages. But pages can
153 * be marked dirty at any time too, so use remove_mapping which safely
154 * discards clean, unused pages.
156 * Returns non-zero if the page was successfully invalidated.
159 invalidate_complete_page(struct address_space
*mapping
, struct page
*page
)
163 if (page
->mapping
!= mapping
)
166 if (page_has_private(page
) && !try_to_release_page(page
, 0))
169 ret
= remove_mapping(mapping
, page
);
174 int truncate_inode_page(struct address_space
*mapping
, struct page
*page
)
176 if (page_mapped(page
)) {
177 unmap_mapping_range(mapping
,
178 (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
,
181 return truncate_complete_page(mapping
, page
);
185 * Used to get rid of pages on hardware memory corruption.
187 int generic_error_remove_page(struct address_space
*mapping
, struct page
*page
)
192 * Only punch for normal data pages for now.
193 * Handling other types like directories would need more auditing.
195 if (!S_ISREG(mapping
->host
->i_mode
))
197 return truncate_inode_page(mapping
, page
);
199 EXPORT_SYMBOL(generic_error_remove_page
);
202 * Safely invalidate one page from its pagecache mapping.
203 * It only drops clean, unused pages. The page must be locked.
205 * Returns 1 if the page is successfully invalidated, otherwise 0.
207 int invalidate_inode_page(struct page
*page
)
209 struct address_space
*mapping
= page_mapping(page
);
212 if (PageDirty(page
) || PageWriteback(page
))
214 if (page_mapped(page
))
216 return invalidate_complete_page(mapping
, page
);
220 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
221 * @mapping: mapping to truncate
222 * @lstart: offset from which to truncate
223 * @lend: offset to which to truncate (inclusive)
225 * Truncate the page cache, removing the pages that are between
226 * specified offsets (and zeroing out partial pages
227 * if lstart or lend + 1 is not page aligned).
229 * Truncate takes two passes - the first pass is nonblocking. It will not
230 * block on page locks and it will not block on writeback. The second pass
231 * will wait. This is to prevent as much IO as possible in the affected region.
232 * The first pass will remove most pages, so the search cost of the second pass
235 * We pass down the cache-hot hint to the page freeing code. Even if the
236 * mapping is large, it is probably the case that the final pages are the most
237 * recently touched, and freeing happens in ascending file offset order.
239 * Note that since ->invalidatepage() accepts range to invalidate
240 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
241 * page aligned properly.
243 void truncate_inode_pages_range(struct address_space
*mapping
,
244 loff_t lstart
, loff_t lend
)
246 pgoff_t start
; /* inclusive */
247 pgoff_t end
; /* exclusive */
248 unsigned int partial_start
; /* inclusive */
249 unsigned int partial_end
; /* exclusive */
251 pgoff_t indices
[PAGEVEC_SIZE
];
255 cleancache_invalidate_inode(mapping
);
256 if (mapping
->nrpages
== 0 && mapping
->nrshadows
== 0)
259 /* Offsets within partial pages */
260 partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
261 partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
264 * 'start' and 'end' always covers the range of pages to be fully
265 * truncated. Partial pages are covered with 'partial_start' at the
266 * start of the range and 'partial_end' at the end of the range.
267 * Note that 'end' is exclusive while 'lend' is inclusive.
269 start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
272 * lend == -1 indicates end-of-file so we have to set 'end'
273 * to the highest possible pgoff_t and since the type is
274 * unsigned we're using -1.
278 end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
280 pagevec_init(&pvec
, 0);
282 while (index
< end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
283 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
285 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
286 struct page
*page
= pvec
.pages
[i
];
288 /* We rely upon deletion not changing page->index */
293 if (radix_tree_exceptional_entry(page
)) {
294 clear_exceptional_entry(mapping
, index
, page
);
298 if (!trylock_page(page
))
300 WARN_ON(page
->index
!= index
);
301 if (PageWriteback(page
)) {
305 truncate_inode_page(mapping
, page
);
308 pagevec_remove_exceptionals(&pvec
);
309 pagevec_release(&pvec
);
315 struct page
*page
= find_lock_page(mapping
, start
- 1);
317 unsigned int top
= PAGE_CACHE_SIZE
;
319 /* Truncation within a single page */
323 wait_on_page_writeback(page
);
324 zero_user_segment(page
, partial_start
, top
);
325 cleancache_invalidate_page(mapping
, page
);
326 if (page_has_private(page
))
327 do_invalidatepage(page
, partial_start
,
328 top
- partial_start
);
330 page_cache_release(page
);
334 struct page
*page
= find_lock_page(mapping
, end
);
336 wait_on_page_writeback(page
);
337 zero_user_segment(page
, 0, partial_end
);
338 cleancache_invalidate_page(mapping
, page
);
339 if (page_has_private(page
))
340 do_invalidatepage(page
, 0,
343 page_cache_release(page
);
347 * If the truncation happened within a single page no pages
348 * will be released, just zeroed, so we can bail out now.
