fanotify: merge duplicate events on parent and child
[linux/fpc-iii.git] / fs / btrfs / tree-log.c
blob61b9770ca78f086dbbe6d5c95b5ce9a1fdc99843
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "print-tree.h"
17 #include "backref.h"
18 #include "compression.h"
19 #include "qgroup.h"
20 #include "inode-map.h"
22 /* magic values for the inode_only field in btrfs_log_inode:
24 * LOG_INODE_ALL means to log everything
25 * LOG_INODE_EXISTS means to log just enough to recreate the inode
26 * during log replay
28 enum {
29 LOG_INODE_ALL,
30 LOG_INODE_EXISTS,
31 LOG_OTHER_INODE,
32 LOG_OTHER_INODE_ALL,
36 * directory trouble cases
38 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
39 * log, we must force a full commit before doing an fsync of the directory
40 * where the unlink was done.
41 * ---> record transid of last unlink/rename per directory
43 * mkdir foo/some_dir
44 * normal commit
45 * rename foo/some_dir foo2/some_dir
46 * mkdir foo/some_dir
47 * fsync foo/some_dir/some_file
49 * The fsync above will unlink the original some_dir without recording
50 * it in its new location (foo2). After a crash, some_dir will be gone
51 * unless the fsync of some_file forces a full commit
53 * 2) we must log any new names for any file or dir that is in the fsync
54 * log. ---> check inode while renaming/linking.
56 * 2a) we must log any new names for any file or dir during rename
57 * when the directory they are being removed from was logged.
58 * ---> check inode and old parent dir during rename
60 * 2a is actually the more important variant. With the extra logging
61 * a crash might unlink the old name without recreating the new one
63 * 3) after a crash, we must go through any directories with a link count
64 * of zero and redo the rm -rf
66 * mkdir f1/foo
67 * normal commit
68 * rm -rf f1/foo
69 * fsync(f1)
71 * The directory f1 was fully removed from the FS, but fsync was never
72 * called on f1, only its parent dir. After a crash the rm -rf must
73 * be replayed. This must be able to recurse down the entire
74 * directory tree. The inode link count fixup code takes care of the
75 * ugly details.
79 * stages for the tree walking. The first
80 * stage (0) is to only pin down the blocks we find
81 * the second stage (1) is to make sure that all the inodes
82 * we find in the log are created in the subvolume.
84 * The last stage is to deal with directories and links and extents
85 * and all the other fun semantics
87 enum {
88 LOG_WALK_PIN_ONLY,
89 LOG_WALK_REPLAY_INODES,
90 LOG_WALK_REPLAY_DIR_INDEX,
91 LOG_WALK_REPLAY_ALL,
94 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root, struct btrfs_inode *inode,
96 int inode_only,
97 const loff_t start,
98 const loff_t end,
99 struct btrfs_log_ctx *ctx);
100 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
101 struct btrfs_root *root,
102 struct btrfs_path *path, u64 objectid);
103 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_root *log,
106 struct btrfs_path *path,
107 u64 dirid, int del_all);
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
137 static int start_log_trans(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root,
139 struct btrfs_log_ctx *ctx)
141 struct btrfs_fs_info *fs_info = root->fs_info;
142 int ret = 0;
144 mutex_lock(&root->log_mutex);
146 if (root->log_root) {
147 if (btrfs_need_log_full_commit(trans)) {
148 ret = -EAGAIN;
149 goto out;
152 if (!root->log_start_pid) {
153 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
154 root->log_start_pid = current->pid;
155 } else if (root->log_start_pid != current->pid) {
156 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
158 } else {
159 mutex_lock(&fs_info->tree_log_mutex);
160 if (!fs_info->log_root_tree)
161 ret = btrfs_init_log_root_tree(trans, fs_info);
162 mutex_unlock(&fs_info->tree_log_mutex);
163 if (ret)
164 goto out;
166 ret = btrfs_add_log_tree(trans, root);
167 if (ret)
168 goto out;
170 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
171 root->log_start_pid = current->pid;
174 atomic_inc(&root->log_batch);
175 atomic_inc(&root->log_writers);
176 if (ctx) {
177 int index = root->log_transid % 2;
178 list_add_tail(&ctx->list, &root->log_ctxs[index]);
179 ctx->log_transid = root->log_transid;
182 out:
183 mutex_unlock(&root->log_mutex);
184 return ret;
188 * returns 0 if there was a log transaction running and we were able
189 * to join, or returns -ENOENT if there were not transactions
190 * in progress
192 static int join_running_log_trans(struct btrfs_root *root)
194 int ret = -ENOENT;
196 mutex_lock(&root->log_mutex);
197 if (root->log_root) {
198 ret = 0;
199 atomic_inc(&root->log_writers);
201 mutex_unlock(&root->log_mutex);
202 return ret;
206 * This either makes the current running log transaction wait
207 * until you call btrfs_end_log_trans() or it makes any future
208 * log transactions wait until you call btrfs_end_log_trans()
210 void btrfs_pin_log_trans(struct btrfs_root *root)
212 mutex_lock(&root->log_mutex);
213 atomic_inc(&root->log_writers);
214 mutex_unlock(&root->log_mutex);
218 * indicate we're done making changes to the log tree
219 * and wake up anyone waiting to do a sync
221 void btrfs_end_log_trans(struct btrfs_root *root)
223 if (atomic_dec_and_test(&root->log_writers)) {
224 /* atomic_dec_and_test implies a barrier */
225 cond_wake_up_nomb(&root->log_writer_wait);
229 static int btrfs_write_tree_block(struct extent_buffer *buf)
231 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
232 buf->start + buf->len - 1);
235 static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
237 filemap_fdatawait_range(buf->pages[0]->mapping,
238 buf->start, buf->start + buf->len - 1);
242 * the walk control struct is used to pass state down the chain when
243 * processing the log tree. The stage field tells us which part
244 * of the log tree processing we are currently doing. The others
245 * are state fields used for that specific part
247 struct walk_control {
248 /* should we free the extent on disk when done? This is used
249 * at transaction commit time while freeing a log tree
251 int free;
253 /* should we write out the extent buffer? This is used
254 * while flushing the log tree to disk during a sync
256 int write;
258 /* should we wait for the extent buffer io to finish? Also used
259 * while flushing the log tree to disk for a sync
261 int wait;
263 /* pin only walk, we record which extents on disk belong to the
264 * log trees
266 int pin;
268 /* what stage of the replay code we're currently in */
269 int stage;
272 * Ignore any items from the inode currently being processed. Needs
273 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
274 * the LOG_WALK_REPLAY_INODES stage.
276 bool ignore_cur_inode;
278 /* the root we are currently replaying */
279 struct btrfs_root *replay_dest;
281 /* the trans handle for the current replay */
282 struct btrfs_trans_handle *trans;
284 /* the function that gets used to process blocks we find in the
285 * tree. Note the extent_buffer might not be up to date when it is
286 * passed in, and it must be checked or read if you need the data
287 * inside it
289 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
290 struct walk_control *wc, u64 gen, int level);
294 * process_func used to pin down extents, write them or wait on them
296 static int process_one_buffer(struct btrfs_root *log,
297 struct extent_buffer *eb,
298 struct walk_control *wc, u64 gen, int level)
300 struct btrfs_fs_info *fs_info = log->fs_info;
301 int ret = 0;
304 * If this fs is mixed then we need to be able to process the leaves to
305 * pin down any logged extents, so we have to read the block.
307 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
308 ret = btrfs_read_buffer(eb, gen, level, NULL);
309 if (ret)
310 return ret;
313 if (wc->pin)
314 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
315 eb->len);
317 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
318 if (wc->pin && btrfs_header_level(eb) == 0)
319 ret = btrfs_exclude_logged_extents(eb);
320 if (wc->write)
321 btrfs_write_tree_block(eb);
322 if (wc->wait)
323 btrfs_wait_tree_block_writeback(eb);
325 return ret;
329 * Item overwrite used by replay and tree logging. eb, slot and key all refer
330 * to the src data we are copying out.
332 * root is the tree we are copying into, and path is a scratch
333 * path for use in this function (it should be released on entry and
334 * will be released on exit).
336 * If the key is already in the destination tree the existing item is
337 * overwritten. If the existing item isn't big enough, it is extended.
338 * If it is too large, it is truncated.
340 * If the key isn't in the destination yet, a new item is inserted.
342 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
343 struct btrfs_root *root,
344 struct btrfs_path *path,
345 struct extent_buffer *eb, int slot,
346 struct btrfs_key *key)
348 int ret;
349 u32 item_size;
350 u64 saved_i_size = 0;
351 int save_old_i_size = 0;
352 unsigned long src_ptr;
353 unsigned long dst_ptr;
354 int overwrite_root = 0;
355 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 overwrite_root = 1;
360 item_size = btrfs_item_size_nr(eb, slot);
361 src_ptr = btrfs_item_ptr_offset(eb, slot);
363 /* look for the key in the destination tree */
364 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365 if (ret < 0)
366 return ret;
368 if (ret == 0) {
369 char *src_copy;
370 char *dst_copy;
371 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 path->slots[0]);
373 if (dst_size != item_size)
374 goto insert;
376 if (item_size == 0) {
377 btrfs_release_path(path);
378 return 0;
380 dst_copy = kmalloc(item_size, GFP_NOFS);
381 src_copy = kmalloc(item_size, GFP_NOFS);
382 if (!dst_copy || !src_copy) {
383 btrfs_release_path(path);
384 kfree(dst_copy);
385 kfree(src_copy);
386 return -ENOMEM;
389 read_extent_buffer(eb, src_copy, src_ptr, item_size);
391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 item_size);
394 ret = memcmp(dst_copy, src_copy, item_size);
396 kfree(dst_copy);
397 kfree(src_copy);
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
402 * sync
404 if (ret == 0) {
405 btrfs_release_path(path);
406 return 0;
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
413 if (inode_item) {
414 struct btrfs_inode_item *item;
415 u64 nbytes;
416 u32 mode;
418 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 struct btrfs_inode_item);
420 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 item = btrfs_item_ptr(eb, slot,
422 struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, nbytes);
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
434 } else if (inode_item) {
435 struct btrfs_inode_item *item;
436 u32 mode;
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
442 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 btrfs_set_inode_nbytes(eb, item, 0);
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
450 mode = btrfs_inode_mode(eb, item);
451 if (S_ISDIR(mode))
452 btrfs_set_inode_size(eb, item, 0);
454 insert:
455 btrfs_release_path(path);
456 /* try to insert the key into the destination tree */
457 path->skip_release_on_error = 1;
458 ret = btrfs_insert_empty_item(trans, root, path,
459 key, item_size);
460 path->skip_release_on_error = 0;
462 /* make sure any existing item is the correct size */
463 if (ret == -EEXIST || ret == -EOVERFLOW) {
464 u32 found_size;
465 found_size = btrfs_item_size_nr(path->nodes[0],
466 path->slots[0]);
467 if (found_size > item_size)
468 btrfs_truncate_item(path, item_size, 1);
469 else if (found_size < item_size)
470 btrfs_extend_item(path, item_size - found_size);
471 } else if (ret) {
472 return ret;
474 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
475 path->slots[0]);
477 /* don't overwrite an existing inode if the generation number
478 * was logged as zero. This is done when the tree logging code
479 * is just logging an inode to make sure it exists after recovery.
481 * Also, don't overwrite i_size on directories during replay.
482 * log replay inserts and removes directory items based on the
483 * state of the tree found in the subvolume, and i_size is modified
484 * as it goes
486 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
487 struct btrfs_inode_item *src_item;
488 struct btrfs_inode_item *dst_item;
490 src_item = (struct btrfs_inode_item *)src_ptr;
491 dst_item = (struct btrfs_inode_item *)dst_ptr;
493 if (btrfs_inode_generation(eb, src_item) == 0) {
494 struct extent_buffer *dst_eb = path->nodes[0];
495 const u64 ino_size = btrfs_inode_size(eb, src_item);
498 * For regular files an ino_size == 0 is used only when
499 * logging that an inode exists, as part of a directory
500 * fsync, and the inode wasn't fsynced before. In this
501 * case don't set the size of the inode in the fs/subvol
502 * tree, otherwise we would be throwing valid data away.
504 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
505 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
506 ino_size != 0) {
507 struct btrfs_map_token token;
509 btrfs_init_map_token(&token, dst_eb);
510 btrfs_set_token_inode_size(dst_eb, dst_item,
511 ino_size, &token);
513 goto no_copy;
516 if (overwrite_root &&
517 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
518 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
519 save_old_i_size = 1;
520 saved_i_size = btrfs_inode_size(path->nodes[0],
521 dst_item);
525 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
526 src_ptr, item_size);
528 if (save_old_i_size) {
529 struct btrfs_inode_item *dst_item;
530 dst_item = (struct btrfs_inode_item *)dst_ptr;
531 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
534 /* make sure the generation is filled in */
535 if (key->type == BTRFS_INODE_ITEM_KEY) {
536 struct btrfs_inode_item *dst_item;
537 dst_item = (struct btrfs_inode_item *)dst_ptr;
538 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
539 btrfs_set_inode_generation(path->nodes[0], dst_item,
540 trans->transid);
543 no_copy:
544 btrfs_mark_buffer_dirty(path->nodes[0]);
545 btrfs_release_path(path);
546 return 0;
550 * simple helper to read an inode off the disk from a given root
551 * This can only be called for subvolume roots and not for the log
553 static noinline struct inode *read_one_inode(struct btrfs_root *root,
554 u64 objectid)
556 struct btrfs_key key;
557 struct inode *inode;
559 key.objectid = objectid;
560 key.type = BTRFS_INODE_ITEM_KEY;
561 key.offset = 0;
562 inode = btrfs_iget(root->fs_info->sb, &key, root);
563 if (IS_ERR(inode))
564 inode = NULL;
565 return inode;
568 /* replays a single extent in 'eb' at 'slot' with 'key' into the
569 * subvolume 'root'. path is released on entry and should be released
570 * on exit.
572 * extents in the log tree have not been allocated out of the extent
573 * tree yet. So, this completes the allocation, taking a reference
574 * as required if the extent already exists or creating a new extent
575 * if it isn't in the extent allocation tree yet.
577 * The extent is inserted into the file, dropping any existing extents
578 * from the file that overlap the new one.
580 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
581 struct btrfs_root *root,
582 struct btrfs_path *path,
583 struct extent_buffer *eb, int slot,
584 struct btrfs_key *key)
586 struct btrfs_fs_info *fs_info = root->fs_info;
587 int found_type;
588 u64 extent_end;
589 u64 start = key->offset;
590 u64 nbytes = 0;
591 struct btrfs_file_extent_item *item;
592 struct inode *inode = NULL;
593 unsigned long size;
594 int ret = 0;
596 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
597 found_type = btrfs_file_extent_type(eb, item);
599 if (found_type == BTRFS_FILE_EXTENT_REG ||
600 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
601 nbytes = btrfs_file_extent_num_bytes(eb, item);
602 extent_end = start + nbytes;
605 * We don't add to the inodes nbytes if we are prealloc or a
606 * hole.
608 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
609 nbytes = 0;
610 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
611 size = btrfs_file_extent_ram_bytes(eb, item);
612 nbytes = btrfs_file_extent_ram_bytes(eb, item);
613 extent_end = ALIGN(start + size,
614 fs_info->sectorsize);
615 } else {
616 ret = 0;
617 goto out;
620 inode = read_one_inode(root, key->objectid);
621 if (!inode) {
622 ret = -EIO;
623 goto out;
627 * first check to see if we already have this extent in the
628 * file. This must be done before the btrfs_drop_extents run
629 * so we don't try to drop this extent.
631 ret = btrfs_lookup_file_extent(trans, root, path,
632 btrfs_ino(BTRFS_I(inode)), start, 0);
634 if (ret == 0 &&
635 (found_type == BTRFS_FILE_EXTENT_REG ||
636 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
637 struct btrfs_file_extent_item cmp1;
638 struct btrfs_file_extent_item cmp2;
639 struct btrfs_file_extent_item *existing;
640 struct extent_buffer *leaf;
642 leaf = path->nodes[0];
643 existing = btrfs_item_ptr(leaf, path->slots[0],
644 struct btrfs_file_extent_item);
646 read_extent_buffer(eb, &cmp1, (unsigned long)item,
647 sizeof(cmp1));
648 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
649 sizeof(cmp2));
652 * we already have a pointer to this exact extent,
653 * we don't have to do anything
655 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
656 btrfs_release_path(path);
657 goto out;
660 btrfs_release_path(path);
662 /* drop any overlapping extents */
663 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
664 if (ret)
665 goto out;
667 if (found_type == BTRFS_FILE_EXTENT_REG ||
668 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
669 u64 offset;
670 unsigned long dest_offset;
671 struct btrfs_key ins;
673 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
674 btrfs_fs_incompat(fs_info, NO_HOLES))
675 goto update_inode;
677 ret = btrfs_insert_empty_item(trans, root, path, key,
678 sizeof(*item));
679 if (ret)
680 goto out;
681 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
682 path->slots[0]);
683 copy_extent_buffer(path->nodes[0], eb, dest_offset,
684 (unsigned long)item, sizeof(*item));
686 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
687 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
688 ins.type = BTRFS_EXTENT_ITEM_KEY;
689 offset = key->offset - btrfs_file_extent_offset(eb, item);
692 * Manually record dirty extent, as here we did a shallow
693 * file extent item copy and skip normal backref update,
694 * but modifying extent tree all by ourselves.
695 * So need to manually record dirty extent for qgroup,
696 * as the owner of the file extent changed from log tree
697 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
699 ret = btrfs_qgroup_trace_extent(trans,
700 btrfs_file_extent_disk_bytenr(eb, item),
701 btrfs_file_extent_disk_num_bytes(eb, item),
702 GFP_NOFS);
703 if (ret < 0)
704 goto out;
706 if (ins.objectid > 0) {
707 struct btrfs_ref ref = { 0 };
708 u64 csum_start;
709 u64 csum_end;
710 LIST_HEAD(ordered_sums);
713 * is this extent already allocated in the extent
714 * allocation tree? If so, just add a reference
716 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
717 ins.offset);
718 if (ret == 0) {
719 btrfs_init_generic_ref(&ref,
720 BTRFS_ADD_DELAYED_REF,
721 ins.objectid, ins.offset, 0);
722 btrfs_init_data_ref(&ref,
723 root->root_key.objectid,
724 key->objectid, offset);
725 ret = btrfs_inc_extent_ref(trans, &ref);
726 if (ret)
727 goto out;
728 } else {
730 * insert the extent pointer in the extent
731 * allocation tree
733 ret = btrfs_alloc_logged_file_extent(trans,
734 root->root_key.objectid,
735 key->objectid, offset, &ins);
736 if (ret)
737 goto out;
739 btrfs_release_path(path);
741 if (btrfs_file_extent_compression(eb, item)) {
742 csum_start = ins.objectid;
743 csum_end = csum_start + ins.offset;
744 } else {
745 csum_start = ins.objectid +
746 btrfs_file_extent_offset(eb, item);
747 csum_end = csum_start +
748 btrfs_file_extent_num_bytes(eb, item);
751 ret = btrfs_lookup_csums_range(root->log_root,
752 csum_start, csum_end - 1,
753 &ordered_sums, 0);
754 if (ret)
755 goto out;
757 * Now delete all existing cums in the csum root that
758 * cover our range. We do this because we can have an
759 * extent that is completely referenced by one file
760 * extent item and partially referenced by another
761 * file extent item (like after using the clone or
762 * extent_same ioctls). In this case if we end up doing
763 * the replay of the one that partially references the
764 * extent first, and we do not do the csum deletion
765 * below, we can get 2 csum items in the csum tree that
766 * overlap each other. For example, imagine our log has
767 * the two following file extent items:
769 * key (257 EXTENT_DATA 409600)
770 * extent data disk byte 12845056 nr 102400
771 * extent data offset 20480 nr 20480 ram 102400
773 * key (257 EXTENT_DATA 819200)
774 * extent data disk byte 12845056 nr 102400
775 * extent data offset 0 nr 102400 ram 102400
777 * Where the second one fully references the 100K extent
778 * that starts at disk byte 12845056, and the log tree
779 * has a single csum item that covers the entire range
780 * of the extent:
782 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 * After the first file extent item is replayed, the
785 * csum tree gets the following csum item:
787 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
789 * Which covers the 20K sub-range starting at offset 20K
790 * of our extent. Now when we replay the second file
791 * extent item, if we do not delete existing csum items
792 * that cover any of its blocks, we end up getting two
793 * csum items in our csum tree that overlap each other:
795 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
796 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
798 * Which is a problem, because after this anyone trying
799 * to lookup up for the checksum of any block of our
800 * extent starting at an offset of 40K or higher, will
801 * end up looking at the second csum item only, which
802 * does not contain the checksum for any block starting
803 * at offset 40K or higher of our extent.
805 while (!list_empty(&ordered_sums)) {
806 struct btrfs_ordered_sum *sums;
807 sums = list_entry(ordered_sums.next,
808 struct btrfs_ordered_sum,
809 list);
810 if (!ret)
811 ret = btrfs_del_csums(trans,
812 fs_info->csum_root,
813 sums->bytenr,
814 sums->len);
815 if (!ret)
816 ret = btrfs_csum_file_blocks(trans,
817 fs_info->csum_root, sums);
818 list_del(&sums->list);
819 kfree(sums);
821 if (ret)
822 goto out;
823 } else {
824 btrfs_release_path(path);
826 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
827 /* inline extents are easy, we just overwrite them */
828 ret = overwrite_item(trans, root, path, eb, slot, key);
829 if (ret)
830 goto out;
833 inode_add_bytes(inode, nbytes);
834 update_inode:
835 ret = btrfs_update_inode(trans, root, inode);
836 out:
837 if (inode)
838 iput(inode);
839 return ret;
843 * when cleaning up conflicts between the directory names in the
844 * subvolume, directory names in the log and directory names in the
845 * inode back references, we may have to unlink inodes from directories.
