2 * Copyright (c) 2009, Microsoft Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
20 * K. Y. Srinivasan <kys@microsoft.com>
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/interrupt.h>
29 #include <linux/sysctl.h>
30 #include <linux/slab.h>
31 #include <linux/acpi.h>
32 #include <linux/completion.h>
33 #include <linux/hyperv.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/cpu.h>
37 #include <linux/sched/task_stack.h>
39 #include <asm/mshyperv.h>
40 #include <linux/notifier.h>
41 #include <linux/ptrace.h>
42 #include <linux/screen_info.h>
43 #include <linux/kdebug.h>
44 #include <linux/efi.h>
45 #include <linux/random.h>
46 #include "hyperv_vmbus.h"
49 struct list_head node
;
50 struct hv_vmbus_device_id id
;
53 static struct acpi_device
*hv_acpi_dev
;
55 static struct completion probe_event
;
57 static int hyperv_cpuhp_online
;
59 static void *hv_panic_page
;
61 static int hyperv_panic_event(struct notifier_block
*nb
, unsigned long val
,
66 regs
= current_pt_regs();
68 hyperv_report_panic(regs
, val
);
72 static int hyperv_die_event(struct notifier_block
*nb
, unsigned long val
,
75 struct die_args
*die
= (struct die_args
*)args
;
76 struct pt_regs
*regs
= die
->regs
;
78 hyperv_report_panic(regs
, val
);
82 static struct notifier_block hyperv_die_block
= {
83 .notifier_call
= hyperv_die_event
,
85 static struct notifier_block hyperv_panic_block
= {
86 .notifier_call
= hyperv_panic_event
,
89 static const char *fb_mmio_name
= "fb_range";
90 static struct resource
*fb_mmio
;
91 static struct resource
*hyperv_mmio
;
92 static DEFINE_SEMAPHORE(hyperv_mmio_lock
);
94 static int vmbus_exists(void)
96 if (hv_acpi_dev
== NULL
)
102 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
103 static void print_alias_name(struct hv_device
*hv_dev
, char *alias_name
)
106 for (i
= 0; i
< VMBUS_ALIAS_LEN
; i
+= 2)
107 sprintf(&alias_name
[i
], "%02x", hv_dev
->dev_type
.b
[i
/2]);
110 static u8
channel_monitor_group(const struct vmbus_channel
*channel
)
112 return (u8
)channel
->offermsg
.monitorid
/ 32;
115 static u8
channel_monitor_offset(const struct vmbus_channel
*channel
)
117 return (u8
)channel
->offermsg
.monitorid
% 32;
120 static u32
channel_pending(const struct vmbus_channel
*channel
,
121 const struct hv_monitor_page
*monitor_page
)
123 u8 monitor_group
= channel_monitor_group(channel
);
125 return monitor_page
->trigger_group
[monitor_group
].pending
;
128 static u32
channel_latency(const struct vmbus_channel
*channel
,
129 const struct hv_monitor_page
*monitor_page
)
131 u8 monitor_group
= channel_monitor_group(channel
);
132 u8 monitor_offset
= channel_monitor_offset(channel
);
134 return monitor_page
->latency
[monitor_group
][monitor_offset
];
137 static u32
channel_conn_id(struct vmbus_channel
*channel
,
138 struct hv_monitor_page
*monitor_page
)
140 u8 monitor_group
= channel_monitor_group(channel
);
141 u8 monitor_offset
= channel_monitor_offset(channel
);
142 return monitor_page
->parameter
[monitor_group
][monitor_offset
].connectionid
.u
.id
;
145 static ssize_t
id_show(struct device
*dev
, struct device_attribute
*dev_attr
,
148 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
150 if (!hv_dev
->channel
)
152 return sprintf(buf
, "%d\n", hv_dev
->channel
->offermsg
.child_relid
);
154 static DEVICE_ATTR_RO(id
);
156 static ssize_t
state_show(struct device
*dev
, struct device_attribute
*dev_attr
,
159 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
161 if (!hv_dev
->channel
)
163 return sprintf(buf
, "%d\n", hv_dev
->channel
->state
);
165 static DEVICE_ATTR_RO(state
);
167 static ssize_t
monitor_id_show(struct device
*dev
,
168 struct device_attribute
*dev_attr
, char *buf
)
170 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
172 if (!hv_dev
->channel
)
174 return sprintf(buf
, "%d\n", hv_dev
->channel
->offermsg
.monitorid
);
176 static DEVICE_ATTR_RO(monitor_id
);
178 static ssize_t
class_id_show(struct device
*dev
,
179 struct device_attribute
*dev_attr
, char *buf
)
181 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
183 if (!hv_dev
->channel
)
185 return sprintf(buf
, "{%pUl}\n",
186 hv_dev
->channel
->offermsg
.offer
.if_type
.b
);
188 static DEVICE_ATTR_RO(class_id
);
190 static ssize_t
device_id_show(struct device
*dev
,
191 struct device_attribute
*dev_attr
, char *buf
)
193 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
195 if (!hv_dev
->channel
)
197 return sprintf(buf
, "{%pUl}\n",
198 hv_dev
->channel
->offermsg
.offer
.if_instance
.b
);
200 static DEVICE_ATTR_RO(device_id
);
202 static ssize_t
modalias_show(struct device
*dev
,
203 struct device_attribute
*dev_attr
, char *buf
)
205 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
206 char alias_name
[VMBUS_ALIAS_LEN
+ 1];
208 print_alias_name(hv_dev
, alias_name
);
209 return sprintf(buf
, "vmbus:%s\n", alias_name
);
211 static DEVICE_ATTR_RO(modalias
);
214 static ssize_t
numa_node_show(struct device
*dev
,
215 struct device_attribute
*attr
, char *buf
)
217 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
219 if (!hv_dev
->channel
)
222 return sprintf(buf
, "%d\n", hv_dev
->channel
->numa_node
);
224 static DEVICE_ATTR_RO(numa_node
);
227 static ssize_t
server_monitor_pending_show(struct device
*dev
,
228 struct device_attribute
*dev_attr
,
231 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
233 if (!hv_dev
->channel
)
235 return sprintf(buf
, "%d\n",
236 channel_pending(hv_dev
->channel
,
237 vmbus_connection
.monitor_pages
[1]));
239 static DEVICE_ATTR_RO(server_monitor_pending
);
241 static ssize_t
client_monitor_pending_show(struct device
*dev
,
242 struct device_attribute
*dev_attr
,
245 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
247 if (!hv_dev
->channel
)
249 return sprintf(buf
, "%d\n",
250 channel_pending(hv_dev
