fanotify: merge duplicate events on parent and child
[linux/fpc-iii.git] / fs / f2fs / node.c
blobe58c4c628834660bae4c471ed1570f52ee6e1df3
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
31 * Check whether the given nid is within node id range.
33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
41 return 0;
44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
52 si_meminfo(&val);
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66 PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
97 return res;
100 static void clear_node_page_dirty(struct page *page)
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
107 ClearPageUptodate(page);
110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
112 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
139 set_to_next_nat(nm_i, nid);
141 return dst_page;
144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
146 struct nat_entry *new;
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
156 return new;
159 static void __free_nat_entry(struct nat_entry *e)
161 kmem_cache_free(nat_entry_slab, e);
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
180 nm_i->nat_cnt++;
181 return ne;
184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
186 struct nat_entry *ne;
188 ne = radix_tree_lookup(&nm_i->nat_root, n);
190 /* for recent accessed nat entry, move it to tail of lru list */
191 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 spin_lock(&nm_i->nat_list_lock);
193 if (!list_empty(&ne->list))
194 list_move_tail(&ne->list, &nm_i->nat_entries);
195 spin_unlock(&nm_i->nat_list_lock);
198 return ne;
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 nid_t start, unsigned int nr, struct nat_entry **ep)
204 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
209 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210 nm_i->nat_cnt--;
211 __free_nat_entry(e);
214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215 struct nat_entry *ne)
217 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218 struct nat_entry_set *head;
220 head = radix_tree_lookup(&nm_i->nat_set_root, set);
221 if (!head) {
222 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
224 INIT_LIST_HEAD(&head->entry_list);
225 INIT_LIST_HEAD(&head->set_list);
226 head->set = set;
227 head->entry_cnt = 0;
228 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
230 return head;
233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234 struct nat_entry *ne)
236 struct nat_entry_set *head;
237 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
239 if (!new_ne)
240 head = __grab_nat_entry_set(nm_i, ne);
243 * update entry_cnt in below condition:
244 * 1. update NEW_ADDR to valid block address;
245 * 2. update old block address to new one;
247 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248 !get_nat_flag(ne, IS_DIRTY)))
249 head->entry_cnt++;
251 set_nat_flag(ne, IS_PREALLOC, new_ne);
253 if (get_nat_flag(ne, IS_DIRTY))
254 goto refresh_list;
256 nm_i->dirty_nat_cnt++;
257 set_nat_flag(ne, IS_DIRTY, true);
258 refresh_list:
259 spin_lock(&nm_i->nat_list_lock);
260 if (new_ne)
261 list_del_init(&ne->list);
262 else
263 list_move_tail(&ne->list, &head->entry_list);
264 spin_unlock(&nm_i->nat_list_lock);
267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 struct nat_entry_set *set, struct nat_entry *ne)
270 spin_lock(&nm_i->nat_list_lock);
271 list_move_tail(&ne->list, &nm_i->nat_entries);
272 spin_unlock(&nm_i->nat_list_lock);
274 set_nat_flag(ne, IS_DIRTY, false);
275 set->entry_cnt--;
276 nm_i->dirty_nat_cnt--;
279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280 nid_t start, unsigned int nr, struct nat_entry_set **ep)
282 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283 start, nr);
286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
288 return NODE_MAPPING(sbi) == page->mapping &&
289 IS_DNODE(page) && is_cold_node(page);
292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
294 spin_lock_init(&sbi->fsync_node_lock);
295 INIT_LIST_HEAD(&sbi->fsync_node_list);
296 sbi->fsync_seg_id = 0;
297 sbi->fsync_node_num = 0;
300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301 struct page *page)
303 struct fsync_node_entry *fn;
304 unsigned long flags;
305 unsigned int seq_id;
307 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
309 get_page(page);
310 fn->page = page;
311 INIT_LIST_HEAD(&fn->list);
313 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314 list_add_tail(&fn->list, &sbi->fsync_node_list);
315 fn->seq_id = sbi->fsync_seg_id++;
316 seq_id = fn->seq_id;
317 sbi->fsync_node_num++;
318 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
320 return seq_id;
323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
325 struct fsync_node_entry *fn;
326 unsigned long flags;
328 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330 if (fn->page == page) {
331 list_del(&fn->list);
332 sbi->fsync_node_num--;
333 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334 kmem_cache_free(fsync_node_entry_slab, fn);
335 put_page(page);
336 return;
339 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340 f2fs_bug_on(sbi, 1);
343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
345 unsigned long flags;
347 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348 sbi->fsync_seg_id = 0;
349 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
354 struct f2fs_nm_info *nm_i = NM_I(sbi);
355 struct nat_entry *e;
356 bool need = false;
358 down_read(&nm_i->nat_tree_lock);
359 e = __lookup_nat_cache(nm_i, nid);
360 if (e) {
361 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362 !get_nat_flag(e, HAS_FSYNCED_INODE))
363 need = true;
365 up_read(&nm_i->nat_tree_lock);
366 return need;
369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
371 struct f2fs_nm_info *nm_i = NM_I(sbi);
372 struct nat_entry *e;
373 bool is_cp = true;
375 down_read(&nm_i->nat_tree_lock);
376 e = __lookup_nat_cache(nm_i, nid);
377 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378 is_cp = false;
379 up_read(&nm_i->nat_tree_lock);
380 return is_cp;
383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
385 struct f2fs_nm_info *nm_i = NM_I(sbi);
386 struct nat_entry *e;
387 bool need_update = true;
389 down_read(&nm_i->nat_tree_lock);
390 e = __lookup_nat_cache(nm_i, ino);
391 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392 (get_nat_flag(e, IS_CHECKPOINTED) ||
393 get_nat_flag(e, HAS_FSYNCED_INODE)))
394 need_update = false;
395 up_read(&nm_i->nat_tree_lock);
396 return need_update;
399 /* must be locked by nat_tree_lock */
400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401 struct f2fs_nat_entry *ne)
403 struct f2fs_nm_info *nm_i = NM_I(sbi);
404 struct nat_entry *new, *e;
406 new = __alloc_nat_entry(nid, false);
407 if (!new)
408 return;
410 down_write(&nm_i->nat_tree_lock);
411 e = __lookup_nat_cache(nm_i, nid);
412 if (!e)
413 e = __init_nat_entry(nm_i, new, ne, false);
414 else
415 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416 nat_get_blkaddr(e) !=
417 le32_to_cpu(ne->block_addr) ||
418 nat_get_version(e) != ne->version);
419 up_write(&nm_i->nat_tree_lock);
420 if (e != new)
421 __free_nat_entry(new);
424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425 block_t new_blkaddr, bool fsync_done)
427 struct f2fs_nm_info *nm_i = NM_I(sbi);
428 struct nat_entry *e;
429 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
431 down_write(&nm_i->nat_tree_lock);
432 e = __lookup_nat_cache(nm_i, ni->nid);
433 if (!e) {
434 e = __init_nat_entry(nm_i, new, NULL, true);
435 copy_node_info(&e->ni, ni);
436 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437 } else if (new_blkaddr == NEW_ADDR) {
439 * when nid is reallocated,
440 * previous nat entry can be remained in nat cache.
441 * So, reinitialize it with new information.