847 * This is a helper function to do the unlink of a specific directory
848 * item
850 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 struct btrfs_root *root,
852 struct btrfs_path *path,
853 struct btrfs_inode *dir,
854 struct btrfs_dir_item *di)
856 struct inode *inode;
857 char *name;
858 int name_len;
859 struct extent_buffer *leaf;
860 struct btrfs_key location;
861 int ret;
863 leaf = path->nodes[0];
865 btrfs_dir_item_key_to_cpu(leaf, di, &location);
866 name_len = btrfs_dir_name_len(leaf, di);
867 name = kmalloc(name_len, GFP_NOFS);
868 if (!name)
869 return -ENOMEM;
871 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
872 btrfs_release_path(path);
874 inode = read_one_inode(root, location.objectid);
875 if (!inode) {
876 ret = -EIO;
877 goto out;
880 ret = link_to_fixup_dir(trans, root, path, location.objectid);
881 if (ret)
882 goto out;
884 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
885 name_len);
886 if (ret)
887 goto out;
888 else
889 ret = btrfs_run_delayed_items(trans);
890 out:
891 kfree(name);
892 iput(inode);
893 return ret;
897 * helper function to see if a given name and sequence number found
898 * in an inode back reference are already in a directory and correctly
899 * point to this inode
901 static noinline int inode_in_dir(struct btrfs_root *root,
902 struct btrfs_path *path,
903 u64 dirid, u64 objectid, u64 index,
904 const char *name, int name_len)
906 struct btrfs_dir_item *di;
907 struct btrfs_key location;
908 int match = 0;
910 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
911 index, name, name_len, 0);
912 if (di && !IS_ERR(di)) {
913 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
914 if (location.objectid != objectid)
915 goto out;
916 } else
917 goto out;
918 btrfs_release_path(path);
920 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
921 if (di && !IS_ERR(di)) {
922 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
923 if (location.objectid != objectid)
924 goto out;
925 } else
926 goto out;
927 match = 1;
928 out:
929 btrfs_release_path(path);
930 return match;
934 * helper function to check a log tree for a named back reference in
935 * an inode. This is used to decide if a back reference that is
936 * found in the subvolume conflicts with what we find in the log.
938 * inode backreferences may have multiple refs in a single item,
939 * during replay we process one reference at a time, and we don't
940 * want to delete valid links to a file from the subvolume if that
941 * link is also in the log.
943 static noinline int backref_in_log(struct btrfs_root *log,
944 struct btrfs_key *key,
945 u64 ref_objectid,
946 const char *name, int namelen)
948 struct btrfs_path *path;
949 int ret;
951 path = btrfs_alloc_path();
952 if (!path)
953 return -ENOMEM;
955 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
956 if (ret < 0) {
957 goto out;
958 } else if (ret == 1) {
959 ret = 0;
960 goto out;
963 if (key->type == BTRFS_INODE_EXTREF_KEY)
964 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
965 path->slots[0],
966 ref_objectid,
967 name, namelen);
968 else
969 ret = !!btrfs_find_name_in_backref(path->nodes[0],
970 path->slots[0],
971 name, namelen);
972 out:
973 btrfs_free_path(path);
974 return ret;
977 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct btrfs_path *path,
980 struct btrfs_root *log_root,
981 struct btrfs_inode *dir,
982 struct btrfs_inode *inode,
983 u64 inode_objectid, u64 parent_objectid,
984 u64 ref_index, char *name, int namelen,
985 int *search_done)
987 int ret;
988 char *victim_name;
989 int victim_name_len;
990 struct extent_buffer *leaf;
991 struct btrfs_dir_item *di;
992 struct btrfs_key search_key;
993 struct btrfs_inode_extref *extref;
995 again:
996 /* Search old style refs */
997 search_key.objectid = inode_objectid;
998 search_key.type = BTRFS_INODE_REF_KEY;
999 search_key.offset = parent_objectid;
1000 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1001 if (ret == 0) {
1002 struct btrfs_inode_ref *victim_ref;
1003 unsigned long ptr;
1004 unsigned long ptr_end;
1006 leaf = path->nodes[0];
1008 /* are we trying to overwrite a back ref for the root directory
1009 * if so, just jump out, we're done
1011 if (search_key.objectid == search_key.offset)
1012 return 1;
1014 /* check all the names in this back reference to see
1015 * if they are in the log. if so, we allow them to stay
1016 * otherwise they must be unlinked as a conflict
1018 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1019 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1020 while (ptr < ptr_end) {
1021 victim_ref = (struct btrfs_inode_ref *)ptr;
1022 victim_name_len = btrfs_inode_ref_name_len(leaf,
1023 victim_ref);
1024 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1025 if (!victim_name)
1026 return -ENOMEM;
1028 read_extent_buffer(leaf, victim_name,
1029 (unsigned long)(victim_ref + 1),
1030 victim_name_len);
1032 ret = backref_in_log(log_root, &search_key,
1033 parent_objectid, victim_name,
1034 victim_name_len);
1035 if (ret < 0) {
1036 kfree(victim_name);
1037 return ret;
1038 } else if (!ret) {
1039 inc_nlink(&inode->vfs_inode);
1040 btrfs_release_path(path);
1042 ret = btrfs_unlink_inode(trans, root, dir, inode,
1043 victim_name, victim_name_len);
1044 kfree(victim_name);
1045 if (ret)
1046 return ret;
1047 ret = btrfs_run_delayed_items(trans);
1048 if (ret)
1049 return ret;
1050 *search_done = 1;
1051 goto again;
1053 kfree(victim_name);
1055 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1059 * NOTE: we have searched root tree and checked the
1060 * corresponding ref, it does not need to check again.
1062 *search_done = 1;
1064 btrfs_release_path(path);
1066 /* Same search but for extended refs */
1067 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1068 inode_objectid, parent_objectid, 0,
1070 if (!IS_ERR_OR_NULL(extref)) {
1071 u32 item_size;
1072 u32 cur_offset = 0;
1073 unsigned long base;
1074 struct inode *victim_parent;
1076 leaf = path->nodes[0];
1078 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1079 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1081 while (cur_offset < item_size) {
1082 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1084 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1086 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1087 goto next;
1089 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1090 if (!victim_name)
1091 return -ENOMEM;
1092 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1093 victim_name_len);
1095 search_key.objectid = inode_objectid;
1096 search_key.type = BTRFS_INODE_EXTREF_KEY;
1097 search_key.offset = btrfs_extref_hash(parent_objectid,
1098 victim_name,
1099 victim_name_len);
1100 ret = backref_in_log(log_root, &search_key,
1101 parent_objectid, victim_name,
1102 victim_name_len);
1103 if (ret < 0) {
1104 return ret;
1105 } else if (!ret) {
1106 ret = -ENOENT;
1107 victim_parent = read_one_inode(root,
1108 parent_objectid);
1109 if (victim_parent) {
1110 inc_nlink(&inode->vfs_inode);
1111 btrfs_release_path(path);
1113 ret = btrfs_unlink_inode(trans, root,
1114 BTRFS_I(victim_parent),
1115 inode,
1116 victim_name,
1117 victim_name_len);
1118 if (!ret)
1119 ret = btrfs_run_delayed_items(
1120 trans);
1122 iput(victim_parent);
1123 kfree(victim_name);
1124 if (ret)
1125 return ret;
1126 *search_done = 1;
1127 goto again;
1129 kfree(victim_name);
1130 next:
1131 cur_offset += victim_name_len + sizeof(*extref);
1133 *search_done = 1;
1135 btrfs_release_path(path);
1137 /* look for a conflicting sequence number */
1138 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1139 ref_index, name, namelen, 0);
1140 if (di && !IS_ERR(di)) {
1141 ret = drop_one_dir_item(trans, root, path, dir, di);
1142 if (ret)
1143 return ret;
1145 btrfs_release_path(path);
1147 /* look for a conflicting name */
1148 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1149 name, namelen, 0);
1150 if (di && !IS_ERR(di)) {
1151 ret = drop_one_dir_item(trans, root, path, dir, di);
1152 if (ret)
1153 return ret;
1155 btrfs_release_path(path);
1157 return 0;
1160 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1161 u32 *namelen, char **name, u64 *index,
1162 u64 *parent_objectid)
1164 struct btrfs_inode_extref *extref;
1166 extref = (struct btrfs_inode_extref *)ref_ptr;
1168 *namelen = btrfs_inode_extref_name_len(eb, extref);
1169 *name = kmalloc(*namelen, GFP_NOFS);
1170 if (*name == NULL)
1171 return -ENOMEM;
1173 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1174 *namelen);
1176 if (index)
1177 *index = btrfs_inode_extref_index(eb, extref);
1178 if (parent_objectid)
1179 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1181 return 0;
1184 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1185 u32 *namelen, char **name, u64 *index)
1187 struct btrfs_inode_ref *ref;
1189 ref = (struct btrfs_inode_ref *)ref_ptr;
1191 *namelen = btrfs_inode_ref_name_len(eb, ref);
1192 *name = kmalloc(*namelen, GFP_NOFS);
1193 if (*name == NULL)
1194 return -ENOMEM;
1196 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1198 if (index)
1199 *index = btrfs_inode_ref_index(eb, ref);
1201 return 0;
1205 * Take an inode reference item from the log tree and iterate all names from the
1206 * inode reference item in the subvolume tree with the same key (if it exists).
1207 * For any name that is not in the inode reference item from the log tree, do a
1208 * proper unlink of that name (that is, remove its entry from the inode
1209 * reference item and both dir index keys).
1211 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1212 struct btrfs_root *root,
1213 struct btrfs_path *path,
1214 struct btrfs_inode *inode,
1215 struct extent_buffer *log_eb,
1216 int log_slot,
1217 struct btrfs_key *key)
1219 int ret;
1220 unsigned long ref_ptr;
1221 unsigned long ref_end;
1222 struct extent_buffer *eb;
1224 again:
1225 btrfs_release_path(path);
1226 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1227 if (ret > 0) {
1228 ret = 0;
1229 goto out;
1231 if (ret < 0)
1232 goto out;
1234 eb = path->nodes[0];
1235 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1236 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1237 while (ref_ptr < ref_end) {
1238 char *name = NULL;
1239 int namelen;
1240 u64 parent_id;
1242 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1243 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1244 NULL, &parent_id);
1245 } else {
1246 parent_id = key->offset;
1247 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1248 NULL);
1250 if (ret)
1251 goto out;
1253 if (key->type == BTRFS_INODE_EXTREF_KEY)
1254 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1255 parent_id, name,
1256 namelen);
1257 else
1258 ret = !!btrfs_find_name_in_backref(log_eb, log_slot,
1259 name, namelen);
1261 if (!ret) {
1262 struct inode *dir;
1264 btrfs_release_path(path);
1265 dir = read_one_inode(root, parent_id);
1266 if (!dir) {
1267 ret = -ENOENT;
1268 kfree(name);
1269 goto out;
1271 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1272 inode, name, namelen);
1273 kfree(name);
1274 iput(dir);
1275 if (ret)
1276 goto out;
1277 goto again;
1280 kfree(name);
1281 ref_ptr += namelen;
1282 if (key->type == BTRFS_INODE_EXTREF_KEY)
1283 ref_ptr += sizeof(struct btrfs_inode_extref);
1284 else
1285 ref_ptr += sizeof(struct btrfs_inode_ref);
1287 ret = 0;
1288 out:
1289 btrfs_release_path(path);
1290 return ret;
1293 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1294 const u8 ref_type, const char *name,
1295 const int namelen)
1297 struct btrfs_key key;
1298 struct btrfs_path *path;
1299 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1300 int ret;
1302 path = btrfs_alloc_path();
1303 if (!path)
1304 return -ENOMEM;
1306 key.objectid = btrfs_ino(BTRFS_I(inode));
1307 key.type = ref_type;
1308 if (key.type == BTRFS_INODE_REF_KEY)
1309 key.offset = parent_id;
1310 else
1311 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1313 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1314 if (ret < 0)
1315 goto out;
1316 if (ret > 0) {
1317 ret = 0;
1318 goto out;
1320 if (key.type == BTRFS_INODE_EXTREF_KEY)
1321 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1322 path->slots[0], parent_id, name, namelen);
1323 else
1324 ret = !!btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1325 name, namelen);
1327 out:
1328 btrfs_free_path(path);
1329 return ret;
1332 static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1333 struct inode *dir, struct inode *inode, const char *name,
1334 int namelen, u64 ref_index)
1336 struct btrfs_dir_item *dir_item;
1337 struct btrfs_key key;
1338 struct btrfs_path *path;
1339 struct inode *other_inode = NULL;
1340 int ret;
1342 path = btrfs_alloc_path();
1343 if (!path)
1344 return -ENOMEM;
1346 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1347 btrfs_ino(BTRFS_I(dir)),
1348 name, namelen, 0);
1349 if (!dir_item) {
1350 btrfs_release_path(path);
1351 goto add_link;
1352 } else if (IS_ERR(dir_item)) {
1353 ret = PTR_ERR(dir_item);
1354 goto out;
1358 * Our inode's dentry collides with the dentry of another inode which is
1359 * in the log but not yet processed since it has a higher inode number.
1360 * So delete that other dentry.
1362 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1363 btrfs_release_path(path);
1364 other_inode = read_one_inode(root, key.objectid);
1365 if (!other_inode) {
1366 ret = -ENOENT;
1367 goto out;
1369 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1370 name, namelen);
1371 if (ret)
1372 goto out;
1374 * If we dropped the link count to 0, bump it so that later the iput()
1375 * on the inode will not free it. We will fixup the link count later.
1377 if (other_inode->i_nlink == 0)
1378 inc_nlink(other_inode);
1380 ret = btrfs_run_delayed_items(trans);
1381 if (ret)
1382 goto out;
1383 add_link:
1384 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1385 name, namelen, 0, ref_index);
1386 out:
1387 iput(other_inode);
1388 btrfs_free_path(path);
1390 return ret;
1394 * replay one inode back reference item found in the log tree.
1395 * eb, slot and key refer to the buffer and key found in the log tree.
1396 * root is the destination we are replaying into, and path is for temp
1397 * use by this function. (it should be released on return).
1399 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1400 struct btrfs_root *root,
1401 struct btrfs_root *log,
1402 struct btrfs_path *path,
1403 struct extent_buffer *eb, int slot,
1404 struct btrfs_key *key)
1406 struct inode *dir = NULL;
1407 struct inode *inode = NULL;
1408 unsigned long ref_ptr;
1409 unsigned long ref_end;
1410 char *name = NULL;
1411 int namelen;
1412 int ret;
1413 int search_done = 0;
1414 int log_ref_ver = 0;
1415 u64 parent_objectid;
1416 u64 inode_objectid;
1417 u64 ref_index = 0;
1418 int ref_struct_size;
1420 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1421 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1423 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1424 struct btrfs_inode_extref *r;
1426 ref_struct_size = sizeof(struct btrfs_inode_extref);
1427 log_ref_ver = 1;
1428 r = (struct btrfs_inode_extref *)ref_ptr;
1429 parent_objectid = btrfs_inode_extref_parent(eb, r);
1430 } else {
1431 ref_struct_size = sizeof(struct btrfs_inode_ref);
1432 parent_objectid = key->offset;
1434 inode_objectid = key->objectid;
1437 * it is possible that we didn't log all the parent directories
1438 * for a given inode. If we don't find the dir, just don't
1439 * copy the back ref in. The link count fixup code will take
1440 * care of the rest
1442 dir = read_one_inode(root, parent_objectid);
1443 if (!dir) {
1444 ret = -ENOENT;
1445 goto out;
1448 inode = read_one_inode(root, inode_objectid);
1449 if (!inode) {
1450 ret = -EIO;
1451 goto out;
1454 while (ref_ptr < ref_end) {
1455 if (log_ref_ver) {
1456 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1457 &ref_index, &parent_objectid);
1459 * parent object can change from one array
1460 * item to another.
1462 if (!dir)
1463 dir = read_one_inode(root, parent_objectid);
1464 if (!dir) {
1465 ret = -ENOENT;
1466 goto out;
1468 } else {
1469 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1470 &ref_index);
1472 if (ret)
1473 goto out;
1475 /* if we already have a perfect match, we're done */
1476 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1477 btrfs_ino(BTRFS_I(inode)), ref_index,
1478 name, namelen)) {
1480 * look for a conflicting back reference in the
1481 * metadata. if we find one we have to unlink that name
1482 * of the file before we add our new link. Later on, we
1483 * overwrite any existing back reference, and we don't
1484 * want to create dangling pointers in the directory.
1487 if (!search_done) {
1488 ret = __add_inode_ref(trans, root, path, log,
1489 BTRFS_I(dir),
1490 BTRFS_I(inode),
1491 inode_objectid,
1492 parent_objectid,
1493 ref_index, name, namelen,
1494 &search_done);
1495 if (ret) {
1496 if (ret == 1)
1497 ret = 0;
1498 goto out;
1503 * If a reference item already exists for this inode
1504 * with the same parent and name, but different index,
1505 * drop it and the corresponding directory index entries
1506 * from the parent before adding the new reference item
1507 * and dir index entries, otherwise we would fail with
1508 * -EEXIST returned from btrfs_add_link() below.
1510 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1511 name, namelen);
1512 if (ret > 0) {
1513 ret = btrfs_unlink_inode(trans, root,
1514 BTRFS_I(dir),
1515 BTRFS_I(inode),
1516 name, namelen);
1518 * If we dropped the link count to 0, bump it so
1519 * that later the iput() on the inode will not
1520 * free it. We will fixup the link count later.
1522 if (!ret && inode->i_nlink == 0)
1523 inc_nlink(inode);
1525 if (ret < 0)
1526 goto out;
1528 /* insert our name */
1529 ret = add_link(trans, root, dir, inode, name, namelen,
1530 ref_index);
1531 if (ret)
1532 goto out;
1534 btrfs_update_inode(trans, root, inode);
1537 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1538 kfree(name);
1539 name = NULL;
1540 if (log_ref_ver) {
1541 iput(dir);
1542 dir = NULL;
1547 * Before we overwrite the inode reference item in the subvolume tree
1548 * with the item from the log tree, we must unlink all names from the
1549 * parent directory that are in the subvolume's tree inode reference
1550 * item, otherwise we end up with an inconsistent subvolume tree where
1551 * dir index entries exist for a name but there is no inode reference
1552 * item with the same name.
1554 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1555 key);
1556 if (ret)
1557 goto out;
1559 /* finally write the back reference in the inode */
1560 ret = overwrite_item(trans, root, path, eb, slot, key);
1561 out:
1562 btrfs_release_path(path);
1563 kfree(name);
1564 iput(dir);
1565 iput(inode);
1566 return ret;
1569 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1570 struct btrfs_root *root, u64 ino)
1572 int ret;
1574 ret = btrfs_insert_orphan_item(trans, root, ino);
1575 if (ret == -EEXIST)
1576 ret = 0;
1578 return ret;
1581 static int count_inode_extrefs(struct btrfs_root *root,
1582 struct btrfs_inode *inode, struct btrfs_path *path)
1584 int ret = 0;
1585 int name_len;
1586 unsigned int nlink = 0;
1587 u32 item_size;
1588 u32 cur_offset = 0;
1589 u64 inode_objectid = btrfs_ino(inode);
1590 u64 offset = 0;
1591 unsigned long ptr;
1592 struct btrfs_inode_extref *extref;
1593 struct extent_buffer *leaf;
1595 while (1) {
1596 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1597 &extref, &offset);
1598 if (ret)
1599 break;
1601 leaf = path->nodes[0];
1602 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1603 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1604 cur_offset = 0;
1606 while (cur_offset < item_size) {
1607 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1608 name_len = btrfs_inode_extref_name_len(leaf, extref);
1610 nlink++;
1612 cur_offset += name_len + sizeof(*extref);
1615 offset++;
1616 btrfs_release_path(path);
1618 btrfs_release_path(path);
1620 if (ret < 0 && ret != -ENOENT)
1621 return ret;
1622 return nlink;
1625 static int count_inode_refs(struct btrfs_root *root,
1626 struct btrfs_inode *inode, struct btrfs_path *path)
1628 int ret;
1629 struct btrfs_key key;
1630 unsigned int nlink = 0;
1631 unsigned long ptr;
1632 unsigned long ptr_end;
1633 int name_len;
1634 u64 ino = btrfs_ino(inode);
1636 key.objectid = ino;
1637 key.type = BTRFS_INODE_REF_KEY;
1638 key.offset = (u64)-1;
1640 while (1) {
1641 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1642 if (ret < 0)
1643 break;
1644 if (ret > 0) {
1645 if (path->slots[0] == 0)
1646 break;
1647 path->slots[0]--;
1649 process_slot:
1650 btrfs_item_key_to_cpu(path->nodes[0], &key,
1651 path->slots[0]);
1652 if (key.objectid != ino ||
1653 key.type != BTRFS_INODE_REF_KEY)
1654 break;
1655 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1656 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1657 path->slots[0]);
1658 while (ptr < ptr_end) {
1659 struct btrfs_inode_ref *ref;
1661 ref = (struct btrfs_inode_ref *)ptr;
1662 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1663 ref);
1664 ptr = (unsigned long)(ref + 1) + name_len;
1665 nlink++;
1668 if (key.offset == 0)
1669 break;
1670 if (path->slots[0] > 0) {
1671 path->slots[0]--;
1672 goto process_slot;
1674 key.offset--;
1675 btrfs_release_path(path);
1677 btrfs_release_path(path);
1679 return nlink;
1683 * There are a few corners where the link count of the file can't
1684 * be properly maintained during replay. So, instead of adding
1685 * lots of complexity to the log code, we just scan the backrefs
1686 * for any file that has been through replay.
1688 * The scan will update the link count on the inode to reflect the
1689 * number of back refs found. If it goes down to zero, the iput
1690 * will free the inode.