->channel
,
251 vmbus_connection
.monitor_pages
[1]));
253 static DEVICE_ATTR_RO(client_monitor_pending
);
255 static ssize_t
server_monitor_latency_show(struct device
*dev
,
256 struct device_attribute
*dev_attr
,
259 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
261 if (!hv_dev
->channel
)
263 return sprintf(buf
, "%d\n",
264 channel_latency(hv_dev
->channel
,
265 vmbus_connection
.monitor_pages
[0]));
267 static DEVICE_ATTR_RO(server_monitor_latency
);
269 static ssize_t
client_monitor_latency_show(struct device
*dev
,
270 struct device_attribute
*dev_attr
,
273 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
275 if (!hv_dev
->channel
)
277 return sprintf(buf
, "%d\n",
278 channel_latency(hv_dev
->channel
,
279 vmbus_connection
.monitor_pages
[1]));
281 static DEVICE_ATTR_RO(client_monitor_latency
);
283 static ssize_t
server_monitor_conn_id_show(struct device
*dev
,
284 struct device_attribute
*dev_attr
,
287 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
289 if (!hv_dev
->channel
)
291 return sprintf(buf
, "%d\n",
292 channel_conn_id(hv_dev
->channel
,
293 vmbus_connection
.monitor_pages
[0]));
295 static DEVICE_ATTR_RO(server_monitor_conn_id
);
297 static ssize_t
client_monitor_conn_id_show(struct device
*dev
,
298 struct device_attribute
*dev_attr
,
301 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
303 if (!hv_dev
->channel
)
305 return sprintf(buf
, "%d\n",
306 channel_conn_id(hv_dev
->channel
,
307 vmbus_connection
.monitor_pages
[1]));
309 static DEVICE_ATTR_RO(client_monitor_conn_id
);
311 static ssize_t
out_intr_mask_show(struct device
*dev
,
312 struct device_attribute
*dev_attr
, char *buf
)
314 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
315 struct hv_ring_buffer_debug_info outbound
;
317 if (!hv_dev
->channel
)
319 if (hv_dev
->channel
->state
!= CHANNEL_OPENED_STATE
)
321 hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
, &outbound
);
322 return sprintf(buf
, "%d\n", outbound
.current_interrupt_mask
);
324 static DEVICE_ATTR_RO(out_intr_mask
);
326 static ssize_t
out_read_index_show(struct device
*dev
,
327 struct device_attribute
*dev_attr
, char *buf
)
329 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
330 struct hv_ring_buffer_debug_info outbound
;
332 if (!hv_dev
->channel
)
334 if (hv_dev
->channel
->state
!= CHANNEL_OPENED_STATE
)
336 hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
, &outbound
);
337 return sprintf(buf
, "%d\n", outbound
.current_read_index
);
339 static DEVICE_ATTR_RO(out_read_index
);
341 static ssize_t
out_write_index_show(struct device
*dev
,
342 struct device_attribute
*dev_attr
,
345 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
346 struct hv_ring_buffer_debug_info outbound
;
348 if (!hv_dev
->channel
)
350 if (hv_dev
->channel
->state
!= CHANNEL_OPENED_STATE
)
352 hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
, &outbound
);
353 return sprintf(buf
, "%d\n", outbound
.current_write_index
);
355 static DEVICE_ATTR_RO(out_write_index
);
357 static ssize_t
out_read_bytes_avail_show(struct device
*dev
,
358 struct device_attribute
*dev_attr
,
361 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
362 struct hv_ring_buffer_debug_info outbound
;
364 if (!hv_dev
->channel
)
366 if (hv_dev
->channel
->state
!= CHANNEL_OPENED_STATE
)
368 hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
, &outbound
);
369 return sprintf(buf
, "%d\n", outbound
.bytes_avail_toread
);
371 static DEVICE_ATTR_RO(out_read_bytes_avail
);
373 static ssize_t
out_write_bytes_avail_show(struct device
*dev
,
374 struct device_attribute
*dev_attr
,
377 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
378 struct hv_ring_buffer_debug_info outbound
;
380 if (!hv_dev
->channel
)
382 if (hv_dev
->channel
->state
!= CHANNEL_OPENED_STATE
)
384 hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
, &outbound
);
385 return sprintf(buf
, "%d\n", outbound
.bytes_avail_towrite
);
387 static DEVICE_ATTR_RO(out_write_bytes_avail
);
389 static ssize_t
in_intr_mask_show(struct device
*dev
,
390 struct device_attribute
*dev_attr
, char *buf
)
392 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
393 struct hv_ring_buffer_debug_info inbound
;
395 if (!hv_dev
->channel
)
397 if (hv_dev
->channel
->state
!= CHANNEL_OPENED_STATE
)
399 hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
400 return sprintf(buf
, "%d\n", inbound
.current_interrupt_mask
);
402 static DEVICE_ATTR_RO(in_intr_mask
);
404 static ssize_t
in_read_index_show(struct device
*dev
,
405 struct device_attribute
*dev_attr
, char *buf
)
407 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
408 struct hv_ring_buffer_debug_info inbound
;
410 if (!hv_dev
->channel
)
412 if (hv_dev
->channel
->state
!= CHANNEL_OPENED_STATE
)
414 hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
415 return sprintf(buf
, "%d\n", inbound
.current_read_index
);
417 static DEVICE_ATTR_RO(in_read_index
);
419 static ssize_t
in_write_index_show(struct device
*dev
,
420 struct device_attribute
*dev_attr
, char *buf
)
422 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
423 struct hv_ring_buffer_debug_info inbound
;
425 if (!hv_dev
->channel
)
427 if (hv_dev
->channel
->state
!= CHANNEL_OPENED_STATE
)
429 hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
430 return sprintf(buf
, "%d\n", inbound
.current_write_index
);
432 static DEVICE_ATTR_RO(in_write_index
);
434 static ssize_t
in_read_bytes_avail_show(struct device
*dev
,
435 struct device_attribute
*dev_attr
,
438 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
439 struct hv_ring_buffer_debug_info inbound
;
441 if (!hv_dev
->channel
)
443 if (hv_dev
->channel
->state
!= CHANNEL_OPENED_STATE
)
445 hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
446 return sprintf(buf