443 copy_node_info(&e->ni, ni);
444 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
446 /* let's free early to reduce memory consumption */
447 if (e != new)
448 __free_nat_entry(new);
450 /* sanity check */
451 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453 new_blkaddr == NULL_ADDR);
454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455 new_blkaddr == NEW_ADDR);
456 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457 new_blkaddr == NEW_ADDR);
459 /* increment version no as node is removed */
460 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461 unsigned char version = nat_get_version(e);
462 nat_set_version(e, inc_node_version(version));
465 /* change address */
466 nat_set_blkaddr(e, new_blkaddr);
467 if (!__is_valid_data_blkaddr(new_blkaddr))
468 set_nat_flag(e, IS_CHECKPOINTED, false);
469 __set_nat_cache_dirty(nm_i, e);
471 /* update fsync_mark if its inode nat entry is still alive */
472 if (ni->nid != ni->ino)
473 e = __lookup_nat_cache(nm_i, ni->ino);
474 if (e) {
475 if (fsync_done && ni->nid == ni->ino)
476 set_nat_flag(e, HAS_FSYNCED_INODE, true);
477 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
479 up_write(&nm_i->nat_tree_lock);
482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
484 struct f2fs_nm_info *nm_i = NM_I(sbi);
485 int nr = nr_shrink;
487 if (!down_write_trylock(&nm_i->nat_tree_lock))
488 return 0;
490 spin_lock(&nm_i->nat_list_lock);
491 while (nr_shrink) {
492 struct nat_entry *ne;
494 if (list_empty(&nm_i->nat_entries))
495 break;
497 ne = list_first_entry(&nm_i->nat_entries,
498 struct nat_entry, list);
499 list_del(&ne->list);
500 spin_unlock(&nm_i->nat_list_lock);
502 __del_from_nat_cache(nm_i, ne);
503 nr_shrink--;
505 spin_lock(&nm_i->nat_list_lock);
507 spin_unlock(&nm_i->nat_list_lock);
509 up_write(&nm_i->nat_tree_lock);
510 return nr - nr_shrink;
514 * This function always returns success
516 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
517 struct node_info *ni)
519 struct f2fs_nm_info *nm_i = NM_I(sbi);
520 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
521 struct f2fs_journal *journal = curseg->journal;
522 nid_t start_nid = START_NID(nid);
523 struct f2fs_nat_block *nat_blk;
524 struct page *page = NULL;
525 struct f2fs_nat_entry ne;
526 struct nat_entry *e;
527 pgoff_t index;
528 block_t blkaddr;
529 int i;
531 ni->nid = nid;
533 /* Check nat cache */
534 down_read(&nm_i->nat_tree_lock);
535 e = __lookup_nat_cache(nm_i, nid);
536 if (e) {
537 ni->ino = nat_get_ino(e);
538 ni->blk_addr = nat_get_blkaddr(e);
539 ni->version = nat_get_version(e);
540 up_read(&nm_i->nat_tree_lock);
541 return 0;
544 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546 /* Check current segment summary */
547 down_read(&curseg->journal_rwsem);
548 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
549 if (i >= 0) {
550 ne = nat_in_journal(journal, i);
551 node_info_from_raw_nat(ni, &ne);
553 up_read(&curseg->journal_rwsem);
554 if (i >= 0) {
555 up_read(&nm_i->nat_tree_lock);
556 goto cache;
559 /* Fill node_info from nat page */
560 index = current_nat_addr(sbi, nid);
561 up_read(&nm_i->nat_tree_lock);
563 page = f2fs_get_meta_page(sbi, index);
564 if (IS_ERR(page))
565 return PTR_ERR(page);
567 nat_blk = (struct f2fs_nat_block *)page_address(page);
568 ne = nat_blk->entries[nid - start_nid];
569 node_info_from_raw_nat(ni, &ne);
570 f2fs_put_page(page, 1);
571 cache:
572 blkaddr = le32_to_cpu(ne.block_addr);
573 if (__is_valid_data_blkaddr(blkaddr) &&
574 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
575 return -EFAULT;
577 /* cache nat entry */
578 cache_nat_entry(sbi, nid, &ne);
579 return 0;
583 * readahead MAX_RA_NODE number of node pages.
585 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
587 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
588 struct blk_plug plug;
589 int i, end;
590 nid_t nid;
592 blk_start_plug(&plug);
594 /* Then, try readahead for siblings of the desired node */
595 end = start + n;
596 end = min(end, NIDS_PER_BLOCK);
597 for (i = start; i < end; i++) {
598 nid = get_nid(parent, i, false);
599 f2fs_ra_node_page(sbi, nid);
602 blk_finish_plug(&plug);
605 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
607 const long direct_index = ADDRS_PER_INODE(dn->inode);
608 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
609 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
610 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
611 int cur_level = dn->cur_level;
612 int max_level = dn->max_level;
613 pgoff_t base = 0;
615 if (!dn->max_level)
616 return pgofs + 1;
618 while (max_level-- > cur_level)
619 skipped_unit *= NIDS_PER_BLOCK;
621 switch (dn->max_level) {
622 case 3:
623 base += 2 * indirect_blks;
624 /* fall through */
625 case 2:
626 base += 2 * direct_blks;
627 /* fall through */
628 case 1:
629 base += direct_index;
630 break;
631 default:
632 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
635 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
639 * The maximum depth is four.
640 * Offset[0] will have raw inode offset.
642 static int get_node_path(struct inode *inode, long block,
643 int offset[4], unsigned int noffset[4])
645 const long direct_index = ADDRS_PER_INODE(inode);
646 const long direct_blks = ADDRS_PER_BLOCK(inode);
647 const long dptrs_per_blk = NIDS_PER_BLOCK;
648 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
649 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
650 int n = 0;
651 int level = 0;
653 noffset[0] = 0;
655 if (block < direct_index) {
656 offset[n] = block;
657 goto got;
659 block -= direct_index;
660 if (block < direct_blks) {
661 offset[n++] = NODE_DIR1_BLOCK;
662 noffset[n] = 1;
663 offset[n] = block;
664 level = 1;
665 goto got;
667 block -= direct_blks;
668 if (block < direct_blks) {
669 offset[n++] = NODE_DIR2_BLOCK;
670 noffset[n] = 2;
671 offset[n] = block;
672 level = 1;
673 goto got;
675 block -= direct_blks;
676 if (block < indirect_blks) {
677 offset[n++] = NODE_IND1_BLOCK;
678 noffset[n] = 3;
679 offset[n++] = block / direct_blks;
680 noffset[n] = 4 + offset[n - 1];
681 offset[n] = block % direct_blks;
682 level = 2;
683 goto got;
685 block -= indirect_blks;
686 if (block < indirect_blks) {
687 offset[n++] = NODE_IND2_BLOCK;
688 noffset[n] = 4 + dptrs_per_blk;
689 offset[n++] = block / direct_blks;
690 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
691 offset[n] = block % direct_blks;
692 level = 2;
693 goto got;
695 block -= indirect_blks;
696 if (block < dindirect_blks) {
697 offset[n++] = NODE_DIND_BLOCK;
698 noffset[n] = 5 + (dptrs_per_blk * 2);
699 offset[n++] = block / indirect_blks;
700 noffset[n] = 6 + (dptrs_per_blk * 2) +
701 offset[n - 1] * (dptrs_per_blk + 1);
702 offset[n++] = (block / direct_blks) % dptrs_per_blk;
703 noffset[n] = 7 + (dptrs_per_blk * 2) +
704 offset[n - 2] * (dptrs_per_blk + 1) +
705 offset[n - 1];
706 offset[n] = block % direct_blks;
707 level = 3;
708 goto got;
709 } else {
710 return -E2BIG;
712 got:
713 return level;
717 * Caller should call f2fs_put_dnode(dn).
718 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
719 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
720 * In the case of RDONLY_NODE, we don't need to care about mutex.