356 if (!pagevec_lookup_entries(&pvec
, mapping
, index
,
357 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
), indices
)) {
358 /* If all gone from start onwards, we're done */
361 /* Otherwise restart to make sure all gone */
365 if (index
== start
&& indices
[0] >= end
) {
366 /* All gone out of hole to be punched, we're done */
367 pagevec_remove_exceptionals(&pvec
);
368 pagevec_release(&pvec
);
371 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
372 struct page
*page
= pvec
.pages
[i
];
374 /* We rely upon deletion not changing page->index */
377 /* Restart punch to make sure all gone */
382 if (radix_tree_exceptional_entry(page
)) {
383 clear_exceptional_entry(mapping
, index
, page
);
388 WARN_ON(page
->index
!= index
);
389 wait_on_page_writeback(page
);
390 truncate_inode_page(mapping
, page
);
393 pagevec_remove_exceptionals(&pvec
);
394 pagevec_release(&pvec
);
397 cleancache_invalidate_inode(mapping
);
399 EXPORT_SYMBOL(truncate_inode_pages_range
);
402 * truncate_inode_pages - truncate *all* the pages from an offset
403 * @mapping: mapping to truncate
404 * @lstart: offset from which to truncate
406 * Called under (and serialised by) inode->i_mutex.
408 * Note: When this function returns, there can be a page in the process of
409 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
410 * mapping->nrpages can be non-zero when this function returns even after
411 * truncation of the whole mapping.
413 void truncate_inode_pages(struct address_space
*mapping
, loff_t lstart
)
415 truncate_inode_pages_range(mapping
, lstart
, (loff_t
)-1);
417 EXPORT_SYMBOL(truncate_inode_pages
);
420 * truncate_inode_pages_final - truncate *all* pages before inode dies
421 * @mapping: mapping to truncate
423 * Called under (and serialized by) inode->i_mutex.
425 * Filesystems have to use this in the .evict_inode path to inform the
426 * VM that this is the final truncate and the inode is going away.
428 void truncate_inode_pages_final(struct address_space
*mapping
)
430 unsigned long nrshadows
;
431 unsigned long nrpages
;
434 * Page reclaim can not participate in regular inode lifetime
435 * management (can't call iput()) and thus can race with the
436 * inode teardown. Tell it when the address space is exiting,
437 * so that it does not install eviction information after the
438 * final truncate has begun.
440 mapping_set_exiting(mapping
);
443 * When reclaim installs eviction entries, it increases
444 * nrshadows first, then decreases nrpages. Make sure we see
445 * this in the right order or we might miss an entry.
447 nrpages
= mapping
->nrpages
;
449 nrshadows
= mapping
->nrshadows
;
451 if (nrpages
|| nrshadows
) {
453 * As truncation uses a lockless tree lookup, cycle
454 * the tree lock to make sure any ongoing tree
455 * modification that does not see AS_EXITING is
456 * completed before starting the final truncate.
458 spin_lock_irq(&mapping
->tree_lock
);
459 spin_unlock_irq(&mapping
->tree_lock
);
461 truncate_inode_pages(mapping
, 0);
464 EXPORT_SYMBOL(truncate_inode_pages_final
);
467 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
468 * @mapping: the address_space which holds the pages to invalidate
469 * @start: the offset 'from' which to invalidate
470 * @end: the offset 'to' which to invalidate (inclusive)
472 * This function only removes the unlocked pages, if you want to
473 * remove all the pages of one inode, you must call truncate_inode_pages.
475 * invalidate_mapping_pages() will not block on IO activity. It will not
476 * invalidate pages which are dirty, locked, under writeback or mapped into
479 unsigned long invalidate_mapping_pages(struct address_space
*mapping
,
480 pgoff_t start
, pgoff_t end
)
482 pgoff_t indices
[PAGEVEC_SIZE
];
484 pgoff_t index
= start
;
486 unsigned long count
= 0;
489 pagevec_init(&pvec
, 0);
490 while (index
<= end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
491 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1,
493 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
494 struct page
*page
= pvec
.pages
[i
];
496 /* We rely upon deletion not changing page->index */
501 if (radix_tree_exceptional_entry(page
)) {
502 clear_exceptional_entry(mapping
, index
, page
);
506 if (!trylock_page(page
))
508 WARN_ON(page
->index
!= index
);
509 ret
= invalidate_inode_page(page
);
512 * Invalidation is a hint that the page is no longer
513 * of interest and try to speed up its reclaim.
