fanotify: merge duplicate events on parent and child
[linux/fpc-iii.git] / fs / btrfs / check-integrity.c
bloba0ce69f2d27cd99cb3fe461305c933f91fbe90b1
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) STRATO AG 2011. All rights reserved.
4 */
6 /*
7 * This module can be used to catch cases when the btrfs kernel
8 * code executes write requests to the disk that bring the file
9 * system in an inconsistent state. In such a state, a power-loss
10 * or kernel panic event would cause that the data on disk is
11 * lost or at least damaged.
13 * Code is added that examines all block write requests during
14 * runtime (including writes of the super block). Three rules
15 * are verified and an error is printed on violation of the
16 * rules:
17 * 1. It is not allowed to write a disk block which is
18 * currently referenced by the super block (either directly
19 * or indirectly).
20 * 2. When a super block is written, it is verified that all
21 * referenced (directly or indirectly) blocks fulfill the
22 * following requirements:
23 * 2a. All referenced blocks have either been present when
24 * the file system was mounted, (i.e., they have been
25 * referenced by the super block) or they have been
26 * written since then and the write completion callback
27 * was called and no write error was indicated and a
28 * FLUSH request to the device where these blocks are
29 * located was received and completed.
30 * 2b. All referenced blocks need to have a generation
31 * number which is equal to the parent's number.
33 * One issue that was found using this module was that the log
34 * tree on disk became temporarily corrupted because disk blocks
35 * that had been in use for the log tree had been freed and
36 * reused too early, while being referenced by the written super
37 * block.
39 * The search term in the kernel log that can be used to filter
40 * on the existence of detected integrity issues is
41 * "btrfs: attempt".
43 * The integrity check is enabled via mount options. These
44 * mount options are only supported if the integrity check
45 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
47 * Example #1, apply integrity checks to all metadata:
48 * mount /dev/sdb1 /mnt -o check_int
50 * Example #2, apply integrity checks to all metadata and
51 * to data extents:
52 * mount /dev/sdb1 /mnt -o check_int_data
54 * Example #3, apply integrity checks to all metadata and dump
55 * the tree that the super block references to kernel messages
56 * each time after a super block was written:
57 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
59 * If the integrity check tool is included and activated in
60 * the mount options, plenty of kernel memory is used, and
61 * plenty of additional CPU cycles are spent. Enabling this
62 * functionality is not intended for normal use. In most
63 * cases, unless you are a btrfs developer who needs to verify
64 * the integrity of (super)-block write requests, do not
65 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
66 * include and compile the integrity check tool.
68 * Expect millions of lines of information in the kernel log with an
69 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
70 * kernel config to at least 26 (which is 64MB). Usually the value is
71 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
72 * changed like this before LOG_BUF_SHIFT can be set to a high value:
73 * config LOG_BUF_SHIFT
74 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
75 * range 12 30
78 #include <linux/sched.h>
79 #include <linux/slab.h>
80 #include <linux/buffer_head.h>
81 #include <linux/mutex.h>
82 #include <linux/genhd.h>
83 #include <linux/blkdev.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <crypto/hash.h>
87 #include "ctree.h"
88 #include "disk-io.h"
89 #include "transaction.h"
90 #include "extent_io.h"
91 #include "volumes.h"
92 #include "print-tree.h"
93 #include "locking.h"
94 #include "check-integrity.h"
95 #include "rcu-string.h"
96 #include "compression.h"
98 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
99 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
100 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
101 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
102 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
103 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
104 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
105 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
106 * excluding " [...]" */
107 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
110 * The definition of the bitmask fields for the print_mask.
111 * They are specified with the mount option check_integrity_print_mask.
113 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
114 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
115 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
116 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
117 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
118 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
119 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
120 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
121 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
122 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
123 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
124 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
125 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
126 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
128 struct btrfsic_dev_state;
129 struct btrfsic_state;
131 struct btrfsic_block {
132 u32 magic_num; /* only used for debug purposes */
133 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
134 unsigned int is_superblock:1; /* if it is one of the superblocks */
135 unsigned int is_iodone:1; /* if is done by lower subsystem */
136 unsigned int iodone_w_error:1; /* error was indicated to endio */
137 unsigned int never_written:1; /* block was added because it was
138 * referenced, not because it was
139 * written */
140 unsigned int mirror_num; /* large enough to hold
141 * BTRFS_SUPER_MIRROR_MAX */
142 struct btrfsic_dev_state *dev_state;
143 u64 dev_bytenr; /* key, physical byte num on disk */
144 u64 logical_bytenr; /* logical byte num on disk */
145 u64 generation;
146 struct btrfs_disk_key disk_key; /* extra info to print in case of
147 * issues, will not always be correct */
148 struct list_head collision_resolving_node; /* list node */
149 struct list_head all_blocks_node; /* list node */
151 /* the following two lists contain block_link items */
152 struct list_head ref_to_list; /* list */
153 struct list_head ref_from_list; /* list */
154 struct btrfsic_block *next_in_same_bio;
155 void *orig_bio_bh_private;
156 union {
157 bio_end_io_t *bio;
158 bh_end_io_t *bh;
159 } orig_bio_bh_end_io;
160 int submit_bio_bh_rw;
161 u64 flush_gen; /* only valid if !never_written */
165 * Elements of this type are allocated dynamically and required because
166 * each block object can refer to and can be ref from multiple blocks.
167 * The key to lookup them in the hashtable is the dev_bytenr of
168 * the block ref to plus the one from the block referred from.
169 * The fact that they are searchable via a hashtable and that a
170 * ref_cnt is maintained is not required for the btrfs integrity
171 * check algorithm itself, it is only used to make the output more
172 * beautiful in case that an error is detected (an error is defined
173 * as a write operation to a block while that block is still referenced).
175 struct btrfsic_block_link {
176 u32 magic_num; /* only used for debug purposes */
177 u32 ref_cnt;
178 struct list_head node_ref_to; /* list node */
179 struct list_head node_ref_from; /* list node */
180 struct list_head collision_resolving_node; /* list node */
181 struct btrfsic_block *block_ref_to;
182 struct btrfsic_block *block_ref_from;
183 u64 parent_generation;
186 struct btrfsic_dev_state {
187 u32 magic_num; /* only used for debug purposes */
188 struct block_device *bdev;
189 struct btrfsic_state *state;
190 struct list_head collision_resolving_node; /* list node */
191 struct btrfsic_block dummy_block_for_bio_bh_flush;
192 u64 last_flush_gen;
193 char name[BDEVNAME_SIZE];
196 struct btrfsic_block_hashtable {
197 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
200 struct btrfsic_block_link_hashtable {
201 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
204 struct btrfsic_dev_state_hashtable {
205 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
208 struct btrfsic_block_data_ctx {
209 u64 start; /* virtual bytenr */
210 u64 dev_bytenr; /* physical bytenr on device */
211 u32 len;
212 struct btrfsic_dev_state *dev;
213 char **datav;
214 struct page **pagev;
215 void *mem_to_free;
218 /* This structure is used to implement recursion without occupying
219 * any stack space, refer to btrfsic_process_metablock() */
220 struct btrfsic_stack_frame {
221 u32 magic;
222 u32 nr;
223 int error;
224 int i;
225 int limit_nesting;
226 int num_copies;
227 int mirror_num;
228 struct btrfsic_block *block;
229 struct btrfsic_block_data_ctx *block_ctx;
230 struct btrfsic_block *next_block;
231 struct btrfsic_block_data_ctx next_block_ctx;
232 struct btrfs_header *hdr;
233 struct btrfsic_stack_frame *prev;
236 /* Some state per mounted filesystem */
237 struct btrfsic_state {
238 u32 print_mask;
239 int include_extent_data;
240 int csum_size;
241 struct list_head all_blocks_list;
242 struct btrfsic_block_hashtable block_hashtable;
243 struct btrfsic_block_link_hashtable block_link_hashtable;
244 struct btrfs_fs_info *fs_info;
245 u64 max_superblock_generation;
246 struct btrfsic_block *latest_superblock;
247 u32 metablock_size;
248 u32 datablock_size;
251 static void btrfsic_block_init(struct btrfsic_block *b);
252 static struct btrfsic_block *btrfsic_block_alloc(void);
253 static void btrfsic_block_free(struct btrfsic_block *b);
254 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
255 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
256 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
257 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
258 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
259 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
260 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
261 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
262 struct btrfsic_block_hashtable *h);
263 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
264 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
265 struct block_device *bdev,
266 u64 dev_bytenr,
267 struct btrfsic_block_hashtable *h);
268 static void btrfsic_block_link_hashtable_init(
269 struct btrfsic_block_link_hashtable *h);
270 static void btrfsic_block_link_hashtable_add(
271 struct btrfsic_block_link *l,
272 struct btrfsic_block_link_hashtable *h);
273 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
274 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
275 struct block_device *bdev_ref_to,
276 u64 dev_bytenr_ref_to,
277 struct block_device *bdev_ref_from,
278 u64 dev_bytenr_ref_from,
279 struct btrfsic_block_link_hashtable *h);
280 static void btrfsic_dev_state_hashtable_init(
281 struct btrfsic_dev_state_hashtable *h);
282 static void btrfsic_dev_state_hashtable_add(
283 struct btrfsic_dev_state *ds,
284 struct btrfsic_dev_state_hashtable *h);
285 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
286 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
287 struct btrfsic_dev_state_hashtable *h);
288 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
289 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
290 static int btrfsic_process_superblock(struct btrfsic_state *state,
291 struct btrfs_fs_devices *fs_devices);
292 static int btrfsic_process_metablock(struct btrfsic_state *state,
293 struct btrfsic_block *block,
294 struct btrfsic_block_data_ctx *block_ctx,
295 int limit_nesting, int force_iodone_flag);
296 static void btrfsic_read_from_block_data(
297 struct btrfsic_block_data_ctx *block_ctx,
298 void *dst, u32 offset, size_t len);