1692 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1693 struct btrfs_root *root,
1694 struct inode *inode)
1696 struct btrfs_path *path;
1697 int ret;
1698 u64 nlink = 0;
1699 u64 ino = btrfs_ino(BTRFS_I(inode));
1701 path = btrfs_alloc_path();
1702 if (!path)
1703 return -ENOMEM;
1705 ret = count_inode_refs(root, BTRFS_I(inode), path);
1706 if (ret < 0)
1707 goto out;
1709 nlink = ret;
1711 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1712 if (ret < 0)
1713 goto out;
1715 nlink += ret;
1717 ret = 0;
1719 if (nlink != inode->i_nlink) {
1720 set_nlink(inode, nlink);
1721 btrfs_update_inode(trans, root, inode);
1723 BTRFS_I(inode)->index_cnt = (u64)-1;
1725 if (inode->i_nlink == 0) {
1726 if (S_ISDIR(inode->i_mode)) {
1727 ret = replay_dir_deletes(trans, root, NULL, path,
1728 ino, 1);
1729 if (ret)
1730 goto out;
1732 ret = insert_orphan_item(trans, root, ino);
1735 out:
1736 btrfs_free_path(path);
1737 return ret;
1740 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1741 struct btrfs_root *root,
1742 struct btrfs_path *path)
1744 int ret;
1745 struct btrfs_key key;
1746 struct inode *inode;
1748 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1749 key.type = BTRFS_ORPHAN_ITEM_KEY;
1750 key.offset = (u64)-1;
1751 while (1) {
1752 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1753 if (ret < 0)
1754 break;
1756 if (ret == 1) {
1757 if (path->slots[0] == 0)
1758 break;
1759 path->slots[0]--;
1762 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1763 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1764 key.type != BTRFS_ORPHAN_ITEM_KEY)
1765 break;
1767 ret = btrfs_del_item(trans, root, path);
1768 if (ret)
1769 goto out;
1771 btrfs_release_path(path);
1772 inode = read_one_inode(root, key.offset);
1773 if (!inode)
1774 return -EIO;
1776 ret = fixup_inode_link_count(trans, root, inode);
1777 iput(inode);
1778 if (ret)
1779 goto out;
1782 * fixup on a directory may create new entries,
1783 * make sure we always look for the highset possible
1784 * offset
1786 key.offset = (u64)-1;
1788 ret = 0;
1789 out:
1790 btrfs_release_path(path);
1791 return ret;
1796 * record a given inode in the fixup dir so we can check its link
1797 * count when replay is done. The link count is incremented here
1798 * so the inode won't go away until we check it
1800 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 u64 objectid)
1805 struct btrfs_key key;
1806 int ret = 0;
1807 struct inode *inode;
1809 inode = read_one_inode(root, objectid);
1810 if (!inode)
1811 return -EIO;
1813 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1814 key.type = BTRFS_ORPHAN_ITEM_KEY;
1815 key.offset = objectid;
1817 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1819 btrfs_release_path(path);
1820 if (ret == 0) {
1821 if (!inode->i_nlink)
1822 set_nlink(inode, 1);
1823 else
1824 inc_nlink(inode);
1825 ret = btrfs_update_inode(trans, root, inode);
1826 } else if (ret == -EEXIST) {
1827 ret = 0;
1828 } else {
1829 BUG(); /* Logic Error */
1831 iput(inode);
1833 return ret;
1837 * when replaying the log for a directory, we only insert names
1838 * for inodes that actually exist. This means an fsync on a directory
1839 * does not implicitly fsync all the new files in it
1841 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1842 struct btrfs_root *root,
1843 u64 dirid, u64 index,
1844 char *name, int name_len,
1845 struct btrfs_key *location)
1847 struct inode *inode;
1848 struct inode *dir;
1849 int ret;
1851 inode = read_one_inode(root, location->objectid);
1852 if (!inode)
1853 return -ENOENT;
1855 dir = read_one_inode(root, dirid);
1856 if (!dir) {
1857 iput(inode);
1858 return -EIO;
1861 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1862 name_len, 1, index);
1864 /* FIXME, put inode into FIXUP list */
1866 iput(inode);
1867 iput(dir);
1868 return ret;
1872 * take a single entry in a log directory item and replay it into
1873 * the subvolume.
1875 * if a conflicting item exists in the subdirectory already,
1876 * the inode it points to is unlinked and put into the link count
1877 * fix up tree.
1879 * If a name from the log points to a file or directory that does
1880 * not exist in the FS, it is skipped. fsyncs on directories
1881 * do not force down inodes inside that directory, just changes to the
1882 * names or unlinks in a directory.
1884 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1885 * non-existing inode) and 1 if the name was replayed.
1887 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1888 struct btrfs_root *root,
1889 struct btrfs_path *path,
1890 struct extent_buffer *eb,
1891 struct btrfs_dir_item *di,
1892 struct btrfs_key *key)
1894 char *name;
1895 int name_len;
1896 struct btrfs_dir_item *dst_di;
1897 struct btrfs_key found_key;
1898 struct btrfs_key log_key;
1899 struct inode *dir;
1900 u8 log_type;
1901 int exists;
1902 int ret = 0;
1903 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1904 bool name_added = false;
1906 dir = read_one_inode(root, key->objectid);
1907 if (!dir)
1908 return -EIO;
1910 name_len = btrfs_dir_name_len(eb, di);
1911 name = kmalloc(name_len, GFP_NOFS);
1912 if (!name) {
1913 ret = -ENOMEM;
1914 goto out;
1917 log_type = btrfs_dir_type(eb, di);
1918 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1919 name_len);
1921 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1922 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1923 if (exists == 0)
1924 exists = 1;
1925 else
1926 exists = 0;
1927 btrfs_release_path(path);
1929 if (key->type == BTRFS_DIR_ITEM_KEY) {
1930 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1931 name, name_len, 1);
1932 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1933 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1934 key->objectid,
1935 key->offset, name,
1936 name_len, 1);
1937 } else {
1938 /* Corruption */
1939 ret = -EINVAL;
1940 goto out;
1942 if (IS_ERR_OR_NULL(dst_di)) {
1943 /* we need a sequence number to insert, so we only
1944 * do inserts for the BTRFS_DIR_INDEX_KEY types
1946 if (key->type != BTRFS_DIR_INDEX_KEY)
1947 goto out;
1948 goto insert;
1951 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1952 /* the existing item matches the logged item */
1953 if (found_key.objectid == log_key.objectid &&
1954 found_key.type == log_key.type &&
1955 found_key.offset == log_key.offset &&
1956 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1957 update_size = false;
1958 goto out;
1962 * don't drop the conflicting directory entry if the inode
1963 * for the new entry doesn't exist
1965 if (!exists)
1966 goto out;
1968 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1969 if (ret)
1970 goto out;
1972 if (key->type == BTRFS_DIR_INDEX_KEY)
1973 goto insert;
1974 out:
1975 btrfs_release_path(path);
1976 if (!ret && update_size) {
1977 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1978 ret = btrfs_update_inode(trans, root, dir);
1980 kfree(name);
1981 iput(dir);
1982 if (!ret && name_added)
1983 ret = 1;
1984 return ret;
1986 insert:
1988 * Check if the inode reference exists in the log for the given name,
1989 * inode and parent inode
1991 found_key.objectid = log_key.objectid;
1992 found_key.type = BTRFS_INODE_REF_KEY;
1993 found_key.offset = key->objectid;
1994 ret = backref_in_log(root->log_root, &found_key, 0, name, name_len);
1995 if (ret < 0) {
1996 goto out;
1997 } else if (ret) {
1998 /* The dentry will be added later. */
1999 ret = 0;
2000 update_size = false;
2001 goto out;
2004 found_key.objectid = log_key.objectid;
2005 found_key.type = BTRFS_INODE_EXTREF_KEY;
2006 found_key.offset = key->objectid;
2007 ret = backref_in_log(root->log_root, &found_key, key->objectid, name,
2008 name_len);
2009 if (ret < 0) {
2010 goto out;
2011 } else if (ret) {
2012 /* The dentry will be added later. */
2013 ret = 0;
2014 update_size = false;
2015 goto out;
2017 btrfs_release_path(path);
2018 ret = insert_one_name(trans, root, key->objectid, key->offset,
2019 name, name_len, &log_key);
2020 if (ret && ret != -ENOENT && ret != -EEXIST)
2021 goto out;
2022 if (!ret)
2023 name_added = true;
2024 update_size = false;
2025 ret = 0;
2026 goto out;
2030 * find all the names in a directory item and reconcile them into
2031 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2032 * one name in a directory item, but the same code gets used for
2033 * both directory index types
2035 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2036 struct btrfs_root *root,
2037 struct btrfs_path *path,
2038 struct extent_buffer *eb, int slot,
2039 struct btrfs_key *key)
2041 int ret = 0;
2042 u32 item_size = btrfs_item_size_nr(eb, slot);
2043 struct btrfs_dir_item *di;
2044 int name_len;
2045 unsigned long ptr;
2046 unsigned long ptr_end;
2047 struct btrfs_path *fixup_path = NULL;
2049 ptr = btrfs_item_ptr_offset(eb, slot);
2050 ptr_end = ptr + item_size;
2051 while (ptr < ptr_end) {
2052 di = (struct btrfs_dir_item *)ptr;
2053 name_len = btrfs_dir_name_len(eb, di);
2054 ret = replay_one_name(trans, root, path, eb, di, key);
2055 if (ret < 0)
2056 break;
2057 ptr = (unsigned long)(di + 1);
2058 ptr += name_len;
2061 * If this entry refers to a non-directory (directories can not
2062 * have a link count > 1) and it was added in the transaction
2063 * that was not committed, make sure we fixup the link count of
2064 * the inode it the entry points to. Otherwise something like
2065 * the following would result in a directory pointing to an
2066 * inode with a wrong link that does not account for this dir
2067 * entry:
2069 * mkdir testdir
2070 * touch testdir/foo
2071 * touch testdir/bar
2072 * sync
2074 * ln testdir/bar testdir/bar_link
2075 * ln testdir/foo testdir/foo_link
2076 * xfs_io -c "fsync" testdir/bar
2078 * <power failure>
2080 * mount fs, log replay happens
2082 * File foo would remain with a link count of 1 when it has two
2083 * entries pointing to it in the directory testdir. This would
2084 * make it impossible to ever delete the parent directory has
2085 * it would result in stale dentries that can never be deleted.
2087 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2088 struct btrfs_key di_key;
2090 if (!fixup_path) {
2091 fixup_path = btrfs_alloc_path();
2092 if (!fixup_path) {
2093 ret = -ENOMEM;
2094 break;
2098 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2099 ret = link_to_fixup_dir(trans, root, fixup_path,
2100 di_key.objectid);
2101 if (ret)
2102 break;
2104 ret = 0;
2106 btrfs_free_path(fixup_path);
2107 return ret;
2111 * directory replay has two parts. There are the standard directory
2112 * items in the log copied from the subvolume, and range items
2113 * created in the log while the subvolume was logged.
2115 * The range items tell us which parts of the key space the log
2116 * is authoritative for. During replay, if a key in the subvolume
2117 * directory is in a logged range item, but not actually in the log
2118 * that means it was deleted from the directory before the fsync
2119 * and should be removed.
2121 static noinline int find_dir_range(struct btrfs_root *root,
2122 struct btrfs_path *path,
2123 u64 dirid, int key_type,
2124 u64 *start_ret, u64 *end_ret)
2126 struct btrfs_key key;
2127 u64 found_end;
2128 struct btrfs_dir_log_item *item;
2129 int ret;
2130 int nritems;
2132 if (*start_ret == (u64)-1)
2133 return 1;
2135 key.objectid = dirid;
2136 key.type = key_type;
2137 key.offset = *start_ret;
2139 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2140 if (ret < 0)
2141 goto out;
2142 if (ret > 0) {
2143 if (path->slots[0] == 0)
2144 goto out;
2145 path->slots[0]--;
2147 if (ret != 0)
2148 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2150 if (key.type != key_type || key.objectid != dirid) {
2151 ret = 1;
2152 goto next;
2154 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2155 struct btrfs_dir_log_item);
2156 found_end = btrfs_dir_log_end(path->nodes[0], item);
2158 if (*start_ret >= key.offset && *start_ret <= found_end) {
2159 ret = 0;
2160 *start_ret = key.offset;
2161 *end_ret = found_end;
2162 goto out;
2164 ret = 1;
2165 next:
2166 /* check the next slot in the tree to see if it is a valid item */
2167 nritems = btrfs_header_nritems(path->nodes[0]);
2168 path->slots[0]++;
2169 if (path->slots[0] >= nritems) {
2170 ret = btrfs_next_leaf(root, path);
2171 if (ret)
2172 goto out;
2175 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2177 if (key.type != key_type || key.objectid != dirid) {
2178 ret = 1;
2179 goto out;
2181 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2182 struct btrfs_dir_log_item);
2183 found_end = btrfs_dir_log_end(path->nodes[0], item);
2184 *start_ret = key.offset;
2185 *end_ret = found_end;
2186 ret = 0;
2187 out:
2188 btrfs_release_path(path);
2189 return ret;
2193 * this looks for a given directory item in the log. If the directory
2194 * item is not in the log, the item is removed and the inode it points
2195 * to is unlinked
2197 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2198 struct btrfs_root *root,
2199 struct btrfs_root *log,
2200 struct btrfs_path *path,
2201 struct btrfs_path *log_path,
2202 struct inode *dir,
2203 struct btrfs_key *dir_key)
2205 int ret;
2206 struct extent_buffer *eb;
2207 int slot;
2208 u32 item_size;
2209 struct btrfs_dir_item *di;
2210 struct btrfs_dir_item *log_di;
2211 int name_len;
2212 unsigned long ptr;
2213 unsigned long ptr_end;
2214 char *name;
2215 struct inode *inode;
2216 struct btrfs_key location;
2218 again:
2219 eb = path->nodes[0];
2220 slot = path->slots[0];
2221 item_size = btrfs_item_size_nr(eb, slot);
2222 ptr = btrfs_item_ptr_offset(eb, slot);
2223 ptr_end = ptr + item_size;
2224 while (ptr < ptr_end) {
2225 di = (struct btrfs_dir_item *)ptr;
2226 name_len = btrfs_dir_name_len(eb, di);
2227 name = kmalloc(name_len, GFP_NOFS);
2228 if (!name) {
2229 ret = -ENOMEM;
2230 goto out;
2232 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2233 name_len);
2234 log_di = NULL;
2235 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2236 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2237 dir_key->objectid,
2238 name, name_len, 0);
2239 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2240 log_di = btrfs_lookup_dir_index_item(trans, log,
2241 log_path,
2242 dir_key->objectid,
2243 dir_key->offset,
2244 name, name_len, 0);
2246 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2247 btrfs_dir_item_key_to_cpu(eb, di, &location);
2248 btrfs_release_path(path);
2249 btrfs_release_path(log_path);
2250 inode = read_one_inode(root, location.objectid);
2251 if (!inode) {
2252 kfree(name);
2253 return -EIO;
2256 ret = link_to_fixup_dir(trans, root,
2257 path, location.objectid);
2258 if (ret) {
2259 kfree(name);
2260 iput(inode);
2261 goto out;
2264 inc_nlink(inode);
2265 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2266 BTRFS_I(inode), name, name_len);
2267 if (!ret)
2268 ret = btrfs_run_delayed_items(trans);
2269 kfree(name);
2270 iput(inode);
2271 if (ret)
2272 goto out;
2274 /* there might still be more names under this key
2275 * check and repeat if required
2277 ret = btrfs_search_slot(NULL, root, dir_key, path,
2278 0, 0);
2279 if (ret == 0)
2280 goto again;
2281 ret = 0;
2282 goto out;
2283 } else if (IS_ERR(log_di)) {
2284 kfree(name);
2285 return PTR_ERR(log_di);
2287 btrfs_release_path(log_path);
2288 kfree(name);
2290 ptr = (unsigned long)(di + 1);
2291 ptr += name_len;
2293 ret = 0;
2294 out:
2295 btrfs_release_path(path);
2296 btrfs_release_path(log_path);
2297 return ret;
2300 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2301 struct btrfs_root *root,
2302 struct btrfs_root *log,
2303 struct btrfs_path *path,
2304 const u64 ino)
2306 struct btrfs_key search_key;
2307 struct btrfs_path *log_path;
2308 int i;
2309 int nritems;
2310 int ret;
2312 log_path = btrfs_alloc_path();
2313 if (!log_path)
2314 return -ENOMEM;
2316 search_key.objectid = ino;
2317 search_key.type = BTRFS_XATTR_ITEM_KEY;
2318 search_key.offset = 0;
2319 again:
2320 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2321 if (ret < 0)
2322 goto out;
2323 process_leaf:
2324 nritems = btrfs_header_nritems(path->nodes[0]);
2325 for (i = path->slots[0]; i < nritems; i++) {
2326 struct btrfs_key key;
2327 struct btrfs_dir_item *di;
2328 struct btrfs_dir_item *log_di;
2329 u32 total_size;
2330 u32 cur;
2332 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2333 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2334 ret = 0;
2335 goto out;
2338 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2339 total_size = btrfs_item_size_nr(path->nodes[0], i);
2340 cur = 0;
2341 while (cur < total_size) {
2342 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2343 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2344 u32 this_len = sizeof(*di) + name_len + data_len;
2345 char *name;
2347 name = kmalloc(name_len, GFP_NOFS);
2348 if (!name) {
2349 ret = -ENOMEM;
2350 goto out;
2352 read_extent_buffer(path->nodes[0], name,
2353 (unsigned long)(di + 1), name_len);
2355 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2356 name, name_len, 0);
2357 btrfs_release_path(log_path);
2358 if (!log_di) {
2359 /* Doesn't exist in log tree, so delete it. */
2360 btrfs_release_path(path);
2361 di = btrfs_lookup_xattr(trans, root, path, ino,
2362 name, name_len, -1);
2363 kfree(name);
2364 if (IS_ERR(di)) {
2365 ret = PTR_ERR(di);
2366 goto out;
2368 ASSERT(di);
2369 ret = btrfs_delete_one_dir_name(trans, root,
2370 path, di);
2371 if (ret)
2372 goto out;
2373 btrfs_release_path(path);
2374 search_key = key;
2375 goto again;
2377 kfree(name);
2378 if (IS_ERR(log_di)) {
2379 ret = PTR_ERR(log_di);
2380 goto out;
2382 cur += this_len;
2383 di = (struct btrfs_dir_item *)((char *)di + this_len);
2386 ret = btrfs_next_leaf(root, path);
2387 if (ret > 0)
2388 ret = 0;
2389 else if (ret == 0)
2390 goto process_leaf;
2391 out:
2392 btrfs_free_path(log_path);
2393 btrfs_release_path(path);
2394 return ret;
2399 * deletion replay happens before we copy any new directory items
2400 * out of the log or out of backreferences from inodes. It
2401 * scans the log to find ranges of keys that log is authoritative for,
2402 * and then scans the directory to find items in those ranges that are
2403 * not present in the log.
2405 * Anything we don't find in the log is unlinked and removed from the
2406 * directory.
2408 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2409 struct btrfs_root *root,
2410 struct btrfs_root *log,
2411 struct btrfs_path *path,
2412 u64 dirid, int del_all)
2414 u64 range_start;
2415 u64 range_end;
2416 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2417 int ret = 0;
2418 struct btrfs_key dir_key;
2419 struct btrfs_key found_key;
2420 struct btrfs_path *log_path;
2421 struct inode *dir;
2423 dir_key.objectid = dirid;
2424 dir_key.type = BTRFS_DIR_ITEM_KEY;
2425 log_path = btrfs_alloc_path();
2426 if (!log_path)
2427 return -ENOMEM;
2429 dir = read_one_inode(root, dirid);
2430 /* it isn't an error if the inode isn't there, that can happen
2431 * because we replay the deletes before we copy in the inode item
2432 * from the log
2434 if (!dir) {
2435 btrfs_free_path(log_path);
2436 return 0;
2438 again:
2439 range_start = 0;
2440 range_end = 0;
2441 while (1) {
2442 if (del_all)
2443 range_end = (u64)-1;
2444 else {
2445 ret = find_dir_range(log, path, dirid, key_type,
2446 &range_start, &range_end);
2447 if (ret != 0)
2448 break;
2451 dir_key.offset = range_start;
2452 while (1) {
2453 int nritems;
2454 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2455 0, 0);
2456 if (ret < 0)
2457 goto out;
2459 nritems = btrfs_header_nritems(path->nodes[0]);
2460 if (path->slots[0] >= nritems) {
2461 ret = btrfs_next_leaf(root, path);
2462 if (ret == 1)
2463 break;
2464 else if (ret < 0)
2465 goto out;
2467 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2468 path->slots[0]);
2469 if (found_key.objectid != dirid ||
2470 found_key.type != dir_key.type)
2471 goto next_type;
2473 if (found_key.offset > range_end)
2474 break;
2476 ret = check_item_in_log(trans, root, log, path,
2477 log_path, dir,
2478 &found_key);
2479 if (ret)
2480 goto out;
2481 if (found_key.offset == (u64)-1)
2482 break;
2483 dir_key.offset = found_key.offset + 1;
2485 btrfs_release_path(path);
2486 if (range_end == (u64)-1)
2487 break;
2488 range_start = range_end + 1;
2491 next_type:
2492 ret = 0;
2493 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2494 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2495 dir_key.type = BTRFS_DIR_INDEX_KEY;
2496 btrfs_release_path(path);
2497 goto again;
2499 out:
2500 btrfs_release_path(path);
2501 btrfs_free_path(log_path);
2502 iput(dir);
2503 return ret;
2507 * the process_func used to replay items from the log tree. This
2508 * gets called in two different stages. The first stage just looks
2509 * for inodes and makes sure they are all copied into the subvolume.
2511 * The second stage copies all the other item types from the log into
2512 * the subvolume. The two stage approach is slower, but gets rid of
2513 * lots of complexity around inodes referencing other inodes that exist
2514 * only in the log (references come from either directory items or inode
2515 * back refs).
2517 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2518 struct walk_control *wc, u64 gen, int level)
2520 int nritems;
2521 struct btrfs_path *path;
2522 struct btrfs_root *root = wc->replay_dest;
2523 struct btrfs_key key;
2524 int i;
2525 int ret;
2527 ret = btrfs_read_buffer(eb, gen, level, NULL);
2528 if (ret)
2529 return ret;
2531 level = btrfs_header_level(eb);
2533 if (level != 0)
2534 return 0;
2536 path = btrfs_alloc_path();
2537 if (!path)
2538 return -ENOMEM;
2540 nritems = btrfs_header_nritems(eb);
2541 for (i = 0; i < nritems; i++) {
2542 btrfs_item_key_to_cpu(eb, &key, i);
2544 /* inode keys are done during the first stage */
2545 if (key.type == BTRFS_INODE_ITEM_KEY &&
2546 wc->stage == LOG_WALK_REPLAY_INODES) {
2547 struct btrfs_inode_item *inode_item;
2548 u32 mode;
2550 inode_item = btrfs_item_ptr(eb, i,
2551 struct btrfs_inode_item);
2553 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2554 * and never got linked before the fsync, skip it, as
2555 * replaying it is pointless since it would be deleted
2556 * later. We skip logging tmpfiles, but it's always
2557 * possible we are replaying a log created with a kernel
2558 * that used to log tmpfiles.