722 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
724 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
725 struct page *npage[4];
726 struct page *parent = NULL;
727 int offset[4];
728 unsigned int noffset[4];
729 nid_t nids[4];
730 int level, i = 0;
731 int err = 0;
733 level = get_node_path(dn->inode, index, offset, noffset);
734 if (level < 0)
735 return level;
737 nids[0] = dn->inode->i_ino;
738 npage[0] = dn->inode_page;
740 if (!npage[0]) {
741 npage[0] = f2fs_get_node_page(sbi, nids[0]);
742 if (IS_ERR(npage[0]))
743 return PTR_ERR(npage[0]);
746 /* if inline_data is set, should not report any block indices */
747 if (f2fs_has_inline_data(dn->inode) && index) {
748 err = -ENOENT;
749 f2fs_put_page(npage[0], 1);
750 goto release_out;
753 parent = npage[0];
754 if (level != 0)
755 nids[1] = get_nid(parent, offset[0], true);
756 dn->inode_page = npage[0];
757 dn->inode_page_locked = true;
759 /* get indirect or direct nodes */
760 for (i = 1; i <= level; i++) {
761 bool done = false;
763 if (!nids[i] && mode == ALLOC_NODE) {
764 /* alloc new node */
765 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
766 err = -ENOSPC;
767 goto release_pages;
770 dn->nid = nids[i];
771 npage[i] = f2fs_new_node_page(dn, noffset[i]);
772 if (IS_ERR(npage[i])) {
773 f2fs_alloc_nid_failed(sbi, nids[i]);
774 err = PTR_ERR(npage[i]);
775 goto release_pages;
778 set_nid(parent, offset[i - 1], nids[i], i == 1);
779 f2fs_alloc_nid_done(sbi, nids[i]);
780 done = true;
781 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
782 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
783 if (IS_ERR(npage[i])) {
784 err = PTR_ERR(npage[i]);
785 goto release_pages;
787 done = true;
789 if (i == 1) {
790 dn->inode_page_locked = false;
791 unlock_page(parent);
792 } else {
793 f2fs_put_page(parent, 1);
796 if (!done) {
797 npage[i] = f2fs_get_node_page(sbi, nids[i]);
798 if (IS_ERR(npage[i])) {
799 err = PTR_ERR(npage[i]);
800 f2fs_put_page(npage[0], 0);
801 goto release_out;
804 if (i < level) {
805 parent = npage[i];
806 nids[i + 1] = get_nid(parent, offset[i], false);
809 dn->nid = nids[level];
810 dn->ofs_in_node = offset[level];
811 dn->node_page = npage[level];
812 dn->data_blkaddr = datablock_addr(dn->inode,
813 dn->node_page, dn->ofs_in_node);
814 return 0;
816 release_pages:
817 f2fs_put_page(parent, 1);
818 if (i > 1)
819 f2fs_put_page(npage[0], 0);
820 release_out:
821 dn->inode_page = NULL;
822 dn->node_page = NULL;
823 if (err == -ENOENT) {
824 dn->cur_level = i;
825 dn->max_level = level;
826 dn->ofs_in_node = offset[level];
828 return err;
831 static int truncate_node(struct dnode_of_data *dn)
833 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
834 struct node_info ni;
835 int err;
836 pgoff_t index;
838 err = f2fs_get_node_info(sbi, dn->nid, &ni);
839 if (err)
840 return err;
842 /* Deallocate node address */
843 f2fs_invalidate_blocks(sbi, ni.blk_addr);
844 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
845 set_node_addr(sbi, &ni, NULL_ADDR, false);
847 if (dn->nid == dn->inode->i_ino) {
848 f2fs_remove_orphan_inode(sbi, dn->nid);
849 dec_valid_inode_count(sbi);
850 f2fs_inode_synced(dn->inode);
853 clear_node_page_dirty(dn->node_page);
854 set_sbi_flag(sbi, SBI_IS_DIRTY);
856 index = dn->node_page->index;
857 f2fs_put_page(dn->node_page, 1);
859 invalidate_mapping_pages(NODE_MAPPING(sbi),
860 index, index);
862 dn->node_page = NULL;
863 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
865 return 0;
868 static int truncate_dnode(struct dnode_of_data *dn)
870 struct page *page;
871 int err;
873 if (dn->nid == 0)
874 return 1;
876 /* get direct node */
877 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
878 if (PTR_ERR(page) == -ENOENT)
879 return 1;
880 else if (IS_ERR(page))
881 return PTR_ERR(page);
883 /* Make dnode_of_data for parameter */
884 dn->node_page = page;
885 dn->ofs_in_node = 0;
886 f2fs_truncate_data_blocks(dn);
887 err = truncate_node(dn);
888 if (err)
889 return err;
891 return 1;
894 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
895 int ofs, int depth)
897 struct dnode_of_data rdn = *dn;
898 struct page *page;
899 struct f2fs_node *rn;
900 nid_t child_nid;
901 unsigned int child_nofs;
902 int freed = 0;
903 int i, ret;
905 if (dn->nid == 0)
906 return NIDS_PER_BLOCK + 1;
908 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
910 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
911 if (IS_ERR(page)) {
912 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
913 return PTR_ERR(page);
916 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
918 rn = F2FS_NODE(page);
919 if (depth < 3) {
920 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
921 child_nid = le32_to_cpu(rn->in.nid[i]);
922 if (child_nid == 0)
923 continue;
924 rdn.nid = child_nid;
925 ret = truncate_dnode(&rdn);
926 if (ret < 0)
927 goto out_err;
928 if (set_nid(page, i, 0, false))
929 dn->node_changed = true;
931 } else {
932 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
933 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
934 child_nid = le32_to_cpu(rn->in.nid[i]);
935 if (child_nid == 0) {
936 child_nofs += NIDS_PER_BLOCK + 1;
937 continue;
939 rdn.nid = child_nid;
940 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
941 if (ret == (NIDS_PER_BLOCK + 1)) {
942 if (set_nid(page, i, 0, false))
943 dn->node_changed = true;
944 child_nofs += ret;
945 } else if (ret < 0 && ret != -ENOENT) {
946 goto out_err;
949 freed = child_nofs;
952 if (!ofs) {
953 /* remove current indirect node */
954 dn->node_page = page;
955 ret = truncate_node(dn);
956 if (ret)
957 goto out_err;
958 freed++;
959 } else {
960 f2fs_put_page(page, 1);
962 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
963 return freed;
965 out_err:
966 f2fs_put_page(page, 1);
967 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
968 return ret;
971 static int truncate_partial_nodes(struct dnode_of_data *dn,
972 struct f2fs_inode *ri, int *offset, int depth)
974 struct page *pages[2];
975 nid_t nid[3];
976 nid_t child_nid;
977 int err = 0;
978 int i;
979 int idx = depth - 2;
981 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
982 if (!nid[0])
983 return 0;
985 /* get indirect nodes in the path */
986 for (i = 0; i < idx + 1; i++) {
987 /* reference count'll be increased */
988 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
989 if (IS_ERR(pages[i])) {
990 err = PTR_ERR(pages[i]);
991 idx = i - 1;
992 goto fail;
994 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
997 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
999 /* free direct nodes linked to a partial indirect node */
1000 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1001 child_nid = get_nid(pages[idx], i, false);
1002 if (!child_nid)
1003 continue;
1004 dn->nid = child_nid;
1005 err = truncate_dnode(dn);
1006 if (err < 0)
1007 goto fail;
1008 if (set_nid(pages[idx], i, 0, false))
1009 dn->node_changed = true;
1012 if (offset[idx + 1] == 0) {
1013 dn->node_page = pages[idx];
1014 dn->nid = nid[idx];
1015 err = truncate_node(dn);
1016 if (err)
1017 goto fail;
1018 } else {
1019 f2fs_put_page(pages[idx], 1);
1021 offset[idx]++;
1022 offset[idx + 1] = 0;
1023 idx--;
1024 fail:
1025 for (i = idx; i >= 0; i--)
1026 f2fs_put_page(pages[i], 1);
1028 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1030 return err;
1034 * All the block addresses of data and nodes should be nullified.
1036 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1038 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039 int err = 0, cont = 1;
1040 int level, offset[4], noffset[4];
1041 unsigned int nofs = 0;
1042 struct f2fs_inode *ri;
1043 struct dnode_of_data dn;
1044 struct page *page;
1046 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1048 level = get_node_path(inode, from, offset, noffset);
1049 if (level < 0)
1050 return level;
1052 page = f2fs_get_node_page(sbi, inode->i_ino);
1053 if (IS_ERR(page)) {
1054 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1055 return PTR_ERR(page);
1058 set_new_dnode(&dn, inode, page, NULL, 0);
1059 unlock_page(page);
1061 ri = F2FS_INODE(page);
1062 switch (level) {
1063 case 0:
1064 case 1:
1065 nofs = noffset[1];
1066 break;
1067 case 2:
1068 nofs = noffset[1];
1069 if (!offset[level - 1])
1070 goto skip_partial;
1071 err = truncate_partial_nodes(&dn, ri, offset, level);
1072 if (err < 0 && err != -ENOENT)
1073 goto fail;
1074 nofs += 1 + NIDS_PER_BLOCK;
1075 break;
1076 case 3:
1077 nofs = 5 + 2 * NIDS_PER_BLOCK;
1078 if (!offset[level - 1])
1079 goto skip_partial;
1080 err = truncate_partial_nodes(&dn, ri, offset, level);
1081 if (err < 0 && err != -ENOENT)
1082 goto fail;
1083 break;
1084 default:
1085 BUG();
1088 skip_partial:
1089 while (cont) {
1090 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1091 switch (offset[0]) {
1092 case NODE_DIR1_BLOCK:
1093 case NODE_DIR2_BLOCK:
1094 err = truncate_dnode(&dn);
1095 break;
1097 case NODE_IND1_BLOCK:
1098 case NODE_IND2_BLOCK:
1099 err = truncate_nodes(&dn, nofs, offset[1], 2);
1100 break;
1102 case NODE_DIND_BLOCK:
1103 err = truncate_nodes(&dn, nofs, offset[1], 3);
1104 cont = 0;
1105 break;
1107 default:
1108 BUG();
1110 if (err < 0 && err != -ENOENT)
1111 goto fail;
1112 if (offset[1] == 0 &&
1113 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1114 lock_page(page);
1115 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1116 f2fs_wait_on_page_writeback(page, NODE, true, true);
1117 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1118 set_page_dirty(page);
1119 unlock_page(page);
1121 offset[1] = 0;
1122 offset[0]++;
1123 nofs += err;
1125 fail:
1126 f2fs_put_page(page, 0);
1127 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1128 return err > 0 ? 0 : err;
1131 /* caller must lock inode page */
1132 int f2fs_truncate_xattr_node(struct inode *inode)
1134 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1135 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1136 struct dnode_of_data dn;
1137 struct page *npage;
1138 int err;
1140 if (!nid)
1141 return 0;
1143 npage = f2fs_get_node_page(sbi, nid);
1144 if (IS_ERR(npage))
1145 return PTR_ERR(npage);
1147 set_new_dnode(&dn, inode, NULL, npage, nid);
1148 err = truncate_node(&dn);
1149 if (err) {
1150 f2fs_put_page(npage, 1);
1151 return err;
1154 f2fs_i_xnid_write(inode, 0);
1156 return 0;
1160 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1161 * f2fs_unlock_op().