299 static int btrfsic_create_link_to_next_block(
300 struct btrfsic_state *state,
301 struct btrfsic_block *block,
302 struct btrfsic_block_data_ctx
303 *block_ctx, u64 next_bytenr,
304 int limit_nesting,
305 struct btrfsic_block_data_ctx *next_block_ctx,
306 struct btrfsic_block **next_blockp,
307 int force_iodone_flag,
308 int *num_copiesp, int *mirror_nump,
309 struct btrfs_disk_key *disk_key,
310 u64 parent_generation);
311 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
312 struct btrfsic_block *block,
313 struct btrfsic_block_data_ctx *block_ctx,
314 u32 item_offset, int force_iodone_flag);
315 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
316 struct btrfsic_block_data_ctx *block_ctx_out,
317 int mirror_num);
318 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
319 static int btrfsic_read_block(struct btrfsic_state *state,
320 struct btrfsic_block_data_ctx *block_ctx);
321 static void btrfsic_dump_database(struct btrfsic_state *state);
322 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
323 char **datav, unsigned int num_pages);
324 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
325 u64 dev_bytenr, char **mapped_datav,
326 unsigned int num_pages,
327 struct bio *bio, int *bio_is_patched,
328 struct buffer_head *bh,
329 int submit_bio_bh_rw);
330 static int btrfsic_process_written_superblock(
331 struct btrfsic_state *state,
332 struct btrfsic_block *const block,
333 struct btrfs_super_block *const super_hdr);
334 static void btrfsic_bio_end_io(struct bio *bp);
335 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
336 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
337 const struct btrfsic_block *block,
338 int recursion_level);
339 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
340 struct btrfsic_block *const block,
341 int recursion_level);
342 static void btrfsic_print_add_link(const struct btrfsic_state *state,
343 const struct btrfsic_block_link *l);
344 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
345 const struct btrfsic_block_link *l);
346 static char btrfsic_get_block_type(const struct btrfsic_state *state,
347 const struct btrfsic_block *block);
348 static void btrfsic_dump_tree(const struct btrfsic_state *state);
349 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
350 const struct btrfsic_block *block,
351 int indent_level);
352 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
353 struct btrfsic_state *state,
354 struct btrfsic_block_data_ctx *next_block_ctx,
355 struct btrfsic_block *next_block,
356 struct btrfsic_block *from_block,
357 u64 parent_generation);
358 static struct btrfsic_block *btrfsic_block_lookup_or_add(
359 struct btrfsic_state *state,
360 struct btrfsic_block_data_ctx *block_ctx,
361 const char *additional_string,
362 int is_metadata,
363 int is_iodone,
364 int never_written,
365 int mirror_num,
366 int *was_created);
367 static int btrfsic_process_superblock_dev_mirror(
368 struct btrfsic_state *state,
369 struct btrfsic_dev_state *dev_state,
370 struct btrfs_device *device,
371 int superblock_mirror_num,
372 struct btrfsic_dev_state **selected_dev_state,
373 struct btrfs_super_block *selected_super);
374 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev);
375 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
376 u64 bytenr,
377 struct btrfsic_dev_state *dev_state,
378 u64 dev_bytenr);
380 static struct mutex btrfsic_mutex;
381 static int btrfsic_is_initialized;
382 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
385 static void btrfsic_block_init(struct btrfsic_block *b)
387 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
388 b->dev_state = NULL;
389 b->dev_bytenr = 0;
390 b->logical_bytenr = 0;
391 b->generation = BTRFSIC_GENERATION_UNKNOWN;
392 b->disk_key.objectid = 0;
393 b->disk_key.type = 0;
394 b->disk_key.offset = 0;
395 b->is_metadata = 0;
396 b->is_superblock = 0;
397 b->is_iodone = 0;
398 b->iodone_w_error = 0;
399 b->never_written = 0;
400 b->mirror_num = 0;
401 b->next_in_same_bio = NULL;
402 b->orig_bio_bh_private = NULL;
403 b->orig_bio_bh_end_io.bio = NULL;
404 INIT_LIST_HEAD(&b->collision_resolving_node);
405 INIT_LIST_HEAD(&b->all_blocks_node);
406 INIT_LIST_HEAD(&b->ref_to_list);
407 INIT_LIST_HEAD(&b->ref_from_list);
408 b->submit_bio_bh_rw = 0;
409 b->flush_gen = 0;
412 static struct btrfsic_block *btrfsic_block_alloc(void)
414 struct btrfsic_block *b;
416 b = kzalloc(sizeof(*b), GFP_NOFS);
417 if (NULL != b)
418 btrfsic_block_init(b);
420 return b;
423 static void btrfsic_block_free(struct btrfsic_block *b)
425 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
426 kfree(b);
429 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
431 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
432 l->ref_cnt = 1;
433 INIT_LIST_HEAD(&l->node_ref_to);
434 INIT_LIST_HEAD(&l->node_ref_from);
435 INIT_LIST_HEAD(&l->collision_resolving_node);
436 l->block_ref_to = NULL;
437 l->block_ref_from = NULL;
440 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
442 struct btrfsic_block_link *l;
444 l = kzalloc(sizeof(*l), GFP_NOFS);
445 if (NULL != l)
446 btrfsic_block_link_init(l);
448 return l;
451 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
453 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
454 kfree(l);
457 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
459 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
460 ds->bdev = NULL;
461 ds->state = NULL;
462 ds->name[0] = '\0';
463 INIT_LIST_HEAD(&ds->collision_resolving_node);
464 ds->last_flush_gen = 0;
465 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
466 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
467 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
470 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
472 struct btrfsic_dev_state *ds;
474 ds = kzalloc(sizeof(*ds), GFP_NOFS);
475 if (NULL != ds)
476 btrfsic_dev_state_init(ds);
478 return ds;
481 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
483 BUG_ON(!(NULL == ds ||
484 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
485 kfree(ds);
488 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
490 int i;
492 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
493 INIT_LIST_HEAD(h->table + i);
496 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
497 struct btrfsic_block_hashtable *h)
499 const unsigned int hashval =
500 (((unsigned int)(b->dev_bytenr >> 16)) ^
501 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
502 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
504 list_add(&b->collision_resolving_node, h->table + hashval);
507 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
509 list_del(&b->collision_resolving_node);
512 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
513 struct block_device *bdev,
514 u64 dev_bytenr,
515 struct btrfsic_block_hashtable *h)
517 const unsigned int hashval =
518 (((unsigned int)(dev_bytenr >> 16)) ^
519 ((unsigned int)((uintptr_t)bdev))) &
520 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
521 struct btrfsic_block *b;
523 list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
524 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
525 return b;
528 return NULL;
531 static void btrfsic_block_link_hashtable_init(
532 struct btrfsic_block_link_hashtable *h)
534 int i;
536 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
537 INIT_LIST_HEAD(h->table + i);
540 static void btrfsic_block_link_hashtable_add(
541 struct btrfsic_block_link *l,
542 struct btrfsic_block_link_hashtable *h)
544 const unsigned int hashval =
545 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
546 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
547 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
548 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
549 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
551 BUG_ON(NULL == l->block_ref_to);
552 BUG_ON(NULL == l->block_ref_from);
553 list_add(&l->collision_resolving_node, h->table + hashval);
556 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
558 list_del(&l->collision_resolving_node);
561 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
562 struct block_device *bdev_ref_to,
563 u64 dev_bytenr_ref_to,
564 struct block_device *bdev_ref_from,
565 u64 dev_bytenr_ref_from,
566 struct btrfsic_block_link_hashtable *h)
568 const unsigned int hashval =
569 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
570 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
571 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
572 ((unsigned int)((uintptr_t)bdev_ref_from))) &
573 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
574 struct btrfsic_block_link *l;
576 list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
577 BUG_ON(NULL == l->block_ref_to);
578 BUG_ON(NULL == l->block_ref_from);
579 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
580 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
581 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
582 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
583 return l;
586 return NULL;
589 static void btrfsic_dev_state_hashtable_init(
590 struct btrfsic_dev_state_hashtable *h)
592 int i;
594 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
595 INIT_LIST_HEAD(h->table + i);
598 static void btrfsic_dev_state_hashtable_add(
599 struct btrfsic_dev_state *ds,
600 struct btrfsic_dev_state_hashtable *h)
602 const unsigned int hashval =
603 (((unsigned int)((uintptr_t)ds->bdev->bd_dev)) &
604 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
606 list_add(&ds->collision_resolving_node, h->table + hashval);
609 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
611 list_del(&ds->collision_resolving_node);
614 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(dev_t dev,
615 struct btrfsic_dev_state_hashtable *h)
617 const unsigned int hashval =
618 dev & (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1);
619 struct btrfsic_dev_state *ds;
621 list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
622 if (ds->bdev->bd_dev == dev)
623 return ds;
626 return NULL;
629 static int btrfsic_process_superblock(struct btrfsic_state *state,
630 struct btrfs_fs_devices *fs_devices)
632 struct btrfs_super_block *selected_super;
633 struct list_head *dev_head = &fs_devices->devices;
634 struct btrfs_device *device;
635 struct btrfsic_dev_state *selected_dev_state = NULL;
636 int ret = 0;
637 int pass;
639 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
640 if (NULL == selected_super) {
641 pr_info("btrfsic: error, kmalloc failed!\n");
642 return -ENOMEM;
645 list_for_each_entry(device, dev_head, dev_list) {
646 int i;
647 struct btrfsic_dev_state *dev_state;
649 if (!device->bdev || !device->name)
650 continue;
652 dev_state = btrfsic_dev_state_lookup(device->bdev->bd_dev);
653 BUG_ON(NULL == dev_state);
654 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
655 ret = btrfsic_process_superblock_dev_mirror(
656 state, dev_state, device, i,
657 &selected_dev_state, selected_super);
658 if (0 != ret && 0 == i) {
659 kfree(selected_super);
660 return ret;
665 if (NULL == state->latest_superblock) {
666 pr_info("btrfsic: no superblock found!\n");
667 kfree(selected_super);
668 return -1;
671 state->csum_size = btrfs_super_csum_size(selected_super);
673 for (pass = 0; pass < 3; pass++) {
674 int num_copies;
675 int mirror_num;
676 u64 next_bytenr;
678 switch (pass) {
679 case 0:
680 next_bytenr = btrfs_super_root(selected_super);
681 if (state->print_mask &
682 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
683 pr_info("root@%llu\n", next_bytenr);
684 break;
685 case 1:
686 next_bytenr = btrfs_super_chunk_root(selected_super);
687 if (state->print_mask &
688 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
689 pr_info("chunk@%llu\n", next_bytenr);
690 break;
691 case 2:
692 next_bytenr = btrfs_super_log_root(selected_super);
693 if (0 == next_bytenr)
694 continue;
695 if (state->print_mask &
696 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
697 pr_info("log@%llu\n", next_bytenr);
698 break;