2560 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2561 wc->ignore_cur_inode = true;
2562 continue;
2563 } else {
2564 wc->ignore_cur_inode = false;
2566 ret = replay_xattr_deletes(wc->trans, root, log,
2567 path, key.objectid);
2568 if (ret)
2569 break;
2570 mode = btrfs_inode_mode(eb, inode_item);
2571 if (S_ISDIR(mode)) {
2572 ret = replay_dir_deletes(wc->trans,
2573 root, log, path, key.objectid, 0);
2574 if (ret)
2575 break;
2577 ret = overwrite_item(wc->trans, root, path,
2578 eb, i, &key);
2579 if (ret)
2580 break;
2583 * Before replaying extents, truncate the inode to its
2584 * size. We need to do it now and not after log replay
2585 * because before an fsync we can have prealloc extents
2586 * added beyond the inode's i_size. If we did it after,
2587 * through orphan cleanup for example, we would drop
2588 * those prealloc extents just after replaying them.
2590 if (S_ISREG(mode)) {
2591 struct inode *inode;
2592 u64 from;
2594 inode = read_one_inode(root, key.objectid);
2595 if (!inode) {
2596 ret = -EIO;
2597 break;
2599 from = ALIGN(i_size_read(inode),
2600 root->fs_info->sectorsize);
2601 ret = btrfs_drop_extents(wc->trans, root, inode,
2602 from, (u64)-1, 1);
2603 if (!ret) {
2604 /* Update the inode's nbytes. */
2605 ret = btrfs_update_inode(wc->trans,
2606 root, inode);
2608 iput(inode);
2609 if (ret)
2610 break;
2613 ret = link_to_fixup_dir(wc->trans, root,
2614 path, key.objectid);
2615 if (ret)
2616 break;
2619 if (wc->ignore_cur_inode)
2620 continue;
2622 if (key.type == BTRFS_DIR_INDEX_KEY &&
2623 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2624 ret = replay_one_dir_item(wc->trans, root, path,
2625 eb, i, &key);
2626 if (ret)
2627 break;
2630 if (wc->stage < LOG_WALK_REPLAY_ALL)
2631 continue;
2633 /* these keys are simply copied */
2634 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2635 ret = overwrite_item(wc->trans, root, path,
2636 eb, i, &key);
2637 if (ret)
2638 break;
2639 } else if (key.type == BTRFS_INODE_REF_KEY ||
2640 key.type == BTRFS_INODE_EXTREF_KEY) {
2641 ret = add_inode_ref(wc->trans, root, log, path,
2642 eb, i, &key);
2643 if (ret && ret != -ENOENT)
2644 break;
2645 ret = 0;
2646 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2647 ret = replay_one_extent(wc->trans, root, path,
2648 eb, i, &key);
2649 if (ret)
2650 break;
2651 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2652 ret = replay_one_dir_item(wc->trans, root, path,
2653 eb, i, &key);
2654 if (ret)
2655 break;
2658 btrfs_free_path(path);
2659 return ret;
2662 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2663 struct btrfs_root *root,
2664 struct btrfs_path *path, int *level,
2665 struct walk_control *wc)
2667 struct btrfs_fs_info *fs_info = root->fs_info;
2668 u64 root_owner;
2669 u64 bytenr;
2670 u64 ptr_gen;
2671 struct extent_buffer *next;
2672 struct extent_buffer *cur;
2673 struct extent_buffer *parent;
2674 u32 blocksize;
2675 int ret = 0;
2677 while (*level > 0) {
2678 struct btrfs_key first_key;
2680 cur = path->nodes[*level];
2682 WARN_ON(btrfs_header_level(cur) != *level);
2684 if (path->slots[*level] >=
2685 btrfs_header_nritems(cur))
2686 break;
2688 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2689 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2690 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2691 blocksize = fs_info->nodesize;
2693 parent = path->nodes[*level];
2694 root_owner = btrfs_header_owner(parent);
2696 next = btrfs_find_create_tree_block(fs_info, bytenr);
2697 if (IS_ERR(next))
2698 return PTR_ERR(next);
2700 if (*level == 1) {
2701 ret = wc->process_func(root, next, wc, ptr_gen,
2702 *level - 1);
2703 if (ret) {
2704 free_extent_buffer(next);
2705 return ret;
2708 path->slots[*level]++;
2709 if (wc->free) {
2710 ret = btrfs_read_buffer(next, ptr_gen,
2711 *level - 1, &first_key);
2712 if (ret) {
2713 free_extent_buffer(next);
2714 return ret;
2717 if (trans) {
2718 btrfs_tree_lock(next);
2719 btrfs_set_lock_blocking_write(next);
2720 btrfs_clean_tree_block(next);
2721 btrfs_wait_tree_block_writeback(next);
2722 btrfs_tree_unlock(next);
2723 } else {
2724 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2725 clear_extent_buffer_dirty(next);
2728 WARN_ON(root_owner !=
2729 BTRFS_TREE_LOG_OBJECTID);
2730 ret = btrfs_pin_reserved_extent(fs_info,
2731 bytenr, blocksize);
2732 if (ret) {
2733 free_extent_buffer(next);
2734 return ret;
2737 free_extent_buffer(next);
2738 continue;
2740 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2741 if (ret) {
2742 free_extent_buffer(next);
2743 return ret;
2746 if (path->nodes[*level-1])
2747 free_extent_buffer(path->nodes[*level-1]);
2748 path->nodes[*level-1] = next;
2749 *level = btrfs_header_level(next);
2750 path->slots[*level] = 0;
2751 cond_resched();
2753 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2755 cond_resched();
2756 return 0;
2759 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2760 struct btrfs_root *root,
2761 struct btrfs_path *path, int *level,
2762 struct walk_control *wc)
2764 struct btrfs_fs_info *fs_info = root->fs_info;
2765 u64 root_owner;
2766 int i;
2767 int slot;
2768 int ret;
2770 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2771 slot = path->slots[i];
2772 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2773 path->slots[i]++;
2774 *level = i;
2775 WARN_ON(*level == 0);
2776 return 0;
2777 } else {
2778 struct extent_buffer *parent;
2779 if (path->nodes[*level] == root->node)
2780 parent = path->nodes[*level];
2781 else
2782 parent = path->nodes[*level + 1];
2784 root_owner = btrfs_header_owner(parent);
2785 ret = wc->process_func(root, path->nodes[*level], wc,
2786 btrfs_header_generation(path->nodes[*level]),
2787 *level);
2788 if (ret)
2789 return ret;
2791 if (wc->free) {
2792 struct extent_buffer *next;
2794 next = path->nodes[*level];
2796 if (trans) {
2797 btrfs_tree_lock(next);
2798 btrfs_set_lock_blocking_write(next);
2799 btrfs_clean_tree_block(next);
2800 btrfs_wait_tree_block_writeback(next);
2801 btrfs_tree_unlock(next);
2802 } else {
2803 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2804 clear_extent_buffer_dirty(next);
2807 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2808 ret = btrfs_pin_reserved_extent(fs_info,
2809 path->nodes[*level]->start,
2810 path->nodes[*level]->len);
2811 if (ret)
2812 return ret;
2814 free_extent_buffer(path->nodes[*level]);
2815 path->nodes[*level] = NULL;
2816 *level = i + 1;
2819 return 1;
2823 * drop the reference count on the tree rooted at 'snap'. This traverses
2824 * the tree freeing any blocks that have a ref count of zero after being
2825 * decremented.
2827 static int walk_log_tree(struct btrfs_trans_handle *trans,
2828 struct btrfs_root *log, struct walk_control *wc)
2830 struct btrfs_fs_info *fs_info = log->fs_info;
2831 int ret = 0;
2832 int wret;
2833 int level;
2834 struct btrfs_path *path;
2835 int orig_level;
2837 path = btrfs_alloc_path();
2838 if (!path)
2839 return -ENOMEM;
2841 level = btrfs_header_level(log->node);
2842 orig_level = level;
2843 path->nodes[level] = log->node;
2844 atomic_inc(&log->node->refs);
2845 path->slots[level] = 0;
2847 while (1) {
2848 wret = walk_down_log_tree(trans, log, path, &level, wc);
2849 if (wret > 0)
2850 break;
2851 if (wret < 0) {
2852 ret = wret;
2853 goto out;
2856 wret = walk_up_log_tree(trans, log, path, &level, wc);
2857 if (wret > 0)
2858 break;
2859 if (wret < 0) {
2860 ret = wret;
2861 goto out;
2865 /* was the root node processed? if not, catch it here */
2866 if (path->nodes[orig_level]) {
2867 ret = wc->process_func(log, path->nodes[orig_level], wc,
2868 btrfs_header_generation(path->nodes[orig_level]),
2869 orig_level);
2870 if (ret)
2871 goto out;
2872 if (wc->free) {
2873 struct extent_buffer *next;
2875 next = path->nodes[orig_level];
2877 if (trans) {
2878 btrfs_tree_lock(next);
2879 btrfs_set_lock_blocking_write(next);
2880 btrfs_clean_tree_block(next);
2881 btrfs_wait_tree_block_writeback(next);
2882 btrfs_tree_unlock(next);
2883 } else {
2884 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2885 clear_extent_buffer_dirty(next);
2888 ret = btrfs_pin_reserved_extent(fs_info, next->start,
2889 next->len);
2890 if (ret)
2891 goto out;
2895 out:
2896 btrfs_free_path(path);
2897 return ret;
2901 * helper function to update the item for a given subvolumes log root
2902 * in the tree of log roots
2904 static int update_log_root(struct btrfs_trans_handle *trans,
2905 struct btrfs_root *log,
2906 struct btrfs_root_item *root_item)
2908 struct btrfs_fs_info *fs_info = log->fs_info;
2909 int ret;
2911 if (log->log_transid == 1) {
2912 /* insert root item on the first sync */
2913 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2914 &log->root_key, root_item);
2915 } else {
2916 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2917 &log->root_key, root_item);
2919 return ret;
2922 static void wait_log_commit(struct btrfs_root *root, int transid)
2924 DEFINE_WAIT(wait);
2925 int index = transid % 2;
2928 * we only allow two pending log transactions at a time,
2929 * so we know that if ours is more than 2 older than the
2930 * current transaction, we're done
2932 for (;;) {
2933 prepare_to_wait(&root->log_commit_wait[index],
2934 &wait, TASK_UNINTERRUPTIBLE);
2936 if (!(root->log_transid_committed < transid &&
2937 atomic_read(&root->log_commit[index])))
2938 break;
2940 mutex_unlock(&root->log_mutex);
2941 schedule();
2942 mutex_lock(&root->log_mutex);
2944 finish_wait(&root->log_commit_wait[index], &wait);
2947 static void wait_for_writer(struct btrfs_root *root)
2949 DEFINE_WAIT(wait);
2951 for (;;) {
2952 prepare_to_wait(&root->log_writer_wait, &wait,
2953 TASK_UNINTERRUPTIBLE);
2954 if (!atomic_read(&root->log_writers))
2955 break;
2957 mutex_unlock(&root->log_mutex);
2958 schedule();
2959 mutex_lock(&root->log_mutex);
2961 finish_wait(&root->log_writer_wait, &wait);
2964 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2965 struct btrfs_log_ctx *ctx)
2967 if (!ctx)
2968 return;
2970 mutex_lock(&root->log_mutex);
2971 list_del_init(&ctx->list);
2972 mutex_unlock(&root->log_mutex);
2976 * Invoked in log mutex context, or be sure there is no other task which
2977 * can access the list.
2979 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2980 int index, int error)
2982 struct btrfs_log_ctx *ctx;
2983 struct btrfs_log_ctx *safe;
2985 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2986 list_del_init(&ctx->list);
2987 ctx->log_ret = error;
2990 INIT_LIST_HEAD(&root->log_ctxs[index]);
2994 * btrfs_sync_log does sends a given tree log down to the disk and
2995 * updates the super blocks to record it. When this call is done,
2996 * you know that any inodes previously logged are safely on disk only
2997 * if it returns 0.
2999 * Any other return value means you need to call btrfs_commit_transaction.
3000 * Some of the edge cases for fsyncing directories that have had unlinks
3001 * or renames done in the past mean that sometimes the only safe
3002 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3003 * that has happened.
3005 int btrfs_sync_log(struct btrfs_trans_handle *trans,
3006 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
3008 int index1;
3009 int index2;
3010 int mark;
3011 int ret;
3012 struct btrfs_fs_info *fs_info = root->fs_info;
3013 struct btrfs_root *log = root->log_root;
3014 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
3015 struct btrfs_root_item new_root_item;
3016 int log_transid = 0;
3017 struct btrfs_log_ctx root_log_ctx;
3018 struct blk_plug plug;
3020 mutex_lock(&root->log_mutex);
3021 log_transid = ctx->log_transid;
3022 if (root->log_transid_committed >= log_transid) {
3023 mutex_unlock(&root->log_mutex);
3024 return ctx->log_ret;
3027 index1 = log_transid % 2;
3028 if (atomic_read(&root->log_commit[index1])) {
3029 wait_log_commit(root, log_transid);
3030 mutex_unlock(&root->log_mutex);
3031 return ctx->log_ret;
3033 ASSERT(log_transid == root->log_transid);
3034 atomic_set(&root->log_commit[index1], 1);
3036 /* wait for previous tree log sync to complete */
3037 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
3038 wait_log_commit(root, log_transid - 1);
3040 while (1) {
3041 int batch = atomic_read(&root->log_batch);
3042 /* when we're on an ssd, just kick the log commit out */
3043 if (!btrfs_test_opt(fs_info, SSD) &&
3044 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
3045 mutex_unlock(&root->log_mutex);
3046 schedule_timeout_uninterruptible(1);
3047 mutex_lock(&root->log_mutex);
3049 wait_for_writer(root);
3050 if (batch == atomic_read(&root->log_batch))
3051 break;
3054 /* bail out if we need to do a full commit */
3055 if (btrfs_need_log_full_commit(trans)) {
3056 ret = -EAGAIN;
3057 mutex_unlock(&root->log_mutex);
3058 goto out;
3061 if (log_transid % 2 == 0)
3062 mark = EXTENT_DIRTY;
3063 else
3064 mark = EXTENT_NEW;
3066 /* we start IO on all the marked extents here, but we don't actually
3067 * wait for them until later.
3069 blk_start_plug(&plug);
3070 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3071 if (ret) {
3072 blk_finish_plug(&plug);
3073 btrfs_abort_transaction(trans, ret);
3074 btrfs_set_log_full_commit(trans);
3075 mutex_unlock(&root->log_mutex);
3076 goto out;
3080 * We _must_ update under the root->log_mutex in order to make sure we
3081 * have a consistent view of the log root we are trying to commit at
3082 * this moment.
3084 * We _must_ copy this into a local copy, because we are not holding the
3085 * log_root_tree->log_mutex yet. This is important because when we
3086 * commit the log_root_tree we must have a consistent view of the
3087 * log_root_tree when we update the super block to point at the
3088 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3089 * with the commit and possibly point at the new block which we may not
3090 * have written out.
3092 btrfs_set_root_node(&log->root_item, log->node);
3093 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3095 root->log_transid++;
3096 log->log_transid = root->log_transid;
3097 root->log_start_pid = 0;
3099 * IO has been started, blocks of the log tree have WRITTEN flag set
3100 * in their headers. new modifications of the log will be written to
3101 * new positions. so it's safe to allow log writers to go in.
3103 mutex_unlock(&root->log_mutex);
3105 btrfs_init_log_ctx(&root_log_ctx, NULL);
3107 mutex_lock(&log_root_tree->log_mutex);
3108 atomic_inc(&log_root_tree->log_batch);
3109 atomic_inc(&log_root_tree->log_writers);
3111 index2 = log_root_tree->log_transid % 2;
3112 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3113 root_log_ctx.log_transid = log_root_tree->log_transid;
3115 mutex_unlock(&log_root_tree->log_mutex);
3117 mutex_lock(&log_root_tree->log_mutex);
3120 * Now we are safe to update the log_root_tree because we're under the
3121 * log_mutex, and we're a current writer so we're holding the commit
3122 * open until we drop the log_mutex.
3124 ret = update_log_root(trans, log, &new_root_item);
3126 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3127 /* atomic_dec_and_test implies a barrier */
3128 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3131 if (ret) {
3132 if (!list_empty(&root_log_ctx.list))
3133 list_del_init(&root_log_ctx.list);
3135 blk_finish_plug(&plug);
3136 btrfs_set_log_full_commit(trans);
3138 if (ret != -ENOSPC) {
3139 btrfs_abort_transaction(trans, ret);
3140 mutex_unlock(&log_root_tree->log_mutex);
3141 goto out;
3143 btrfs_wait_tree_log_extents(log, mark);
3144 mutex_unlock(&log_root_tree->log_mutex);
3145 ret = -EAGAIN;
3146 goto out;
3149 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3150 blk_finish_plug(&plug);
3151 list_del_init(&root_log_ctx.list);
3152 mutex_unlock(&log_root_tree->log_mutex);
3153 ret = root_log_ctx.log_ret;
3154 goto out;
3157 index2 = root_log_ctx.log_transid % 2;
3158 if (atomic_read(&log_root_tree->log_commit[index2])) {
3159 blk_finish_plug(&plug);
3160 ret = btrfs_wait_tree_log_extents(log, mark);
3161 wait_log_commit(log_root_tree,
3162 root_log_ctx.log_transid);
3163 mutex_unlock(&log_root_tree->log_mutex);
3164 if (!ret)
3165 ret = root_log_ctx.log_ret;
3166 goto out;
3168 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3169 atomic_set(&log_root_tree->log_commit[index2], 1);
3171 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3172 wait_log_commit(log_root_tree,
3173 root_log_ctx.log_transid - 1);
3176 wait_for_writer(log_root_tree);
3179 * now that we've moved on to the tree of log tree roots,
3180 * check the full commit flag again
3182 if (btrfs_need_log_full_commit(trans)) {
3183 blk_finish_plug(&plug);
3184 btrfs_wait_tree_log_extents(log, mark);
3185 mutex_unlock(&log_root_tree->log_mutex);
3186 ret = -EAGAIN;
3187 goto out_wake_log_root;
3190 ret = btrfs_write_marked_extents(fs_info,
3191 &log_root_tree->dirty_log_pages,
3192 EXTENT_DIRTY | EXTENT_NEW);
3193 blk_finish_plug(&plug);
3194 if (ret) {
3195 btrfs_set_log_full_commit(trans);
3196 btrfs_abort_transaction(trans, ret);
3197 mutex_unlock(&log_root_tree->log_mutex);
3198 goto out_wake_log_root;
3200 ret = btrfs_wait_tree_log_extents(log, mark);
3201 if (!ret)
3202 ret = btrfs_wait_tree_log_extents(log_root_tree,
3203 EXTENT_NEW | EXTENT_DIRTY);
3204 if (ret) {
3205 btrfs_set_log_full_commit(trans);
3206 mutex_unlock(&log_root_tree->log_mutex);
3207 goto out_wake_log_root;
3210 btrfs_set_super_log_root(fs_info->super_for_commit,
3211 log_root_tree->node->start);
3212 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3213 btrfs_header_level(log_root_tree->node));
3215 log_root_tree->log_transid++;
3216 mutex_unlock(&log_root_tree->log_mutex);
3219 * Nobody else is going to jump in and write the ctree
3220 * super here because the log_commit atomic below is protecting
3221 * us. We must be called with a transaction handle pinning
3222 * the running transaction open, so a full commit can't hop
3223 * in and cause problems either.
3225 ret = write_all_supers(fs_info, 1);
3226 if (ret) {
3227 btrfs_set_log_full_commit(trans);
3228 btrfs_abort_transaction(trans, ret);
3229 goto out_wake_log_root;
3232 mutex_lock(&root->log_mutex);
3233 if (root->last_log_commit < log_transid)
3234 root->last_log_commit = log_transid;
3235 mutex_unlock(&root->log_mutex);
3237 out_wake_log_root:
3238 mutex_lock(&log_root_tree->log_mutex);
3239 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3241 log_root_tree->log_transid_committed++;
3242 atomic_set(&log_root_tree->log_commit[index2], 0);
3243 mutex_unlock(&log_root_tree->log_mutex);
3246 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3247 * all the updates above are seen by the woken threads. It might not be
3248 * necessary, but proving that seems to be hard.
3250 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3251 out:
3252 mutex_lock(&root->log_mutex);
3253 btrfs_remove_all_log_ctxs(root, index1, ret);
3254 root->log_transid_committed++;
3255 atomic_set(&root->log_commit[index1], 0);
3256 mutex_unlock(&root->log_mutex);
3259 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3260 * all the updates above are seen by the woken threads. It might not be
3261 * necessary, but proving that seems to be hard.
3263 cond_wake_up(&root->log_commit_wait[index1]);
3264 return ret;
3267 static void free_log_tree(struct btrfs_trans_handle *trans,
3268 struct btrfs_root *log)
3270 int ret;
3271 struct walk_control wc = {
3272 .free = 1,
3273 .process_func = process_one_buffer
3276 ret = walk_log_tree(trans, log, &wc);
3277 if (ret) {
3278 if (trans)
3279 btrfs_abort_transaction(trans, ret);
3280 else
3281 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3284 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3285 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3286 free_extent_buffer(log->node);
3287 kfree(log);
3291 * free all the extents used by the tree log. This should be called
3292 * at commit time of the full transaction
3294 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3296 if (root->log_root) {
3297 free_log_tree(trans, root->log_root);
3298 root->log_root = NULL;
3300 return 0;
3303 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3304 struct btrfs_fs_info *fs_info)
3306 if (fs_info->log_root_tree) {
3307 free_log_tree(trans, fs_info->log_root_tree);
3308 fs_info->log_root_tree = NULL;
3310 return 0;
3314 * Check if an inode was logged in the current transaction. We can't always rely
3315 * on an inode's logged_trans value, because it's an in-memory only field and
3316 * therefore not persisted. This means that its value is lost if the inode gets
3317 * evicted and loaded again from disk (in which case it has a value of 0, and
3318 * certainly it is smaller then any possible transaction ID), when that happens
3319 * the full_sync flag is set in the inode's runtime flags, so on that case we
3320 * assume eviction happened and ignore the logged_trans value, assuming the
3321 * worst case, that the inode was logged before in the current transaction.