1163 int f2fs_remove_inode_page(struct inode *inode)
1165 struct dnode_of_data dn;
1166 int err;
1168 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1169 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1170 if (err)
1171 return err;
1173 err = f2fs_truncate_xattr_node(inode);
1174 if (err) {
1175 f2fs_put_dnode(&dn);
1176 return err;
1179 /* remove potential inline_data blocks */
1180 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1181 S_ISLNK(inode->i_mode))
1182 f2fs_truncate_data_blocks_range(&dn, 1);
1184 /* 0 is possible, after f2fs_new_inode() has failed */
1185 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1186 f2fs_put_dnode(&dn);
1187 return -EIO;
1190 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1191 f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192 inode->i_ino, (unsigned long long)inode->i_blocks);
1193 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1196 /* will put inode & node pages */
1197 err = truncate_node(&dn);
1198 if (err) {
1199 f2fs_put_dnode(&dn);
1200 return err;
1202 return 0;
1205 struct page *f2fs_new_inode_page(struct inode *inode)
1207 struct dnode_of_data dn;
1209 /* allocate inode page for new inode */
1210 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1212 /* caller should f2fs_put_page(page, 1); */
1213 return f2fs_new_node_page(&dn, 0);
1216 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1218 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1219 struct node_info new_ni;
1220 struct page *page;
1221 int err;
1223 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224 return ERR_PTR(-EPERM);
1226 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1227 if (!page)
1228 return ERR_PTR(-ENOMEM);
1230 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1231 goto fail;
1233 #ifdef CONFIG_F2FS_CHECK_FS
1234 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1235 if (err) {
1236 dec_valid_node_count(sbi, dn->inode, !ofs);
1237 goto fail;
1239 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1240 #endif
1241 new_ni.nid = dn->nid;
1242 new_ni.ino = dn->inode->i_ino;
1243 new_ni.blk_addr = NULL_ADDR;
1244 new_ni.flag = 0;
1245 new_ni.version = 0;
1246 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1248 f2fs_wait_on_page_writeback(page, NODE, true, true);
1249 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1250 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1251 if (!PageUptodate(page))
1252 SetPageUptodate(page);
1253 if (set_page_dirty(page))
1254 dn->node_changed = true;
1256 if (f2fs_has_xattr_block(ofs))
1257 f2fs_i_xnid_write(dn->inode, dn->nid);
1259 if (ofs == 0)
1260 inc_valid_inode_count(sbi);
1261 return page;
1263 fail:
1264 clear_node_page_dirty(page);
1265 f2fs_put_page(page, 1);
1266 return ERR_PTR(err);
1270 * Caller should do after getting the following values.
1271 * 0: f2fs_put_page(page, 0)
1272 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1274 static int read_node_page(struct page *page, int op_flags)
1276 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1277 struct node_info ni;
1278 struct f2fs_io_info fio = {
1279 .sbi = sbi,
1280 .type = NODE,
1281 .op = REQ_OP_READ,
1282 .op_flags = op_flags,
1283 .page = page,
1284 .encrypted_page = NULL,
1286 int err;
1288 if (PageUptodate(page)) {
1289 if (!f2fs_inode_chksum_verify(sbi, page)) {
1290 ClearPageUptodate(page);
1291 return -EFSBADCRC;
1293 return LOCKED_PAGE;
1296 err = f2fs_get_node_info(sbi, page->index, &ni);
1297 if (err)
1298 return err;
1300 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1301 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1302 ClearPageUptodate(page);
1303 return -ENOENT;
1306 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1307 return f2fs_submit_page_bio(&fio);
1311 * Readahead a node page
1313 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1315 struct page *apage;
1316 int err;
1318 if (!nid)
1319 return;
1320 if (f2fs_check_nid_range(sbi, nid))
1321 return;
1323 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1324 if (apage)
1325 return;
1327 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1328 if (!apage)
1329 return;
1331 err = read_node_page(apage, REQ_RAHEAD);
1332 f2fs_put_page(apage, err ? 1 : 0);
1335 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1336 struct page *parent, int start)
1338 struct page *page;
1339 int err;
1341 if (!nid)
1342 return ERR_PTR(-ENOENT);
1343 if (f2fs_check_nid_range(sbi, nid))
1344 return ERR_PTR(-EINVAL);
1345 repeat:
1346 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1347 if (!page)
1348 return ERR_PTR(-ENOMEM);
1350 err = read_node_page(page, 0);
1351 if (err < 0) {
1352 f2fs_put_page(page, 1);
1353 return ERR_PTR(err);
1354 } else if (err == LOCKED_PAGE) {
1355 err = 0;
1356 goto page_hit;
1359 if (parent)
1360 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1362 lock_page(page);
1364 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1365 f2fs_put_page(page, 1);
1366 goto repeat;
1369 if (unlikely(!PageUptodate(page))) {
1370 err = -EIO;
1371 goto out_err;
1374 if (!f2fs_inode_chksum_verify(sbi, page)) {
1375 err = -EFSBADCRC;
1376 goto out_err;
1378 page_hit:
1379 if(unlikely(nid != nid_of_node(page))) {
1380 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381 nid, nid_of_node(page), ino_of_node(page),
1382 ofs_of_node(page), cpver_of_node(page),
1383 next_blkaddr_of_node(page));
1384 err = -EINVAL;
1385 out_err:
1386 ClearPageUptodate(page);
1387 f2fs_put_page(page, 1);
1388 return ERR_PTR(err);
1390 return page;
1393 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1395 return __get_node_page(sbi, nid, NULL, 0);
1398 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1400 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1401 nid_t nid = get_nid(parent, start, false);
1403 return __get_node_page(sbi, nid, parent, start);
1406 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1408 struct inode *inode;
1409 struct page *page;
1410 int ret;
1412 /* should flush inline_data before evict_inode */
1413 inode = ilookup(sbi->sb, ino);
1414 if (!inode)
1415 return;
1417 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1418 FGP_LOCK|FGP_NOWAIT, 0);
1419 if (!page)
1420 goto iput_out;
1422 if (!PageUptodate(page))
1423 goto page_out;
1425 if (!PageDirty(page))
1426 goto page_out;
1428 if (!clear_page_dirty_for_io(page))
1429 goto page_out;
1431 ret = f2fs_write_inline_data(inode, page);
1432 inode_dec_dirty_pages(inode);
1433 f2fs_remove_dirty_inode(inode);
1434 if (ret)
1435 set_page_dirty(page);
1436 page_out:
1437 f2fs_put_page(page, 1);
1438 iput_out:
1439 iput(inode);
1442 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1444 pgoff_t index;
1445 struct pagevec pvec;
1446 struct page *last_page = NULL;
1447 int nr_pages;
1449 pagevec_init(&pvec);
1450 index = 0;
1452 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1453 PAGECACHE_TAG_DIRTY))) {
1454 int i;
1456 for (i = 0; i < nr_pages; i++) {
1457 struct page *page = pvec.pages[i];
1459 if (unlikely(f2fs_cp_error(sbi))) {
1460 f2fs_put_page(last_page, 0);
1461 pagevec_release(&pvec);
1462 return ERR_PTR(-EIO);
1465 if (!IS_DNODE(page) || !is_cold_node(page))
1466 continue;
1467 if (ino_of_node(page) != ino)
1468 continue;
1470 lock_page(page);
1472 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473 continue_unlock:
1474 unlock_page(page);
1475 continue;
1477 if (ino_of_node(page) != ino)
1478 goto continue_unlock;
1480 if (!PageDirty(page)) {
1481 /* someone wrote it for us */
1482 goto continue_unlock;
1485 if (last_page)
1486 f2fs_put_page(last_page, 0);
1488 get_page(page);
1489 last_page = page;
1490 unlock_page(page);
1492 pagevec_release(&pvec);
1493 cond_resched();
1495 return last_page;