, "%d\n", inbound
.bytes_avail_toread
);
448 static DEVICE_ATTR_RO(in_read_bytes_avail
);
450 static ssize_t
in_write_bytes_avail_show(struct device
*dev
,
451 struct device_attribute
*dev_attr
,
454 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
455 struct hv_ring_buffer_debug_info inbound
;
457 if (!hv_dev
->channel
)
459 if (hv_dev
->channel
->state
!= CHANNEL_OPENED_STATE
)
461 hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
462 return sprintf(buf
, "%d\n", inbound
.bytes_avail_towrite
);
464 static DEVICE_ATTR_RO(in_write_bytes_avail
);
466 static ssize_t
channel_vp_mapping_show(struct device
*dev
,
467 struct device_attribute
*dev_attr
,
470 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
471 struct vmbus_channel
*channel
= hv_dev
->channel
, *cur_sc
;
473 int buf_size
= PAGE_SIZE
, n_written
, tot_written
;
474 struct list_head
*cur
;
479 tot_written
= snprintf(buf
, buf_size
, "%u:%u\n",
480 channel
->offermsg
.child_relid
, channel
->target_cpu
);
482 spin_lock_irqsave(&channel
->lock
, flags
);
484 list_for_each(cur
, &channel
->sc_list
) {
485 if (tot_written
>= buf_size
- 1)
488 cur_sc
= list_entry(cur
, struct vmbus_channel
, sc_list
);
489 n_written
= scnprintf(buf
+ tot_written
,
490 buf_size
- tot_written
,
492 cur_sc
->offermsg
.child_relid
,
494 tot_written
+= n_written
;
497 spin_unlock_irqrestore(&channel
->lock
, flags
);
501 static DEVICE_ATTR_RO(channel_vp_mapping
);
503 static ssize_t
vendor_show(struct device
*dev
,
504 struct device_attribute
*dev_attr
,
507 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
508 return sprintf(buf
, "0x%x\n", hv_dev
->vendor_id
);
510 static DEVICE_ATTR_RO(vendor
);
512 static ssize_t
device_show(struct device
*dev
,
513 struct device_attribute
*dev_attr
,
516 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
517 return sprintf(buf
, "0x%x\n", hv_dev
->device_id
);
519 static DEVICE_ATTR_RO(device
);
521 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
522 static struct attribute
*vmbus_dev_attrs
[] = {
524 &dev_attr_state
.attr
,
525 &dev_attr_monitor_id
.attr
,
526 &dev_attr_class_id
.attr
,
527 &dev_attr_device_id
.attr
,
528 &dev_attr_modalias
.attr
,
530 &dev_attr_numa_node
.attr
,
532 &dev_attr_server_monitor_pending
.attr
,
533 &dev_attr_client_monitor_pending
.attr
,
534 &dev_attr_server_monitor_latency
.attr
,
535 &dev_attr_client_monitor_latency
.attr
,
536 &dev_attr_server_monitor_conn_id
.attr
,
537 &dev_attr_client_monitor_conn_id
.attr
,
538 &dev_attr_out_intr_mask
.attr
,
539 &dev_attr_out_read_index
.attr
,
540 &dev_attr_out_write_index
.attr
,
541 &dev_attr_out_read_bytes_avail
.attr
,
542 &dev_attr_out_write_bytes_avail
.attr
,
543 &dev_attr_in_intr_mask
.attr
,
544 &dev_attr_in_read_index
.attr
,
545 &dev_attr_in_write_index
.attr
,
546 &dev_attr_in_read_bytes_avail
.attr
,
547 &dev_attr_in_write_bytes_avail
.attr
,
548 &dev_attr_channel_vp_mapping
.attr
,
549 &dev_attr_vendor
.attr
,
550 &dev_attr_device
.attr
,
553 ATTRIBUTE_GROUPS(vmbus_dev
);
556 * vmbus_uevent - add uevent for our device
558 * This routine is invoked when a device is added or removed on the vmbus to
559 * generate a uevent to udev in the userspace. The udev will then look at its
560 * rule and the uevent generated here to load the appropriate driver
562 * The alias string will be of the form vmbus:guid where guid is the string
563 * representation of the device guid (each byte of the guid will be
564 * represented with two hex characters.
566 static int vmbus_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
568 struct hv_device
*dev
= device_to_hv_device(device
);
570 char alias_name
[VMBUS_ALIAS_LEN
+ 1];
572 print_alias_name(dev
, alias_name
);
573 ret
= add_uevent_var(env
, "MODALIAS=vmbus:%s", alias_name
);
577 static const uuid_le null_guid
;
579 static inline bool is_null_guid(const uuid_le
*guid
)
581 if (uuid_le_cmp(*guid
, null_guid
))
587 * Return a matching hv_vmbus_device_id pointer.
588 * If there is no match, return NULL.
590 static const struct hv_vmbus_device_id
*hv_vmbus_get_id(struct hv_driver
*drv
,
593 const struct hv_vmbus_device_id
*id
= NULL
;
594 struct vmbus_dynid
*dynid
;
596 /* Look at the dynamic ids first, before the static ones */
597 spin_lock(&drv
->dynids
.lock
);
598 list_for_each_entry(dynid
, &drv
->dynids
.list
, node
) {
599 if (!uuid_le_cmp(dynid
->id
.guid
, *guid
)) {
604 spin_unlock(&drv
->dynids
.lock
);
611 return NULL
; /* empty device table */
613 for (; !is_null_guid(&id
->guid
); id
++)
614 if (!uuid_le_cmp(id
->guid
, *guid
))
620 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
621 static int vmbus_add_dynid(struct hv_driver
*drv
, uuid_le
*guid
)
623 struct vmbus_dynid
*dynid
;
625 dynid
= kzalloc(sizeof(*dynid
), GFP_KERNEL
);
629 dynid
->id
.guid
= *guid
;
631 spin_lock(&drv
->dynids
.lock
);
632 list_add_tail(&dynid
->node
, &drv
->dynids
.list
);
633 spin_unlock(&drv
->dynids
.lock
);
635 return driver_attach(&drv
->driver
);
638 static void vmbus_free_dynids(struct hv_driver
*drv
)
640 struct vmbus_dynid
*dynid
, *n
;
642 spin_lock(&drv
->dynids
.lock
);
643 list_for_each_entry_safe(dynid
, n
, &drv
->dynids
.list
, node
) {
644 list_del(&dynid
->node
);
647 spin_unlock(&drv
->dynids
.lock
);
651 * store_new_id - sysfs frontend to vmbus_add_dynid()
653 * Allow GUIDs to be added to an existing driver via sysfs.
655 static ssize_t
new_id_store(struct device_driver
*driver
, const char *buf
,
658 struct hv_driver
*drv
= drv_to_hv_drv(driver
);
662 retval
= uuid_le_to_bin(buf
, &guid
);
666 if (hv_vmbus_get_id(drv
, &guid
))
669 retval
= vmbus_add_dynid(drv
, &guid
);
674 static DRIVER_ATTR_WO(new_id
);
677 * store_remove_id - remove a PCI device ID from this driver
679 * Removes a dynamic pci device ID to this driver.