516 deactivate_page(page
);
519 pagevec_remove_exceptionals(&pvec
);
520 pagevec_release(&pvec
);
526 EXPORT_SYMBOL(invalidate_mapping_pages
);
529 * This is like invalidate_complete_page(), except it ignores the page's
530 * refcount. We do this because invalidate_inode_pages2() needs stronger
531 * invalidation guarantees, and cannot afford to leave pages behind because
532 * shrink_page_list() has a temp ref on them, or because they're transiently
533 * sitting in the lru_cache_add() pagevecs.
536 invalidate_complete_page2(struct address_space
*mapping
, struct page
*page
)
538 if (page
->mapping
!= mapping
)
541 if (page_has_private(page
) && !try_to_release_page(page
, GFP_KERNEL
))
544 spin_lock_irq(&mapping
->tree_lock
);
548 BUG_ON(page_has_private(page
));
549 __delete_from_page_cache(page
, NULL
);
550 spin_unlock_irq(&mapping
->tree_lock
);
552 if (mapping
->a_ops
->freepage
)
553 mapping
->a_ops
->freepage(page
);
555 page_cache_release(page
); /* pagecache ref */
558 spin_unlock_irq(&mapping
->tree_lock
);
562 static int do_launder_page(struct address_space
*mapping
, struct page
*page
)
564 if (!PageDirty(page
))
566 if (page
->mapping
!= mapping
|| mapping
->a_ops
->launder_page
== NULL
)
568 return mapping
->a_ops
->launder_page(page
);
572 * invalidate_inode_pages2_range - remove range of pages from an address_space
573 * @mapping: the address_space
574 * @start: the page offset 'from' which to invalidate
575 * @end: the page offset 'to' which to invalidate (inclusive)
577 * Any pages which are found to be mapped into pagetables are unmapped prior to
580 * Returns -EBUSY if any pages could not be invalidated.
582 int invalidate_inode_pages2_range(struct address_space
*mapping
,
583 pgoff_t start
, pgoff_t end
)
585 pgoff_t indices
[PAGEVEC_SIZE
];
591 int did_range_unmap
= 0;
593 cleancache_invalidate_inode(mapping
);
594 pagevec_init(&pvec
, 0);
596 while (index
<= end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
597 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1,
599 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
600 struct page
*page
= pvec
.pages
[i
];
602 /* We rely upon deletion not changing page->index */
607 if (radix_tree_exceptional_entry(page
)) {
608 clear_exceptional_entry(mapping
, index
, page
);
613 WARN_ON(page
->index
!= index
);
614 if (page
->mapping
!= mapping
) {
618 wait_on_page_writeback(page
);
619 if (page_mapped(page
)) {
620 if (!did_range_unmap
) {
622 * Zap the rest of the file in one hit.
624 unmap_mapping_range(mapping
,
625 (loff_t
)index
<< PAGE_CACHE_SHIFT
,
626 (loff_t
)(1 + end
- index
)
634 unmap_mapping_range(mapping
,
635 (loff_t
)index
<< PAGE_CACHE_SHIFT
,
639 BUG_ON(page_mapped(page
));
640 ret2
= do_launder_page(mapping
, page
);
642 if (!invalidate_complete_page2(mapping
, page
))
649 pagevec_remove_exceptionals(&pvec
);
650 pagevec_release(&pvec
);
654 cleancache_invalidate_inode(mapping
);
657 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range
);
660 * invalidate_inode_pages2 - remove all pages from an address_space
661 * @mapping: the address_space
663 * Any pages which are found to be mapped into pagetables are unmapped prior to
666 * Returns -EBUSY if any pages could not be invalidated.
668 int invalidate_inode_pages2(struct address_space
*mapping
)
670 return invalidate_inode_pages2_range(mapping
, 0, -1);
672 EXPORT_SYMBOL_GPL(invalidate_inode_pages2
);
675 * truncate_pagecache - unmap and remove pagecache that has been truncated
677 * @newsize: new file size
679 * inode's new i_size must already be written before truncate_pagecache
682 * This function should typically be called before the filesystem
683 * releases resources associated with the freed range (eg. deallocates
684 * blocks). This way, pagecache will always stay logically coherent
685 * with on-disk format, and the filesystem would not have to deal with
686 * situations such as writepage being called for a page that has already
687 * had its underlying blocks deallocated.