1498 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1499 struct writeback_control *wbc, bool do_balance,
1500 enum iostat_type io_type, unsigned int *seq_id)
1502 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1503 nid_t nid;
1504 struct node_info ni;
1505 struct f2fs_io_info fio = {
1506 .sbi = sbi,
1507 .ino = ino_of_node(page),
1508 .type = NODE,
1509 .op = REQ_OP_WRITE,
1510 .op_flags = wbc_to_write_flags(wbc),
1511 .page = page,
1512 .encrypted_page = NULL,
1513 .submitted = false,
1514 .io_type = io_type,
1515 .io_wbc = wbc,
1517 unsigned int seq;
1519 trace_f2fs_writepage(page, NODE);
1521 if (unlikely(f2fs_cp_error(sbi)))
1522 goto redirty_out;
1524 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1525 goto redirty_out;
1527 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1528 wbc->sync_mode == WB_SYNC_NONE &&
1529 IS_DNODE(page) && is_cold_node(page))
1530 goto redirty_out;
1532 /* get old block addr of this node page */
1533 nid = nid_of_node(page);
1534 f2fs_bug_on(sbi, page->index != nid);
1536 if (f2fs_get_node_info(sbi, nid, &ni))
1537 goto redirty_out;
1539 if (wbc->for_reclaim) {
1540 if (!down_read_trylock(&sbi->node_write))
1541 goto redirty_out;
1542 } else {
1543 down_read(&sbi->node_write);
1546 /* This page is already truncated */
1547 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1548 ClearPageUptodate(page);
1549 dec_page_count(sbi, F2FS_DIRTY_NODES);
1550 up_read(&sbi->node_write);
1551 unlock_page(page);
1552 return 0;
1555 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1556 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1557 DATA_GENERIC_ENHANCE)) {
1558 up_read(&sbi->node_write);
1559 goto redirty_out;
1562 if (atomic && !test_opt(sbi, NOBARRIER))
1563 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1565 /* should add to global list before clearing PAGECACHE status */
1566 if (f2fs_in_warm_node_list(sbi, page)) {
1567 seq = f2fs_add_fsync_node_entry(sbi, page);
1568 if (seq_id)
1569 *seq_id = seq;
1572 set_page_writeback(page);
1573 ClearPageError(page);
1575 fio.old_blkaddr = ni.blk_addr;
1576 f2fs_do_write_node_page(nid, &fio);
1577 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1578 dec_page_count(sbi, F2FS_DIRTY_NODES);
1579 up_read(&sbi->node_write);
1581 if (wbc->for_reclaim) {
1582 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1583 submitted = NULL;
1586 unlock_page(page);
1588 if (unlikely(f2fs_cp_error(sbi))) {
1589 f2fs_submit_merged_write(sbi, NODE);
1590 submitted = NULL;
1592 if (submitted)
1593 *submitted = fio.submitted;
1595 if (do_balance)
1596 f2fs_balance_fs(sbi, false);
1597 return 0;
1599 redirty_out:
1600 redirty_page_for_writepage(wbc, page);
1601 return AOP_WRITEPAGE_ACTIVATE;
1604 int f2fs_move_node_page(struct page *node_page, int gc_type)
1606 int err = 0;
1608 if (gc_type == FG_GC) {
1609 struct writeback_control wbc = {
1610 .sync_mode = WB_SYNC_ALL,
1611 .nr_to_write = 1,
1612 .for_reclaim = 0,
1615 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1617 set_page_dirty(node_page);
1619 if (!clear_page_dirty_for_io(node_page)) {
1620 err = -EAGAIN;
1621 goto out_page;
1624 if (__write_node_page(node_page, false, NULL,
1625 &wbc, false, FS_GC_NODE_IO, NULL)) {
1626 err = -EAGAIN;
1627 unlock_page(node_page);
1629 goto release_page;
1630 } else {
1631 /* set page dirty and write it */
1632 if (!PageWriteback(node_page))
1633 set_page_dirty(node_page);
1635 out_page:
1636 unlock_page(node_page);
1637 release_page:
1638 f2fs_put_page(node_page, 0);
1639 return err;
1642 static int f2fs_write_node_page(struct page *page,
1643 struct writeback_control *wbc)
1645 return __write_node_page(page, false, NULL, wbc, false,
1646 FS_NODE_IO, NULL);
1649 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1650 struct writeback_control *wbc, bool atomic,
1651 unsigned int *seq_id)
1653 pgoff_t index;
1654 struct pagevec pvec;
1655 int ret = 0;
1656 struct page *last_page = NULL;
1657 bool marked = false;
1658 nid_t ino = inode->i_ino;
1659 int nr_pages;
1660 int nwritten = 0;
1662 if (atomic) {
1663 last_page = last_fsync_dnode(sbi, ino);
1664 if (IS_ERR_OR_NULL(last_page))
1665 return PTR_ERR_OR_ZERO(last_page);
1667 retry:
1668 pagevec_init(&pvec);
1669 index = 0;
1671 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1672 PAGECACHE_TAG_DIRTY))) {
1673 int i;
1675 for (i = 0; i < nr_pages; i++) {
1676 struct page *page = pvec.pages[i];
1677 bool submitted = false;
1679 if (unlikely(f2fs_cp_error(sbi))) {
1680 f2fs_put_page(last_page, 0);
1681 pagevec_release(&pvec);
1682 ret = -EIO;
1683 goto out;
1686 if (!IS_DNODE(page) || !is_cold_node(page))
1687 continue;
1688 if (ino_of_node(page) != ino)
1689 continue;
1691 lock_page(page);
1693 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1694 continue_unlock:
1695 unlock_page(page);
1696 continue;
1698 if (ino_of_node(page) != ino)
1699 goto continue_unlock;
1701 if (!PageDirty(page) && page != last_page) {
1702 /* someone wrote it for us */
1703 goto continue_unlock;
1706 f2fs_wait_on_page_writeback(page, NODE, true, true);
1708 set_fsync_mark(page, 0);
1709 set_dentry_mark(page, 0);
1711 if (!atomic || page == last_page) {
1712 set_fsync_mark(page, 1);
1713 if (IS_INODE(page)) {
1714 if (is_inode_flag_set(inode,
1715 FI_DIRTY_INODE))
1716 f2fs_update_inode(inode, page);
1717 set_dentry_mark(page,
1718 f2fs_need_dentry_mark(sbi, ino));
1720 /* may be written by other thread */
1721 if (!PageDirty(page))
1722 set_page_dirty(page);
1725 if (!clear_page_dirty_for_io(page))
1726 goto continue_unlock;
1728 ret = __write_node_page(page, atomic &&
1729 page == last_page,
1730 &submitted, wbc, true,
1731 FS_NODE_IO, seq_id);
1732 if (ret) {
1733 unlock_page(page);
1734 f2fs_put_page(last_page, 0);
1735 break;
1736 } else if (submitted) {
1737 nwritten++;
1740 if (page == last_page) {
1741 f2fs_put_page(page, 0);
1742 marked = true;
1743 break;
1746 pagevec_release(&pvec);
1747 cond_resched();
1749 if (ret || marked)
1750 break;
1752 if (!ret && atomic && !marked) {
1753 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1754 ino, last_page->index);
1755 lock_page(last_page);
1756 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1757 set_page_dirty(last_page);
1758 unlock_page(last_page);
1759 goto retry;
1761 out:
1762 if (nwritten)
1763 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1764 return ret ? -EIO: 0;
1767 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1769 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1770 bool clean;
1772 if (inode->i_ino != ino)
1773 return 0;
1775 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1776 return 0;
1778 spin_lock(&sbi->inode_lock[DIRTY_META]);
1779 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1780 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1782 if (clean)
1783 return 0;
1785 inode = igrab(inode);
1786 if (!inode)
1787 return 0;
1788 return 1;
1791 static bool flush_dirty_inode(struct page *page)
1793 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1794 struct inode *inode;
1795 nid_t ino = ino_of_node(page);
1797 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1798 if (!inode)
1799 return false;
1801 f2fs_update_inode(inode, page);
1802 unlock_page(page);
1804 iput(inode);
1805 return true;
1808 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1809 struct writeback_control *wbc,
1810 bool do_balance, enum iostat_type io_type)
1812 pgoff_t index;
1813 struct pagevec pvec;
1814 int step = 0;
1815 int nwritten = 0;
1816 int ret = 0;
1817 int nr_pages, done = 0;
1819 pagevec_init(&pvec);
1821 next_step:
1822 index = 0;
1824 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1825 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1826 int i;
1828 for (i = 0; i < nr_pages; i++) {
1829 struct page *page = pvec.pages[i];