681 static ssize_t
remove_id_store(struct device_driver
*driver
, const char *buf
,
684 struct hv_driver
*drv
= drv_to_hv_drv(driver
);
685 struct vmbus_dynid
*dynid
, *n
;
689 retval
= uuid_le_to_bin(buf
, &guid
);
694 spin_lock(&drv
->dynids
.lock
);
695 list_for_each_entry_safe(dynid
, n
, &drv
->dynids
.list
, node
) {
696 struct hv_vmbus_device_id
*id
= &dynid
->id
;
698 if (!uuid_le_cmp(id
->guid
, guid
)) {
699 list_del(&dynid
->node
);
705 spin_unlock(&drv
->dynids
.lock
);
709 static DRIVER_ATTR_WO(remove_id
);
711 static struct attribute
*vmbus_drv_attrs
[] = {
712 &driver_attr_new_id
.attr
,
713 &driver_attr_remove_id
.attr
,
716 ATTRIBUTE_GROUPS(vmbus_drv
);
720 * vmbus_match - Attempt to match the specified device to the specified driver
722 static int vmbus_match(struct device
*device
, struct device_driver
*driver
)
724 struct hv_driver
*drv
= drv_to_hv_drv(driver
);
725 struct hv_device
*hv_dev
= device_to_hv_device(device
);
727 /* The hv_sock driver handles all hv_sock offers. */
728 if (is_hvsock_channel(hv_dev
->channel
))
731 if (hv_vmbus_get_id(drv
, &hv_dev
->dev_type
))
738 * vmbus_probe - Add the new vmbus's child device
740 static int vmbus_probe(struct device
*child_device
)
743 struct hv_driver
*drv
=
744 drv_to_hv_drv(child_device
->driver
);
745 struct hv_device
*dev
= device_to_hv_device(child_device
);
746 const struct hv_vmbus_device_id
*dev_id
;
748 dev_id
= hv_vmbus_get_id(drv
, &dev
->dev_type
);
750 ret
= drv
->probe(dev
, dev_id
);
752 pr_err("probe failed for device %s (%d)\n",
753 dev_name(child_device
), ret
);
756 pr_err("probe not set for driver %s\n",
757 dev_name(child_device
));
764 * vmbus_remove - Remove a vmbus device
766 static int vmbus_remove(struct device
*child_device
)
768 struct hv_driver
*drv
;
769 struct hv_device
*dev
= device_to_hv_device(child_device
);
771 if (child_device
->driver
) {
772 drv
= drv_to_hv_drv(child_device
->driver
);
782 * vmbus_shutdown - Shutdown a vmbus device
784 static void vmbus_shutdown(struct device
*child_device
)
786 struct hv_driver
*drv
;
787 struct hv_device
*dev
= device_to_hv_device(child_device
);
790 /* The device may not be attached yet */
791 if (!child_device
->driver
)
794 drv
= drv_to_hv_drv(child_device
->driver
);
802 * vmbus_device_release - Final callback release of the vmbus child device
804 static void vmbus_device_release(struct device
*device
)
806 struct hv_device
*hv_dev
= device_to_hv_device(device
);
807 struct vmbus_channel
*channel
= hv_dev
->channel
;
809 mutex_lock(&vmbus_connection
.channel_mutex
);
810 hv_process_channel_removal(channel
->offermsg
.child_relid
);
811 mutex_unlock(&vmbus_connection
.channel_mutex
);
816 /* The one and only one */
817 static struct bus_type hv_bus
= {
819 .match
= vmbus_match
,
820 .shutdown
= vmbus_shutdown
,
821 .remove
= vmbus_remove
,
822 .probe
= vmbus_probe
,
823 .uevent
= vmbus_uevent
,
824 .dev_groups
= vmbus_dev_groups
,
825 .drv_groups
= vmbus_drv_groups
,
828 struct onmessage_work_context
{
829 struct work_struct work
;
830 struct hv_message msg
;
833 static void vmbus_onmessage_work(struct work_struct
*work
)
835 struct onmessage_work_context
*ctx
;
837 /* Do not process messages if we're in DISCONNECTED state */
838 if (vmbus_connection
.conn_state
== DISCONNECTED
)
841 ctx
= container_of(work
, struct onmessage_work_context
,
843 vmbus_onmessage(&ctx
->msg
);
847 static void hv_process_timer_expiration(struct hv_message
*msg
,
848 struct hv_per_cpu_context
*hv_cpu
)
850 struct clock_event_device
*dev
= hv_cpu
->clk_evt
;
852 if (dev
->event_handler
)
853 dev
->event_handler(dev
);
855 vmbus_signal_eom(msg
, HVMSG_TIMER_EXPIRED
);
858 void vmbus_on_msg_dpc(unsigned long data
)
860 struct hv_per_cpu_context
*hv_cpu
= (void *)data
;
861 void *page_addr
= hv_cpu
->synic_message_page
;
862 struct hv_message
*msg
= (struct hv_message
*)page_addr
+
864 struct vmbus_channel_message_header
*hdr
;
865 const struct vmbus_channel_message_table_entry
*entry
;
866 struct onmessage_work_context
*ctx
;
867 u32 message_type
= msg
->header
.message_type
;
869 if (message_type
== HVMSG_NONE
)
873 hdr
= (struct vmbus_channel_message_header
*)msg
->u
.payload
;
875 trace_vmbus_on_msg_dpc(hdr
);
877 if (hdr
->msgtype
>= CHANNELMSG_COUNT
) {
878 WARN_ONCE(1, "unknown msgtype=%d\n", hdr
->msgtype
);
882 entry
= &channel_message_table
[hdr
->msgtype
];
883 if (entry
->handler_type
== VMHT_BLOCKING
) {
884 ctx
= kmalloc(sizeof(*ctx
), GFP_ATOMIC
);
888 INIT_WORK(&ctx
->work
, vmbus_onmessage_work
);
889 memcpy(&ctx
->msg
, msg
, sizeof(*msg
));
892 * The host can generate a rescind message while we
893 * may still be handling the original offer. We deal with
894 * this condition by ensuring the processing is done on the
897 switch (hdr
->msgtype
) {
898 case CHANNELMSG_RESCIND_CHANNELOFFER
:
900 * If we are handling the rescind message;
901 * schedule the work on the global work queue.
903 schedule_work_on(vmbus_connection
.connect_cpu
,
907 case CHANNELMSG_OFFERCHANNEL
:
908 atomic_inc(&vmbus_connection
.offer_in_progress
);
909 queue_work_on(vmbus_connection
.connect_cpu
,
910 vmbus_connection
.work_queue
,
915 queue_work(vmbus_connection
.work_queue
, &ctx
->work
);
918 entry
->message_handler(hdr
);
921 vmbus_signal_eom(msg
, message_type
);
926 * Direct callback for channels using other deferred processing
928 static void vmbus_channel_isr(struct vmbus_channel
*channel
)
930 void (*callback_fn
)(void *);
932 callback_fn
= READ_ONCE(channel
->onchannel_callback
);
933 if (likely(callback_fn
!= NULL
))
934 (*callback_fn
)(channel
->channel_callback_context
);
938 * Schedule all channels with events pending
940 static void vmbus_chan_sched(struct hv_per_cpu_context
*hv_cpu
)
942 unsigned long *recv_int_page
;
945 if (vmbus_proto_version
< VERSION_WIN8
) {
946 maxbits
= MAX_NUM_CHANNELS_SUPPORTED
;
947 recv_int_page
= vmbus_connection
.recv_int_page
;
950 * When the host is win8 and beyond, the event page
951 * can be directly checked to get the id of the channel
952 * that has the interrupt pending.