701 num_copies = btrfs_num_copies(state->fs_info, next_bytenr,
702 state->metablock_size);
703 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
704 pr_info("num_copies(log_bytenr=%llu) = %d\n",
705 next_bytenr, num_copies);
707 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
708 struct btrfsic_block *next_block;
709 struct btrfsic_block_data_ctx tmp_next_block_ctx;
710 struct btrfsic_block_link *l;
712 ret = btrfsic_map_block(state, next_bytenr,
713 state->metablock_size,
714 &tmp_next_block_ctx,
715 mirror_num);
716 if (ret) {
717 pr_info("btrfsic: btrfsic_map_block(root @%llu, mirror %d) failed!\n",
718 next_bytenr, mirror_num);
719 kfree(selected_super);
720 return -1;
723 next_block = btrfsic_block_hashtable_lookup(
724 tmp_next_block_ctx.dev->bdev,
725 tmp_next_block_ctx.dev_bytenr,
726 &state->block_hashtable);
727 BUG_ON(NULL == next_block);
729 l = btrfsic_block_link_hashtable_lookup(
730 tmp_next_block_ctx.dev->bdev,
731 tmp_next_block_ctx.dev_bytenr,
732 state->latest_superblock->dev_state->
733 bdev,
734 state->latest_superblock->dev_bytenr,
735 &state->block_link_hashtable);
736 BUG_ON(NULL == l);
738 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
739 if (ret < (int)PAGE_SIZE) {
740 pr_info("btrfsic: read @logical %llu failed!\n",
741 tmp_next_block_ctx.start);
742 btrfsic_release_block_ctx(&tmp_next_block_ctx);
743 kfree(selected_super);
744 return -1;
747 ret = btrfsic_process_metablock(state,
748 next_block,
749 &tmp_next_block_ctx,
750 BTRFS_MAX_LEVEL + 3, 1);
751 btrfsic_release_block_ctx(&tmp_next_block_ctx);
755 kfree(selected_super);
756 return ret;
759 static int btrfsic_process_superblock_dev_mirror(
760 struct btrfsic_state *state,
761 struct btrfsic_dev_state *dev_state,
762 struct btrfs_device *device,
763 int superblock_mirror_num,
764 struct btrfsic_dev_state **selected_dev_state,
765 struct btrfs_super_block *selected_super)
767 struct btrfs_fs_info *fs_info = state->fs_info;
768 struct btrfs_super_block *super_tmp;
769 u64 dev_bytenr;
770 struct buffer_head *bh;
771 struct btrfsic_block *superblock_tmp;
772 int pass;
773 struct block_device *const superblock_bdev = device->bdev;
775 /* super block bytenr is always the unmapped device bytenr */
776 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
777 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
778 return -1;
779 bh = __bread(superblock_bdev, dev_bytenr / BTRFS_BDEV_BLOCKSIZE,
780 BTRFS_SUPER_INFO_SIZE);
781 if (NULL == bh)
782 return -1;
783 super_tmp = (struct btrfs_super_block *)
784 (bh->b_data + (dev_bytenr & (BTRFS_BDEV_BLOCKSIZE - 1)));
786 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
787 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
788 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
789 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
790 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
791 brelse(bh);
792 return 0;
795 superblock_tmp =
796 btrfsic_block_hashtable_lookup(superblock_bdev,
797 dev_bytenr,
798 &state->block_hashtable);
799 if (NULL == superblock_tmp) {
800 superblock_tmp = btrfsic_block_alloc();
801 if (NULL == superblock_tmp) {
802 pr_info("btrfsic: error, kmalloc failed!\n");
803 brelse(bh);
804 return -1;
806 /* for superblock, only the dev_bytenr makes sense */
807 superblock_tmp->dev_bytenr = dev_bytenr;
808 superblock_tmp->dev_state = dev_state;
809 superblock_tmp->logical_bytenr = dev_bytenr;
810 superblock_tmp->generation = btrfs_super_generation(super_tmp);
811 superblock_tmp->is_metadata = 1;
812 superblock_tmp->is_superblock = 1;
813 superblock_tmp->is_iodone = 1;
814 superblock_tmp->never_written = 0;
815 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
816 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
817 btrfs_info_in_rcu(fs_info,
818 "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
819 superblock_bdev,
820 rcu_str_deref(device->name), dev_bytenr,
821 dev_state->name, dev_bytenr,
822 superblock_mirror_num);
823 list_add(&superblock_tmp->all_blocks_node,
824 &state->all_blocks_list);
825 btrfsic_block_hashtable_add(superblock_tmp,
826 &state->block_hashtable);
829 /* select the one with the highest generation field */
830 if (btrfs_super_generation(super_tmp) >
831 state->max_superblock_generation ||
832 0 == state->max_superblock_generation) {
833 memcpy(selected_super, super_tmp, sizeof(*selected_super));
834 *selected_dev_state = dev_state;
835 state->max_superblock_generation =
836 btrfs_super_generation(super_tmp);
837 state->latest_superblock = superblock_tmp;
840 for (pass = 0; pass < 3; pass++) {
841 u64 next_bytenr;
842 int num_copies;
843 int mirror_num;
844 const char *additional_string = NULL;
845 struct btrfs_disk_key tmp_disk_key;
847 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
848 tmp_disk_key.offset = 0;
849 switch (pass) {
850 case 0:
851 btrfs_set_disk_key_objectid(&tmp_disk_key,
852 BTRFS_ROOT_TREE_OBJECTID);
853 additional_string = "initial root ";
854 next_bytenr = btrfs_super_root(super_tmp);
855 break;
856 case 1:
857 btrfs_set_disk_key_objectid(&tmp_disk_key,
858 BTRFS_CHUNK_TREE_OBJECTID);
859 additional_string = "initial chunk ";
860 next_bytenr = btrfs_super_chunk_root(super_tmp);
861 break;
862 case 2:
863 btrfs_set_disk_key_objectid(&tmp_disk_key,
864 BTRFS_TREE_LOG_OBJECTID);
865 additional_string = "initial log ";
866 next_bytenr = btrfs_super_log_root(super_tmp);
867 if (0 == next_bytenr)
868 continue;
869 break;
872 num_copies = btrfs_num_copies(fs_info, next_bytenr,
873 state->metablock_size);
874 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
875 pr_info("num_copies(log_bytenr=%llu) = %d\n",
876 next_bytenr, num_copies);
877 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
878 struct btrfsic_block *next_block;
879 struct btrfsic_block_data_ctx tmp_next_block_ctx;
880 struct btrfsic_block_link *l;
882 if (btrfsic_map_block(state, next_bytenr,
883 state->metablock_size,
884 &tmp_next_block_ctx,
885 mirror_num)) {
886 pr_info("btrfsic: btrfsic_map_block(bytenr @%llu, mirror %d) failed!\n",
887 next_bytenr, mirror_num);
888 brelse(bh);
889 return -1;
892 next_block = btrfsic_block_lookup_or_add(
893 state, &tmp_next_block_ctx,
894 additional_string, 1, 1, 0,
895 mirror_num, NULL);
896 if (NULL == next_block) {
897 btrfsic_release_block_ctx(&tmp_next_block_ctx);
898 brelse(bh);
899 return -1;
902 next_block->disk_key = tmp_disk_key;
903 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
904 l = btrfsic_block_link_lookup_or_add(
905 state, &tmp_next_block_ctx,
906 next_block, superblock_tmp,
907 BTRFSIC_GENERATION_UNKNOWN);
908 btrfsic_release_block_ctx(&tmp_next_block_ctx);
909 if (NULL == l) {
910 brelse(bh);
911 return -1;
915 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
916 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
918 brelse(bh);
919 return 0;
922 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
924 struct btrfsic_stack_frame *sf;
926 sf = kzalloc(sizeof(*sf), GFP_NOFS);
927 if (NULL == sf)
928 pr_info("btrfsic: alloc memory failed!\n");
929 else
930 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
931 return sf;
934 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
936 BUG_ON(!(NULL == sf ||
937 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
938 kfree(sf);
941 static noinline_for_stack int btrfsic_process_metablock(
942 struct btrfsic_state *state,
943 struct btrfsic_block *const first_block,
944 struct btrfsic_block_data_ctx *const first_block_ctx,
945 int first_limit_nesting, int force_iodone_flag)
947 struct btrfsic_stack_frame initial_stack_frame = { 0 };
948 struct btrfsic_stack_frame *sf;
949 struct btrfsic_stack_frame *next_stack;
950 struct btrfs_header *const first_hdr =
951 (struct btrfs_header *)first_block_ctx->datav[0];
953 BUG_ON(!first_hdr);
954 sf = &initial_stack_frame;
955 sf->error = 0;
956 sf->i = -1;
957 sf->limit_nesting = first_limit_nesting;
958 sf->block = first_block;
959 sf->block_ctx = first_block_ctx;
960 sf->next_block = NULL;
961 sf->hdr = first_hdr;
962 sf->prev = NULL;
964 continue_with_new_stack_frame:
965 sf->block->generation = le64_to_cpu(sf->hdr->generation);
966 if (0 == sf->hdr->level) {
967 struct btrfs_leaf *const leafhdr =
968 (struct btrfs_leaf *)sf->hdr;
970 if (-1 == sf->i) {
971 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
973 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
974 pr_info("leaf %llu items %d generation %llu owner %llu\n",
975 sf->block_ctx->start, sf->nr,
976 btrfs_stack_header_generation(
977 &leafhdr->header),
978 btrfs_stack_header_owner(
979 &leafhdr->header));
982 continue_with_current_leaf_stack_frame:
983 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
984 sf->i++;
985 sf->num_copies = 0;
988 if (sf->i < sf->nr) {
989 struct btrfs_item disk_item;
990 u32 disk_item_offset =
991 (uintptr_t)(leafhdr->items + sf->i) -
992 (uintptr_t)leafhdr;
993 struct btrfs_disk_key *disk_key;
994 u8 type;
995 u32 item_offset;
996 u32 item_size;
998 if (disk_item_offset + sizeof(struct btrfs_item) >
999 sf->block_ctx->len) {
1000 leaf_item_out_of_bounce_error:
1001 pr_info("btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1002 sf->block_ctx->start,
1003 sf->block_ctx->dev->name);
1004 goto one_stack_frame_backwards;
1006 btrfsic_read_from_block_data(sf->block_ctx,
1007 &disk_item,
1008 disk_item_offset,
1009 sizeof(struct btrfs_item));
1010 item_offset = btrfs_stack_item_offset(&disk_item);
1011 item_size = btrfs_stack_item_size(&disk_item);
1012 disk_key = &disk_item.key;
1013 type = btrfs_disk_key_type(disk_key);
1015 if (BTRFS_ROOT_ITEM_KEY == type) {
1016 struct btrfs_root_item root_item;
1017 u32 root_item_offset;
1018 u64 next_bytenr;
1020 root_item_offset = item_offset +
1021 offsetof(struct btrfs_leaf, items);
1022 if (root_item_offset + item_size >
1023 sf->block_ctx->len)
1024 goto leaf_item_out_of_bounce_error;
1025 btrfsic_read_from_block_data(
1026 sf->block_ctx, &root_item,
1027 root_item_offset,
1028 item_size);
1029 next_bytenr = btrfs_root_bytenr(&root_item);
1031 sf->error =
1032 btrfsic_create_link_to_next_block(
1033 state,
1034 sf->block,
1035 sf->block_ctx,
1036 next_bytenr,
1037 sf->limit_nesting,
1038 &sf->next_block_ctx,
1039 &sf->next_block,
1040 force_iodone_flag,
1041 &sf->num_copies,
1042 &sf->mirror_num,
1043 disk_key,
1044 btrfs_root_generation(
1045 &root_item));
1046 if (sf->error)
1047 goto one_stack_frame_backwards;
1049 if (NULL != sf->next_block) {
1050 struct btrfs_header *const next_hdr =
1051 (struct btrfs_header *)
1052 sf->next_block_ctx.datav[0];
1054 next_stack =
1055 btrfsic_stack_frame_alloc();
1056 if (NULL == next_stack) {
1057 sf->error = -1;
1058 btrfsic_release_block_ctx(
1059 &sf->
1060 next_block_ctx);
1061 goto one_stack_frame_backwards;
1064 next_stack->i = -1;
1065 next_stack->block = sf->next_block;
1066 next_stack->block_ctx =
1067 &sf->next_block_ctx;
1068 next_stack->next_block = NULL;
1069 next_stack->hdr = next_hdr;
1070 next_stack->limit_nesting =
1071 sf->limit_nesting - 1;
1072 next_stack->prev = sf;
1073 sf = next_stack;
1074 goto continue_with_new_stack_frame;
1076 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1077 state->include_extent_data) {
1078 sf->error = btrfsic_handle_extent_data(
1079 state,
1080 sf->block,
1081 sf->block_ctx,
1082 item_offset,
1083 force_iodone_flag);
1084 if (sf->error)
1085 goto one_stack_frame_backwards;
1088 goto continue_with_current_leaf_stack_frame;
1090 } else {
1091 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1093 if (-1 == sf->i) {
1094 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1096 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1097 pr_info("node %llu level %d items %d generation %llu owner %llu\n",
1098 sf->block_ctx->start,
1099 nodehdr->header.level, sf->nr,
1100 btrfs_stack_header_generation(
1101 &nodehdr->header),
1102 btrfs_stack_header_owner(
1103 &nodehdr->header));
1106 continue_with_current_node_stack_frame:
1107 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1108 sf->i++;
1109 sf->num_copies = 0;
1112 if (sf->i < sf->nr) {