1830 bool submitted = false;
1831 bool may_dirty = true;
1833 /* give a priority to WB_SYNC threads */
1834 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1835 wbc->sync_mode == WB_SYNC_NONE) {
1836 done = 1;
1837 break;
1841 * flushing sequence with step:
1842 * 0. indirect nodes
1843 * 1. dentry dnodes
1844 * 2. file dnodes
1846 if (step == 0 && IS_DNODE(page))
1847 continue;
1848 if (step == 1 && (!IS_DNODE(page) ||
1849 is_cold_node(page)))
1850 continue;
1851 if (step == 2 && (!IS_DNODE(page) ||
1852 !is_cold_node(page)))
1853 continue;
1854 lock_node:
1855 if (wbc->sync_mode == WB_SYNC_ALL)
1856 lock_page(page);
1857 else if (!trylock_page(page))
1858 continue;
1860 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1861 continue_unlock:
1862 unlock_page(page);
1863 continue;
1866 if (!PageDirty(page)) {
1867 /* someone wrote it for us */
1868 goto continue_unlock;
1871 /* flush inline_data */
1872 if (is_inline_node(page)) {
1873 clear_inline_node(page);
1874 unlock_page(page);
1875 flush_inline_data(sbi, ino_of_node(page));
1876 goto lock_node;
1879 /* flush dirty inode */
1880 if (IS_INODE(page) && may_dirty) {
1881 may_dirty = false;
1882 if (flush_dirty_inode(page))
1883 goto lock_node;
1886 f2fs_wait_on_page_writeback(page, NODE, true, true);
1888 if (!clear_page_dirty_for_io(page))
1889 goto continue_unlock;
1891 set_fsync_mark(page, 0);
1892 set_dentry_mark(page, 0);
1894 ret = __write_node_page(page, false, &submitted,
1895 wbc, do_balance, io_type, NULL);
1896 if (ret)
1897 unlock_page(page);
1898 else if (submitted)
1899 nwritten++;
1901 if (--wbc->nr_to_write == 0)
1902 break;
1904 pagevec_release(&pvec);
1905 cond_resched();
1907 if (wbc->nr_to_write == 0) {
1908 step = 2;
1909 break;
1913 if (step < 2) {
1914 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1915 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1916 goto out;
1917 step++;
1918 goto next_step;
1920 out:
1921 if (nwritten)
1922 f2fs_submit_merged_write(sbi, NODE);
1924 if (unlikely(f2fs_cp_error(sbi)))
1925 return -EIO;
1926 return ret;
1929 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1930 unsigned int seq_id)
1932 struct fsync_node_entry *fn;
1933 struct page *page;
1934 struct list_head *head = &sbi->fsync_node_list;
1935 unsigned long flags;
1936 unsigned int cur_seq_id = 0;
1937 int ret2, ret = 0;
1939 while (seq_id && cur_seq_id < seq_id) {
1940 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1941 if (list_empty(head)) {
1942 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1943 break;
1945 fn = list_first_entry(head, struct fsync_node_entry, list);
1946 if (fn->seq_id > seq_id) {
1947 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1948 break;
1950 cur_seq_id = fn->seq_id;
1951 page = fn->page;
1952 get_page(page);
1953 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1955 f2fs_wait_on_page_writeback(page, NODE, true, false);
1956 if (TestClearPageError(page))
1957 ret = -EIO;
1959 put_page(page);
1961 if (ret)
1962 break;
1965 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1966 if (!ret)
1967 ret = ret2;
1969 return ret;
1972 static int f2fs_write_node_pages(struct address_space *mapping,
1973 struct writeback_control *wbc)
1975 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1976 struct blk_plug plug;
1977 long diff;
1979 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1980 goto skip_write;
1982 /* balancing f2fs's metadata in background */
1983 f2fs_balance_fs_bg(sbi);
1985 /* collect a number of dirty node pages and write together */
1986 if (wbc->sync_mode != WB_SYNC_ALL &&
1987 get_pages(sbi, F2FS_DIRTY_NODES) <
1988 nr_pages_to_skip(sbi, NODE))
1989 goto skip_write;
1991 if (wbc->sync_mode == WB_SYNC_ALL)
1992 atomic_inc(&sbi->wb_sync_req[NODE]);
1993 else if (atomic_read(&sbi->wb_sync_req[NODE]))
1994 goto skip_write;
1996 trace_f2fs_writepages(mapping->host, wbc, NODE);
1998 diff = nr_pages_to_write(sbi, NODE, wbc);
1999 blk_start_plug(&plug);
2000 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2001 blk_finish_plug(&plug);
2002 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2004 if (wbc->sync_mode == WB_SYNC_ALL)
2005 atomic_dec(&sbi->wb_sync_req[NODE]);
2006 return 0;
2008 skip_write:
2009 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2010 trace_f2fs_writepages(mapping->host, wbc, NODE);
2011 return 0;
2014 static int f2fs_set_node_page_dirty(struct page *page)
2016 trace_f2fs_set_page_dirty(page, NODE);
2018 if (!PageUptodate(page))
2019 SetPageUptodate(page);
2020 #ifdef CONFIG_F2FS_CHECK_FS
2021 if (IS_INODE(page))
2022 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2023 #endif
2024 if (!PageDirty(page)) {
2025 __set_page_dirty_nobuffers(page);
2026 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2027 f2fs_set_page_private(page, 0);
2028 f2fs_trace_pid(page);
2029 return 1;
2031 return 0;
2035 * Structure of the f2fs node operations
2037 const struct address_space_operations f2fs_node_aops = {
2038 .writepage = f2fs_write_node_page,
2039 .writepages = f2fs_write_node_pages,
2040 .set_page_dirty = f2fs_set_node_page_dirty,
2041 .invalidatepage = f2fs_invalidate_page,
2042 .releasepage = f2fs_release_page,
2043 #ifdef CONFIG_MIGRATION
2044 .migratepage = f2fs_migrate_page,
2045 #endif
2048 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2049 nid_t n)
2051 return radix_tree_lookup(&nm_i->free_nid_root, n);
2054 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2055 struct free_nid *i, enum nid_state state)
2057 struct f2fs_nm_info *nm_i = NM_I(sbi);
2059 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2060 if (err)
2061 return err;
2063 f2fs_bug_on(sbi, state != i->state);
2064 nm_i->nid_cnt[state]++;
2065 if (state == FREE_NID)
2066 list_add_tail(&i->list, &nm_i->free_nid_list);
2067 return 0;
2070 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2071 struct free_nid *i, enum nid_state state)
2073 struct f2fs_nm_info *nm_i = NM_I(sbi);
2075 f2fs_bug_on(sbi, state != i->state);
2076 nm_i->nid_cnt[state]--;
2077 if (state == FREE_NID)
2078 list_del(&i->list);
2079 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2082 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2083 enum nid_state org_state, enum nid_state dst_state)
2085 struct f2fs_nm_info *nm_i = NM_I(sbi);
2087 f2fs_bug_on(sbi, org_state != i->state);
2088 i->state = dst_state;
2089 nm_i->nid_cnt[org_state]--;
2090 nm_i->nid_cnt[dst_state]++;
2092 switch (dst_state) {
2093 case PREALLOC_NID:
2094 list_del(&i->list);
2095 break;
2096 case FREE_NID:
2097 list_add_tail(&i->list, &nm_i->free_nid_list);
2098 break;
2099 default:
2100 BUG_ON(1);
2104 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2105 bool set, bool build)
2107 struct f2fs_nm_info *nm_i = NM_I(sbi);
2108 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2109 unsigned int nid_ofs = nid - START_NID(nid);
2111 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2112 return;
2114 if (set) {
2115 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2116 return;
2117 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2118 nm_i->free_nid_count[nat_ofs]++;
2119 } else {
2120 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2121 return;
2122 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2123 if (!build)
2124 nm_i->free_nid_count[nat_ofs]--;
2128 /* return if the nid is recognized as free */
2129 static bool add_free_nid(struct f2fs_sb_info *sbi,
2130 nid_t nid, bool build, bool update)
2132 struct f2fs_nm_info *nm_i = NM_I(sbi);
2133 struct free_nid *i, *e;
2134 struct nat_entry *ne;
2135 int err = -EINVAL;
2136 bool ret = false;
2138 /* 0 nid should not be used */
2139 if (unlikely(nid == 0))
2140 return false;
2142 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2143 return false;