954 void *page_addr
= hv_cpu
->synic_event_page
;
955 union hv_synic_event_flags
*event
956 = (union hv_synic_event_flags
*)page_addr
+
959 maxbits
= HV_EVENT_FLAGS_COUNT
;
960 recv_int_page
= event
->flags
;
963 if (unlikely(!recv_int_page
))
966 for_each_set_bit(relid
, recv_int_page
, maxbits
) {
967 struct vmbus_channel
*channel
;
969 if (!sync_test_and_clear_bit(relid
, recv_int_page
))
972 /* Special case - vmbus channel protocol msg */
978 /* Find channel based on relid */
979 list_for_each_entry_rcu(channel
, &hv_cpu
->chan_list
, percpu_list
) {
980 if (channel
->offermsg
.child_relid
!= relid
)
983 if (channel
->rescind
)
986 trace_vmbus_chan_sched(channel
);
988 ++channel
->interrupts
;
990 switch (channel
->callback_mode
) {
992 vmbus_channel_isr(channel
);
995 case HV_CALL_BATCHED
:
996 hv_begin_read(&channel
->inbound
);
999 tasklet_schedule(&channel
->callback_event
);
1007 static void vmbus_isr(void)
1009 struct hv_per_cpu_context
*hv_cpu
1010 = this_cpu_ptr(hv_context
.cpu_context
);
1011 void *page_addr
= hv_cpu
->synic_event_page
;
1012 struct hv_message
*msg
;
1013 union hv_synic_event_flags
*event
;
1014 bool handled
= false;
1016 if (unlikely(page_addr
== NULL
))
1019 event
= (union hv_synic_event_flags
*)page_addr
+
1022 * Check for events before checking for messages. This is the order
1023 * in which events and messages are checked in Windows guests on
1024 * Hyper-V, and the Windows team suggested we do the same.
1027 if ((vmbus_proto_version
== VERSION_WS2008
) ||
1028 (vmbus_proto_version
== VERSION_WIN7
)) {
1030 /* Since we are a child, we only need to check bit 0 */
1031 if (sync_test_and_clear_bit(0, event
->flags
))
1035 * Our host is win8 or above. The signaling mechanism
1036 * has changed and we can directly look at the event page.
1037 * If bit n is set then we have an interrup on the channel
1044 vmbus_chan_sched(hv_cpu
);
1046 page_addr
= hv_cpu
->synic_message_page
;
1047 msg
= (struct hv_message
*)page_addr
+ VMBUS_MESSAGE_SINT
;
1049 /* Check if there are actual msgs to be processed */
1050 if (msg
->header
.message_type
!= HVMSG_NONE
) {
1051 if (msg
->header
.message_type
== HVMSG_TIMER_EXPIRED
)
1052 hv_process_timer_expiration(msg
, hv_cpu
);
1054 tasklet_schedule(&hv_cpu
->msg_dpc
);
1057 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR
, 0);
1061 * Boolean to control whether to report panic messages over Hyper-V.
1063 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
1065 static int sysctl_record_panic_msg
= 1;
1068 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1069 * buffer and call into Hyper-V to transfer the data.
1071 static void hv_kmsg_dump(struct kmsg_dumper
*dumper
,
1072 enum kmsg_dump_reason reason
)
1074 size_t bytes_written
;
1075 phys_addr_t panic_pa
;
1077 /* We are only interested in panics. */
1078 if ((reason
!= KMSG_DUMP_PANIC
) || (!sysctl_record_panic_msg
))
1081 panic_pa
= virt_to_phys(hv_panic_page
);
1084 * Write dump contents to the page. No need to synchronize; panic should
1085 * be single-threaded.
1087 kmsg_dump_get_buffer(dumper
, true, hv_panic_page
, PAGE_SIZE
,
1090 hyperv_report_panic_msg(panic_pa
, bytes_written
);
1093 static struct kmsg_dumper hv_kmsg_dumper
= {
1094 .dump
= hv_kmsg_dump
,
1097 static struct ctl_table_header
*hv_ctl_table_hdr
;
1102 * sysctl option to allow the user to control whether kmsg data should be
1103 * reported to Hyper-V on panic.
1105 static struct ctl_table hv_ctl_table
[] = {
1107 .procname
= "hyperv_record_panic_msg",
1108 .data
= &sysctl_record_panic_msg
,
1109 .maxlen
= sizeof(int),
1111 .proc_handler
= proc_dointvec_minmax
,
1118 static struct ctl_table hv_root_table
[] = {
1120 .procname
= "kernel",
1122 .child
= hv_ctl_table
1128 * vmbus_bus_init -Main vmbus driver initialization routine.
1131 * - initialize the vmbus driver context
1132 * - invoke the vmbus hv main init routine
1133 * - retrieve the channel offers
1135 static int vmbus_bus_init(void)
1139 /* Hypervisor initialization...setup hypercall page..etc */
1142 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret
);
1146 ret
= bus_register(&hv_bus
);
1150 hv_setup_vmbus_irq(vmbus_isr
);
1152 ret
= hv_synic_alloc();
1156 * Initialize the per-cpu interrupt state and
1157 * connect to the host.
1159 ret
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "hyperv/vmbus:online",
1160 hv_synic_init
, hv_synic_cleanup
);
1163 hyperv_cpuhp_online
= ret
;
1165 ret
= vmbus_connect();
1170 * Only register if the crash MSRs are available
1172 if (ms_hyperv
.misc_features
& HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
) {
1173 u64 hyperv_crash_ctl
;
1175 * Sysctl registration is not fatal, since by default
1176 * reporting is enabled.
1178 hv_ctl_table_hdr
= register_sysctl_table(hv_root_table
);
1179 if (!hv_ctl_table_hdr
)
1180 pr_err("Hyper-V: sysctl table register error");
1183 * Register for panic kmsg callback only if the right
1184 * capability is supported by the hypervisor.
1186 hv_get_crash_ctl(hyperv_crash_ctl
);
1187 if (hyperv_crash_ctl
& HV_CRASH_CTL_CRASH_NOTIFY_MSG
) {
1188 hv_panic_page
= (void *)get_zeroed_page(GFP_KERNEL
);
1189 if (hv_panic_page
) {
1190 ret
= kmsg_dump_register(&hv_kmsg_dumper
);
1192 pr_err("Hyper-V: kmsg dump register "
1193 "error 0x%x\n", ret
);
1195 pr_err("Hyper-V: panic message page memory "
1196 "allocation failed");
1199 register_die_notifier(&hyperv_die_block
);
1200 atomic_notifier_chain_register(&panic_notifier_list
,
1201 &hyperv_panic_block
);
1204 vmbus_request_offers();
1209 cpuhp_remove_state(hyperv_cpuhp_online
);
1212 hv_remove_vmbus_irq();
1214 bus_unregister(&hv_bus
);
1215 free_page((unsigned long)hv_panic_page
);
1216 unregister_sysctl_table(hv_ctl_table_hdr
);
1217 hv_ctl_table_hdr
= NULL
;
1222 * __vmbus_child_driver_register() - Register a vmbus's driver
1223 * @hv_driver: Pointer to driver structure you want to register
1224 * @owner: owner module of the drv
1225 * @mod_name: module name string
1227 * Registers the given driver with Linux through the 'driver_register()' call
1228 * and sets up the hyper-v vmbus handling for this driver.
1229 * It will return the state of the 'driver_register()' call.