1113 struct btrfs_key_ptr key_ptr;
1114 u32 key_ptr_offset;
1115 u64 next_bytenr;
1117 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1118 (uintptr_t)nodehdr;
1119 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1120 sf->block_ctx->len) {
1121 pr_info("btrfsic: node item out of bounce at logical %llu, dev %s\n",
1122 sf->block_ctx->start,
1123 sf->block_ctx->dev->name);
1124 goto one_stack_frame_backwards;
1126 btrfsic_read_from_block_data(
1127 sf->block_ctx, &key_ptr, key_ptr_offset,
1128 sizeof(struct btrfs_key_ptr));
1129 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1131 sf->error = btrfsic_create_link_to_next_block(
1132 state,
1133 sf->block,
1134 sf->block_ctx,
1135 next_bytenr,
1136 sf->limit_nesting,
1137 &sf->next_block_ctx,
1138 &sf->next_block,
1139 force_iodone_flag,
1140 &sf->num_copies,
1141 &sf->mirror_num,
1142 &key_ptr.key,
1143 btrfs_stack_key_generation(&key_ptr));
1144 if (sf->error)
1145 goto one_stack_frame_backwards;
1147 if (NULL != sf->next_block) {
1148 struct btrfs_header *const next_hdr =
1149 (struct btrfs_header *)
1150 sf->next_block_ctx.datav[0];
1152 next_stack = btrfsic_stack_frame_alloc();
1153 if (NULL == next_stack) {
1154 sf->error = -1;
1155 goto one_stack_frame_backwards;
1158 next_stack->i = -1;
1159 next_stack->block = sf->next_block;
1160 next_stack->block_ctx = &sf->next_block_ctx;
1161 next_stack->next_block = NULL;
1162 next_stack->hdr = next_hdr;
1163 next_stack->limit_nesting =
1164 sf->limit_nesting - 1;
1165 next_stack->prev = sf;
1166 sf = next_stack;
1167 goto continue_with_new_stack_frame;
1170 goto continue_with_current_node_stack_frame;
1174 one_stack_frame_backwards:
1175 if (NULL != sf->prev) {
1176 struct btrfsic_stack_frame *const prev = sf->prev;
1178 /* the one for the initial block is freed in the caller */
1179 btrfsic_release_block_ctx(sf->block_ctx);
1181 if (sf->error) {
1182 prev->error = sf->error;
1183 btrfsic_stack_frame_free(sf);
1184 sf = prev;
1185 goto one_stack_frame_backwards;
1188 btrfsic_stack_frame_free(sf);
1189 sf = prev;
1190 goto continue_with_new_stack_frame;
1191 } else {
1192 BUG_ON(&initial_stack_frame != sf);
1195 return sf->error;
1198 static void btrfsic_read_from_block_data(
1199 struct btrfsic_block_data_ctx *block_ctx,
1200 void *dstv, u32 offset, size_t len)
1202 size_t cur;
1203 size_t pgoff;
1204 char *kaddr;
1205 char *dst = (char *)dstv;
1206 size_t start_offset = offset_in_page(block_ctx->start);
1207 unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1209 WARN_ON(offset + len > block_ctx->len);
1210 pgoff = offset_in_page(start_offset + offset);
1212 while (len > 0) {
1213 cur = min(len, ((size_t)PAGE_SIZE - pgoff));
1214 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1215 kaddr = block_ctx->datav[i];
1216 memcpy(dst, kaddr + pgoff, cur);
1218 dst += cur;
1219 len -= cur;
1220 pgoff = 0;
1221 i++;
1225 static int btrfsic_create_link_to_next_block(
1226 struct btrfsic_state *state,
1227 struct btrfsic_block *block,
1228 struct btrfsic_block_data_ctx *block_ctx,
1229 u64 next_bytenr,
1230 int limit_nesting,
1231 struct btrfsic_block_data_ctx *next_block_ctx,
1232 struct btrfsic_block **next_blockp,
1233 int force_iodone_flag,
1234 int *num_copiesp, int *mirror_nump,
1235 struct btrfs_disk_key *disk_key,
1236 u64 parent_generation)
1238 struct btrfs_fs_info *fs_info = state->fs_info;
1239 struct btrfsic_block *next_block = NULL;
1240 int ret;
1241 struct btrfsic_block_link *l;
1242 int did_alloc_block_link;
1243 int block_was_created;
1245 *next_blockp = NULL;
1246 if (0 == *num_copiesp) {
1247 *num_copiesp = btrfs_num_copies(fs_info, next_bytenr,
1248 state->metablock_size);
1249 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1250 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1251 next_bytenr, *num_copiesp);
1252 *mirror_nump = 1;
1255 if (*mirror_nump > *num_copiesp)
1256 return 0;
1258 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1259 pr_info("btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1260 *mirror_nump);
1261 ret = btrfsic_map_block(state, next_bytenr,
1262 state->metablock_size,
1263 next_block_ctx, *mirror_nump);
1264 if (ret) {
1265 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1266 next_bytenr, *mirror_nump);
1267 btrfsic_release_block_ctx(next_block_ctx);
1268 *next_blockp = NULL;
1269 return -1;
1272 next_block = btrfsic_block_lookup_or_add(state,
1273 next_block_ctx, "referenced ",
1274 1, force_iodone_flag,
1275 !force_iodone_flag,
1276 *mirror_nump,
1277 &block_was_created);
1278 if (NULL == next_block) {
1279 btrfsic_release_block_ctx(next_block_ctx);
1280 *next_blockp = NULL;
1281 return -1;
1283 if (block_was_created) {
1284 l = NULL;
1285 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1286 } else {
1287 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1288 if (next_block->logical_bytenr != next_bytenr &&
1289 !(!next_block->is_metadata &&
1290 0 == next_block->logical_bytenr))
1291 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1292 next_bytenr, next_block_ctx->dev->name,
1293 next_block_ctx->dev_bytenr, *mirror_nump,
1294 btrfsic_get_block_type(state,
1295 next_block),
1296 next_block->logical_bytenr);
1297 else
1298 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1299 next_bytenr, next_block_ctx->dev->name,
1300 next_block_ctx->dev_bytenr, *mirror_nump,
1301 btrfsic_get_block_type(state,
1302 next_block));
1304 next_block->logical_bytenr = next_bytenr;
1306 next_block->mirror_num = *mirror_nump;
1307 l = btrfsic_block_link_hashtable_lookup(
1308 next_block_ctx->dev->bdev,
1309 next_block_ctx->dev_bytenr,
1310 block_ctx->dev->bdev,
1311 block_ctx->dev_bytenr,
1312 &state->block_link_hashtable);
1315 next_block->disk_key = *disk_key;
1316 if (NULL == l) {
1317 l = btrfsic_block_link_alloc();
1318 if (NULL == l) {
1319 pr_info("btrfsic: error, kmalloc failed!\n");
1320 btrfsic_release_block_ctx(next_block_ctx);
1321 *next_blockp = NULL;
1322 return -1;
1325 did_alloc_block_link = 1;
1326 l->block_ref_to = next_block;
1327 l->block_ref_from = block;
1328 l->ref_cnt = 1;
1329 l->parent_generation = parent_generation;
1331 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1332 btrfsic_print_add_link(state, l);
1334 list_add(&l->node_ref_to, &block->ref_to_list);
1335 list_add(&l->node_ref_from, &next_block->ref_from_list);
1337 btrfsic_block_link_hashtable_add(l,
1338 &state->block_link_hashtable);
1339 } else {
1340 did_alloc_block_link = 0;
1341 if (0 == limit_nesting) {
1342 l->ref_cnt++;
1343 l->parent_generation = parent_generation;
1344 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1345 btrfsic_print_add_link(state, l);
1349 if (limit_nesting > 0 && did_alloc_block_link) {
1350 ret = btrfsic_read_block(state, next_block_ctx);
1351 if (ret < (int)next_block_ctx->len) {
1352 pr_info("btrfsic: read block @logical %llu failed!\n",
1353 next_bytenr);
1354 btrfsic_release_block_ctx(next_block_ctx);
1355 *next_blockp = NULL;
1356 return -1;
1359 *next_blockp = next_block;
1360 } else {
1361 *next_blockp = NULL;
1363 (*mirror_nump)++;
1365 return 0;
1368 static int btrfsic_handle_extent_data(
1369 struct btrfsic_state *state,
1370 struct btrfsic_block *block,
1371 struct btrfsic_block_data_ctx *block_ctx,
1372 u32 item_offset, int force_iodone_flag)
1374 struct btrfs_fs_info *fs_info = state->fs_info;
1375 struct btrfs_file_extent_item file_extent_item;
1376 u64 file_extent_item_offset;
1377 u64 next_bytenr;
1378 u64 num_bytes;
1379 u64 generation;
1380 struct btrfsic_block_link *l;
1381 int ret;
1383 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1384 item_offset;
1385 if (file_extent_item_offset +
1386 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1387 block_ctx->len) {
1388 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1389 block_ctx->start, block_ctx->dev->name);
1390 return -1;
1393 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1394 file_extent_item_offset,
1395 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1396 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1397 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1398 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1399 pr_info("extent_data: type %u, disk_bytenr = %llu\n",
1400 file_extent_item.type,
1401 btrfs_stack_file_extent_disk_bytenr(
1402 &file_extent_item));
1403 return 0;
1406 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1407 block_ctx->len) {
1408 pr_info("btrfsic: file item out of bounce at logical %llu, dev %s\n",
1409 block_ctx->start, block_ctx->dev->name);
1410 return -1;
1412 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1413 file_extent_item_offset,
1414 sizeof(struct btrfs_file_extent_item));
1415 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1416 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1417 BTRFS_COMPRESS_NONE) {
1418 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1419 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1420 } else {
1421 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1423 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1425 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1426 pr_info("extent_data: type %u, disk_bytenr = %llu, offset = %llu, num_bytes = %llu\n",
1427 file_extent_item.type,
1428 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1429 btrfs_stack_file_extent_offset(&file_extent_item),
1430 num_bytes);
1431 while (num_bytes > 0) {
1432 u32 chunk_len;
1433 int num_copies;
1434 int mirror_num;
1436 if (num_bytes > state->datablock_size)
1437 chunk_len = state->datablock_size;
1438 else
1439 chunk_len = num_bytes;
1441 num_copies = btrfs_num_copies(fs_info, next_bytenr,
1442 state->datablock_size);
1443 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1444 pr_info("num_copies(log_bytenr=%llu) = %d\n",
1445 next_bytenr, num_copies);
1446 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1447 struct btrfsic_block_data_ctx next_block_ctx;
1448 struct btrfsic_block *next_block;
1449 int block_was_created;
1451 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1452 pr_info("btrfsic_handle_extent_data(mirror_num=%d)\n",
1453 mirror_num);
1454 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1455 pr_info("\tdisk_bytenr = %llu, num_bytes %u\n",
1456 next_bytenr, chunk_len);
1457 ret = btrfsic_map_block(state, next_bytenr,
1458 chunk_len, &next_block_ctx,
1459 mirror_num);
1460 if (ret) {
1461 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1462 next_bytenr, mirror_num);
1463 return -1;
1466 next_block = btrfsic_block_lookup_or_add(
1467 state,
1468 &next_block_ctx,
1469 "referenced ",
1471 force_iodone_flag,
1472 !force_iodone_flag,
1473 mirror_num,
1474 &block_was_created);
1475 if (NULL == next_block) {
1476 pr_info("btrfsic: error, kmalloc failed!\n");
1477 btrfsic_release_block_ctx(&next_block_ctx);
1478 return -1;
1480 if (!block_was_created) {
1481 if ((state->print_mask &
1482 BTRFSIC_PRINT_MASK_VERBOSE) &&
1483 next_block->logical_bytenr != next_bytenr &&
1484 !(!next_block->is_metadata &&
1485 0 == next_block->logical_bytenr)) {
1486 pr_info("Referenced block @%llu (%s/%llu/%d) found in hash table, D, bytenr mismatch (!= stored %llu).\n",
1487 next_bytenr,
1488 next_block_ctx.dev->name,
1489 next_block_ctx.dev_bytenr,
1490 mirror_num,
1491 next_block->logical_bytenr);
1493 next_block->logical_bytenr = next_bytenr;
1494 next_block->mirror_num = mirror_num;
1497 l = btrfsic_block_link_lookup_or_add(state,
1498 &next_block_ctx,
1499 next_block, block,
1500 generation);
1501 btrfsic_release_block_ctx(&next_block_ctx);
1502 if (NULL == l)
1503 return -1;
1506 next_bytenr += chunk_len;
1507 num_bytes -= chunk_len;
1510 return 0;
1513 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1514 struct btrfsic_block_data_ctx *block_ctx_out,
1515 int mirror_num)
1517 struct btrfs_fs_info *fs_info = state->fs_info;
1518 int ret;
1519 u64 length;
1520 struct btrfs_bio *multi = NULL;
1521 struct btrfs_device *device;
1523 length = len;
1524 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