2145 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2146 i->nid = nid;
2147 i->state = FREE_NID;
2149 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2151 spin_lock(&nm_i->nid_list_lock);
2153 if (build) {
2155 * Thread A Thread B
2156 * - f2fs_create
2157 * - f2fs_new_inode
2158 * - f2fs_alloc_nid
2159 * - __insert_nid_to_list(PREALLOC_NID)
2160 * - f2fs_balance_fs_bg
2161 * - f2fs_build_free_nids
2162 * - __f2fs_build_free_nids
2163 * - scan_nat_page
2164 * - add_free_nid
2165 * - __lookup_nat_cache
2166 * - f2fs_add_link
2167 * - f2fs_init_inode_metadata
2168 * - f2fs_new_inode_page
2169 * - f2fs_new_node_page
2170 * - set_node_addr
2171 * - f2fs_alloc_nid_done
2172 * - __remove_nid_from_list(PREALLOC_NID)
2173 * - __insert_nid_to_list(FREE_NID)
2175 ne = __lookup_nat_cache(nm_i, nid);
2176 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2177 nat_get_blkaddr(ne) != NULL_ADDR))
2178 goto err_out;
2180 e = __lookup_free_nid_list(nm_i, nid);
2181 if (e) {
2182 if (e->state == FREE_NID)
2183 ret = true;
2184 goto err_out;
2187 ret = true;
2188 err = __insert_free_nid(sbi, i, FREE_NID);
2189 err_out:
2190 if (update) {
2191 update_free_nid_bitmap(sbi, nid, ret, build);
2192 if (!build)
2193 nm_i->available_nids++;
2195 spin_unlock(&nm_i->nid_list_lock);
2196 radix_tree_preload_end();
2198 if (err)
2199 kmem_cache_free(free_nid_slab, i);
2200 return ret;
2203 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2205 struct f2fs_nm_info *nm_i = NM_I(sbi);
2206 struct free_nid *i;
2207 bool need_free = false;
2209 spin_lock(&nm_i->nid_list_lock);
2210 i = __lookup_free_nid_list(nm_i, nid);
2211 if (i && i->state == FREE_NID) {
2212 __remove_free_nid(sbi, i, FREE_NID);
2213 need_free = true;
2215 spin_unlock(&nm_i->nid_list_lock);
2217 if (need_free)
2218 kmem_cache_free(free_nid_slab, i);
2221 static int scan_nat_page(struct f2fs_sb_info *sbi,
2222 struct page *nat_page, nid_t start_nid)
2224 struct f2fs_nm_info *nm_i = NM_I(sbi);
2225 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2226 block_t blk_addr;
2227 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2228 int i;
2230 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2232 i = start_nid % NAT_ENTRY_PER_BLOCK;
2234 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2235 if (unlikely(start_nid >= nm_i->max_nid))
2236 break;
2238 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2240 if (blk_addr == NEW_ADDR)
2241 return -EINVAL;
2243 if (blk_addr == NULL_ADDR) {
2244 add_free_nid(sbi, start_nid, true, true);
2245 } else {
2246 spin_lock(&NM_I(sbi)->nid_list_lock);
2247 update_free_nid_bitmap(sbi, start_nid, false, true);
2248 spin_unlock(&NM_I(sbi)->nid_list_lock);
2252 return 0;
2255 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2257 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2258 struct f2fs_journal *journal = curseg->journal;
2259 int i;
2261 down_read(&curseg->journal_rwsem);
2262 for (i = 0; i < nats_in_cursum(journal); i++) {
2263 block_t addr;
2264 nid_t nid;
2266 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2267 nid = le32_to_cpu(nid_in_journal(journal, i));
2268 if (addr == NULL_ADDR)
2269 add_free_nid(sbi, nid, true, false);
2270 else
2271 remove_free_nid(sbi, nid);
2273 up_read(&curseg->journal_rwsem);
2276 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2278 struct f2fs_nm_info *nm_i = NM_I(sbi);
2279 unsigned int i, idx;
2280 nid_t nid;
2282 down_read(&nm_i->nat_tree_lock);
2284 for (i = 0; i < nm_i->nat_blocks; i++) {
2285 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2286 continue;
2287 if (!nm_i->free_nid_count[i])
2288 continue;
2289 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2290 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2291 NAT_ENTRY_PER_BLOCK, idx);
2292 if (idx >= NAT_ENTRY_PER_BLOCK)
2293 break;
2295 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2296 add_free_nid(sbi, nid, true, false);
2298 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2299 goto out;
2302 out:
2303 scan_curseg_cache(sbi);
2305 up_read(&nm_i->nat_tree_lock);
2308 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2309 bool sync, bool mount)
2311 struct f2fs_nm_info *nm_i = NM_I(sbi);
2312 int i = 0, ret;
2313 nid_t nid = nm_i->next_scan_nid;
2315 if (unlikely(nid >= nm_i->max_nid))
2316 nid = 0;
2318 /* Enough entries */
2319 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2320 return 0;
2322 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2323 return 0;
2325 if (!mount) {
2326 /* try to find free nids in free_nid_bitmap */
2327 scan_free_nid_bits(sbi);
2329 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2330 return 0;
2333 /* readahead nat pages to be scanned */
2334 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2335 META_NAT, true);
2337 down_read(&nm_i->nat_tree_lock);
2339 while (1) {
2340 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2341 nm_i->nat_block_bitmap)) {
2342 struct page *page = get_current_nat_page(sbi, nid);
2344 if (IS_ERR(page)) {
2345 ret = PTR_ERR(page);
2346 } else {
2347 ret = scan_nat_page(sbi, page, nid);
2348 f2fs_put_page(page, 1);
2351 if (ret) {
2352 up_read(&nm_i->nat_tree_lock);
2353 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2354 return ret;
2358 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2359 if (unlikely(nid >= nm_i->max_nid))
2360 nid = 0;
2362 if (++i >= FREE_NID_PAGES)
2363 break;
2366 /* go to the next free nat pages to find free nids abundantly */
2367 nm_i->next_scan_nid = nid;
2369 /* find free nids from current sum_pages */
2370 scan_curseg_cache(sbi);
2372 up_read(&nm_i->nat_tree_lock);
2374 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2375 nm_i->ra_nid_pages, META_NAT, false);
2377 return 0;
2380 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2382 int ret;
2384 mutex_lock(&NM_I(sbi)->build_lock);
2385 ret = __f2fs_build_free_nids(sbi, sync, mount);
2386 mutex_unlock(&NM_I(sbi)->build_lock);
2388 return ret;
2392 * If this function returns success, caller can obtain a new nid
2393 * from second parameter of this function.
2394 * The returned nid could be used ino as well as nid when inode is created.
2396 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2398 struct f2fs_nm_info *nm_i = NM_I(sbi);
2399 struct free_nid *i = NULL;
2400 retry:
2401 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2402 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2403 return false;
2406 spin_lock(&nm_i->nid_list_lock);
2408 if (unlikely(nm_i->available_nids == 0)) {
2409 spin_unlock(&nm_i->nid_list_lock);
2410 return false;
2413 /* We should not use stale free nids created by f2fs_build_free_nids */
2414 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2415 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2416 i = list_first_entry(&nm_i->free_nid_list,
2417 struct free_nid, list);
2418 *nid = i->nid;
2420 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2421 nm_i->available_nids--;
2423 update_free_nid_bitmap(sbi, *nid, false, false);
2425 spin_unlock(&nm_i->nid_list_lock);
2426 return true;
2428 spin_unlock(&nm_i->nid_list_lock);
2430 /* Let's scan nat pages and its caches to get free nids */
2431 if (!f2fs_build_free_nids(sbi, true, false))
2432 goto retry;
2433 return false;
2437 * f2fs_alloc_nid() should be called prior to this function.
2439 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2441 struct f2fs_nm_info *nm_i = NM_I(sbi);
2442 struct free_nid *i;
2444 spin_lock(&nm_i->nid_list_lock);
2445 i = __lookup_free_nid_list(nm_i, nid);
2446 f2fs_bug_on(sbi, !i);
2447 __remove_free_nid(sbi, i, PREALLOC_NID);
2448 spin_unlock(&nm_i->nid_list_lock);
2450 kmem_cache_free(free_nid_slab, i);
2454 * f2fs_alloc_nid() should be called prior to this function.