3323 static bool inode_logged(struct btrfs_trans_handle *trans,
3324 struct btrfs_inode *inode)
3326 if (inode->logged_trans == trans->transid)
3327 return true;
3329 if (inode->last_trans == trans->transid &&
3330 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3331 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3332 return true;
3334 return false;
3338 * If both a file and directory are logged, and unlinks or renames are
3339 * mixed in, we have a few interesting corners:
3341 * create file X in dir Y
3342 * link file X to X.link in dir Y
3343 * fsync file X
3344 * unlink file X but leave X.link
3345 * fsync dir Y
3347 * After a crash we would expect only X.link to exist. But file X
3348 * didn't get fsync'd again so the log has back refs for X and X.link.
3350 * We solve this by removing directory entries and inode backrefs from the
3351 * log when a file that was logged in the current transaction is
3352 * unlinked. Any later fsync will include the updated log entries, and
3353 * we'll be able to reconstruct the proper directory items from backrefs.
3355 * This optimizations allows us to avoid relogging the entire inode
3356 * or the entire directory.
3358 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3359 struct btrfs_root *root,
3360 const char *name, int name_len,
3361 struct btrfs_inode *dir, u64 index)
3363 struct btrfs_root *log;
3364 struct btrfs_dir_item *di;
3365 struct btrfs_path *path;
3366 int ret;
3367 int err = 0;
3368 int bytes_del = 0;
3369 u64 dir_ino = btrfs_ino(dir);
3371 if (!inode_logged(trans, dir))
3372 return 0;
3374 ret = join_running_log_trans(root);
3375 if (ret)
3376 return 0;
3378 mutex_lock(&dir->log_mutex);
3380 log = root->log_root;
3381 path = btrfs_alloc_path();
3382 if (!path) {
3383 err = -ENOMEM;
3384 goto out_unlock;
3387 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3388 name, name_len, -1);
3389 if (IS_ERR(di)) {
3390 err = PTR_ERR(di);
3391 goto fail;
3393 if (di) {
3394 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3395 bytes_del += name_len;
3396 if (ret) {
3397 err = ret;
3398 goto fail;
3401 btrfs_release_path(path);
3402 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3403 index, name, name_len, -1);
3404 if (IS_ERR(di)) {
3405 err = PTR_ERR(di);
3406 goto fail;
3408 if (di) {
3409 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3410 bytes_del += name_len;
3411 if (ret) {
3412 err = ret;
3413 goto fail;
3417 /* update the directory size in the log to reflect the names
3418 * we have removed
3420 if (bytes_del) {
3421 struct btrfs_key key;
3423 key.objectid = dir_ino;
3424 key.offset = 0;
3425 key.type = BTRFS_INODE_ITEM_KEY;
3426 btrfs_release_path(path);
3428 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3429 if (ret < 0) {
3430 err = ret;
3431 goto fail;
3433 if (ret == 0) {
3434 struct btrfs_inode_item *item;
3435 u64 i_size;
3437 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3438 struct btrfs_inode_item);
3439 i_size = btrfs_inode_size(path->nodes[0], item);
3440 if (i_size > bytes_del)
3441 i_size -= bytes_del;
3442 else
3443 i_size = 0;
3444 btrfs_set_inode_size(path->nodes[0], item, i_size);
3445 btrfs_mark_buffer_dirty(path->nodes[0]);
3446 } else
3447 ret = 0;
3448 btrfs_release_path(path);
3450 fail:
3451 btrfs_free_path(path);
3452 out_unlock:
3453 mutex_unlock(&dir->log_mutex);
3454 if (ret == -ENOSPC) {
3455 btrfs_set_log_full_commit(trans);
3456 ret = 0;
3457 } else if (ret < 0)
3458 btrfs_abort_transaction(trans, ret);
3460 btrfs_end_log_trans(root);
3462 return err;
3465 /* see comments for btrfs_del_dir_entries_in_log */
3466 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3467 struct btrfs_root *root,
3468 const char *name, int name_len,
3469 struct btrfs_inode *inode, u64 dirid)
3471 struct btrfs_root *log;
3472 u64 index;
3473 int ret;
3475 if (!inode_logged(trans, inode))
3476 return 0;
3478 ret = join_running_log_trans(root);
3479 if (ret)
3480 return 0;
3481 log = root->log_root;
3482 mutex_lock(&inode->log_mutex);
3484 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3485 dirid, &index);
3486 mutex_unlock(&inode->log_mutex);
3487 if (ret == -ENOSPC) {
3488 btrfs_set_log_full_commit(trans);
3489 ret = 0;
3490 } else if (ret < 0 && ret != -ENOENT)
3491 btrfs_abort_transaction(trans, ret);
3492 btrfs_end_log_trans(root);
3494 return ret;
3498 * creates a range item in the log for 'dirid'. first_offset and
3499 * last_offset tell us which parts of the key space the log should
3500 * be considered authoritative for.
3502 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3503 struct btrfs_root *log,
3504 struct btrfs_path *path,
3505 int key_type, u64 dirid,
3506 u64 first_offset, u64 last_offset)
3508 int ret;
3509 struct btrfs_key key;
3510 struct btrfs_dir_log_item *item;
3512 key.objectid = dirid;
3513 key.offset = first_offset;
3514 if (key_type == BTRFS_DIR_ITEM_KEY)
3515 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3516 else
3517 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3518 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3519 if (ret)
3520 return ret;
3522 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3523 struct btrfs_dir_log_item);
3524 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3525 btrfs_mark_buffer_dirty(path->nodes[0]);
3526 btrfs_release_path(path);
3527 return 0;
3531 * log all the items included in the current transaction for a given
3532 * directory. This also creates the range items in the log tree required
3533 * to replay anything deleted before the fsync
3535 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *root, struct btrfs_inode *inode,
3537 struct btrfs_path *path,
3538 struct btrfs_path *dst_path, int key_type,
3539 struct btrfs_log_ctx *ctx,
3540 u64 min_offset, u64 *last_offset_ret)
3542 struct btrfs_key min_key;
3543 struct btrfs_root *log = root->log_root;
3544 struct extent_buffer *src;
3545 int err = 0;
3546 int ret;
3547 int i;
3548 int nritems;
3549 u64 first_offset = min_offset;
3550 u64 last_offset = (u64)-1;
3551 u64 ino = btrfs_ino(inode);
3553 log = root->log_root;
3555 min_key.objectid = ino;
3556 min_key.type = key_type;
3557 min_key.offset = min_offset;
3559 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3562 * we didn't find anything from this transaction, see if there
3563 * is anything at all
3565 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3566 min_key.objectid = ino;
3567 min_key.type = key_type;
3568 min_key.offset = (u64)-1;
3569 btrfs_release_path(path);
3570 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3571 if (ret < 0) {
3572 btrfs_release_path(path);
3573 return ret;
3575 ret = btrfs_previous_item(root, path, ino, key_type);
3577 /* if ret == 0 there are items for this type,
3578 * create a range to tell us the last key of this type.
3579 * otherwise, there are no items in this directory after
3580 * *min_offset, and we create a range to indicate that.
3582 if (ret == 0) {
3583 struct btrfs_key tmp;
3584 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3585 path->slots[0]);
3586 if (key_type == tmp.type)
3587 first_offset = max(min_offset, tmp.offset) + 1;
3589 goto done;
3592 /* go backward to find any previous key */
3593 ret = btrfs_previous_item(root, path, ino, key_type);
3594 if (ret == 0) {
3595 struct btrfs_key tmp;
3596 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3597 if (key_type == tmp.type) {
3598 first_offset = tmp.offset;
3599 ret = overwrite_item(trans, log, dst_path,
3600 path->nodes[0], path->slots[0],
3601 &tmp);
3602 if (ret) {
3603 err = ret;
3604 goto done;
3608 btrfs_release_path(path);
3611 * Find the first key from this transaction again. See the note for
3612 * log_new_dir_dentries, if we're logging a directory recursively we
3613 * won't be holding its i_mutex, which means we can modify the directory
3614 * while we're logging it. If we remove an entry between our first
3615 * search and this search we'll not find the key again and can just
3616 * bail.
3618 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3619 if (ret != 0)
3620 goto done;
3623 * we have a block from this transaction, log every item in it
3624 * from our directory
3626 while (1) {
3627 struct btrfs_key tmp;
3628 src = path->nodes[0];
3629 nritems = btrfs_header_nritems(src);
3630 for (i = path->slots[0]; i < nritems; i++) {
3631 struct btrfs_dir_item *di;
3633 btrfs_item_key_to_cpu(src, &min_key, i);
3635 if (min_key.objectid != ino || min_key.type != key_type)
3636 goto done;
3637 ret = overwrite_item(trans, log, dst_path, src, i,
3638 &min_key);
3639 if (ret) {
3640 err = ret;
3641 goto done;
3645 * We must make sure that when we log a directory entry,
3646 * the corresponding inode, after log replay, has a
3647 * matching link count. For example:
3649 * touch foo
3650 * mkdir mydir
3651 * sync
3652 * ln foo mydir/bar
3653 * xfs_io -c "fsync" mydir
3654 * <crash>
3655 * <mount fs and log replay>
3657 * Would result in a fsync log that when replayed, our
3658 * file inode would have a link count of 1, but we get
3659 * two directory entries pointing to the same inode.
3660 * After removing one of the names, it would not be
3661 * possible to remove the other name, which resulted
3662 * always in stale file handle errors, and would not
3663 * be possible to rmdir the parent directory, since
3664 * its i_size could never decrement to the value
3665 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3667 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3668 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3669 if (ctx &&
3670 (btrfs_dir_transid(src, di) == trans->transid ||
3671 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3672 tmp.type != BTRFS_ROOT_ITEM_KEY)
3673 ctx->log_new_dentries = true;
3675 path->slots[0] = nritems;
3678 * look ahead to the next item and see if it is also
3679 * from this directory and from this transaction
3681 ret = btrfs_next_leaf(root, path);
3682 if (ret) {
3683 if (ret == 1)
3684 last_offset = (u64)-1;
3685 else
3686 err = ret;
3687 goto done;
3689 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3690 if (tmp.objectid != ino || tmp.type != key_type) {
3691 last_offset = (u64)-1;
3692 goto done;
3694 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3695 ret = overwrite_item(trans, log, dst_path,
3696 path->nodes[0], path->slots[0],
3697 &tmp);
3698 if (ret)
3699 err = ret;
3700 else
3701 last_offset = tmp.offset;
3702 goto done;
3705 done:
3706 btrfs_release_path(path);
3707 btrfs_release_path(dst_path);
3709 if (err == 0) {
3710 *last_offset_ret = last_offset;
3712 * insert the log range keys to indicate where the log
3713 * is valid
3715 ret = insert_dir_log_key(trans, log, path, key_type,
3716 ino, first_offset, last_offset);
3717 if (ret)
3718 err = ret;
3720 return err;
3724 * logging directories is very similar to logging inodes, We find all the items
3725 * from the current transaction and write them to the log.
3727 * The recovery code scans the directory in the subvolume, and if it finds a
3728 * key in the range logged that is not present in the log tree, then it means
3729 * that dir entry was unlinked during the transaction.
3731 * In order for that scan to work, we must include one key smaller than
3732 * the smallest logged by this transaction and one key larger than the largest
3733 * key logged by this transaction.
3735 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3736 struct btrfs_root *root, struct btrfs_inode *inode,
3737 struct btrfs_path *path,
3738 struct btrfs_path *dst_path,
3739 struct btrfs_log_ctx *ctx)
3741 u64 min_key;
3742 u64 max_key;
3743 int ret;
3744 int key_type = BTRFS_DIR_ITEM_KEY;
3746 again:
3747 min_key = 0;
3748 max_key = 0;
3749 while (1) {
3750 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3751 ctx, min_key, &max_key);
3752 if (ret)
3753 return ret;
3754 if (max_key == (u64)-1)
3755 break;
3756 min_key = max_key + 1;
3759 if (key_type == BTRFS_DIR_ITEM_KEY) {
3760 key_type = BTRFS_DIR_INDEX_KEY;
3761 goto again;
3763 return 0;
3767 * a helper function to drop items from the log before we relog an
3768 * inode. max_key_type indicates the highest item type to remove.
3769 * This cannot be run for file data extents because it does not
3770 * free the extents they point to.
3772 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3773 struct btrfs_root *log,
3774 struct btrfs_path *path,
3775 u64 objectid, int max_key_type)
3777 int ret;
3778 struct btrfs_key key;
3779 struct btrfs_key found_key;
3780 int start_slot;
3782 key.objectid = objectid;
3783 key.type = max_key_type;
3784 key.offset = (u64)-1;
3786 while (1) {
3787 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3788 BUG_ON(ret == 0); /* Logic error */
3789 if (ret < 0)
3790 break;
3792 if (path->slots[0] == 0)
3793 break;
3795 path->slots[0]--;
3796 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3797 path->slots[0]);
3799 if (found_key.objectid != objectid)
3800 break;
3802 found_key.offset = 0;
3803 found_key.type = 0;
3804 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3805 &start_slot);
3806 if (ret < 0)
3807 break;
3809 ret = btrfs_del_items(trans, log, path, start_slot,
3810 path->slots[0] - start_slot + 1);
3812 * If start slot isn't 0 then we don't need to re-search, we've
3813 * found the last guy with the objectid in this tree.
3815 if (ret || start_slot != 0)
3816 break;
3817 btrfs_release_path(path);
3819 btrfs_release_path(path);
3820 if (ret > 0)
3821 ret = 0;
3822 return ret;
3825 static void fill_inode_item(struct btrfs_trans_handle *trans,
3826 struct extent_buffer *leaf,
3827 struct btrfs_inode_item *item,
3828 struct inode *inode, int log_inode_only,
3829 u64 logged_isize)
3831 struct btrfs_map_token token;
3833 btrfs_init_map_token(&token, leaf);
3835 if (log_inode_only) {
3836 /* set the generation to zero so the recover code
3837 * can tell the difference between an logging
3838 * just to say 'this inode exists' and a logging
3839 * to say 'update this inode with these values'
3841 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3842 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3843 } else {
3844 btrfs_set_token_inode_generation(leaf, item,
3845 BTRFS_I(inode)->generation,
3846 &token);
3847 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3850 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3851 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3852 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3853 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3855 btrfs_set_token_timespec_sec(leaf, &item->atime,
3856 inode->i_atime.tv_sec, &token);
3857 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3858 inode->i_atime.tv_nsec, &token);
3860 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3861 inode->i_mtime.tv_sec, &token);
3862 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3863 inode->i_mtime.tv_nsec, &token);
3865 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3866 inode->i_ctime.tv_sec, &token);
3867 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3868 inode->i_ctime.tv_nsec, &token);
3870 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3871 &token);
3873 btrfs_set_token_inode_sequence(leaf, item,
3874 inode_peek_iversion(inode), &token);
3875 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3876 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3877 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3878 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3881 static int log_inode_item(struct btrfs_trans_handle *trans,
3882 struct btrfs_root *log, struct btrfs_path *path,
3883 struct btrfs_inode *inode)
3885 struct btrfs_inode_item *inode_item;
3886 int ret;
3888 ret = btrfs_insert_empty_item(trans, log, path,
3889 &inode->location, sizeof(*inode_item));
3890 if (ret && ret != -EEXIST)
3891 return ret;
3892 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3893 struct btrfs_inode_item);
3894 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3895 0, 0);
3896 btrfs_release_path(path);
3897 return 0;
3900 static int log_csums(struct btrfs_trans_handle *trans,
3901 struct btrfs_root *log_root,
3902 struct btrfs_ordered_sum *sums)
3904 int ret;
3907 * Due to extent cloning, we might have logged a csum item that covers a
3908 * subrange of a cloned extent, and later we can end up logging a csum
3909 * item for a larger subrange of the same extent or the entire range.
3910 * This would leave csum items in the log tree that cover the same range
3911 * and break the searches for checksums in the log tree, resulting in
3912 * some checksums missing in the fs/subvolume tree. So just delete (or
3913 * trim and adjust) any existing csum items in the log for this range.
3915 ret = btrfs_del_csums(trans, log_root, sums->bytenr, sums->len);
3916 if (ret)
3917 return ret;
3919 return btrfs_csum_file_blocks(trans, log_root, sums);
3922 static noinline int copy_items(struct btrfs_trans_handle *trans,
3923 struct btrfs_inode *inode,
3924 struct btrfs_path *dst_path,
3925 struct btrfs_path *src_path,
3926 int start_slot, int nr, int inode_only,
3927 u64 logged_isize)
3929 struct btrfs_fs_info *fs_info = trans->fs_info;
3930 unsigned long src_offset;
3931 unsigned long dst_offset;
3932 struct btrfs_root *log = inode->root->log_root;
3933 struct btrfs_file_extent_item *extent;
3934 struct btrfs_inode_item *inode_item;
3935 struct extent_buffer *src = src_path->nodes[0];
3936 int ret;
3937 struct btrfs_key *ins_keys;
3938 u32 *ins_sizes;
3939 char *ins_data;
3940 int i;
3941 struct list_head ordered_sums;
3942 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3944 INIT_LIST_HEAD(&ordered_sums);
3946 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3947 nr * sizeof(u32), GFP_NOFS);
3948 if (!ins_data)
3949 return -ENOMEM;
3951 ins_sizes = (u32 *)ins_data;
3952 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3954 for (i = 0; i < nr; i++) {
3955 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3956 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3958 ret = btrfs_insert_empty_items(trans, log, dst_path,
3959 ins_keys, ins_sizes, nr);
3960 if (ret) {
3961 kfree(ins_data);
3962 return ret;
3965 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3966 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3967 dst_path->slots[0]);
3969 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3971 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3972 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3973 dst_path->slots[0],
3974 struct btrfs_inode_item);
3975 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3976 &inode->vfs_inode,
3977 inode_only == LOG_INODE_EXISTS,
3978 logged_isize);
3979 } else {
3980 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3981 src_offset, ins_sizes[i]);
3984 /* take a reference on file data extents so that truncates
3985 * or deletes of this inode don't have to relog the inode
3986 * again
3988 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3989 !skip_csum) {
3990 int found_type;
3991 extent = btrfs_item_ptr(src, start_slot + i,
3992 struct btrfs_file_extent_item);
3994 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3995 continue;
3997 found_type = btrfs_file_extent_type(src, extent);
3998 if (found_type == BTRFS_FILE_EXTENT_REG) {
3999 u64 ds, dl, cs, cl;
4000 ds = btrfs_file_extent_disk_bytenr(src,
4001 extent);
4002 /* ds == 0 is a hole */
4003 if (ds == 0)
4004 continue;
4006 dl = btrfs_file_extent_disk_num_bytes(src,
4007 extent);
4008 cs = btrfs_file_extent_offset(src, extent);
4009 cl = btrfs_file_extent_num_bytes(src,
4010 extent);
4011 if (btrfs_file_extent_compression(src,
4012 extent)) {
4013 cs = 0;
4014 cl = dl;
4017 ret = btrfs_lookup_csums_range(
4018 fs_info->csum_root,
4019 ds + cs, ds + cs + cl - 1,
4020 &ordered_sums, 0);
4021 if (ret) {
4022 btrfs_release_path(dst_path);
4023 kfree(ins_data);
4024 return ret;
4030 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
4031 btrfs_release_path(dst_path);
4032 kfree(ins_data);
4035 * we have to do this after the loop above to avoid changing the
4036 * log tree while trying to change the log tree.
4038 ret = 0;
4039 while (!list_empty(&ordered_sums)) {
4040 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4041 struct btrfs_ordered_sum,
4042 list);
4043 if (!ret)
4044 ret = log_csums(trans, log, sums);
4045 list_del(&sums->list);
4046 kfree(sums);
4049 return ret;
4052 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4054 struct extent_map *em1, *em2;
4056 em1 = list_entry(a, struct extent_map, list);
4057 em2 = list_entry(b, struct extent_map, list);
4059 if (em1->start < em2->start)
4060 return -1;
4061 else if (em1->start > em2->start)
4062 return 1;
4063 return 0;
4066 static int log_extent_csums(struct btrfs_trans_handle *trans,
4067 struct btrfs_inode *inode,
4068 struct btrfs_root *log_root,
4069 const struct extent_map *em)
4071 u64 csum_offset;
4072 u64 csum_len;
4073 LIST_HEAD(ordered_sums);
4074 int ret = 0;
4076 if (inode->flags & BTRFS_INODE_NODATASUM ||
4077 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4078 em->block_start == EXTENT_MAP_HOLE)
4079 return 0;
4081 /* If we're compressed we have to save the entire range of csums. */
4082 if (em->compress_type) {
4083 csum_offset = 0;
4084 csum_len = max(em->block_len, em->orig_block_len);
4085 } else {
4086 csum_offset = em->mod_start - em->start;
4087 csum_len = em->mod_len;
4090 /* block start is already adjusted for the file extent offset. */
4091 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4092 em->block_start + csum_offset,
4093 em->block_start + csum_offset +
4094 csum_len - 1, &ordered_sums, 0);
4095 if (ret)
4096 return ret;
4098 while (!list_empty(&ordered_sums)) {
4099 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4100 struct btrfs_ordered_sum,
4101 list);
4102 if (!ret)
4103 ret = log_csums(trans, log_root, sums);
4104 list_del(&sums->list);
4105 kfree(sums);
4108 return ret;
4111 static int log_one_extent(struct btrfs_trans_handle *trans,
4112 struct btrfs_inode *inode, struct btrfs_root *root,
4113 const struct extent_map *em,
4114 struct btrfs_path *path,
4115 struct btrfs_log_ctx *ctx)
4117 struct btrfs_root *log = root->log_root;
4118 struct btrfs_file_extent_item *fi;
4119 struct extent_buffer *leaf;
4120 struct btrfs_map_token token;
4121 struct btrfs_key key;
4122 u64 extent_offset = em->start - em->orig_start;
4123 u64 block_len;
4124 int ret;
4125 int extent_inserted = 0;
4127 ret = log_extent_csums(trans, inode, log, em);
4128 if (ret)
4129 return ret;
4131 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4132 em->start + em->len, NULL, 0, 1,
4133 sizeof(*fi), &extent_inserted);
4134 if (ret)
4135 return ret;
4137 if (!extent_inserted) {
4138 key.objectid = btrfs_ino(inode);
4139 key.type = BTRFS_EXTENT_DATA_KEY;
4140 key.offset = em->start;
4142 ret = btrfs_insert_empty_item(trans, log, path, &key,
4143 sizeof(*fi));
4144 if (ret)
4145 return ret;
4147 leaf = path->nodes[0];
4148 btrfs_init_map_token(&token, leaf);
4149 fi = btrfs_item_ptr(leaf, path->slots[0],
4150 struct btrfs_file_extent_item);
4152 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4153 &token);
4154 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4155 btrfs_set_token_file_extent_type(leaf, fi,
4156 BTRFS_FILE_EXTENT_PREALLOC,
4157 &token);
4158 else
4159 btrfs_set_token_file_extent_type(leaf, fi,
4160 BTRFS_FILE_EXTENT_REG,
4161 &token);
4163 block_len = max(em->block_len, em->orig_block_len);
4164 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4165 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4166 em->block_start,
4167 &token);
4168 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4169 &token);
4170 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4171 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4172 em->block_start -
4173 extent_offset, &token);
4174 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4175 &token);
4176 } else {
4177 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4178 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4179 &token);
4182 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4183 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4184 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4185 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4186 &token);
4187 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4188 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4189 btrfs_mark_buffer_dirty(leaf);
4191 btrfs_release_path(path);
4193 return ret;
4197 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4198 * lose them after doing a fast fsync and replaying the log. We scan the
4199 * subvolume's root instead of iterating the inode's extent map tree because
4200 * otherwise we can log incorrect extent items based on extent map conversion.