1525 bytenr, &length, &multi, mirror_num);
1527 if (ret) {
1528 block_ctx_out->start = 0;
1529 block_ctx_out->dev_bytenr = 0;
1530 block_ctx_out->len = 0;
1531 block_ctx_out->dev = NULL;
1532 block_ctx_out->datav = NULL;
1533 block_ctx_out->pagev = NULL;
1534 block_ctx_out->mem_to_free = NULL;
1536 return ret;
1539 device = multi->stripes[0].dev;
1540 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
1541 !device->bdev || !device->name)
1542 block_ctx_out->dev = NULL;
1543 else
1544 block_ctx_out->dev = btrfsic_dev_state_lookup(
1545 device->bdev->bd_dev);
1546 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1547 block_ctx_out->start = bytenr;
1548 block_ctx_out->len = len;
1549 block_ctx_out->datav = NULL;
1550 block_ctx_out->pagev = NULL;
1551 block_ctx_out->mem_to_free = NULL;
1553 kfree(multi);
1554 if (NULL == block_ctx_out->dev) {
1555 ret = -ENXIO;
1556 pr_info("btrfsic: error, cannot lookup dev (#1)!\n");
1559 return ret;
1562 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1564 if (block_ctx->mem_to_free) {
1565 unsigned int num_pages;
1567 BUG_ON(!block_ctx->datav);
1568 BUG_ON(!block_ctx->pagev);
1569 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1570 PAGE_SHIFT;
1571 while (num_pages > 0) {
1572 num_pages--;
1573 if (block_ctx->datav[num_pages]) {
1574 kunmap(block_ctx->pagev[num_pages]);
1575 block_ctx->datav[num_pages] = NULL;
1577 if (block_ctx->pagev[num_pages]) {
1578 __free_page(block_ctx->pagev[num_pages]);
1579 block_ctx->pagev[num_pages] = NULL;
1583 kfree(block_ctx->mem_to_free);
1584 block_ctx->mem_to_free = NULL;
1585 block_ctx->pagev = NULL;
1586 block_ctx->datav = NULL;
1590 static int btrfsic_read_block(struct btrfsic_state *state,
1591 struct btrfsic_block_data_ctx *block_ctx)
1593 unsigned int num_pages;
1594 unsigned int i;
1595 size_t size;
1596 u64 dev_bytenr;
1597 int ret;
1599 BUG_ON(block_ctx->datav);
1600 BUG_ON(block_ctx->pagev);
1601 BUG_ON(block_ctx->mem_to_free);
1602 if (!PAGE_ALIGNED(block_ctx->dev_bytenr)) {
1603 pr_info("btrfsic: read_block() with unaligned bytenr %llu\n",
1604 block_ctx->dev_bytenr);
1605 return -1;
1608 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1609 PAGE_SHIFT;
1610 size = sizeof(*block_ctx->datav) + sizeof(*block_ctx->pagev);
1611 block_ctx->mem_to_free = kcalloc(num_pages, size, GFP_NOFS);
1612 if (!block_ctx->mem_to_free)
1613 return -ENOMEM;
1614 block_ctx->datav = block_ctx->mem_to_free;
1615 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1616 for (i = 0; i < num_pages; i++) {
1617 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1618 if (!block_ctx->pagev[i])
1619 return -1;
1622 dev_bytenr = block_ctx->dev_bytenr;
1623 for (i = 0; i < num_pages;) {
1624 struct bio *bio;
1625 unsigned int j;
1627 bio = btrfs_io_bio_alloc(num_pages - i);
1628 bio_set_dev(bio, block_ctx->dev->bdev);
1629 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1630 bio->bi_opf = REQ_OP_READ;
1632 for (j = i; j < num_pages; j++) {
1633 ret = bio_add_page(bio, block_ctx->pagev[j],
1634 PAGE_SIZE, 0);
1635 if (PAGE_SIZE != ret)
1636 break;
1638 if (j == i) {
1639 pr_info("btrfsic: error, failed to add a single page!\n");
1640 return -1;
1642 if (submit_bio_wait(bio)) {
1643 pr_info("btrfsic: read error at logical %llu dev %s!\n",
1644 block_ctx->start, block_ctx->dev->name);
1645 bio_put(bio);
1646 return -1;
1648 bio_put(bio);
1649 dev_bytenr += (j - i) * PAGE_SIZE;
1650 i = j;
1652 for (i = 0; i < num_pages; i++)
1653 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1655 return block_ctx->len;
1658 static void btrfsic_dump_database(struct btrfsic_state *state)
1660 const struct btrfsic_block *b_all;
1662 BUG_ON(NULL == state);
1664 pr_info("all_blocks_list:\n");
1665 list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1666 const struct btrfsic_block_link *l;
1668 pr_info("%c-block @%llu (%s/%llu/%d)\n",
1669 btrfsic_get_block_type(state, b_all),
1670 b_all->logical_bytenr, b_all->dev_state->name,
1671 b_all->dev_bytenr, b_all->mirror_num);
1673 list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1674 pr_info(" %c @%llu (%s/%llu/%d) refers %u* to %c @%llu (%s/%llu/%d)\n",
1675 btrfsic_get_block_type(state, b_all),
1676 b_all->logical_bytenr, b_all->dev_state->name,
1677 b_all->dev_bytenr, b_all->mirror_num,
1678 l->ref_cnt,
1679 btrfsic_get_block_type(state, l->block_ref_to),
1680 l->block_ref_to->logical_bytenr,
1681 l->block_ref_to->dev_state->name,
1682 l->block_ref_to->dev_bytenr,
1683 l->block_ref_to->mirror_num);
1686 list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1687 pr_info(" %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
1688 btrfsic_get_block_type(state, b_all),
1689 b_all->logical_bytenr, b_all->dev_state->name,
1690 b_all->dev_bytenr, b_all->mirror_num,
1691 l->ref_cnt,
1692 btrfsic_get_block_type(state, l->block_ref_from),
1693 l->block_ref_from->logical_bytenr,
1694 l->block_ref_from->dev_state->name,
1695 l->block_ref_from->dev_bytenr,
1696 l->block_ref_from->mirror_num);
1699 pr_info("\n");
1704 * Test whether the disk block contains a tree block (leaf or node)
1705 * (note that this test fails for the super block)
1707 static noinline_for_stack int btrfsic_test_for_metadata(
1708 struct btrfsic_state *state,
1709 char **datav, unsigned int num_pages)
1711 struct btrfs_fs_info *fs_info = state->fs_info;
1712 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1713 struct btrfs_header *h;
1714 u8 csum[BTRFS_CSUM_SIZE];
1715 unsigned int i;
1717 if (num_pages * PAGE_SIZE < state->metablock_size)
1718 return 1; /* not metadata */
1719 num_pages = state->metablock_size >> PAGE_SHIFT;
1720 h = (struct btrfs_header *)datav[0];
1722 if (memcmp(h->fsid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE))
1723 return 1;
1725 shash->tfm = fs_info->csum_shash;
1726 crypto_shash_init(shash);
1728 for (i = 0; i < num_pages; i++) {
1729 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1730 size_t sublen = i ? PAGE_SIZE :
1731 (PAGE_SIZE - BTRFS_CSUM_SIZE);
1733 crypto_shash_update(shash, data, sublen);
1735 crypto_shash_final(shash, csum);
1736 if (memcmp(csum, h->csum, state->csum_size))
1737 return 1;
1739 return 0; /* is metadata */
1742 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1743 u64 dev_bytenr, char **mapped_datav,
1744 unsigned int num_pages,
1745 struct bio *bio, int *bio_is_patched,
1746 struct buffer_head *bh,
1747 int submit_bio_bh_rw)
1749 int is_metadata;
1750 struct btrfsic_block *block;
1751 struct btrfsic_block_data_ctx block_ctx;
1752 int ret;
1753 struct btrfsic_state *state = dev_state->state;
1754 struct block_device *bdev = dev_state->bdev;
1755 unsigned int processed_len;
1757 if (NULL != bio_is_patched)
1758 *bio_is_patched = 0;
1760 again:
1761 if (num_pages == 0)
1762 return;
1764 processed_len = 0;
1765 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1766 num_pages));
1768 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1769 &state->block_hashtable);
1770 if (NULL != block) {
1771 u64 bytenr = 0;
1772 struct btrfsic_block_link *l, *tmp;
1774 if (block->is_superblock) {
1775 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1776 mapped_datav[0]);
1777 if (num_pages * PAGE_SIZE <
1778 BTRFS_SUPER_INFO_SIZE) {
1779 pr_info("btrfsic: cannot work with too short bios!\n");
1780 return;
1782 is_metadata = 1;
1783 BUG_ON(!PAGE_ALIGNED(BTRFS_SUPER_INFO_SIZE));
1784 processed_len = BTRFS_SUPER_INFO_SIZE;
1785 if (state->print_mask &
1786 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1787 pr_info("[before new superblock is written]:\n");
1788 btrfsic_dump_tree_sub(state, block, 0);
1791 if (is_metadata) {
1792 if (!block->is_superblock) {
1793 if (num_pages * PAGE_SIZE <
1794 state->metablock_size) {
1795 pr_info("btrfsic: cannot work with too short bios!\n");
1796 return;
1798 processed_len = state->metablock_size;
1799 bytenr = btrfs_stack_header_bytenr(
1800 (struct btrfs_header *)
1801 mapped_datav[0]);
1802 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1803 dev_state,
1804 dev_bytenr);
1806 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1807 if (block->logical_bytenr != bytenr &&
1808 !(!block->is_metadata &&
1809 block->logical_bytenr == 0))
1810 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1811 bytenr, dev_state->name,
1812 dev_bytenr,
1813 block->mirror_num,
1814 btrfsic_get_block_type(state,
1815 block),
1816 block->logical_bytenr);
1817 else
1818 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1819 bytenr, dev_state->name,
1820 dev_bytenr, block->mirror_num,
1821 btrfsic_get_block_type(state,
1822 block));
1824 block->logical_bytenr = bytenr;
1825 } else {
1826 if (num_pages * PAGE_SIZE <
1827 state->datablock_size) {
1828 pr_info("btrfsic: cannot work with too short bios!\n");
1829 return;
1831 processed_len = state->datablock_size;
1832 bytenr = block->logical_bytenr;
1833 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1834 pr_info("Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1835 bytenr, dev_state->name, dev_bytenr,
1836 block->mirror_num,
1837 btrfsic_get_block_type(state, block));
1840 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1841 pr_info("ref_to_list: %cE, ref_from_list: %cE\n",
1842 list_empty(&block->ref_to_list) ? ' ' : '!',
1843 list_empty(&block->ref_from_list) ? ' ' : '!');
1844 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1845 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), old(gen=%llu, objectid=%llu, type=%d, offset=%llu), new(gen=%llu), which is referenced by most recent superblock (superblockgen=%llu)!\n",
1846 btrfsic_get_block_type(state, block), bytenr,
1847 dev_state->name, dev_bytenr, block->mirror_num,
1848 block->generation,
1849 btrfs_disk_key_objectid(&block->disk_key),
1850 block->disk_key.type,
1851 btrfs_disk_key_offset(&block->disk_key),
1852 btrfs_stack_header_generation(
1853 (struct btrfs_header *) mapped_datav[0]),
1854 state->max_superblock_generation);
1855 btrfsic_dump_tree(state);
1858 if (!block->is_iodone && !block->never_written) {
1859 pr_info("btrfs: attempt to overwrite %c-block @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu, which is not yet iodone!\n",
1860 btrfsic_get_block_type(state, block), bytenr,
1861 dev_state->name, dev_bytenr, block->mirror_num,
1862 block->generation,
1863 btrfs_stack_header_generation(
1864 (struct btrfs_header *)
1865 mapped_datav[0]));
1866 /* it would not be safe to go on */
1867 btrfsic_dump_tree(state);
1868 goto continue_loop;
1872 * Clear all references of this block. Do not free
1873 * the block itself even if is not referenced anymore
1874 * because it still carries valuable information
1875 * like whether it was ever written and IO completed.
1877 list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1878 node_ref_to) {
1879 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1880 btrfsic_print_rem_link(state, l);
1881 l->ref_cnt--;
1882 if (0 == l->ref_cnt) {
1883 list_del(&l->node_ref_to);
1884 list_del(&l->node_ref_from);
1885 btrfsic_block_link_hashtable_remove(l);
1886 btrfsic_block_link_free(l);
1890 block_ctx.dev = dev_state;
1891 block_ctx.dev_bytenr = dev_bytenr;
1892 block_ctx.start = bytenr;
1893 block_ctx.len = processed_len;
1894 block_ctx.pagev = NULL;
1895 block_ctx.mem_to_free = NULL;
1896 block_ctx.datav = mapped_datav;
1898 if (is_metadata || state->include_extent_data) {
1899 block->never_written = 0;
1900 block->iodone_w_error = 0;
1901 if (NULL != bio) {
1902 block->is_iodone = 0;
1903 BUG_ON(NULL == bio_is_patched);
1904 if (!*bio_is_patched) {
1905 block->orig_bio_bh_private =
1906 bio->bi_private;
1907 block->orig_bio_bh_end_io.bio =
1908 bio->bi_end_io;
1909 block->next_in_same_bio = NULL;
1910 bio->bi_private = block;
1911 bio->bi_end_io = btrfsic_bio_end_io;
1912 *bio_is_patched = 1;
1913 } else {
1914 struct btrfsic_block *chained_block =
1915 (struct btrfsic_block *)
1916 bio->bi_private;
1918 BUG_ON(NULL == chained_block);
1919 block->orig_bio_bh_private =
1920 chained_block->orig_bio_bh_private;
1921 block->orig_bio_bh_end_io.bio =
1922 chained_block->orig_bio_bh_end_io.