1232 int __vmbus_driver_register(struct hv_driver
*hv_driver
, struct module
*owner
, const char *mod_name
)
1236 pr_info("registering driver %s\n", hv_driver
->name
);
1238 ret
= vmbus_exists();
1242 hv_driver
->driver
.name
= hv_driver
->name
;
1243 hv_driver
->driver
.owner
= owner
;
1244 hv_driver
->driver
.mod_name
= mod_name
;
1245 hv_driver
->driver
.bus
= &hv_bus
;
1247 spin_lock_init(&hv_driver
->dynids
.lock
);
1248 INIT_LIST_HEAD(&hv_driver
->dynids
.list
);
1250 ret
= driver_register(&hv_driver
->driver
);
1254 EXPORT_SYMBOL_GPL(__vmbus_driver_register
);
1257 * vmbus_driver_unregister() - Unregister a vmbus's driver
1258 * @hv_driver: Pointer to driver structure you want to
1261 * Un-register the given driver that was previous registered with a call to
1262 * vmbus_driver_register()
1264 void vmbus_driver_unregister(struct hv_driver
*hv_driver
)
1266 pr_info("unregistering driver %s\n", hv_driver
->name
);
1268 if (!vmbus_exists()) {
1269 driver_unregister(&hv_driver
->driver
);
1270 vmbus_free_dynids(hv_driver
);
1273 EXPORT_SYMBOL_GPL(vmbus_driver_unregister
);
1277 * Called when last reference to channel is gone.
1279 static void vmbus_chan_release(struct kobject
*kobj
)
1281 struct vmbus_channel
*channel
1282 = container_of(kobj
, struct vmbus_channel
, kobj
);
1284 kfree_rcu(channel
, rcu
);
1287 struct vmbus_chan_attribute
{
1288 struct attribute attr
;
1289 ssize_t (*show
)(const struct vmbus_channel
*chan
, char *buf
);
1290 ssize_t (*store
)(struct vmbus_channel
*chan
,
1291 const char *buf
, size_t count
);
1293 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1294 struct vmbus_chan_attribute chan_attr_##_name \
1295 = __ATTR(_name, _mode, _show, _store)
1296 #define VMBUS_CHAN_ATTR_RW(_name) \
1297 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1298 #define VMBUS_CHAN_ATTR_RO(_name) \
1299 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1300 #define VMBUS_CHAN_ATTR_WO(_name) \
1301 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1303 static ssize_t
vmbus_chan_attr_show(struct kobject
*kobj
,
1304 struct attribute
*attr
, char *buf
)
1306 const struct vmbus_chan_attribute
*attribute
1307 = container_of(attr
, struct vmbus_chan_attribute
, attr
);
1308 const struct vmbus_channel
*chan
1309 = container_of(kobj
, struct vmbus_channel
, kobj
);
1311 if (!attribute
->show
)
1314 if (chan
->state
!= CHANNEL_OPENED_STATE
)
1317 return attribute
->show(chan
, buf
);
1320 static const struct sysfs_ops vmbus_chan_sysfs_ops
= {
1321 .show
= vmbus_chan_attr_show
,
1324 static ssize_t
out_mask_show(const struct vmbus_channel
*channel
, char *buf
)
1326 const struct hv_ring_buffer_info
*rbi
= &channel
->outbound
;
1328 return sprintf(buf
, "%u\n", rbi
->ring_buffer
->interrupt_mask
);
1330 static VMBUS_CHAN_ATTR_RO(out_mask
);
1332 static ssize_t
in_mask_show(const struct vmbus_channel
*channel
, char *buf
)
1334 const struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
1336 return sprintf(buf
, "%u\n", rbi
->ring_buffer
->interrupt_mask
);
1338 static VMBUS_CHAN_ATTR_RO(in_mask
);
1340 static ssize_t
read_avail_show(const struct vmbus_channel
*channel
, char *buf
)
1342 const struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
1344 return sprintf(buf
, "%u\n", hv_get_bytes_to_read(rbi
));
1346 static VMBUS_CHAN_ATTR_RO(read_avail
);
1348 static ssize_t
write_avail_show(const struct vmbus_channel
*channel
, char *buf
)
1350 const struct hv_ring_buffer_info
*rbi
= &channel
->outbound
;
1352 return sprintf(buf
, "%u\n", hv_get_bytes_to_write(rbi
));
1354 static VMBUS_CHAN_ATTR_RO(write_avail
);
1356 static ssize_t
show_target_cpu(const struct vmbus_channel
*channel
, char *buf
)
1358 return sprintf(buf
, "%u\n", channel
->target_cpu
);
1360 static VMBUS_CHAN_ATTR(cpu
, S_IRUGO
, show_target_cpu
, NULL
);
1362 static ssize_t
channel_pending_show(const struct vmbus_channel
*channel
,
1365 return sprintf(buf
, "%d\n",
1366 channel_pending(channel
,
1367 vmbus_connection
.monitor_pages
[1]));
1369 static VMBUS_CHAN_ATTR(pending
, S_IRUGO
, channel_pending_show
, NULL
);
1371 static ssize_t
channel_latency_show(const struct vmbus_channel
*channel
,
1374 return sprintf(buf
, "%d\n",
1375 channel_latency(channel
,
1376 vmbus_connection
.monitor_pages
[1]));
1378 static VMBUS_CHAN_ATTR(latency
, S_IRUGO
, channel_latency_show
, NULL
);
1380 static ssize_t
channel_interrupts_show(const struct vmbus_channel
*channel
, char *buf
)
1382 return sprintf(buf
, "%llu\n", channel
->interrupts
);
1384 static VMBUS_CHAN_ATTR(interrupts
, S_IRUGO
, channel_interrupts_show
, NULL
);
1386 static ssize_t
channel_events_show(const struct vmbus_channel
*channel
, char *buf
)
1388 return sprintf(buf
, "%llu\n", channel
->sig_events
);
1390 static VMBUS_CHAN_ATTR(events
, S_IRUGO
, channel_events_show
, NULL
);
1392 static ssize_t
subchannel_monitor_id_show(const struct vmbus_channel
*channel
,
1395 return sprintf(buf
, "%u\n", channel
->offermsg
.monitorid
);
1397 static VMBUS_CHAN_ATTR(monitor_id
, S_IRUGO
, subchannel_monitor_id_show
, NULL
);
1399 static ssize_t
subchannel_id_show(const struct vmbus_channel
*channel
,
1402 return sprintf(buf
, "%u\n",
1403 channel
->offermsg
.offer
.sub_channel_index
);
1405 static VMBUS_CHAN_ATTR_RO(subchannel_id
);
1407 static struct attribute
*vmbus_chan_attrs
[] = {
1408 &chan_attr_out_mask
.attr
,
1409 &chan_attr_in_mask
.attr
,
1410 &chan_attr_read_avail
.attr
,
1411 &chan_attr_write_avail
.attr
,
1412 &chan_attr_cpu
.attr
,
1413 &chan_attr_pending
.attr
,
1414 &chan_attr_latency
.attr
,
1415 &chan_attr_interrupts
.attr
,
1416 &chan_attr_events
.attr
,
1417 &chan_attr_monitor_id
.attr
,
1418 &chan_attr_subchannel_id
.attr
,
1422 static struct kobj_type vmbus_chan_ktype
= {
1423 .sysfs_ops
= &vmbus_chan_sysfs_ops
,
1424 .release
= vmbus_chan_release
,
1425 .default_attrs
= vmbus_chan_attrs
,