4201 * That can happen due to the fact that extent maps are merged when they
4202 * are not in the extent map tree's list of modified extents.
4204 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4205 struct btrfs_inode *inode,
4206 struct btrfs_path *path)
4208 struct btrfs_root *root = inode->root;
4209 struct btrfs_key key;
4210 const u64 i_size = i_size_read(&inode->vfs_inode);
4211 const u64 ino = btrfs_ino(inode);
4212 struct btrfs_path *dst_path = NULL;
4213 bool dropped_extents = false;
4214 u64 truncate_offset = i_size;
4215 struct extent_buffer *leaf;
4216 int slot;
4217 int ins_nr = 0;
4218 int start_slot;
4219 int ret;
4221 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4222 return 0;
4224 key.objectid = ino;
4225 key.type = BTRFS_EXTENT_DATA_KEY;
4226 key.offset = i_size;
4227 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4228 if (ret < 0)
4229 goto out;
4232 * We must check if there is a prealloc extent that starts before the
4233 * i_size and crosses the i_size boundary. This is to ensure later we
4234 * truncate down to the end of that extent and not to the i_size, as
4235 * otherwise we end up losing part of the prealloc extent after a log
4236 * replay and with an implicit hole if there is another prealloc extent
4237 * that starts at an offset beyond i_size.
4239 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4240 if (ret < 0)
4241 goto out;
4243 if (ret == 0) {
4244 struct btrfs_file_extent_item *ei;
4246 leaf = path->nodes[0];
4247 slot = path->slots[0];
4248 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4250 if (btrfs_file_extent_type(leaf, ei) ==
4251 BTRFS_FILE_EXTENT_PREALLOC) {
4252 u64 extent_end;
4254 btrfs_item_key_to_cpu(leaf, &key, slot);
4255 extent_end = key.offset +
4256 btrfs_file_extent_num_bytes(leaf, ei);
4258 if (extent_end > i_size)
4259 truncate_offset = extent_end;
4261 } else {
4262 ret = 0;
4265 while (true) {
4266 leaf = path->nodes[0];
4267 slot = path->slots[0];
4269 if (slot >= btrfs_header_nritems(leaf)) {
4270 if (ins_nr > 0) {
4271 ret = copy_items(trans, inode, dst_path, path,
4272 start_slot, ins_nr, 1, 0);
4273 if (ret < 0)
4274 goto out;
4275 ins_nr = 0;
4277 ret = btrfs_next_leaf(root, path);
4278 if (ret < 0)
4279 goto out;
4280 if (ret > 0) {
4281 ret = 0;
4282 break;
4284 continue;
4287 btrfs_item_key_to_cpu(leaf, &key, slot);
4288 if (key.objectid > ino)
4289 break;
4290 if (WARN_ON_ONCE(key.objectid < ino) ||
4291 key.type < BTRFS_EXTENT_DATA_KEY ||
4292 key.offset < i_size) {
4293 path->slots[0]++;
4294 continue;
4296 if (!dropped_extents) {
4298 * Avoid logging extent items logged in past fsync calls
4299 * and leading to duplicate keys in the log tree.
4301 do {
4302 ret = btrfs_truncate_inode_items(trans,
4303 root->log_root,
4304 &inode->vfs_inode,
4305 truncate_offset,
4306 BTRFS_EXTENT_DATA_KEY);
4307 } while (ret == -EAGAIN);
4308 if (ret)
4309 goto out;
4310 dropped_extents = true;
4312 if (ins_nr == 0)
4313 start_slot = slot;
4314 ins_nr++;
4315 path->slots[0]++;
4316 if (!dst_path) {
4317 dst_path = btrfs_alloc_path();
4318 if (!dst_path) {
4319 ret = -ENOMEM;
4320 goto out;
4324 if (ins_nr > 0) {
4325 ret = copy_items(trans, inode, dst_path, path,
4326 start_slot, ins_nr, 1, 0);
4327 if (ret > 0)
4328 ret = 0;
4330 out:
4331 btrfs_release_path(path);
4332 btrfs_free_path(dst_path);
4333 return ret;
4336 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4337 struct btrfs_root *root,
4338 struct btrfs_inode *inode,
4339 struct btrfs_path *path,
4340 struct btrfs_log_ctx *ctx,
4341 const u64 start,
4342 const u64 end)
4344 struct extent_map *em, *n;
4345 struct list_head extents;
4346 struct extent_map_tree *tree = &inode->extent_tree;
4347 u64 test_gen;
4348 int ret = 0;
4349 int num = 0;
4351 INIT_LIST_HEAD(&extents);
4353 write_lock(&tree->lock);
4354 test_gen = root->fs_info->last_trans_committed;
4356 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4358 * Skip extents outside our logging range. It's important to do
4359 * it for correctness because if we don't ignore them, we may
4360 * log them before their ordered extent completes, and therefore
4361 * we could log them without logging their respective checksums
4362 * (the checksum items are added to the csum tree at the very
4363 * end of btrfs_finish_ordered_io()). Also leave such extents
4364 * outside of our range in the list, since we may have another
4365 * ranged fsync in the near future that needs them. If an extent
4366 * outside our range corresponds to a hole, log it to avoid
4367 * leaving gaps between extents (fsck will complain when we are
4368 * not using the NO_HOLES feature).
4370 if ((em->start > end || em->start + em->len <= start) &&
4371 em->block_start != EXTENT_MAP_HOLE)
4372 continue;
4374 list_del_init(&em->list);
4376 * Just an arbitrary number, this can be really CPU intensive
4377 * once we start getting a lot of extents, and really once we
4378 * have a bunch of extents we just want to commit since it will
4379 * be faster.
4381 if (++num > 32768) {
4382 list_del_init(&tree->modified_extents);
4383 ret = -EFBIG;
4384 goto process;
4387 if (em->generation <= test_gen)
4388 continue;
4390 /* We log prealloc extents beyond eof later. */
4391 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4392 em->start >= i_size_read(&inode->vfs_inode))
4393 continue;
4395 /* Need a ref to keep it from getting evicted from cache */
4396 refcount_inc(&em->refs);
4397 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4398 list_add_tail(&em->list, &extents);
4399 num++;
4402 list_sort(NULL, &extents, extent_cmp);
4403 process:
4404 while (!list_empty(&extents)) {
4405 em = list_entry(extents.next, struct extent_map, list);
4407 list_del_init(&em->list);
4410 * If we had an error we just need to delete everybody from our
4411 * private list.
4413 if (ret) {
4414 clear_em_logging(tree, em);
4415 free_extent_map(em);
4416 continue;
4419 write_unlock(&tree->lock);
4421 ret = log_one_extent(trans, inode, root, em, path, ctx);
4422 write_lock(&tree->lock);
4423 clear_em_logging(tree, em);
4424 free_extent_map(em);
4426 WARN_ON(!list_empty(&extents));
4427 write_unlock(&tree->lock);
4429 btrfs_release_path(path);
4430 if (!ret)
4431 ret = btrfs_log_prealloc_extents(trans, inode, path);
4433 return ret;
4436 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4437 struct btrfs_path *path, u64 *size_ret)
4439 struct btrfs_key key;
4440 int ret;
4442 key.objectid = btrfs_ino(inode);
4443 key.type = BTRFS_INODE_ITEM_KEY;
4444 key.offset = 0;
4446 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4447 if (ret < 0) {
4448 return ret;
4449 } else if (ret > 0) {
4450 *size_ret = 0;
4451 } else {
4452 struct btrfs_inode_item *item;
4454 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4455 struct btrfs_inode_item);
4456 *size_ret = btrfs_inode_size(path->nodes[0], item);
4458 * If the in-memory inode's i_size is smaller then the inode
4459 * size stored in the btree, return the inode's i_size, so
4460 * that we get a correct inode size after replaying the log
4461 * when before a power failure we had a shrinking truncate
4462 * followed by addition of a new name (rename / new hard link).
4463 * Otherwise return the inode size from the btree, to avoid
4464 * data loss when replaying a log due to previously doing a
4465 * write that expands the inode's size and logging a new name
4466 * immediately after.
4468 if (*size_ret > inode->vfs_inode.i_size)
4469 *size_ret = inode->vfs_inode.i_size;
4472 btrfs_release_path(path);
4473 return 0;
4477 * At the moment we always log all xattrs. This is to figure out at log replay
4478 * time which xattrs must have their deletion replayed. If a xattr is missing
4479 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4480 * because if a xattr is deleted, the inode is fsynced and a power failure
4481 * happens, causing the log to be replayed the next time the fs is mounted,
4482 * we want the xattr to not exist anymore (same behaviour as other filesystems
4483 * with a journal, ext3/4, xfs, f2fs, etc).
4485 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4486 struct btrfs_root *root,
4487 struct btrfs_inode *inode,
4488 struct btrfs_path *path,
4489 struct btrfs_path *dst_path)
4491 int ret;
4492 struct btrfs_key key;
4493 const u64 ino = btrfs_ino(inode);
4494 int ins_nr = 0;
4495 int start_slot = 0;
4497 key.objectid = ino;
4498 key.type = BTRFS_XATTR_ITEM_KEY;
4499 key.offset = 0;
4501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4502 if (ret < 0)
4503 return ret;
4505 while (true) {
4506 int slot = path->slots[0];
4507 struct extent_buffer *leaf = path->nodes[0];
4508 int nritems = btrfs_header_nritems(leaf);
4510 if (slot >= nritems) {
4511 if (ins_nr > 0) {
4512 ret = copy_items(trans, inode, dst_path, path,
4513 start_slot, ins_nr, 1, 0);
4514 if (ret < 0)
4515 return ret;
4516 ins_nr = 0;
4518 ret = btrfs_next_leaf(root, path);
4519 if (ret < 0)
4520 return ret;
4521 else if (ret > 0)
4522 break;
4523 continue;
4526 btrfs_item_key_to_cpu(leaf, &key, slot);
4527 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4528 break;
4530 if (ins_nr == 0)
4531 start_slot = slot;
4532 ins_nr++;
4533 path->slots[0]++;
4534 cond_resched();
4536 if (ins_nr > 0) {
4537 ret = copy_items(trans, inode, dst_path, path,
4538 start_slot, ins_nr, 1, 0);
4539 if (ret < 0)
4540 return ret;
4543 return 0;
4547 * When using the NO_HOLES feature if we punched a hole that causes the
4548 * deletion of entire leafs or all the extent items of the first leaf (the one
4549 * that contains the inode item and references) we may end up not processing
4550 * any extents, because there are no leafs with a generation matching the
4551 * current transaction that have extent items for our inode. So we need to find
4552 * if any holes exist and then log them. We also need to log holes after any
4553 * truncate operation that changes the inode's size.
4555 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
4556 struct btrfs_root *root,
4557 struct btrfs_inode *inode,
4558 struct btrfs_path *path)
4560 struct btrfs_fs_info *fs_info = root->fs_info;
4561 struct btrfs_key key;
4562 const u64 ino = btrfs_ino(inode);
4563 const u64 i_size = i_size_read(&inode->vfs_inode);
4564 u64 prev_extent_end = 0;
4565 int ret;
4567 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
4568 return 0;
4570 key.objectid = ino;
4571 key.type = BTRFS_EXTENT_DATA_KEY;
4572 key.offset = 0;
4574 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4575 if (ret < 0)
4576 return ret;
4578 while (true) {
4579 struct btrfs_file_extent_item *extent;
4580 struct extent_buffer *leaf = path->nodes[0];
4581 u64 len;
4583 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
4584 ret = btrfs_next_leaf(root, path);
4585 if (ret < 0)
4586 return ret;
4587 if (ret > 0) {
4588 ret = 0;
4589 break;
4591 leaf = path->nodes[0];
4594 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4595 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
4596 break;
4598 /* We have a hole, log it. */
4599 if (prev_extent_end < key.offset) {
4600 const u64 hole_len = key.offset - prev_extent_end;
4603 * Release the path to avoid deadlocks with other code
4604 * paths that search the root while holding locks on
4605 * leafs from the log root.
4607 btrfs_release_path(path);
4608 ret = btrfs_insert_file_extent(trans, root->log_root,
4609 ino, prev_extent_end, 0,
4610 0, hole_len, 0, hole_len,
4611 0, 0, 0);
4612 if (ret < 0)
4613 return ret;
4616 * Search for the same key again in the root. Since it's
4617 * an extent item and we are holding the inode lock, the
4618 * key must still exist. If it doesn't just emit warning
4619 * and return an error to fall back to a transaction
4620 * commit.
4622 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4623 if (ret < 0)
4624 return ret;
4625 if (WARN_ON(ret > 0))
4626 return -ENOENT;
4627 leaf = path->nodes[0];
4630 extent = btrfs_item_ptr(leaf, path->slots[0],
4631 struct btrfs_file_extent_item);
4632 if (btrfs_file_extent_type(leaf, extent) ==
4633 BTRFS_FILE_EXTENT_INLINE) {
4634 len = btrfs_file_extent_ram_bytes(leaf, extent);
4635 prev_extent_end = ALIGN(key.offset + len,
4636 fs_info->sectorsize);
4637 } else {
4638 len = btrfs_file_extent_num_bytes(leaf, extent);
4639 prev_extent_end = key.offset + len;
4642 path->slots[0]++;
4643 cond_resched();
4646 if (prev_extent_end < i_size) {
4647 u64 hole_len;
4649 btrfs_release_path(path);
4650 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
4651 ret = btrfs_insert_file_extent(trans, root->log_root,
4652 ino, prev_extent_end, 0, 0,
4653 hole_len, 0, hole_len,
4654 0, 0, 0);
4655 if (ret < 0)
4656 return ret;
4659 return 0;
4663 * When we are logging a new inode X, check if it doesn't have a reference that
4664 * matches the reference from some other inode Y created in a past transaction
4665 * and that was renamed in the current transaction. If we don't do this, then at
4666 * log replay time we can lose inode Y (and all its files if it's a directory):
4668 * mkdir /mnt/x
4669 * echo "hello world" > /mnt/x/foobar
4670 * sync
4671 * mv /mnt/x /mnt/y
4672 * mkdir /mnt/x # or touch /mnt/x
4673 * xfs_io -c fsync /mnt/x
4674 * <power fail>
4675 * mount fs, trigger log replay
4677 * After the log replay procedure, we would lose the first directory and all its
4678 * files (file foobar).
4679 * For the case where inode Y is not a directory we simply end up losing it:
4681 * echo "123" > /mnt/foo
4682 * sync
4683 * mv /mnt/foo /mnt/bar
4684 * echo "abc" > /mnt/foo
4685 * xfs_io -c fsync /mnt/foo
4686 * <power fail>
4688 * We also need this for cases where a snapshot entry is replaced by some other
4689 * entry (file or directory) otherwise we end up with an unreplayable log due to
4690 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4691 * if it were a regular entry:
4693 * mkdir /mnt/x
4694 * btrfs subvolume snapshot /mnt /mnt/x/snap
4695 * btrfs subvolume delete /mnt/x/snap
4696 * rmdir /mnt/x
4697 * mkdir /mnt/x
4698 * fsync /mnt/x or fsync some new file inside it
4699 * <power fail>
4701 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4702 * the same transaction.
4704 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4705 const int slot,
4706 const struct btrfs_key *key,
4707 struct btrfs_inode *inode,
4708 u64 *other_ino, u64 *other_parent)
4710 int ret;
4711 struct btrfs_path *search_path;
4712 char *name = NULL;
4713 u32 name_len = 0;
4714 u32 item_size = btrfs_item_size_nr(eb, slot);
4715 u32 cur_offset = 0;
4716 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4718 search_path = btrfs_alloc_path();
4719 if (!search_path)
4720 return -ENOMEM;
4721 search_path->search_commit_root = 1;
4722 search_path->skip_locking = 1;
4724 while (cur_offset < item_size) {
4725 u64 parent;
4726 u32 this_name_len;
4727 u32 this_len;
4728 unsigned long name_ptr;
4729 struct btrfs_dir_item *di;
4731 if (key->type == BTRFS_INODE_REF_KEY) {
4732 struct btrfs_inode_ref *iref;
4734 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4735 parent = key->offset;
4736 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4737 name_ptr = (unsigned long)(iref + 1);
4738 this_len = sizeof(*iref) + this_name_len;
4739 } else {
4740 struct btrfs_inode_extref *extref;
4742 extref = (struct btrfs_inode_extref *)(ptr +
4743 cur_offset);
4744 parent = btrfs_inode_extref_parent(eb, extref);
4745 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4746 name_ptr = (unsigned long)&extref->name;
4747 this_len = sizeof(*extref) + this_name_len;
4750 if (this_name_len > name_len) {
4751 char *new_name;
4753 new_name = krealloc(name, this_name_len, GFP_NOFS);
4754 if (!new_name) {
4755 ret = -ENOMEM;
4756 goto out;
4758 name_len = this_name_len;
4759 name = new_name;
4762 read_extent_buffer(eb, name, name_ptr, this_name_len);
4763 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4764 parent, name, this_name_len, 0);
4765 if (di && !IS_ERR(di)) {
4766 struct btrfs_key di_key;
4768 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4769 di, &di_key);
4770 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4771 if (di_key.objectid != key->objectid) {
4772 ret = 1;
4773 *other_ino = di_key.objectid;
4774 *other_parent = parent;
4775 } else {
4776 ret = 0;
4778 } else {
4779 ret = -EAGAIN;
4781 goto out;
4782 } else if (IS_ERR(di)) {
4783 ret = PTR_ERR(di);
4784 goto out;
4786 btrfs_release_path(search_path);
4788 cur_offset += this_len;
4790 ret = 0;
4791 out:
4792 btrfs_free_path(search_path);
4793 kfree(name);
4794 return ret;
4797 struct btrfs_ino_list {
4798 u64 ino;
4799 u64 parent;
4800 struct list_head list;
4803 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4804 struct btrfs_root *root,
4805 struct btrfs_path *path,
4806 struct btrfs_log_ctx *ctx,
4807 u64 ino, u64 parent)
4809 struct btrfs_ino_list *ino_elem;
4810 LIST_HEAD(inode_list);
4811 int ret = 0;
4813 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4814 if (!ino_elem)
4815 return -ENOMEM;
4816 ino_elem->ino = ino;
4817 ino_elem->parent = parent;
4818 list_add_tail(&ino_elem->list, &inode_list);
4820 while (!list_empty(&inode_list)) {
4821 struct btrfs_fs_info *fs_info = root->fs_info;
4822 struct btrfs_key key;
4823 struct inode *inode;
4825 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4826 list);
4827 ino = ino_elem->ino;
4828 parent = ino_elem->parent;
4829 list_del(&ino_elem->list);
4830 kfree(ino_elem);
4831 if (ret)
4832 continue;
4834 btrfs_release_path(path);
4836 key.objectid = ino;
4837 key.type = BTRFS_INODE_ITEM_KEY;
4838 key.offset = 0;
4839 inode = btrfs_iget(fs_info->sb, &key, root);
4841 * If the other inode that had a conflicting dir entry was
4842 * deleted in the current transaction, we need to log its parent
4843 * directory.
4845 if (IS_ERR(inode)) {
4846 ret = PTR_ERR(inode);
4847 if (ret == -ENOENT) {
4848 key.objectid = parent;
4849 inode = btrfs_iget(fs_info->sb, &key, root);
4850 if (IS_ERR(inode)) {
4851 ret = PTR_ERR(inode);
4852 } else {
4853 ret = btrfs_log_inode(trans, root,
4854 BTRFS_I(inode),
4855 LOG_OTHER_INODE_ALL,
4856 0, LLONG_MAX, ctx);
4857 btrfs_add_delayed_iput(inode);
4860 continue;
4863 * If the inode was already logged skip it - otherwise we can
4864 * hit an infinite loop. Example:
4866 * From the commit root (previous transaction) we have the
4867 * following inodes:
4869 * inode 257 a directory
4870 * inode 258 with references "zz" and "zz_link" on inode 257
4871 * inode 259 with reference "a" on inode 257
4873 * And in the current (uncommitted) transaction we have:
4875 * inode 257 a directory, unchanged
4876 * inode 258 with references "a" and "a2" on inode 257
4877 * inode 259 with reference "zz_link" on inode 257
4878 * inode 261 with reference "zz" on inode 257
4880 * When logging inode 261 the following infinite loop could
4881 * happen if we don't skip already logged inodes:
4883 * - we detect inode 258 as a conflicting inode, with inode 261
4884 * on reference "zz", and log it;
4886 * - we detect inode 259 as a conflicting inode, with inode 258
4887 * on reference "a", and log it;
4889 * - we detect inode 258 as a conflicting inode, with inode 259
4890 * on reference "zz_link", and log it - again! After this we
4891 * repeat the above steps forever.
4893 spin_lock(&BTRFS_I(inode)->lock);
4895 * Check the inode's logged_trans only instead of
4896 * btrfs_inode_in_log(). This is because the last_log_commit of
4897 * the inode is not updated when we only log that it exists and
4898 * and it has the full sync bit set (see btrfs_log_inode()).
4900 if (BTRFS_I(inode)->logged_trans == trans->transid) {
4901 spin_unlock(&BTRFS_I(inode)->lock);
4902 btrfs_add_delayed_iput(inode);
4903 continue;
4905 spin_unlock(&BTRFS_I(inode)->lock);
4907 * We are safe logging the other inode without acquiring its
4908 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4909 * are safe against concurrent renames of the other inode as
4910 * well because during a rename we pin the log and update the
4911 * log with the new name before we unpin it.