1923 bio;
1924 block->next_in_same_bio = chained_block;
1925 bio->bi_private = block;
1927 } else if (NULL != bh) {
1928 block->is_iodone = 0;
1929 block->orig_bio_bh_private = bh->b_private;
1930 block->orig_bio_bh_end_io.bh = bh->b_end_io;
1931 block->next_in_same_bio = NULL;
1932 bh->b_private = block;
1933 bh->b_end_io = btrfsic_bh_end_io;
1934 } else {
1935 block->is_iodone = 1;
1936 block->orig_bio_bh_private = NULL;
1937 block->orig_bio_bh_end_io.bio = NULL;
1938 block->next_in_same_bio = NULL;
1942 block->flush_gen = dev_state->last_flush_gen + 1;
1943 block->submit_bio_bh_rw = submit_bio_bh_rw;
1944 if (is_metadata) {
1945 block->logical_bytenr = bytenr;
1946 block->is_metadata = 1;
1947 if (block->is_superblock) {
1948 BUG_ON(PAGE_SIZE !=
1949 BTRFS_SUPER_INFO_SIZE);
1950 ret = btrfsic_process_written_superblock(
1951 state,
1952 block,
1953 (struct btrfs_super_block *)
1954 mapped_datav[0]);
1955 if (state->print_mask &
1956 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
1957 pr_info("[after new superblock is written]:\n");
1958 btrfsic_dump_tree_sub(state, block, 0);
1960 } else {
1961 block->mirror_num = 0; /* unknown */
1962 ret = btrfsic_process_metablock(
1963 state,
1964 block,
1965 &block_ctx,
1966 0, 0);
1968 if (ret)
1969 pr_info("btrfsic: btrfsic_process_metablock(root @%llu) failed!\n",
1970 dev_bytenr);
1971 } else {
1972 block->is_metadata = 0;
1973 block->mirror_num = 0; /* unknown */
1974 block->generation = BTRFSIC_GENERATION_UNKNOWN;
1975 if (!state->include_extent_data
1976 && list_empty(&block->ref_from_list)) {
1978 * disk block is overwritten with extent
1979 * data (not meta data) and we are configured
1980 * to not include extent data: take the
1981 * chance and free the block's memory
1983 btrfsic_block_hashtable_remove(block);
1984 list_del(&block->all_blocks_node);
1985 btrfsic_block_free(block);
1988 btrfsic_release_block_ctx(&block_ctx);
1989 } else {
1990 /* block has not been found in hash table */
1991 u64 bytenr;
1993 if (!is_metadata) {
1994 processed_len = state->datablock_size;
1995 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1996 pr_info("Written block (%s/%llu/?) !found in hash table, D.\n",
1997 dev_state->name, dev_bytenr);
1998 if (!state->include_extent_data) {
1999 /* ignore that written D block */
2000 goto continue_loop;
2003 /* this is getting ugly for the
2004 * include_extent_data case... */
2005 bytenr = 0; /* unknown */
2006 } else {
2007 processed_len = state->metablock_size;
2008 bytenr = btrfs_stack_header_bytenr(
2009 (struct btrfs_header *)
2010 mapped_datav[0]);
2011 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2012 dev_bytenr);
2013 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2014 pr_info("Written block @%llu (%s/%llu/?) !found in hash table, M.\n",
2015 bytenr, dev_state->name, dev_bytenr);
2018 block_ctx.dev = dev_state;
2019 block_ctx.dev_bytenr = dev_bytenr;
2020 block_ctx.start = bytenr;
2021 block_ctx.len = processed_len;
2022 block_ctx.pagev = NULL;
2023 block_ctx.mem_to_free = NULL;
2024 block_ctx.datav = mapped_datav;
2026 block = btrfsic_block_alloc();
2027 if (NULL == block) {
2028 pr_info("btrfsic: error, kmalloc failed!\n");
2029 btrfsic_release_block_ctx(&block_ctx);
2030 goto continue_loop;
2032 block->dev_state = dev_state;
2033 block->dev_bytenr = dev_bytenr;
2034 block->logical_bytenr = bytenr;
2035 block->is_metadata = is_metadata;
2036 block->never_written = 0;
2037 block->iodone_w_error = 0;
2038 block->mirror_num = 0; /* unknown */
2039 block->flush_gen = dev_state->last_flush_gen + 1;
2040 block->submit_bio_bh_rw = submit_bio_bh_rw;
2041 if (NULL != bio) {
2042 block->is_iodone = 0;
2043 BUG_ON(NULL == bio_is_patched);
2044 if (!*bio_is_patched) {
2045 block->orig_bio_bh_private = bio->bi_private;
2046 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2047 block->next_in_same_bio = NULL;
2048 bio->bi_private = block;
2049 bio->bi_end_io = btrfsic_bio_end_io;
2050 *bio_is_patched = 1;
2051 } else {
2052 struct btrfsic_block *chained_block =
2053 (struct btrfsic_block *)
2054 bio->bi_private;
2056 BUG_ON(NULL == chained_block);
2057 block->orig_bio_bh_private =
2058 chained_block->orig_bio_bh_private;
2059 block->orig_bio_bh_end_io.bio =
2060 chained_block->orig_bio_bh_end_io.bio;
2061 block->next_in_same_bio = chained_block;
2062 bio->bi_private = block;
2064 } else if (NULL != bh) {
2065 block->is_iodone = 0;
2066 block->orig_bio_bh_private = bh->b_private;
2067 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2068 block->next_in_same_bio = NULL;
2069 bh->b_private = block;
2070 bh->b_end_io = btrfsic_bh_end_io;
2071 } else {
2072 block->is_iodone = 1;
2073 block->orig_bio_bh_private = NULL;
2074 block->orig_bio_bh_end_io.bio = NULL;
2075 block->next_in_same_bio = NULL;
2077 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2078 pr_info("New written %c-block @%llu (%s/%llu/%d)\n",
2079 is_metadata ? 'M' : 'D',
2080 block->logical_bytenr, block->dev_state->name,
2081 block->dev_bytenr, block->mirror_num);
2082 list_add(&block->all_blocks_node, &state->all_blocks_list);
2083 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2085 if (is_metadata) {
2086 ret = btrfsic_process_metablock(state, block,
2087 &block_ctx, 0, 0);
2088 if (ret)
2089 pr_info("btrfsic: process_metablock(root @%llu) failed!\n",
2090 dev_bytenr);
2092 btrfsic_release_block_ctx(&block_ctx);
2095 continue_loop:
2096 BUG_ON(!processed_len);
2097 dev_bytenr += processed_len;
2098 mapped_datav += processed_len >> PAGE_SHIFT;
2099 num_pages -= processed_len >> PAGE_SHIFT;
2100 goto again;
2103 static void btrfsic_bio_end_io(struct bio *bp)
2105 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2106 int iodone_w_error;
2108 /* mutex is not held! This is not save if IO is not yet completed
2109 * on umount */
2110 iodone_w_error = 0;
2111 if (bp->bi_status)
2112 iodone_w_error = 1;
2114 BUG_ON(NULL == block);
2115 bp->bi_private = block->orig_bio_bh_private;
2116 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2118 do {
2119 struct btrfsic_block *next_block;
2120 struct btrfsic_dev_state *const dev_state = block->dev_state;
2122 if ((dev_state->state->print_mask &
2123 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2124 pr_info("bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2125 bp->bi_status,
2126 btrfsic_get_block_type(dev_state->state, block),
2127 block->logical_bytenr, dev_state->name,
2128 block->dev_bytenr, block->mirror_num);
2129 next_block = block->next_in_same_bio;
2130 block->iodone_w_error = iodone_w_error;
2131 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2132 dev_state->last_flush_gen++;
2133 if ((dev_state->state->print_mask &
2134 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2135 pr_info("bio_end_io() new %s flush_gen=%llu\n",
2136 dev_state->name,
2137 dev_state->last_flush_gen);
2139 if (block->submit_bio_bh_rw & REQ_FUA)
2140 block->flush_gen = 0; /* FUA completed means block is
2141 * on disk */
2142 block->is_iodone = 1; /* for FLUSH, this releases the block */
2143 block = next_block;
2144 } while (NULL != block);
2146 bp->bi_end_io(bp);
2149 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2151 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2152 int iodone_w_error = !uptodate;
2153 struct btrfsic_dev_state *dev_state;
2155 BUG_ON(NULL == block);
2156 dev_state = block->dev_state;
2157 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2158 pr_info("bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2159 iodone_w_error,
2160 btrfsic_get_block_type(dev_state->state, block),
2161 block->logical_bytenr, block->dev_state->name,
2162 block->dev_bytenr, block->mirror_num);
2164 block->iodone_w_error = iodone_w_error;
2165 if (block->submit_bio_bh_rw & REQ_PREFLUSH) {
2166 dev_state->last_flush_gen++;
2167 if ((dev_state->state->print_mask &
2168 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2169 pr_info("bh_end_io() new %s flush_gen=%llu\n",
2170 dev_state->name, dev_state->last_flush_gen);
2172 if (block->submit_bio_bh_rw & REQ_FUA)
2173 block->flush_gen = 0; /* FUA completed means block is on disk */
2175 bh->b_private = block->orig_bio_bh_private;
2176 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2177 block->is_iodone = 1; /* for FLUSH, this releases the block */
2178 bh->b_end_io(bh, uptodate);
2181 static int btrfsic_process_written_superblock(
2182 struct btrfsic_state *state,
2183 struct btrfsic_block *const superblock,
2184 struct btrfs_super_block *const super_hdr)
2186 struct btrfs_fs_info *fs_info = state->fs_info;
2187 int pass;
2189 superblock->generation = btrfs_super_generation(super_hdr);
2190 if (!(superblock->generation > state->max_superblock_generation ||
2191 0 == state->max_superblock_generation)) {
2192 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2193 pr_info("btrfsic: superblock @%llu (%s/%llu/%d) with old gen %llu <= %llu\n",
2194 superblock->logical_bytenr,
2195 superblock->dev_state->name,
2196 superblock->dev_bytenr, superblock->mirror_num,
2197 btrfs_super_generation(super_hdr),
2198 state->max_superblock_generation);
2199 } else {
2200 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2201 pr_info("btrfsic: got new superblock @%llu (%s/%llu/%d) with new gen %llu > %llu\n",
2202 superblock->logical_bytenr,
2203 superblock->dev_state->name,
2204 superblock->dev_bytenr, superblock->mirror_num,
2205 btrfs_super_generation(super_hdr),
2206 state->max_superblock_generation);
2208 state->max_superblock_generation =
2209 btrfs_super_generation(super_hdr);
2210 state->latest_superblock = superblock;
2213 for (pass = 0; pass < 3; pass++) {
2214 int ret;
2215 u64 next_bytenr;
2216 struct btrfsic_block *next_block;
2217 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2218 struct btrfsic_block_link *l;
2219 int num_copies;
2220 int mirror_num;
2221 const char *additional_string = NULL;
2222 struct btrfs_disk_key tmp_disk_key = {0};
2224 btrfs_set_disk_key_objectid(&tmp_disk_key,
2225 BTRFS_ROOT_ITEM_KEY);
2226 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2228 switch (pass) {
2229 case 0:
2230 btrfs_set_disk_key_objectid(&tmp_disk_key,
2231 BTRFS_ROOT_TREE_OBJECTID);
2232 additional_string = "root ";
2233 next_bytenr = btrfs_super_root(super_hdr);
2234 if (state->print_mask &
2235 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2236 pr_info("root@%llu\n", next_bytenr);
2237 break;
2238 case 1:
2239 btrfs_set_disk_key_objectid(&tmp_disk_key,
2240 BTRFS_CHUNK_TREE_OBJECTID);
2241 additional_string = "chunk ";
2242 next_bytenr = btrfs_super_chunk_root(super_hdr);
2243 if (state->print_mask &
2244 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2245 pr_info("chunk@%llu\n", next_bytenr);
2246 break;
2247 case 2:
2248 btrfs_set_disk_key_objectid(&tmp_disk_key,
2249 BTRFS_TREE_LOG_OBJECTID);
2250 additional_string = "log ";
2251 next_bytenr = btrfs_super_log_root(super_hdr);
2252 if (0 == next_bytenr)
2253 continue;
2254 if (state->print_mask &
2255 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2256 pr_info("log@%llu\n", next_bytenr);
2257 break;
2260 num_copies = btrfs_num_copies(fs_info, next_bytenr,
2261 BTRFS_SUPER_INFO_SIZE);
2262 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2263 pr_info("num_copies(log_bytenr=%llu) = %d\n",
2264 next_bytenr, num_copies);
2265 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2266 int was_created;
2268 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2269 pr_info("btrfsic_process_written_superblock(mirror_num=%d)\n", mirror_num);
2270 ret = btrfsic_map_block(state, next_bytenr,
2271 BTRFS_SUPER_INFO_SIZE,
2272 &tmp_next_block_ctx,
2273 mirror_num);
2274 if (ret) {
2275 pr_info("btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
2276 next_bytenr, mirror_num);
2277 return -1;
2280 next_block = btrfsic_block_lookup_or_add(
2281 state,
2282 &tmp_next_block_ctx,
2283 additional_string,
2284 1, 0, 1,
2285 mirror_num,
2286 &was_created);
2287 if (NULL == next_block) {
2288 pr_info("btrfsic: error, kmalloc failed!\n");
2289 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2290 return -1;
2293 next_block->disk_key = tmp_disk_key;
2294 if (was_created)
2295 next_block->generation =
2296 BTRFSIC_GENERATION_UNKNOWN;
2297 l = btrfsic_block_link_lookup_or_add(
2298 state,
2299 &tmp_next_block_ctx,
2300 next_block,
2301 superblock,
2302 BTRFSIC_GENERATION_UNKNOWN);
2303 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2304 if (NULL == l)
2305 return -1;
2309 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2310 btrfsic_dump_tree(state);
2312 return 0;
2315 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2316 struct btrfsic_block *const block,
2317 int recursion_level)
2319 const struct btrfsic_block_link *l;
2320 int ret = 0;
2322 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2324 * Note that this situation can happen and does not
2325 * indicate an error in regular cases. It happens
2326 * when disk blocks are freed and later reused.