1429 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1431 int vmbus_add_channel_kobj(struct hv_device
*dev
, struct vmbus_channel
*channel
)
1433 struct kobject
*kobj
= &channel
->kobj
;
1434 u32 relid
= channel
->offermsg
.child_relid
;
1437 kobj
->kset
= dev
->channels_kset
;
1438 ret
= kobject_init_and_add(kobj
, &vmbus_chan_ktype
, NULL
,
1443 kobject_uevent(kobj
, KOBJ_ADD
);
1449 * vmbus_device_create - Creates and registers a new child device
1452 struct hv_device
*vmbus_device_create(const uuid_le
*type
,
1453 const uuid_le
*instance
,
1454 struct vmbus_channel
*channel
)
1456 struct hv_device
*child_device_obj
;
1458 child_device_obj
= kzalloc(sizeof(struct hv_device
), GFP_KERNEL
);
1459 if (!child_device_obj
) {
1460 pr_err("Unable to allocate device object for child device\n");
1464 child_device_obj
->channel
= channel
;
1465 memcpy(&child_device_obj
->dev_type
, type
, sizeof(uuid_le
));
1466 memcpy(&child_device_obj
->dev_instance
, instance
,
1468 child_device_obj
->vendor_id
= 0x1414; /* MSFT vendor ID */
1471 return child_device_obj
;
1475 * vmbus_device_register - Register the child device
1477 int vmbus_device_register(struct hv_device
*child_device_obj
)
1479 struct kobject
*kobj
= &child_device_obj
->device
.kobj
;
1482 dev_set_name(&child_device_obj
->device
, "%pUl",
1483 child_device_obj
->channel
->offermsg
.offer
.if_instance
.b
);
1485 child_device_obj
->device
.bus
= &hv_bus
;
1486 child_device_obj
->device
.parent
= &hv_acpi_dev
->dev
;
1487 child_device_obj
->device
.release
= vmbus_device_release
;
1490 * Register with the LDM. This will kick off the driver/device
1491 * binding...which will eventually call vmbus_match() and vmbus_probe()
1493 ret
= device_register(&child_device_obj
->device
);
1495 pr_err("Unable to register child device\n");
1499 child_device_obj
->channels_kset
= kset_create_and_add("channels",
1501 if (!child_device_obj
->channels_kset
) {
1503 goto err_dev_unregister
;
1506 ret
= vmbus_add_channel_kobj(child_device_obj
,
1507 child_device_obj
->channel
);
1509 pr_err("Unable to register primary channeln");
1510 goto err_kset_unregister
;
1515 err_kset_unregister
:
1516 kset_unregister(child_device_obj
->channels_kset
);
1519 device_unregister(&child_device_obj
->device
);
1524 * vmbus_device_unregister - Remove the specified child device
1527 void vmbus_device_unregister(struct hv_device
*device_obj
)
1529 pr_debug("child device %s unregistered\n",
1530 dev_name(&device_obj
->device
));
1532 kset_unregister(device_obj
->channels_kset
);
1535 * Kick off the process of unregistering the device.
1536 * This will call vmbus_remove() and eventually vmbus_device_release()
1538 device_unregister(&device_obj
->device
);
1543 * VMBUS is an acpi enumerated device. Get the information we
1546 #define VTPM_BASE_ADDRESS 0xfed40000
1547 static acpi_status
vmbus_walk_resources(struct acpi_resource
*res
, void *ctx
)
1549 resource_size_t start
= 0;
1550 resource_size_t end
= 0;
1551 struct resource
*new_res
;
1552 struct resource
**old_res
= &hyperv_mmio
;
1553 struct resource
**prev_res
= NULL
;
1555 switch (res
->type
) {
1558 * "Address" descriptors are for bus windows. Ignore
1559 * "memory" descriptors, which are for registers on
1562 case ACPI_RESOURCE_TYPE_ADDRESS32
:
1563 start
= res
->data
.address32
.address
.minimum
;
1564 end
= res
->data
.address32
.address
.maximum
;
1567 case ACPI_RESOURCE_TYPE_ADDRESS64
:
1568 start
= res
->data
.address64
.address
.minimum
;
1569 end
= res
->data
.address64
.address
.maximum
;
1573 /* Unused resource type */
1578 * Ignore ranges that are below 1MB, as they're not
1579 * necessary or useful here.
1584 new_res
= kzalloc(sizeof(*new_res
), GFP_ATOMIC
);
1586 return AE_NO_MEMORY
;
1588 /* If this range overlaps the virtual TPM, truncate it. */
1589 if (end
> VTPM_BASE_ADDRESS
&& start
< VTPM_BASE_ADDRESS
)
1590 end
= VTPM_BASE_ADDRESS
;
1592 new_res
->name
= "hyperv mmio";
1593 new_res
->flags
= IORESOURCE_MEM
;
1594 new_res
->start
= start
;
1598 * If two ranges are adjacent, merge them.
1606 if (((*old_res
)->end
+ 1) == new_res
->start
) {
1607 (*old_res
)->end
= new_res
->end
;
1612 if ((*old_res
)->start
== new_res
->end
+ 1) {
1613 (*old_res
)->start
= new_res
->start
;
1618 if ((*old_res
)->start
> new_res
->end
) {
1619 new_res
->sibling
= *old_res
;
1621 (*prev_res
)->sibling
= new_res
;
1627 old_res
= &(*old_res
)->sibling
;
1634 static int vmbus_acpi_remove(struct acpi_device
*device
)
1636 struct resource
*cur_res
;
1637 struct resource
*next_res
;
1641 __release_region(hyperv_mmio
, fb_mmio
->start
,
1642 resource_size(fb_mmio
));
1646 for (cur_res
= hyperv_mmio
; cur_res
; cur_res
= next_res
) {
1647 next_res
= cur_res
->sibling
;
1655 static void vmbus_reserve_fb(void)
1659 * Make a claim for the frame buffer in the resource tree under the
1660 * first node, which will be the one below 4GB. The length seems to
1661 * be underreported, particularly in a Generation 1 VM. So start out
1662 * reserving a larger area and make it smaller until it succeeds.
1665 if (screen_info
.lfb_base
) {
1666 if (efi_enabled(EFI_BOOT
))
1667 size
= max_t(__u32
, screen_info
.lfb_size
, 0x800000);
1669 size
= max_t(__u32
, screen_info
.lfb_size
, 0x4000000);
1671 for (; !fb_mmio
&& (size
>= 0x100000); size
>>= 1) {
1672 fb_mmio
= __request_region(hyperv_mmio
,
1673 screen_info
.lfb_base
, size
,
1680 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
1681 * @new: If successful, supplied a pointer to the
1682 * allocated MMIO space.
1683 * @device_obj: Identifies the caller
1684 * @min: Minimum guest physical address of the
1686 * @max: Maximum guest physical address
1687 * @size: Size of the range to be allocated
1688 * @align: Alignment of the range to be allocated
1689 * @fb_overlap_ok: Whether this allocation can be allowed
1690 * to overlap the video frame buffer.