4913 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
4914 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
4915 if (ret) {
4916 btrfs_add_delayed_iput(inode);
4917 continue;
4920 key.objectid = ino;
4921 key.type = BTRFS_INODE_REF_KEY;
4922 key.offset = 0;
4923 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4924 if (ret < 0) {
4925 btrfs_add_delayed_iput(inode);
4926 continue;
4929 while (true) {
4930 struct extent_buffer *leaf = path->nodes[0];
4931 int slot = path->slots[0];
4932 u64 other_ino = 0;
4933 u64 other_parent = 0;
4935 if (slot >= btrfs_header_nritems(leaf)) {
4936 ret = btrfs_next_leaf(root, path);
4937 if (ret < 0) {
4938 break;
4939 } else if (ret > 0) {
4940 ret = 0;
4941 break;
4943 continue;
4946 btrfs_item_key_to_cpu(leaf, &key, slot);
4947 if (key.objectid != ino ||
4948 (key.type != BTRFS_INODE_REF_KEY &&
4949 key.type != BTRFS_INODE_EXTREF_KEY)) {
4950 ret = 0;
4951 break;
4954 ret = btrfs_check_ref_name_override(leaf, slot, &key,
4955 BTRFS_I(inode), &other_ino,
4956 &other_parent);
4957 if (ret < 0)
4958 break;
4959 if (ret > 0) {
4960 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4961 if (!ino_elem) {
4962 ret = -ENOMEM;
4963 break;
4965 ino_elem->ino = other_ino;
4966 ino_elem->parent = other_parent;
4967 list_add_tail(&ino_elem->list, &inode_list);
4968 ret = 0;
4970 path->slots[0]++;
4972 btrfs_add_delayed_iput(inode);
4975 return ret;
4978 /* log a single inode in the tree log.
4979 * At least one parent directory for this inode must exist in the tree
4980 * or be logged already.
4982 * Any items from this inode changed by the current transaction are copied
4983 * to the log tree. An extra reference is taken on any extents in this
4984 * file, allowing us to avoid a whole pile of corner cases around logging
4985 * blocks that have been removed from the tree.
4987 * See LOG_INODE_ALL and related defines for a description of what inode_only
4988 * does.
4990 * This handles both files and directories.
4992 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4993 struct btrfs_root *root, struct btrfs_inode *inode,
4994 int inode_only,
4995 const loff_t start,
4996 const loff_t end,
4997 struct btrfs_log_ctx *ctx)
4999 struct btrfs_fs_info *fs_info = root->fs_info;
5000 struct btrfs_path *path;
5001 struct btrfs_path *dst_path;
5002 struct btrfs_key min_key;
5003 struct btrfs_key max_key;
5004 struct btrfs_root *log = root->log_root;
5005 int err = 0;
5006 int ret;
5007 int nritems;
5008 int ins_start_slot = 0;
5009 int ins_nr;
5010 bool fast_search = false;
5011 u64 ino = btrfs_ino(inode);
5012 struct extent_map_tree *em_tree = &inode->extent_tree;
5013 u64 logged_isize = 0;
5014 bool need_log_inode_item = true;
5015 bool xattrs_logged = false;
5016 bool recursive_logging = false;
5018 path = btrfs_alloc_path();
5019 if (!path)
5020 return -ENOMEM;
5021 dst_path = btrfs_alloc_path();
5022 if (!dst_path) {
5023 btrfs_free_path(path);
5024 return -ENOMEM;
5027 min_key.objectid = ino;
5028 min_key.type = BTRFS_INODE_ITEM_KEY;
5029 min_key.offset = 0;
5031 max_key.objectid = ino;
5034 /* today the code can only do partial logging of directories */
5035 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5036 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5037 &inode->runtime_flags) &&
5038 inode_only >= LOG_INODE_EXISTS))
5039 max_key.type = BTRFS_XATTR_ITEM_KEY;
5040 else
5041 max_key.type = (u8)-1;
5042 max_key.offset = (u64)-1;
5045 * Only run delayed items if we are a dir or a new file.
5046 * Otherwise commit the delayed inode only, which is needed in
5047 * order for the log replay code to mark inodes for link count
5048 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5050 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5051 inode->generation > fs_info->last_trans_committed)
5052 ret = btrfs_commit_inode_delayed_items(trans, inode);
5053 else
5054 ret = btrfs_commit_inode_delayed_inode(inode);
5056 if (ret) {
5057 btrfs_free_path(path);
5058 btrfs_free_path(dst_path);
5059 return ret;
5062 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5063 recursive_logging = true;
5064 if (inode_only == LOG_OTHER_INODE)
5065 inode_only = LOG_INODE_EXISTS;
5066 else
5067 inode_only = LOG_INODE_ALL;
5068 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
5069 } else {
5070 mutex_lock(&inode->log_mutex);
5074 * a brute force approach to making sure we get the most uptodate
5075 * copies of everything.
5077 if (S_ISDIR(inode->vfs_inode.i_mode)) {
5078 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5080 if (inode_only == LOG_INODE_EXISTS)
5081 max_key_type = BTRFS_XATTR_ITEM_KEY;
5082 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
5083 } else {
5084 if (inode_only == LOG_INODE_EXISTS) {
5086 * Make sure the new inode item we write to the log has
5087 * the same isize as the current one (if it exists).
5088 * This is necessary to prevent data loss after log
5089 * replay, and also to prevent doing a wrong expanding
5090 * truncate - for e.g. create file, write 4K into offset
5091 * 0, fsync, write 4K into offset 4096, add hard link,
5092 * fsync some other file (to sync log), power fail - if
5093 * we use the inode's current i_size, after log replay
5094 * we get a 8Kb file, with the last 4Kb extent as a hole
5095 * (zeroes), as if an expanding truncate happened,
5096 * instead of getting a file of 4Kb only.
5098 err = logged_inode_size(log, inode, path, &logged_isize);
5099 if (err)
5100 goto out_unlock;
5102 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5103 &inode->runtime_flags)) {
5104 if (inode_only == LOG_INODE_EXISTS) {
5105 max_key.type = BTRFS_XATTR_ITEM_KEY;
5106 ret = drop_objectid_items(trans, log, path, ino,
5107 max_key.type);
5108 } else {
5109 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5110 &inode->runtime_flags);
5111 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5112 &inode->runtime_flags);
5113 while(1) {
5114 ret = btrfs_truncate_inode_items(trans,
5115 log, &inode->vfs_inode, 0, 0);
5116 if (ret != -EAGAIN)
5117 break;
5120 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
5121 &inode->runtime_flags) ||
5122 inode_only == LOG_INODE_EXISTS) {
5123 if (inode_only == LOG_INODE_ALL)
5124 fast_search = true;
5125 max_key.type = BTRFS_XATTR_ITEM_KEY;
5126 ret = drop_objectid_items(trans, log, path, ino,
5127 max_key.type);
5128 } else {
5129 if (inode_only == LOG_INODE_ALL)
5130 fast_search = true;
5131 goto log_extents;
5135 if (ret) {
5136 err = ret;
5137 goto out_unlock;
5140 while (1) {
5141 ins_nr = 0;
5142 ret = btrfs_search_forward(root, &min_key,
5143 path, trans->transid);
5144 if (ret < 0) {
5145 err = ret;
5146 goto out_unlock;
5148 if (ret != 0)
5149 break;
5150 again:
5151 /* note, ins_nr might be > 0 here, cleanup outside the loop */
5152 if (min_key.objectid != ino)
5153 break;
5154 if (min_key.type > max_key.type)
5155 break;
5157 if (min_key.type == BTRFS_INODE_ITEM_KEY)
5158 need_log_inode_item = false;
5160 if ((min_key.type == BTRFS_INODE_REF_KEY ||
5161 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5162 inode->generation == trans->transid &&
5163 !recursive_logging) {
5164 u64 other_ino = 0;
5165 u64 other_parent = 0;
5167 ret = btrfs_check_ref_name_override(path->nodes[0],
5168 path->slots[0], &min_key, inode,
5169 &other_ino, &other_parent);
5170 if (ret < 0) {
5171 err = ret;
5172 goto out_unlock;
5173 } else if (ret > 0 && ctx &&
5174 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5175 if (ins_nr > 0) {
5176 ins_nr++;
5177 } else {
5178 ins_nr = 1;
5179 ins_start_slot = path->slots[0];
5181 ret = copy_items(trans, inode, dst_path, path,
5182 ins_start_slot,
5183 ins_nr, inode_only,
5184 logged_isize);
5185 if (ret < 0) {
5186 err = ret;
5187 goto out_unlock;
5189 ins_nr = 0;
5191 err = log_conflicting_inodes(trans, root, path,
5192 ctx, other_ino, other_parent);
5193 if (err)
5194 goto out_unlock;
5195 btrfs_release_path(path);
5196 goto next_key;
5200 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5201 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5202 if (ins_nr == 0)
5203 goto next_slot;
5204 ret = copy_items(trans, inode, dst_path, path,
5205 ins_start_slot,
5206 ins_nr, inode_only, logged_isize);
5207 if (ret < 0) {
5208 err = ret;
5209 goto out_unlock;
5211 ins_nr = 0;
5212 goto next_slot;
5215 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5216 ins_nr++;
5217 goto next_slot;
5218 } else if (!ins_nr) {
5219 ins_start_slot = path->slots[0];
5220 ins_nr = 1;
5221 goto next_slot;
5224 ret = copy_items(trans, inode, dst_path, path,
5225 ins_start_slot, ins_nr, inode_only,
5226 logged_isize);
5227 if (ret < 0) {
5228 err = ret;
5229 goto out_unlock;
5231 ins_nr = 1;
5232 ins_start_slot = path->slots[0];
5233 next_slot:
5235 nritems = btrfs_header_nritems(path->nodes[0]);
5236 path->slots[0]++;
5237 if (path->slots[0] < nritems) {
5238 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5239 path->slots[0]);
5240 goto again;
5242 if (ins_nr) {
5243 ret = copy_items(trans, inode, dst_path, path,
5244 ins_start_slot,
5245 ins_nr, inode_only, logged_isize);
5246 if (ret < 0) {
5247 err = ret;
5248 goto out_unlock;
5250 ins_nr = 0;
5252 btrfs_release_path(path);
5253 next_key:
5254 if (min_key.offset < (u64)-1) {
5255 min_key.offset++;
5256 } else if (min_key.type < max_key.type) {
5257 min_key.type++;
5258 min_key.offset = 0;
5259 } else {
5260 break;
5263 if (ins_nr) {
5264 ret = copy_items(trans, inode, dst_path, path,
5265 ins_start_slot, ins_nr, inode_only,
5266 logged_isize);
5267 if (ret < 0) {
5268 err = ret;
5269 goto out_unlock;
5271 ins_nr = 0;
5274 btrfs_release_path(path);
5275 btrfs_release_path(dst_path);
5276 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5277 if (err)
5278 goto out_unlock;
5279 xattrs_logged = true;
5280 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5281 btrfs_release_path(path);
5282 btrfs_release_path(dst_path);
5283 err = btrfs_log_holes(trans, root, inode, path);
5284 if (err)
5285 goto out_unlock;
5287 log_extents:
5288 btrfs_release_path(path);
5289 btrfs_release_path(dst_path);
5290 if (need_log_inode_item) {
5291 err = log_inode_item(trans, log, dst_path, inode);
5292 if (!err && !xattrs_logged) {
5293 err = btrfs_log_all_xattrs(trans, root, inode, path,
5294 dst_path);
5295 btrfs_release_path(path);
5297 if (err)
5298 goto out_unlock;
5300 if (fast_search) {
5301 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5302 ctx, start, end);
5303 if (ret) {
5304 err = ret;
5305 goto out_unlock;
5307 } else if (inode_only == LOG_INODE_ALL) {
5308 struct extent_map *em, *n;
5310 write_lock(&em_tree->lock);
5312 * We can't just remove every em if we're called for a ranged
5313 * fsync - that is, one that doesn't cover the whole possible
5314 * file range (0 to LLONG_MAX). This is because we can have
5315 * em's that fall outside the range we're logging and therefore
5316 * their ordered operations haven't completed yet
5317 * (btrfs_finish_ordered_io() not invoked yet). This means we
5318 * didn't get their respective file extent item in the fs/subvol
5319 * tree yet, and need to let the next fast fsync (one which
5320 * consults the list of modified extent maps) find the em so
5321 * that it logs a matching file extent item and waits for the
5322 * respective ordered operation to complete (if it's still
5323 * running).
5325 * Removing every em outside the range we're logging would make
5326 * the next fast fsync not log their matching file extent items,
5327 * therefore making us lose data after a log replay.
5329 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5330 list) {
5331 const u64 mod_end = em->mod_start + em->mod_len - 1;
5333 if (em->mod_start >= start && mod_end <= end)
5334 list_del_init(&em->list);
5336 write_unlock(&em_tree->lock);
5339 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5340 ret = log_directory_changes(trans, root, inode, path, dst_path,
5341 ctx);
5342 if (ret) {
5343 err = ret;
5344 goto out_unlock;
5349 * Don't update last_log_commit if we logged that an inode exists after
5350 * it was loaded to memory (full_sync bit set).
5351 * This is to prevent data loss when we do a write to the inode, then
5352 * the inode gets evicted after all delalloc was flushed, then we log
5353 * it exists (due to a rename for example) and then fsync it. This last
5354 * fsync would do nothing (not logging the extents previously written).
5356 spin_lock(&inode->lock);
5357 inode->logged_trans = trans->transid;
5358 if (inode_only != LOG_INODE_EXISTS ||
5359 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5360 inode->last_log_commit = inode->last_sub_trans;
5361 spin_unlock(&inode->lock);
5362 out_unlock:
5363 mutex_unlock(&inode->log_mutex);
5365 btrfs_free_path(path);
5366 btrfs_free_path(dst_path);
5367 return err;
5371 * Check if we must fallback to a transaction commit when logging an inode.
5372 * This must be called after logging the inode and is used only in the context
5373 * when fsyncing an inode requires the need to log some other inode - in which
5374 * case we can't lock the i_mutex of each other inode we need to log as that
5375 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5376 * log inodes up or down in the hierarchy) or rename operations for example. So
5377 * we take the log_mutex of the inode after we have logged it and then check for
5378 * its last_unlink_trans value - this is safe because any task setting
5379 * last_unlink_trans must take the log_mutex and it must do this before it does
5380 * the actual unlink operation, so if we do this check before a concurrent task
5381 * sets last_unlink_trans it means we've logged a consistent version/state of
5382 * all the inode items, otherwise we are not sure and must do a transaction
5383 * commit (the concurrent task might have only updated last_unlink_trans before
5384 * we logged the inode or it might have also done the unlink).
5386 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5387 struct btrfs_inode *inode)
5389 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5390 bool ret = false;
5392 mutex_lock(&inode->log_mutex);
5393 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5395 * Make sure any commits to the log are forced to be full
5396 * commits.
5398 btrfs_set_log_full_commit(trans);
5399 ret = true;
5401 mutex_unlock(&inode->log_mutex);
5403 return ret;
5407 * follow the dentry parent pointers up the chain and see if any
5408 * of the directories in it require a full commit before they can
5409 * be logged. Returns zero if nothing special needs to be done or 1 if
5410 * a full commit is required.
5412 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5413 struct btrfs_inode *inode,
5414 struct dentry *parent,
5415 struct super_block *sb,
5416 u64 last_committed)
5418 int ret = 0;
5419 struct dentry *old_parent = NULL;
5422 * for regular files, if its inode is already on disk, we don't
5423 * have to worry about the parents at all. This is because
5424 * we can use the last_unlink_trans field to record renames
5425 * and other fun in this file.
5427 if (S_ISREG(inode->vfs_inode.i_mode) &&
5428 inode->generation <= last_committed &&
5429 inode->last_unlink_trans <= last_committed)
5430 goto out;
5432 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5433 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5434 goto out;
5435 inode = BTRFS_I(d_inode(parent));
5438 while (1) {
5439 if (btrfs_must_commit_transaction(trans, inode)) {
5440 ret = 1;
5441 break;
5444 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5445 break;
5447 if (IS_ROOT(parent)) {
5448 inode = BTRFS_I(d_inode(parent));
5449 if (btrfs_must_commit_transaction(trans, inode))
5450 ret = 1;
5451 break;
5454 parent = dget_parent(parent);
5455 dput(old_parent);
5456 old_parent = parent;
5457 inode = BTRFS_I(d_inode(parent));
5460 dput(old_parent);
5461 out:
5462 return ret;
5465 struct btrfs_dir_list {
5466 u64 ino;
5467 struct list_head list;
5471 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5472 * details about the why it is needed.
5473 * This is a recursive operation - if an existing dentry corresponds to a
5474 * directory, that directory's new entries are logged too (same behaviour as
5475 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5476 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5477 * complains about the following circular lock dependency / possible deadlock:
5479 * CPU0 CPU1
5480 * ---- ----
5481 * lock(&type->i_mutex_dir_key#3/2);
5482 * lock(sb_internal#2);
5483 * lock(&type->i_mutex_dir_key#3/2);
5484 * lock(&sb->s_type->i_mutex_key#14);
5486 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5487 * sb_start_intwrite() in btrfs_start_transaction().
5488 * Not locking i_mutex of the inodes is still safe because:
5490 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5491 * that while logging the inode new references (names) are added or removed
5492 * from the inode, leaving the logged inode item with a link count that does
5493 * not match the number of logged inode reference items. This is fine because
5494 * at log replay time we compute the real number of links and correct the
5495 * link count in the inode item (see replay_one_buffer() and
5496 * link_to_fixup_dir());
5498 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5499 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5500 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5501 * has a size that doesn't match the sum of the lengths of all the logged
5502 * names. This does not result in a problem because if a dir_item key is
5503 * logged but its matching dir_index key is not logged, at log replay time we
5504 * don't use it to replay the respective name (see replay_one_name()). On the
5505 * other hand if only the dir_index key ends up being logged, the respective
5506 * name is added to the fs/subvol tree with both the dir_item and dir_index
5507 * keys created (see replay_one_name()).
5508 * The directory's inode item with a wrong i_size is not a problem as well,
5509 * since we don't use it at log replay time to set the i_size in the inode
5510 * item of the fs/subvol tree (see overwrite_item()).
5512 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5513 struct btrfs_root *root,
5514 struct btrfs_inode *start_inode,
5515 struct btrfs_log_ctx *ctx)
5517 struct btrfs_fs_info *fs_info = root->fs_info;
5518 struct btrfs_root *log = root->log_root;
5519 struct btrfs_path *path;
5520 LIST_HEAD(dir_list);
5521 struct btrfs_dir_list *dir_elem;
5522 int ret = 0;
5524 path = btrfs_alloc_path();
5525 if (!path)
5526 return -ENOMEM;
5528 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5529 if (!dir_elem) {
5530 btrfs_free_path(path);
5531 return -ENOMEM;
5533 dir_elem->ino = btrfs_ino(start_inode);
5534 list_add_tail(&dir_elem->list, &dir_list);
5536 while (!list_empty(&dir_list)) {
5537 struct extent_buffer *leaf;
5538 struct btrfs_key min_key;
5539 int nritems;
5540 int i;
5542 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5543 list);
5544 if (ret)
5545 goto next_dir_inode;
5547 min_key.objectid = dir_elem->ino;
5548 min_key.type = BTRFS_DIR_ITEM_KEY;
5549 min_key.offset = 0;
5550 again:
5551 btrfs_release_path(path);
5552 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5553 if (ret < 0) {
5554 goto next_dir_inode;
5555 } else if (ret > 0) {
5556 ret = 0;
5557 goto next_dir_inode;
5560 process_leaf:
5561 leaf = path->nodes[0];
5562 nritems = btrfs_header_nritems(leaf);
5563 for (i = path->slots[0]; i < nritems; i++) {
5564 struct btrfs_dir_item *di;
5565 struct btrfs_key di_key;
5566 struct inode *di_inode;
5567 struct btrfs_dir_list *new_dir_elem;
5568 int log_mode = LOG_INODE_EXISTS;
5569 int type;
5571 btrfs_item_key_to_cpu(leaf, &min_key, i);
5572 if (min_key.objectid != dir_elem->ino ||
5573 min_key.type != BTRFS_DIR_ITEM_KEY)
5574 goto next_dir_inode;
5576 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5577 type = btrfs_dir_type(leaf, di);
5578 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5579 type != BTRFS_FT_DIR)
5580 continue;
5581 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5582 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5583 continue;
5585 btrfs_release_path(path);
5586 di_inode = btrfs_iget(fs_info->sb, &di_key, root);
5587 if (IS_ERR(di_inode)) {
5588 ret = PTR_ERR(di_inode);
5589 goto next_dir_inode;
5592 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5593 btrfs_add_delayed_iput(di_inode);
5594 break;
5597 ctx->log_new_dentries = false;
5598 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5599 log_mode = LOG_INODE_ALL;
5600 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5601 log_mode, 0, LLONG_MAX, ctx);
5602 if (!ret &&
5603 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5604 ret = 1;
5605 btrfs_add_delayed_iput(di_inode);
5606 if (ret)
5607 goto next_dir_inode;
5608 if (ctx->log_new_dentries) {
5609 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5610 GFP_NOFS);
5611 if (!new_dir_elem) {
5612 ret = -ENOMEM;
5613 goto next_dir_inode;
5615 new_dir_elem->ino = di_key.objectid;
5616 list_add_tail(&new_dir_elem->list, &dir_list);
5618 break;
5620 if (i == nritems) {
5621 ret = btrfs_next_leaf(log, path);
5622 if (ret < 0) {
5623 goto next_dir_inode;
5624 } else if (ret > 0) {
5625 ret = 0;
5626 goto next_dir_inode;
5628 goto process_leaf;
5630 if (min_key.offset < (u64)-1) {
5631 min_key.offset++;
5632 goto again;
5634 next_dir_inode:
5635 list_del(&dir_elem->list);
5636 kfree(dir_elem);
5639 btrfs_free_path(path);
5640 return ret;
5643 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5644 struct btrfs_inode *inode,
5645 struct btrfs_log_ctx *ctx)
5647 struct btrfs_fs_info *fs_info = trans->fs_info;
5648 int ret;
5649 struct btrfs_path *path;
5650 struct btrfs_key key;
5651 struct btrfs_root *root = inode->root;
5652 const u64 ino = btrfs_ino(inode);
5654 path = btrfs_alloc_path();
5655 if (!path)
5656 return -ENOMEM;
5657 path->skip_locking = 1;
5658 path->search_commit_root = 1;
5660 key.objectid = ino;
5661 key.type = BTRFS_INODE_REF_KEY;
5662 key.offset = 0;
5663 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5664 if (ret < 0)
5665 goto out;
5667 while (true) {
5668 struct extent_buffer *leaf = path->nodes[0];
5669 int slot = path->slots[0];
5670 u32 cur_offset = 0;
5671 u32 item_size;
5672 unsigned long ptr;
5674 if (slot >= btrfs_header_nritems(leaf)) {
5675 ret = btrfs_next_leaf(root, path);
5676 if (ret < 0)
5677 goto out;
5678 else if (ret > 0)
5679 break;
5680 continue;
5683 btrfs_item_key_to_cpu(leaf, &key, slot);
5684 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5685 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5686 break;
5688 item_size = btrfs_item_size_nr(leaf, slot);
5689 ptr = btrfs_item_ptr_offset(leaf, slot);
5690 while (cur_offset < item_size) {
5691 struct btrfs_key inode_key;
5692 struct inode *dir_inode;
5694 inode_key.type = BTRFS_INODE_ITEM_KEY;
5695 inode_key.offset = 0;
5697 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5698 struct btrfs_inode_extref *extref;
5700 extref = (struct btrfs_inode_extref *)
5701 (ptr + cur_offset);
5702 inode_key.objectid = btrfs_inode_extref_parent(
5703 leaf, extref);
5704 cur_offset += sizeof(*extref);
5705 cur_offset += btrfs_inode_extref_name_len(leaf,
5706 extref);
5707 } else {
5708 inode_key.objectid = key.offset;
5709 cur_offset = item_size;
5712 dir_inode = btrfs_iget(fs_info->sb, &inode_key, root);
5714 * If the parent inode was deleted, return an error to
5715 * fallback to a transaction commit. This is to prevent
5716 * getting an inode that was moved from one parent A to
5717 * a parent B, got its former parent A deleted and then
5718 * it got fsync'ed, from existing at both parents after
5719 * a log replay (and the old parent still existing).