689 void truncate_pagecache(struct inode
*inode
, loff_t newsize
)
691 struct address_space
*mapping
= inode
->i_mapping
;
692 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
695 * unmap_mapping_range is called twice, first simply for
696 * efficiency so that truncate_inode_pages does fewer
697 * single-page unmaps. However after this first call, and
698 * before truncate_inode_pages finishes, it is possible for
699 * private pages to be COWed, which remain after
700 * truncate_inode_pages finishes, hence the second
701 * unmap_mapping_range call must be made for correctness.
703 unmap_mapping_range(mapping
, holebegin
, 0, 1);
704 truncate_inode_pages(mapping
, newsize
);
705 unmap_mapping_range(mapping
, holebegin
, 0, 1);
707 EXPORT_SYMBOL(truncate_pagecache
);
710 * truncate_setsize - update inode and pagecache for a new file size
712 * @newsize: new file size
714 * truncate_setsize updates i_size and performs pagecache truncation (if
715 * necessary) to @newsize. It will be typically be called from the filesystem's
716 * setattr function when ATTR_SIZE is passed in.
718 * Must be called with a lock serializing truncates and writes (generally
719 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
720 * specific block truncation has been performed.
722 void truncate_setsize(struct inode
*inode
, loff_t newsize
)
724 loff_t oldsize
= inode
->i_size
;
726 i_size_write(inode
, newsize
);
727 if (newsize
> oldsize
)
728 pagecache_isize_extended(inode
, oldsize
, newsize
);
729 truncate_pagecache(inode
, newsize
);
731 EXPORT_SYMBOL(truncate_setsize
);
734 * pagecache_isize_extended - update pagecache after extension of i_size
735 * @inode: inode for which i_size was extended
736 * @from: original inode size
737 * @to: new inode size
739 * Handle extension of inode size either caused by extending truncate or by
740 * write starting after current i_size. We mark the page straddling current
741 * i_size RO so that page_mkwrite() is called on the nearest write access to
742 * the page. This way filesystem can be sure that page_mkwrite() is called on
743 * the page before user writes to the page via mmap after the i_size has been
746 * The function must be called after i_size is updated so that page fault
747 * coming after we unlock the page will already see the new i_size.
748 * The function must be called while we still hold i_mutex - this not only
749 * makes sure i_size is stable but also that userspace cannot observe new
750 * i_size value before we are prepared to store mmap writes at new inode size.
752 void pagecache_isize_extended(struct inode
*inode
, loff_t from
, loff_t to
)
754 int bsize
= 1 << inode
->i_blkbits
;
759 WARN_ON(to
> inode
->i_size
);
761 if (from
>= to
|| bsize
== PAGE_CACHE_SIZE
)
763 /* Page straddling @from will not have any hole block created? */
764 rounded_from
= round_up(from
, bsize
);
765 if (to
<= rounded_from
|| !(rounded_from
& (PAGE_CACHE_SIZE
- 1)))
768 index
= from
>> PAGE_CACHE_SHIFT
;
769 page
= find_lock_page(inode
->i_mapping
, index
);
770 /* Page not cached? Nothing to do */
774 * See clear_page_dirty_for_io() for details why set_page_dirty()
777 if (page_mkclean(page
))
778 set_page_dirty(page
);
780 page_cache_release(page
);
782 EXPORT_SYMBOL(pagecache_isize_extended
);
785 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
787 * @lstart: offset of beginning of hole
788 * @lend: offset of last byte of hole
790 * This function should typically be called before the filesystem
791 * releases resources associated with the freed range (eg. deallocates
792 * blocks). This way, pagecache will always stay logically coherent
793 * with on-disk format, and the filesystem would not have to deal with
794 * situations such as writepage being called for a page that has already
795 * had its underlying blocks deallocated.
797 void truncate_pagecache_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
799 struct address_space
*mapping
= inode
->i_mapping
;
800 loff_t unmap_start
= round_up(lstart
, PAGE_SIZE
);
801 loff_t unmap_end
= round_down(1 + lend
, PAGE_SIZE
) - 1;
803 * This rounding is currently just for example: unmap_mapping_range
804 * expands its hole outwards, whereas we want it to contract the hole
805 * inwards. However, existing callers of truncate_pagecache_range are
806 * doing their own page rounding first. Note that unmap_mapping_range
807 * allows holelen 0 for all, and we allow lend -1 for end of file.
811 * Unlike in truncate_pagecache, unmap_mapping_range is called only
812 * once (before truncating pagecache), and without "even_cows" flag:
813 * hole-punching should not remove private COWed pages from the hole.
815 if ((u64
)unmap_end
> (u64
)unmap_start
)
816 unmap_mapping_range(mapping
, unmap_start
,
817 1 + unmap_end
- unmap_start
, 0);
818 truncate_inode_pages_range(mapping
, lstart
, lend
);
820 EXPORT_SYMBOL(truncate_pagecache_range
);