2327 * The check-integrity module is not aware of any
2328 * block free operations, it just recognizes block
2329 * write operations. Therefore it keeps the linkage
2330 * information for a block until a block is
2331 * rewritten. This can temporarily cause incorrect
2332 * and even circular linkage information. This
2333 * causes no harm unless such blocks are referenced
2334 * by the most recent super block.
2336 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2337 pr_info("btrfsic: abort cyclic linkage (case 1).\n");
2339 return ret;
2343 * This algorithm is recursive because the amount of used stack
2344 * space is very small and the max recursion depth is limited.
2346 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2347 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2348 pr_info("rl=%d, %c @%llu (%s/%llu/%d) %u* refers to %c @%llu (%s/%llu/%d)\n",
2349 recursion_level,
2350 btrfsic_get_block_type(state, block),
2351 block->logical_bytenr, block->dev_state->name,
2352 block->dev_bytenr, block->mirror_num,
2353 l->ref_cnt,
2354 btrfsic_get_block_type(state, l->block_ref_to),
2355 l->block_ref_to->logical_bytenr,
2356 l->block_ref_to->dev_state->name,
2357 l->block_ref_to->dev_bytenr,
2358 l->block_ref_to->mirror_num);
2359 if (l->block_ref_to->never_written) {
2360 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is never written!\n",
2361 btrfsic_get_block_type(state, l->block_ref_to),
2362 l->block_ref_to->logical_bytenr,
2363 l->block_ref_to->dev_state->name,
2364 l->block_ref_to->dev_bytenr,
2365 l->block_ref_to->mirror_num);
2366 ret = -1;
2367 } else if (!l->block_ref_to->is_iodone) {
2368 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not yet iodone!\n",
2369 btrfsic_get_block_type(state, l->block_ref_to),
2370 l->block_ref_to->logical_bytenr,
2371 l->block_ref_to->dev_state->name,
2372 l->block_ref_to->dev_bytenr,
2373 l->block_ref_to->mirror_num);
2374 ret = -1;
2375 } else if (l->block_ref_to->iodone_w_error) {
2376 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which has write error!\n",
2377 btrfsic_get_block_type(state, l->block_ref_to),
2378 l->block_ref_to->logical_bytenr,
2379 l->block_ref_to->dev_state->name,
2380 l->block_ref_to->dev_bytenr,
2381 l->block_ref_to->mirror_num);
2382 ret = -1;
2383 } else if (l->parent_generation !=
2384 l->block_ref_to->generation &&
2385 BTRFSIC_GENERATION_UNKNOWN !=
2386 l->parent_generation &&
2387 BTRFSIC_GENERATION_UNKNOWN !=
2388 l->block_ref_to->generation) {
2389 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) with generation %llu != parent generation %llu!\n",
2390 btrfsic_get_block_type(state, l->block_ref_to),
2391 l->block_ref_to->logical_bytenr,
2392 l->block_ref_to->dev_state->name,
2393 l->block_ref_to->dev_bytenr,
2394 l->block_ref_to->mirror_num,
2395 l->block_ref_to->generation,
2396 l->parent_generation);
2397 ret = -1;
2398 } else if (l->block_ref_to->flush_gen >
2399 l->block_ref_to->dev_state->last_flush_gen) {
2400 pr_info("btrfs: attempt to write superblock which references block %c @%llu (%s/%llu/%d) which is not flushed out of disk's write cache (block flush_gen=%llu, dev->flush_gen=%llu)!\n",
2401 btrfsic_get_block_type(state, l->block_ref_to),
2402 l->block_ref_to->logical_bytenr,
2403 l->block_ref_to->dev_state->name,
2404 l->block_ref_to->dev_bytenr,
2405 l->block_ref_to->mirror_num, block->flush_gen,
2406 l->block_ref_to->dev_state->last_flush_gen);
2407 ret = -1;
2408 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2409 l->block_ref_to,
2410 recursion_level +
2411 1)) {
2412 ret = -1;
2416 return ret;
2419 static int btrfsic_is_block_ref_by_superblock(
2420 const struct btrfsic_state *state,
2421 const struct btrfsic_block *block,
2422 int recursion_level)
2424 const struct btrfsic_block_link *l;
2426 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2427 /* refer to comment at "abort cyclic linkage (case 1)" */
2428 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2429 pr_info("btrfsic: abort cyclic linkage (case 2).\n");
2431 return 0;
2435 * This algorithm is recursive because the amount of used stack space
2436 * is very small and the max recursion depth is limited.
2438 list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2439 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2440 pr_info("rl=%d, %c @%llu (%s/%llu/%d) is ref %u* from %c @%llu (%s/%llu/%d)\n",
2441 recursion_level,
2442 btrfsic_get_block_type(state, block),
2443 block->logical_bytenr, block->dev_state->name,
2444 block->dev_bytenr, block->mirror_num,
2445 l->ref_cnt,
2446 btrfsic_get_block_type(state, l->block_ref_from),
2447 l->block_ref_from->logical_bytenr,
2448 l->block_ref_from->dev_state->name,
2449 l->block_ref_from->dev_bytenr,
2450 l->block_ref_from->mirror_num);
2451 if (l->block_ref_from->is_superblock &&
2452 state->latest_superblock->dev_bytenr ==
2453 l->block_ref_from->dev_bytenr &&
2454 state->latest_superblock->dev_state->bdev ==
2455 l->block_ref_from->dev_state->bdev)
2456 return 1;
2457 else if (btrfsic_is_block_ref_by_superblock(state,
2458 l->block_ref_from,
2459 recursion_level +
2461 return 1;
2464 return 0;
2467 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2468 const struct btrfsic_block_link *l)
2470 pr_info("Add %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2471 l->ref_cnt,
2472 btrfsic_get_block_type(state, l->block_ref_from),
2473 l->block_ref_from->logical_bytenr,
2474 l->block_ref_from->dev_state->name,
2475 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2476 btrfsic_get_block_type(state, l->block_ref_to),
2477 l->block_ref_to->logical_bytenr,
2478 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2479 l->block_ref_to->mirror_num);
2482 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2483 const struct btrfsic_block_link *l)
2485 pr_info("Rem %u* link from %c @%llu (%s/%llu/%d) to %c @%llu (%s/%llu/%d).\n",
2486 l->ref_cnt,
2487 btrfsic_get_block_type(state, l->block_ref_from),
2488 l->block_ref_from->logical_bytenr,
2489 l->block_ref_from->dev_state->name,
2490 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2491 btrfsic_get_block_type(state, l->block_ref_to),
2492 l->block_ref_to->logical_bytenr,
2493 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2494 l->block_ref_to->mirror_num);
2497 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2498 const struct btrfsic_block *block)
2500 if (block->is_superblock &&
2501 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2502 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2503 return 'S';
2504 else if (block->is_superblock)
2505 return 's';
2506 else if (block->is_metadata)
2507 return 'M';
2508 else
2509 return 'D';
2512 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2514 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2517 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2518 const struct btrfsic_block *block,
2519 int indent_level)
2521 const struct btrfsic_block_link *l;
2522 int indent_add;
2523 static char buf[80];
2524 int cursor_position;
2527 * Should better fill an on-stack buffer with a complete line and
2528 * dump it at once when it is time to print a newline character.
2532 * This algorithm is recursive because the amount of used stack space
2533 * is very small and the max recursion depth is limited.
2535 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%u)",
2536 btrfsic_get_block_type(state, block),
2537 block->logical_bytenr, block->dev_state->name,
2538 block->dev_bytenr, block->mirror_num);
2539 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2540 printk("[...]\n");
2541 return;
2543 printk(buf);
2544 indent_level += indent_add;
2545 if (list_empty(&block->ref_to_list)) {
2546 printk("\n");
2547 return;
2549 if (block->mirror_num > 1 &&
2550 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2551 printk(" [...]\n");
2552 return;
2555 cursor_position = indent_level;
2556 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2557 while (cursor_position < indent_level) {
2558 printk(" ");
2559 cursor_position++;
2561 if (l->ref_cnt > 1)
2562 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2563 else
2564 indent_add = sprintf(buf, " --> ");
2565 if (indent_level + indent_add >
2566 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2567 printk("[...]\n");
2568 cursor_position = 0;
2569 continue;
2572 printk(buf);
2574 btrfsic_dump_tree_sub(state, l->block_ref_to,
2575 indent_level + indent_add);
2576 cursor_position = 0;
2580 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2581 struct btrfsic_state *state,
2582 struct btrfsic_block_data_ctx *next_block_ctx,
2583 struct btrfsic_block *next_block,
2584 struct btrfsic_block *from_block,
2585 u64 parent_generation)
2587 struct btrfsic_block_link *l;
2589 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2590 next_block_ctx->dev_bytenr,
2591 from_block->dev_state->bdev,
2592 from_block->dev_bytenr,
2593 &state->block_link_hashtable);
2594 if (NULL == l) {
2595 l = btrfsic_block_link_alloc();
2596 if (NULL == l) {
2597 pr_info("btrfsic: error, kmalloc failed!\n");
2598 return NULL;
2601 l->block_ref_to = next_block;
2602 l->block_ref_from = from_block;
2603 l->ref_cnt = 1;
2604 l->parent_generation = parent_generation;
2606 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2607 btrfsic_print_add_link(state, l);
2609 list_add(&l->node_ref_to, &from_block->ref_to_list);
2610 list_add(&l->node_ref_from, &next_block->ref_from_list);
2612 btrfsic_block_link_hashtable_add(l,
2613 &state->block_link_hashtable);
2614 } else {
2615 l->ref_cnt++;
2616 l->parent_generation = parent_generation;
2617 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2618 btrfsic_print_add_link(state, l);
2621 return l;
2624 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2625 struct btrfsic_state *state,
2626 struct btrfsic_block_data_ctx *block_ctx,
2627 const char *additional_string,
2628 int is_metadata,
2629 int is_iodone,
2630 int never_written,
2631 int mirror_num,
2632 int *was_created)
2634 struct btrfsic_block *block;
2636 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2637 block_ctx->dev_bytenr,
2638 &state->block_hashtable);
2639 if (NULL == block) {
2640 struct btrfsic_dev_state *dev_state;
2642 block = btrfsic_block_alloc();
2643 if (NULL == block) {
2644 pr_info("btrfsic: error, kmalloc failed!\n");
2645 return NULL;
2647 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev->bd_dev);
2648 if (NULL == dev_state) {
2649 pr_info("btrfsic: error, lookup dev_state failed!\n");
2650 btrfsic_block_free(block);
2651 return NULL;
2653 block->dev_state = dev_state;
2654 block->dev_bytenr = block_ctx->dev_bytenr;
2655 block->logical_bytenr = block_ctx->start;
2656 block->is_metadata = is_metadata;
2657 block->is_iodone = is_iodone;
2658 block->never_written = never_written;
2659 block->mirror_num = mirror_num;
2660 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2661 pr_info("New %s%c-block @%llu (%s/%llu/%d)\n",
2662 additional_string,
2663 btrfsic_get_block_type(state, block),
2664 block->logical_bytenr, dev_state->name,
2665 block->dev_bytenr, mirror_num);
2666 list_add(&block->all_blocks_node, &state->all_blocks_list);
2667 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2668 if (NULL != was_created)
2669 *was_created = 1;