5720 * Example:
5722 * mkdir /mnt/A
5723 * mkdir /mnt/B
5724 * touch /mnt/B/bar
5725 * sync
5726 * mv /mnt/B/bar /mnt/A/bar
5727 * mv -T /mnt/A /mnt/B
5728 * fsync /mnt/B/bar
5729 * <power fail>
5731 * If we ignore the old parent B which got deleted,
5732 * after a log replay we would have file bar linked
5733 * at both parents and the old parent B would still
5734 * exist.
5736 if (IS_ERR(dir_inode)) {
5737 ret = PTR_ERR(dir_inode);
5738 goto out;
5741 if (ctx)
5742 ctx->log_new_dentries = false;
5743 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5744 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5745 if (!ret &&
5746 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5747 ret = 1;
5748 if (!ret && ctx && ctx->log_new_dentries)
5749 ret = log_new_dir_dentries(trans, root,
5750 BTRFS_I(dir_inode), ctx);
5751 btrfs_add_delayed_iput(dir_inode);
5752 if (ret)
5753 goto out;
5755 path->slots[0]++;
5757 ret = 0;
5758 out:
5759 btrfs_free_path(path);
5760 return ret;
5763 static int log_new_ancestors(struct btrfs_trans_handle *trans,
5764 struct btrfs_root *root,
5765 struct btrfs_path *path,
5766 struct btrfs_log_ctx *ctx)
5768 struct btrfs_key found_key;
5770 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5772 while (true) {
5773 struct btrfs_fs_info *fs_info = root->fs_info;
5774 const u64 last_committed = fs_info->last_trans_committed;
5775 struct extent_buffer *leaf = path->nodes[0];
5776 int slot = path->slots[0];
5777 struct btrfs_key search_key;
5778 struct inode *inode;
5779 int ret = 0;
5781 btrfs_release_path(path);
5783 search_key.objectid = found_key.offset;
5784 search_key.type = BTRFS_INODE_ITEM_KEY;
5785 search_key.offset = 0;
5786 inode = btrfs_iget(fs_info->sb, &search_key, root);
5787 if (IS_ERR(inode))
5788 return PTR_ERR(inode);
5790 if (BTRFS_I(inode)->generation > last_committed)
5791 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5792 LOG_INODE_EXISTS,
5793 0, LLONG_MAX, ctx);
5794 btrfs_add_delayed_iput(inode);
5795 if (ret)
5796 return ret;
5798 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5799 break;
5801 search_key.type = BTRFS_INODE_REF_KEY;
5802 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5803 if (ret < 0)
5804 return ret;
5806 leaf = path->nodes[0];
5807 slot = path->slots[0];
5808 if (slot >= btrfs_header_nritems(leaf)) {
5809 ret = btrfs_next_leaf(root, path);
5810 if (ret < 0)
5811 return ret;
5812 else if (ret > 0)
5813 return -ENOENT;
5814 leaf = path->nodes[0];
5815 slot = path->slots[0];
5818 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5819 if (found_key.objectid != search_key.objectid ||
5820 found_key.type != BTRFS_INODE_REF_KEY)
5821 return -ENOENT;
5823 return 0;
5826 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5827 struct btrfs_inode *inode,
5828 struct dentry *parent,
5829 struct btrfs_log_ctx *ctx)
5831 struct btrfs_root *root = inode->root;
5832 struct btrfs_fs_info *fs_info = root->fs_info;
5833 struct dentry *old_parent = NULL;
5834 struct super_block *sb = inode->vfs_inode.i_sb;
5835 int ret = 0;
5837 while (true) {
5838 if (!parent || d_really_is_negative(parent) ||
5839 sb != parent->d_sb)
5840 break;
5842 inode = BTRFS_I(d_inode(parent));
5843 if (root != inode->root)
5844 break;
5846 if (inode->generation > fs_info->last_trans_committed) {
5847 ret = btrfs_log_inode(trans, root, inode,
5848 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5849 if (ret)
5850 break;
5852 if (IS_ROOT(parent))
5853 break;
5855 parent = dget_parent(parent);
5856 dput(old_parent);
5857 old_parent = parent;
5859 dput(old_parent);
5861 return ret;
5864 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5865 struct btrfs_inode *inode,
5866 struct dentry *parent,
5867 struct btrfs_log_ctx *ctx)
5869 struct btrfs_root *root = inode->root;
5870 const u64 ino = btrfs_ino(inode);
5871 struct btrfs_path *path;
5872 struct btrfs_key search_key;
5873 int ret;
5876 * For a single hard link case, go through a fast path that does not
5877 * need to iterate the fs/subvolume tree.
5879 if (inode->vfs_inode.i_nlink < 2)
5880 return log_new_ancestors_fast(trans, inode, parent, ctx);
5882 path = btrfs_alloc_path();
5883 if (!path)
5884 return -ENOMEM;
5886 search_key.objectid = ino;
5887 search_key.type = BTRFS_INODE_REF_KEY;
5888 search_key.offset = 0;
5889 again:
5890 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5891 if (ret < 0)
5892 goto out;
5893 if (ret == 0)
5894 path->slots[0]++;
5896 while (true) {
5897 struct extent_buffer *leaf = path->nodes[0];
5898 int slot = path->slots[0];
5899 struct btrfs_key found_key;
5901 if (slot >= btrfs_header_nritems(leaf)) {
5902 ret = btrfs_next_leaf(root, path);
5903 if (ret < 0)
5904 goto out;
5905 else if (ret > 0)
5906 break;
5907 continue;
5910 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5911 if (found_key.objectid != ino ||
5912 found_key.type > BTRFS_INODE_EXTREF_KEY)
5913 break;
5916 * Don't deal with extended references because they are rare
5917 * cases and too complex to deal with (we would need to keep
5918 * track of which subitem we are processing for each item in
5919 * this loop, etc). So just return some error to fallback to
5920 * a transaction commit.
5922 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
5923 ret = -EMLINK;
5924 goto out;
5928 * Logging ancestors needs to do more searches on the fs/subvol
5929 * tree, so it releases the path as needed to avoid deadlocks.
5930 * Keep track of the last inode ref key and resume from that key
5931 * after logging all new ancestors for the current hard link.
5933 memcpy(&search_key, &found_key, sizeof(search_key));
5935 ret = log_new_ancestors(trans, root, path, ctx);
5936 if (ret)
5937 goto out;
5938 btrfs_release_path(path);
5939 goto again;
5941 ret = 0;
5942 out:
5943 btrfs_free_path(path);
5944 return ret;
5948 * helper function around btrfs_log_inode to make sure newly created
5949 * parent directories also end up in the log. A minimal inode and backref
5950 * only logging is done of any parent directories that are older than
5951 * the last committed transaction
5953 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5954 struct btrfs_inode *inode,
5955 struct dentry *parent,
5956 const loff_t start,
5957 const loff_t end,
5958 int inode_only,
5959 struct btrfs_log_ctx *ctx)
5961 struct btrfs_root *root = inode->root;
5962 struct btrfs_fs_info *fs_info = root->fs_info;
5963 struct super_block *sb;
5964 int ret = 0;
5965 u64 last_committed = fs_info->last_trans_committed;
5966 bool log_dentries = false;
5968 sb = inode->vfs_inode.i_sb;
5970 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5971 ret = 1;
5972 goto end_no_trans;
5976 * The prev transaction commit doesn't complete, we need do
5977 * full commit by ourselves.
5979 if (fs_info->last_trans_log_full_commit >
5980 fs_info->last_trans_committed) {
5981 ret = 1;
5982 goto end_no_trans;
5985 if (btrfs_root_refs(&root->root_item) == 0) {
5986 ret = 1;
5987 goto end_no_trans;
5990 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5991 last_committed);
5992 if (ret)
5993 goto end_no_trans;
5996 * Skip already logged inodes or inodes corresponding to tmpfiles
5997 * (since logging them is pointless, a link count of 0 means they
5998 * will never be accessible).
6000 if (btrfs_inode_in_log(inode, trans->transid) ||
6001 inode->vfs_inode.i_nlink == 0) {
6002 ret = BTRFS_NO_LOG_SYNC;
6003 goto end_no_trans;
6006 ret = start_log_trans(trans, root, ctx);
6007 if (ret)
6008 goto end_no_trans;
6010 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
6011 if (ret)
6012 goto end_trans;
6015 * for regular files, if its inode is already on disk, we don't
6016 * have to worry about the parents at all. This is because
6017 * we can use the last_unlink_trans field to record renames
6018 * and other fun in this file.
6020 if (S_ISREG(inode->vfs_inode.i_mode) &&
6021 inode->generation <= last_committed &&
6022 inode->last_unlink_trans <= last_committed) {
6023 ret = 0;
6024 goto end_trans;
6027 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
6028 log_dentries = true;
6031 * On unlink we must make sure all our current and old parent directory
6032 * inodes are fully logged. This is to prevent leaving dangling
6033 * directory index entries in directories that were our parents but are
6034 * not anymore. Not doing this results in old parent directory being
6035 * impossible to delete after log replay (rmdir will always fail with
6036 * error -ENOTEMPTY).
6038 * Example 1:
6040 * mkdir testdir
6041 * touch testdir/foo
6042 * ln testdir/foo testdir/bar
6043 * sync
6044 * unlink testdir/bar
6045 * xfs_io -c fsync testdir/foo
6046 * <power failure>
6047 * mount fs, triggers log replay
6049 * If we don't log the parent directory (testdir), after log replay the
6050 * directory still has an entry pointing to the file inode using the bar
6051 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6052 * the file inode has a link count of 1.
6054 * Example 2:
6056 * mkdir testdir
6057 * touch foo
6058 * ln foo testdir/foo2
6059 * ln foo testdir/foo3
6060 * sync
6061 * unlink testdir/foo3
6062 * xfs_io -c fsync foo
6063 * <power failure>
6064 * mount fs, triggers log replay
6066 * Similar as the first example, after log replay the parent directory
6067 * testdir still has an entry pointing to the inode file with name foo3
6068 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6069 * and has a link count of 2.
6071 if (inode->last_unlink_trans > last_committed) {
6072 ret = btrfs_log_all_parents(trans, inode, ctx);
6073 if (ret)
6074 goto end_trans;
6077 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6078 if (ret)
6079 goto end_trans;
6081 if (log_dentries)
6082 ret = log_new_dir_dentries(trans, root, inode, ctx);
6083 else
6084 ret = 0;
6085 end_trans:
6086 if (ret < 0) {
6087 btrfs_set_log_full_commit(trans);
6088 ret = 1;
6091 if (ret)
6092 btrfs_remove_log_ctx(root, ctx);
6093 btrfs_end_log_trans(root);
6094 end_no_trans:
6095 return ret;
6099 * it is not safe to log dentry if the chunk root has added new
6100 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6101 * If this returns 1, you must commit the transaction to safely get your
6102 * data on disk.
6104 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
6105 struct dentry *dentry,
6106 const loff_t start,
6107 const loff_t end,
6108 struct btrfs_log_ctx *ctx)
6110 struct dentry *parent = dget_parent(dentry);
6111 int ret;
6113 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6114 start, end, LOG_INODE_ALL, ctx);
6115 dput(parent);
6117 return ret;
6121 * should be called during mount to recover any replay any log trees
6122 * from the FS
6124 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6126 int ret;
6127 struct btrfs_path *path;
6128 struct btrfs_trans_handle *trans;
6129 struct btrfs_key key;
6130 struct btrfs_key found_key;
6131 struct btrfs_key tmp_key;
6132 struct btrfs_root *log;
6133 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6134 struct walk_control wc = {
6135 .process_func = process_one_buffer,
6136 .stage = LOG_WALK_PIN_ONLY,
6139 path = btrfs_alloc_path();
6140 if (!path)
6141 return -ENOMEM;
6143 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6145 trans = btrfs_start_transaction(fs_info->tree_root, 0);
6146 if (IS_ERR(trans)) {
6147 ret = PTR_ERR(trans);
6148 goto error;
6151 wc.trans = trans;
6152 wc.pin = 1;
6154 ret = walk_log_tree(trans, log_root_tree, &wc);
6155 if (ret) {
6156 btrfs_handle_fs_error(fs_info, ret,
6157 "Failed to pin buffers while recovering log root tree.");
6158 goto error;
6161 again:
6162 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6163 key.offset = (u64)-1;
6164 key.type = BTRFS_ROOT_ITEM_KEY;
6166 while (1) {
6167 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
6169 if (ret < 0) {
6170 btrfs_handle_fs_error(fs_info, ret,
6171 "Couldn't find tree log root.");
6172 goto error;
6174 if (ret > 0) {
6175 if (path->slots[0] == 0)
6176 break;
6177 path->slots[0]--;
6179 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6180 path->slots[0]);
6181 btrfs_release_path(path);
6182 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6183 break;
6185 log = btrfs_read_fs_root(log_root_tree, &found_key);
6186 if (IS_ERR(log)) {
6187 ret = PTR_ERR(log);
6188 btrfs_handle_fs_error(fs_info, ret,
6189 "Couldn't read tree log root.");
6190 goto error;
6193 tmp_key.objectid = found_key.offset;
6194 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6195 tmp_key.offset = (u64)-1;
6197 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
6198 if (IS_ERR(wc.replay_dest)) {
6199 ret = PTR_ERR(wc.replay_dest);
6202 * We didn't find the subvol, likely because it was
6203 * deleted. This is ok, simply skip this log and go to
6204 * the next one.
6206 * We need to exclude the root because we can't have
6207 * other log replays overwriting this log as we'll read
6208 * it back in a few more times. This will keep our
6209 * block from being modified, and we'll just bail for
6210 * each subsequent pass.
6212 if (ret == -ENOENT)
6213 ret = btrfs_pin_extent_for_log_replay(fs_info,
6214 log->node->start,
6215 log->node->len);
6216 free_extent_buffer(log->node);
6217 free_extent_buffer(log->commit_root);
6218 kfree(log);
6220 if (!ret)
6221 goto next;
6222 btrfs_handle_fs_error(fs_info, ret,
6223 "Couldn't read target root for tree log recovery.");
6224 goto error;
6227 wc.replay_dest->log_root = log;
6228 btrfs_record_root_in_trans(trans, wc.replay_dest);
6229 ret = walk_log_tree(trans, log, &wc);
6231 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6232 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6233 path);
6236 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6237 struct btrfs_root *root = wc.replay_dest;
6239 btrfs_release_path(path);
6242 * We have just replayed everything, and the highest
6243 * objectid of fs roots probably has changed in case
6244 * some inode_item's got replayed.
6246 * root->objectid_mutex is not acquired as log replay
6247 * could only happen during mount.
6249 ret = btrfs_find_highest_objectid(root,
6250 &root->highest_objectid);
6253 wc.replay_dest->log_root = NULL;
6254 free_extent_buffer(log->node);
6255 free_extent_buffer(log->commit_root);
6256 kfree(log);
6258 if (ret)
6259 goto error;
6260 next:
6261 if (found_key.offset == 0)
6262 break;
6263 key.offset = found_key.offset - 1;
6265 btrfs_release_path(path);
6267 /* step one is to pin it all, step two is to replay just inodes */
6268 if (wc.pin) {
6269 wc.pin = 0;
6270 wc.process_func = replay_one_buffer;
6271 wc.stage = LOG_WALK_REPLAY_INODES;
6272 goto again;
6274 /* step three is to replay everything */
6275 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6276 wc.stage++;
6277 goto again;
6280 btrfs_free_path(path);
6282 /* step 4: commit the transaction, which also unpins the blocks */
6283 ret = btrfs_commit_transaction(trans);
6284 if (ret)
6285 return ret;
6287 free_extent_buffer(log_root_tree->node);
6288 log_root_tree->log_root = NULL;
6289 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
6290 kfree(log_root_tree);
6292 return 0;
6293 error:
6294 if (wc.trans)
6295 btrfs_end_transaction(wc.trans);
6296 btrfs_free_path(path);
6297 return ret;
6301 * there are some corner cases where we want to force a full
6302 * commit instead of allowing a directory to be logged.
6304 * They revolve around files there were unlinked from the directory, and
6305 * this function updates the parent directory so that a full commit is
6306 * properly done if it is fsync'd later after the unlinks are done.
6308 * Must be called before the unlink operations (updates to the subvolume tree,
6309 * inodes, etc) are done.
6311 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6312 struct btrfs_inode *dir, struct btrfs_inode *inode,
6313 int for_rename)
6316 * when we're logging a file, if it hasn't been renamed
6317 * or unlinked, and its inode is fully committed on disk,
6318 * we don't have to worry about walking up the directory chain
6319 * to log its parents.
6321 * So, we use the last_unlink_trans field to put this transid
6322 * into the file. When the file is logged we check it and
6323 * don't log the parents if the file is fully on disk.
6325 mutex_lock(&inode->log_mutex);
6326 inode->last_unlink_trans = trans->transid;
6327 mutex_unlock(&inode->log_mutex);
6330 * if this directory was already logged any new
6331 * names for this file/dir will get recorded
6333 if (dir->logged_trans == trans->transid)
6334 return;
6337 * if the inode we're about to unlink was logged,
6338 * the log will be properly updated for any new names
6340 if (inode->logged_trans == trans->transid)
6341 return;
6344 * when renaming files across directories, if the directory
6345 * there we're unlinking from gets fsync'd later on, there's
6346 * no way to find the destination directory later and fsync it
6347 * properly. So, we have to be conservative and force commits
6348 * so the new name gets discovered.
6350 if (for_rename)
6351 goto record;
6353 /* we can safely do the unlink without any special recording */
6354 return;
6356 record:
6357 mutex_lock(&dir->log_mutex);
6358 dir->last_unlink_trans = trans->transid;
6359 mutex_unlock(&dir->log_mutex);
6363 * Make sure that if someone attempts to fsync the parent directory of a deleted
6364 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6365 * that after replaying the log tree of the parent directory's root we will not
6366 * see the snapshot anymore and at log replay time we will not see any log tree
6367 * corresponding to the deleted snapshot's root, which could lead to replaying
6368 * it after replaying the log tree of the parent directory (which would replay
6369 * the snapshot delete operation).
6371 * Must be called before the actual snapshot destroy operation (updates to the
6372 * parent root and tree of tree roots trees, etc) are done.
6374 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6375 struct btrfs_inode *dir)
6377 mutex_lock(&dir->log_mutex);
6378 dir->last_unlink_trans = trans->transid;
6379 mutex_unlock(&dir->log_mutex);
6383 * Call this after adding a new name for a file and it will properly
6384 * update the log to reflect the new name.
6386 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6387 * true (because it's not used).
6389 * Return value depends on whether @sync_log is true or false.
6390 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6391 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6392 * otherwise.
6393 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6394 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6395 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6396 * committed (without attempting to sync the log).
6398 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6399 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6400 struct dentry *parent,
6401 bool sync_log, struct btrfs_log_ctx *ctx)
6403 struct btrfs_fs_info *fs_info = trans->fs_info;
6404 int ret;
6407 * this will force the logging code to walk the dentry chain
6408 * up for the file
6410 if (!S_ISDIR(inode->vfs_inode.i_mode))
6411 inode->last_unlink_trans = trans->transid;
6414 * if this inode hasn't been logged and directory we're renaming it
6415 * from hasn't been logged, we don't need to log it
6417 if (inode->logged_trans <= fs_info->last_trans_committed &&
6418 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6419 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6420 BTRFS_DONT_NEED_LOG_SYNC;
6422 if (sync_log) {
6423 struct btrfs_log_ctx ctx2;
6425 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6426 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6427 LOG_INODE_EXISTS, &ctx2);
6428 if (ret == BTRFS_NO_LOG_SYNC)
6429 return BTRFS_DONT_NEED_TRANS_COMMIT;
6430 else if (ret)
6431 return BTRFS_NEED_TRANS_COMMIT;
6433 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6434 if (ret)
6435 return BTRFS_NEED_TRANS_COMMIT;
6436 return BTRFS_DONT_NEED_TRANS_COMMIT;
6439 ASSERT(ctx);
6440 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6441 LOG_INODE_EXISTS, ctx);
6442 if (ret == BTRFS_NO_LOG_SYNC)
6443 return BTRFS_DONT_NEED_LOG_SYNC;
6444 else if (ret)
6445 return BTRFS_NEED_TRANS_COMMIT;
6447 return BTRFS_NEED_LOG_SYNC;