1692 * This function walks the resources granted to VMBus by the
1693 * _CRS object in the ACPI namespace underneath the parent
1694 * "bridge" whether that's a root PCI bus in the Generation 1
1695 * case or a Module Device in the Generation 2 case. It then
1696 * attempts to allocate from the global MMIO pool in a way that
1697 * matches the constraints supplied in these parameters and by
1700 * Return: 0 on success, -errno on failure
1702 int vmbus_allocate_mmio(struct resource
**new, struct hv_device
*device_obj
,
1703 resource_size_t min
, resource_size_t max
,
1704 resource_size_t size
, resource_size_t align
,
1707 struct resource
*iter
, *shadow
;
1708 resource_size_t range_min
, range_max
, start
;
1709 const char *dev_n
= dev_name(&device_obj
->device
);
1713 down(&hyperv_mmio_lock
);
1716 * If overlaps with frame buffers are allowed, then first attempt to
1717 * make the allocation from within the reserved region. Because it
1718 * is already reserved, no shadow allocation is necessary.
1720 if (fb_overlap_ok
&& fb_mmio
&& !(min
> fb_mmio
->end
) &&
1721 !(max
< fb_mmio
->start
)) {
1723 range_min
= fb_mmio
->start
;
1724 range_max
= fb_mmio
->end
;
1725 start
= (range_min
+ align
- 1) & ~(align
- 1);
1726 for (; start
+ size
- 1 <= range_max
; start
+= align
) {
1727 *new = request_mem_region_exclusive(start
, size
, dev_n
);
1735 for (iter
= hyperv_mmio
; iter
; iter
= iter
->sibling
) {
1736 if ((iter
->start
>= max
) || (iter
->end
<= min
))
1739 range_min
= iter
->start
;
1740 range_max
= iter
->end
;
1741 start
= (range_min
+ align
- 1) & ~(align
- 1);
1742 for (; start
+ size
- 1 <= range_max
; start
+= align
) {
1743 shadow
= __request_region(iter
, start
, size
, NULL
,
1748 *new = request_mem_region_exclusive(start
, size
, dev_n
);
1750 shadow
->name
= (char *)*new;
1755 __release_region(iter
, start
, size
);
1760 up(&hyperv_mmio_lock
);
1763 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio
);
1766 * vmbus_free_mmio() - Free a memory-mapped I/O range.
1767 * @start: Base address of region to release.
1768 * @size: Size of the range to be allocated
1770 * This function releases anything requested by
1771 * vmbus_mmio_allocate().
1773 void vmbus_free_mmio(resource_size_t start
, resource_size_t size
)
1775 struct resource
*iter
;
1777 down(&hyperv_mmio_lock
);
1778 for (iter
= hyperv_mmio
; iter
; iter
= iter
->sibling
) {
1779 if ((iter
->start
>= start
+ size
) || (iter
->end
<= start
))
1782 __release_region(iter
, start
, size
);
1784 release_mem_region(start
, size
);
1785 up(&hyperv_mmio_lock
);
1788 EXPORT_SYMBOL_GPL(vmbus_free_mmio
);
1790 static int vmbus_acpi_add(struct acpi_device
*device
)
1793 int ret_val
= -ENODEV
;
1794 struct acpi_device
*ancestor
;
1796 hv_acpi_dev
= device
;
1798 result
= acpi_walk_resources(device
->handle
, METHOD_NAME__CRS
,
1799 vmbus_walk_resources
, NULL
);
1801 if (ACPI_FAILURE(result
))
1804 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
1805 * firmware) is the VMOD that has the mmio ranges. Get that.
1807 for (ancestor
= device
->parent
; ancestor
; ancestor
= ancestor
->parent
) {
1808 result
= acpi_walk_resources(ancestor
->handle
, METHOD_NAME__CRS
,
1809 vmbus_walk_resources
, NULL
);
1811 if (ACPI_FAILURE(result
))
1821 complete(&probe_event
);
1823 vmbus_acpi_remove(device
);
1827 static const struct acpi_device_id vmbus_acpi_device_ids
[] = {
1832 MODULE_DEVICE_TABLE(acpi
, vmbus_acpi_device_ids
);
1834 static struct acpi_driver vmbus_acpi_driver
= {
1836 .ids
= vmbus_acpi_device_ids
,
1838 .add
= vmbus_acpi_add
,
1839 .remove
= vmbus_acpi_remove
,
1843 static void hv_kexec_handler(void)
1845 hv_synic_clockevents_cleanup();
1846 vmbus_initiate_unload(false);
1847 vmbus_connection
.conn_state
= DISCONNECTED
;
1848 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
1850 cpuhp_remove_state(hyperv_cpuhp_online
);
1854 static void hv_crash_handler(struct pt_regs
*regs
)
1856 vmbus_initiate_unload(true);
1858 * In crash handler we can't schedule synic cleanup for all CPUs,
1859 * doing the cleanup for current CPU only. This should be sufficient
1862 vmbus_connection
.conn_state
= DISCONNECTED
;
1863 hv_synic_cleanup(smp_processor_id());
1867 static int __init
hv_acpi_init(void)
1871 if (!hv_is_hyperv_initialized())
1874 init_completion(&probe_event
);
1877 * Get ACPI resources first.
1879 ret
= acpi_bus_register_driver(&vmbus_acpi_driver
);
1884 t
= wait_for_completion_timeout(&probe_event
, 5*HZ
);
1890 ret
= vmbus_bus_init();
1894 hv_setup_kexec_handler(hv_kexec_handler
);
1895 hv_setup_crash_handler(hv_crash_handler
);
1900 acpi_bus_unregister_driver(&vmbus_acpi_driver
);
1905 static void __exit
vmbus_exit(void)
1909 hv_remove_kexec_handler();
1910 hv_remove_crash_handler();
1911 vmbus_connection
.conn_state
= DISCONNECTED
;
1912 hv_synic_clockevents_cleanup();
1914 hv_remove_vmbus_irq();
1915 for_each_online_cpu(cpu
) {
1916 struct hv_per_cpu_context
*hv_cpu
1917 = per_cpu_ptr(hv_context
.cpu_context
, cpu
);
1919 tasklet_kill(&hv_cpu
->msg_dpc
);
1921 vmbus_free_channels();
1923 if (ms_hyperv
.misc_features
& HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
) {
1924 kmsg_dump_unregister(&hv_kmsg_dumper
);
1925 unregister_die_notifier(&hyperv_die_block
);
1926 atomic_notifier_chain_unregister(&panic_notifier_list
,
1927 &hyperv_panic_block
);
1930 free_page((unsigned long)hv_panic_page
);
1931 unregister_sysctl_table(hv_ctl_table_hdr
);
1932 hv_ctl_table_hdr
= NULL
;
1933 bus_unregister(&hv_bus
);
1935 cpuhp_remove_state(hyperv_cpuhp_online
);
1937 acpi_bus_unregister_driver(&vmbus_acpi_driver
);
1941 MODULE_LICENSE("GPL");
1943 subsys_initcall(hv_acpi_init
);
1944 module_exit(vmbus_exit
);