2670 } else {
2671 if (NULL != was_created)
2672 *was_created = 0;
2675 return block;
2678 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2679 u64 bytenr,
2680 struct btrfsic_dev_state *dev_state,
2681 u64 dev_bytenr)
2683 struct btrfs_fs_info *fs_info = state->fs_info;
2684 struct btrfsic_block_data_ctx block_ctx;
2685 int num_copies;
2686 int mirror_num;
2687 int match = 0;
2688 int ret;
2690 num_copies = btrfs_num_copies(fs_info, bytenr, state->metablock_size);
2692 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2693 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2694 &block_ctx, mirror_num);
2695 if (ret) {
2696 pr_info("btrfsic: btrfsic_map_block(logical @%llu, mirror %d) failed!\n",
2697 bytenr, mirror_num);
2698 continue;
2701 if (dev_state->bdev == block_ctx.dev->bdev &&
2702 dev_bytenr == block_ctx.dev_bytenr) {
2703 match++;
2704 btrfsic_release_block_ctx(&block_ctx);
2705 break;
2707 btrfsic_release_block_ctx(&block_ctx);
2710 if (WARN_ON(!match)) {
2711 pr_info("btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio, buffer->log_bytenr=%llu, submit_bio(bdev=%s, phys_bytenr=%llu)!\n",
2712 bytenr, dev_state->name, dev_bytenr);
2713 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2714 ret = btrfsic_map_block(state, bytenr,
2715 state->metablock_size,
2716 &block_ctx, mirror_num);
2717 if (ret)
2718 continue;
2720 pr_info("Read logical bytenr @%llu maps to (%s/%llu/%d)\n",
2721 bytenr, block_ctx.dev->name,
2722 block_ctx.dev_bytenr, mirror_num);
2727 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(dev_t dev)
2729 return btrfsic_dev_state_hashtable_lookup(dev,
2730 &btrfsic_dev_state_hashtable);
2733 int btrfsic_submit_bh(int op, int op_flags, struct buffer_head *bh)
2735 struct btrfsic_dev_state *dev_state;
2737 if (!btrfsic_is_initialized)
2738 return submit_bh(op, op_flags, bh);
2740 mutex_lock(&btrfsic_mutex);
2741 /* since btrfsic_submit_bh() might also be called before
2742 * btrfsic_mount(), this might return NULL */
2743 dev_state = btrfsic_dev_state_lookup(bh->b_bdev->bd_dev);
2745 /* Only called to write the superblock (incl. FLUSH/FUA) */
2746 if (NULL != dev_state &&
2747 (op == REQ_OP_WRITE) && bh->b_size > 0) {
2748 u64 dev_bytenr;
2750 dev_bytenr = BTRFS_BDEV_BLOCKSIZE * bh->b_blocknr;
2751 if (dev_state->state->print_mask &
2752 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2753 pr_info("submit_bh(op=0x%x,0x%x, blocknr=%llu (bytenr %llu), size=%zu, data=%p, bdev=%p)\n",
2754 op, op_flags, (unsigned long long)bh->b_blocknr,
2755 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2756 btrfsic_process_written_block(dev_state, dev_bytenr,
2757 &bh->b_data, 1, NULL,
2758 NULL, bh, op_flags);
2759 } else if (NULL != dev_state && (op_flags & REQ_PREFLUSH)) {
2760 if (dev_state->state->print_mask &
2761 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2762 pr_info("submit_bh(op=0x%x,0x%x FLUSH, bdev=%p)\n",
2763 op, op_flags, bh->b_bdev);
2764 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2765 if ((dev_state->state->print_mask &
2766 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2767 BTRFSIC_PRINT_MASK_VERBOSE)))
2768 pr_info("btrfsic_submit_bh(%s) with FLUSH but dummy block already in use (ignored)!\n",
2769 dev_state->name);
2770 } else {
2771 struct btrfsic_block *const block =
2772 &dev_state->dummy_block_for_bio_bh_flush;
2774 block->is_iodone = 0;
2775 block->never_written = 0;
2776 block->iodone_w_error = 0;
2777 block->flush_gen = dev_state->last_flush_gen + 1;
2778 block->submit_bio_bh_rw = op_flags;
2779 block->orig_bio_bh_private = bh->b_private;
2780 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2781 block->next_in_same_bio = NULL;
2782 bh->b_private = block;
2783 bh->b_end_io = btrfsic_bh_end_io;
2786 mutex_unlock(&btrfsic_mutex);
2787 return submit_bh(op, op_flags, bh);
2790 static void __btrfsic_submit_bio(struct bio *bio)
2792 struct btrfsic_dev_state *dev_state;
2794 if (!btrfsic_is_initialized)
2795 return;
2797 mutex_lock(&btrfsic_mutex);
2798 /* since btrfsic_submit_bio() is also called before
2799 * btrfsic_mount(), this might return NULL */
2800 dev_state = btrfsic_dev_state_lookup(bio_dev(bio) + bio->bi_partno);
2801 if (NULL != dev_state &&
2802 (bio_op(bio) == REQ_OP_WRITE) && bio_has_data(bio)) {
2803 unsigned int i = 0;
2804 u64 dev_bytenr;
2805 u64 cur_bytenr;
2806 struct bio_vec bvec;
2807 struct bvec_iter iter;
2808 int bio_is_patched;
2809 char **mapped_datav;
2810 unsigned int segs = bio_segments(bio);
2812 dev_bytenr = 512 * bio->bi_iter.bi_sector;
2813 bio_is_patched = 0;
2814 if (dev_state->state->print_mask &
2815 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2816 pr_info("submit_bio(rw=%d,0x%x, bi_vcnt=%u, bi_sector=%llu (bytenr %llu), bi_disk=%p)\n",
2817 bio_op(bio), bio->bi_opf, segs,
2818 (unsigned long long)bio->bi_iter.bi_sector,
2819 dev_bytenr, bio->bi_disk);
2821 mapped_datav = kmalloc_array(segs,
2822 sizeof(*mapped_datav), GFP_NOFS);
2823 if (!mapped_datav)
2824 goto leave;
2825 cur_bytenr = dev_bytenr;
2827 bio_for_each_segment(bvec, bio, iter) {
2828 BUG_ON(bvec.bv_len != PAGE_SIZE);
2829 mapped_datav[i] = kmap(bvec.bv_page);
2830 i++;
2832 if (dev_state->state->print_mask &
2833 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2834 pr_info("#%u: bytenr=%llu, len=%u, offset=%u\n",
2835 i, cur_bytenr, bvec.bv_len, bvec.bv_offset);
2836 cur_bytenr += bvec.bv_len;
2838 btrfsic_process_written_block(dev_state, dev_bytenr,
2839 mapped_datav, segs,
2840 bio, &bio_is_patched,
2841 NULL, bio->bi_opf);
2842 bio_for_each_segment(bvec, bio, iter)
2843 kunmap(bvec.bv_page);
2844 kfree(mapped_datav);
2845 } else if (NULL != dev_state && (bio->bi_opf & REQ_PREFLUSH)) {
2846 if (dev_state->state->print_mask &
2847 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2848 pr_info("submit_bio(rw=%d,0x%x FLUSH, disk=%p)\n",
2849 bio_op(bio), bio->bi_opf, bio->bi_disk);
2850 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2851 if ((dev_state->state->print_mask &
2852 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2853 BTRFSIC_PRINT_MASK_VERBOSE)))
2854 pr_info("btrfsic_submit_bio(%s) with FLUSH but dummy block already in use (ignored)!\n",
2855 dev_state->name);
2856 } else {
2857 struct btrfsic_block *const block =
2858 &dev_state->dummy_block_for_bio_bh_flush;
2860 block->is_iodone = 0;
2861 block->never_written = 0;
2862 block->iodone_w_error = 0;
2863 block->flush_gen = dev_state->last_flush_gen + 1;
2864 block->submit_bio_bh_rw = bio->bi_opf;
2865 block->orig_bio_bh_private = bio->bi_private;
2866 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2867 block->next_in_same_bio = NULL;
2868 bio->bi_private = block;
2869 bio->bi_end_io = btrfsic_bio_end_io;
2872 leave:
2873 mutex_unlock(&btrfsic_mutex);
2876 void btrfsic_submit_bio(struct bio *bio)
2878 __btrfsic_submit_bio(bio);
2879 submit_bio(bio);
2882 int btrfsic_submit_bio_wait(struct bio *bio)
2884 __btrfsic_submit_bio(bio);
2885 return submit_bio_wait(bio);
2888 int btrfsic_mount(struct btrfs_fs_info *fs_info,
2889 struct btrfs_fs_devices *fs_devices,
2890 int including_extent_data, u32 print_mask)
2892 int ret;
2893 struct btrfsic_state *state;
2894 struct list_head *dev_head = &fs_devices->devices;
2895 struct btrfs_device *device;
2897 if (!PAGE_ALIGNED(fs_info->nodesize)) {
2898 pr_info("btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
2899 fs_info->nodesize, PAGE_SIZE);
2900 return -1;
2902 if (!PAGE_ALIGNED(fs_info->sectorsize)) {
2903 pr_info("btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
2904 fs_info->sectorsize, PAGE_SIZE);
2905 return -1;
2907 state = kvzalloc(sizeof(*state), GFP_KERNEL);
2908 if (!state) {
2909 pr_info("btrfs check-integrity: allocation failed!\n");
2910 return -ENOMEM;
2913 if (!btrfsic_is_initialized) {
2914 mutex_init(&btrfsic_mutex);
2915 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
2916 btrfsic_is_initialized = 1;
2918 mutex_lock(&btrfsic_mutex);
2919 state->fs_info = fs_info;
2920 state->print_mask = print_mask;
2921 state->include_extent_data = including_extent_data;
2922 state->csum_size = 0;
2923 state->metablock_size = fs_info->nodesize;
2924 state->datablock_size = fs_info->sectorsize;
2925 INIT_LIST_HEAD(&state->all_blocks_list);
2926 btrfsic_block_hashtable_init(&state->block_hashtable);
2927 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
2928 state->max_superblock_generation = 0;
2929 state->latest_superblock = NULL;
2931 list_for_each_entry(device, dev_head, dev_list) {
2932 struct btrfsic_dev_state *ds;
2933 const char *p;
2935 if (!device->bdev || !device->name)
2936 continue;
2938 ds = btrfsic_dev_state_alloc();
2939 if (NULL == ds) {
2940 pr_info("btrfs check-integrity: kmalloc() failed!\n");
2941 mutex_unlock(&btrfsic_mutex);
2942 return -ENOMEM;
2944 ds->bdev = device->bdev;
2945 ds->state = state;
2946 bdevname(ds->bdev, ds->name);
2947 ds->name[BDEVNAME_SIZE - 1] = '\0';
2948 p = kbasename(ds->name);
2949 strlcpy(ds->name, p, sizeof(ds->name));
2950 btrfsic_dev_state_hashtable_add(ds,
2951 &btrfsic_dev_state_hashtable);
2954 ret = btrfsic_process_superblock(state, fs_devices);
2955 if (0 != ret) {
2956 mutex_unlock(&btrfsic_mutex);
2957 btrfsic_unmount(fs_devices);
2958 return ret;
2961 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
2962 btrfsic_dump_database(state);
2963 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
2964 btrfsic_dump_tree(state);
2966 mutex_unlock(&btrfsic_mutex);
2967 return 0;
2970 void btrfsic_unmount(struct btrfs_fs_devices *fs_devices)
2972 struct btrfsic_block *b_all, *tmp_all;
2973 struct btrfsic_state *state;
2974 struct list_head *dev_head = &fs_devices->devices;
2975 struct btrfs_device *device;
2977 if (!btrfsic_is_initialized)
2978 return;
2980 mutex_lock(&btrfsic_mutex);
2982 state = NULL;
2983 list_for_each_entry(device, dev_head, dev_list) {
2984 struct btrfsic_dev_state *ds;
2986 if (!device->bdev || !device->name)
2987 continue;
2989 ds = btrfsic_dev_state_hashtable_lookup(
2990 device->bdev->bd_dev,
2991 &btrfsic_dev_state_hashtable);
2992 if (NULL != ds) {
2993 state = ds->state;
2994 btrfsic_dev_state_hashtable_remove(ds);
2995 btrfsic_dev_state_free(ds);
2999 if (NULL == state) {
3000 pr_info("btrfsic: error, cannot find state information on umount!\n");
3001 mutex_unlock(&btrfsic_mutex);
3002 return;
3006 * Don't care about keeping the lists' state up to date,
3007 * just free all memory that was allocated dynamically.
3008 * Free the blocks and the block_links.
3010 list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
3011 all_blocks_node) {
3012 struct btrfsic_block_link *l, *tmp;
3014 list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
3015 node_ref_to) {
3016 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3017 btrfsic_print_rem_link(state, l);
3019 l->ref_cnt--;
3020 if (0 == l->ref_cnt)
3021 btrfsic_block_link_free(l);
3024 if (b_all->is_iodone || b_all->never_written)
3025 btrfsic_block_free(b_all);
3026 else
3027 pr_info("btrfs: attempt to free %c-block @%llu (%s/%llu/%d) on umount which is not yet iodone!\n",
3028 btrfsic_get_block_type(state, b_all),
3029 b_all->logical_bytenr, b_all->dev_state->name,
3030 b_all->dev_bytenr, b_all->mirror_num);
3033 mutex_unlock(&btrfsic_mutex);
3035 kvfree(state);