2456 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2458 struct f2fs_nm_info *nm_i = NM_I(sbi);
2459 struct free_nid *i;
2460 bool need_free = false;
2462 if (!nid)
2463 return;
2465 spin_lock(&nm_i->nid_list_lock);
2466 i = __lookup_free_nid_list(nm_i, nid);
2467 f2fs_bug_on(sbi, !i);
2469 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2470 __remove_free_nid(sbi, i, PREALLOC_NID);
2471 need_free = true;
2472 } else {
2473 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2476 nm_i->available_nids++;
2478 update_free_nid_bitmap(sbi, nid, true, false);
2480 spin_unlock(&nm_i->nid_list_lock);
2482 if (need_free)
2483 kmem_cache_free(free_nid_slab, i);
2486 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2488 struct f2fs_nm_info *nm_i = NM_I(sbi);
2489 struct free_nid *i, *next;
2490 int nr = nr_shrink;
2492 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2493 return 0;
2495 if (!mutex_trylock(&nm_i->build_lock))
2496 return 0;
2498 spin_lock(&nm_i->nid_list_lock);
2499 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2500 if (nr_shrink <= 0 ||
2501 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2502 break;
2504 __remove_free_nid(sbi, i, FREE_NID);
2505 kmem_cache_free(free_nid_slab, i);
2506 nr_shrink--;
2508 spin_unlock(&nm_i->nid_list_lock);
2509 mutex_unlock(&nm_i->build_lock);
2511 return nr - nr_shrink;
2514 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2516 void *src_addr, *dst_addr;
2517 size_t inline_size;
2518 struct page *ipage;
2519 struct f2fs_inode *ri;
2521 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2522 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2524 ri = F2FS_INODE(page);
2525 if (ri->i_inline & F2FS_INLINE_XATTR) {
2526 set_inode_flag(inode, FI_INLINE_XATTR);
2527 } else {
2528 clear_inode_flag(inode, FI_INLINE_XATTR);
2529 goto update_inode;
2532 dst_addr = inline_xattr_addr(inode, ipage);
2533 src_addr = inline_xattr_addr(inode, page);
2534 inline_size = inline_xattr_size(inode);
2536 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2537 memcpy(dst_addr, src_addr, inline_size);
2538 update_inode:
2539 f2fs_update_inode(inode, ipage);
2540 f2fs_put_page(ipage, 1);
2543 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2545 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2546 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2547 nid_t new_xnid;
2548 struct dnode_of_data dn;
2549 struct node_info ni;
2550 struct page *xpage;
2551 int err;
2553 if (!prev_xnid)
2554 goto recover_xnid;
2556 /* 1: invalidate the previous xattr nid */
2557 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2558 if (err)
2559 return err;
2561 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2562 dec_valid_node_count(sbi, inode, false);
2563 set_node_addr(sbi, &ni, NULL_ADDR, false);
2565 recover_xnid:
2566 /* 2: update xattr nid in inode */
2567 if (!f2fs_alloc_nid(sbi, &new_xnid))
2568 return -ENOSPC;
2570 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2571 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2572 if (IS_ERR(xpage)) {
2573 f2fs_alloc_nid_failed(sbi, new_xnid);
2574 return PTR_ERR(xpage);
2577 f2fs_alloc_nid_done(sbi, new_xnid);
2578 f2fs_update_inode_page(inode);
2580 /* 3: update and set xattr node page dirty */
2581 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2583 set_page_dirty(xpage);
2584 f2fs_put_page(xpage, 1);
2586 return 0;
2589 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2591 struct f2fs_inode *src, *dst;
2592 nid_t ino = ino_of_node(page);
2593 struct node_info old_ni, new_ni;
2594 struct page *ipage;
2595 int err;
2597 err = f2fs_get_node_info(sbi, ino, &old_ni);
2598 if (err)
2599 return err;
2601 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2602 return -EINVAL;
2603 retry:
2604 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2605 if (!ipage) {
2606 congestion_wait(BLK_RW_ASYNC, HZ/50);
2607 goto retry;
2610 /* Should not use this inode from free nid list */
2611 remove_free_nid(sbi, ino);
2613 if (!PageUptodate(ipage))
2614 SetPageUptodate(ipage);
2615 fill_node_footer(ipage, ino, ino, 0, true);
2616 set_cold_node(ipage, false);
2618 src = F2FS_INODE(page);
2619 dst = F2FS_INODE(ipage);
2621 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2622 dst->i_size = 0;
2623 dst->i_blocks = cpu_to_le64(1);
2624 dst->i_links = cpu_to_le32(1);
2625 dst->i_xattr_nid = 0;
2626 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2627 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2628 dst->i_extra_isize = src->i_extra_isize;
2630 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2631 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2632 i_inline_xattr_size))
2633 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2635 if (f2fs_sb_has_project_quota(sbi) &&
2636 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2637 i_projid))
2638 dst->i_projid = src->i_projid;
2640 if (f2fs_sb_has_inode_crtime(sbi) &&
2641 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2642 i_crtime_nsec)) {
2643 dst->i_crtime = src->i_crtime;
2644 dst->i_crtime_nsec = src->i_crtime_nsec;
2648 new_ni = old_ni;
2649 new_ni.ino = ino;
2651 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2652 WARN_ON(1);
2653 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2654 inc_valid_inode_count(sbi);
2655 set_page_dirty(ipage);
2656 f2fs_put_page(ipage, 1);
2657 return 0;
2660 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2661 unsigned int segno, struct f2fs_summary_block *sum)
2663 struct f2fs_node *rn;
2664 struct f2fs_summary *sum_entry;
2665 block_t addr;
2666 int i, idx, last_offset, nrpages;
2668 /* scan the node segment */
2669 last_offset = sbi->blocks_per_seg;
2670 addr = START_BLOCK(sbi, segno);
2671 sum_entry = &sum->entries[0];
2673 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2674 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2676 /* readahead node pages */
2677 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2679 for (idx = addr; idx < addr + nrpages; idx++) {
2680 struct page *page = f2fs_get_tmp_page(sbi, idx);
2682 if (IS_ERR(page))
2683 return PTR_ERR(page);
2685 rn = F2FS_NODE(page);
2686 sum_entry->nid = rn->footer.nid;
2687 sum_entry->version = 0;
2688 sum_entry->ofs_in_node = 0;
2689 sum_entry++;
2690 f2fs_put_page(page, 1);
2693 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2694 addr + nrpages);
2696 return 0;
2699 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2701 struct f2fs_nm_info *nm_i = NM_I(sbi);
2702 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2703 struct f2fs_journal *journal = curseg->journal;
2704 int i;
2706 down_write(&curseg->journal_rwsem);
2707 for (i = 0; i < nats_in_cursum(journal); i++) {
2708 struct nat_entry *ne;
2709 struct f2fs_nat_entry raw_ne;
2710 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2712 raw_ne = nat_in_journal(journal, i);
2714 ne = __lookup_nat_cache(nm_i, nid);
2715 if (!ne) {
2716 ne = __alloc_nat_entry(nid, true);
2717 __init_nat_entry(nm_i, ne, &raw_ne, true);
2721 * if a free nat in journal has not been used after last
2722 * checkpoint, we should remove it from available nids,
2723 * since later we will add it again.
2725 if (!get_nat_flag(ne, IS_DIRTY) &&
2726 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2727 spin_lock(&nm_i->nid_list_lock);
2728 nm_i->available_nids--;
2729 spin_unlock(&nm_i->nid_list_lock);
2732 __set_nat_cache_dirty(nm_i, ne);
2734 update_nats_in_cursum(journal, -i);
2735 up_write(&curseg->journal_rwsem);
2738 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2739 struct list_head *head, int max)
2741 struct nat_entry_set *cur;
2743 if (nes->entry_cnt >= max)
2744 goto add_out;
2746 list_for_each_entry(cur, head, set_list) {
2747 if (cur->entry_cnt >= nes->entry_cnt) {
2748 list_add(&nes->set_list, cur->set_list.prev);
2749 return;
2752 add_out:
2753 list_add_tail(&nes->set_list, head);
2756 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2757 struct page *page)
2759 struct f2fs_nm_info *nm_i = NM_I(sbi);
2760 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2761 struct f2fs_nat_block *nat_blk = page_address(page);
2762 int valid = 0;
2763 int i = 0;
2765 if (!enabled_nat_bits(sbi, NULL))
2766 return;
2768 if (nat_index == 0) {
2769 valid = 1;
2770 i = 1;
2772 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2773 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2774 valid++;
2776 if (valid == 0) {
2777 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2778 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2779 return;
2782 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2783 if (valid == NAT_ENTRY_PER_BLOCK)
2784 __set_bit_le(nat_index, nm_i->full_nat_bits);
2785 else
2786 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2789 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2790 struct nat_entry_set *set, struct cp_control *cpc)
2792 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2793 struct f2fs_journal *journal = curseg->journal;
2794 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2795 bool to_journal = true;
2796 struct f2fs_nat_block *nat_blk;
2797 struct nat_entry *ne, *cur;
2798 struct page *page = NULL;
2801 * there are two steps to flush nat entries:
2802 * #1, flush nat entries to journal in current hot data summary block.
2803 * #2, flush nat entries to nat page.
2805 if (enabled_nat_bits(sbi, cpc) ||
2806 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2807 to_journal = false;
2809 if (to_journal) {
2810 down_write(&curseg->journal_rwsem);
2811 } else {
2812 page = get_next_nat_page(sbi, start_nid);
2813 if (IS_ERR(page))
2814 return PTR_ERR(page);
2816 nat_blk = page_address(page);
2817 f2fs_bug_on(sbi, !nat_blk);
2820 /* flush dirty nats in nat entry set */
2821 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2822 struct f2fs_nat_entry *raw_ne;
2823 nid_t nid = nat_get_nid(ne);
2824 int offset;
2826 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2828 if (to_journal) {
2829 offset = f2fs_lookup_journal_in_cursum(journal,
2830 NAT_JOURNAL, nid, 1);
2831 f2fs_bug_on(sbi, offset < 0);
2832 raw_ne = &nat_in_journal(journal, offset);
2833 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2834 } else {
2835 raw_ne = &nat_blk->entries[nid - start_nid];
2837 raw_nat_from_node_info(raw_ne, &ne->ni);
2838 nat_reset_flag(ne);
2839 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2840 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2841 add_free_nid(sbi, nid, false, true);
2842 } else {
2843 spin_lock(&NM_I(sbi)->nid_list_lock);
2844 update_free_nid_bitmap(sbi, nid, false, false);
2845 spin_unlock(&NM_I(sbi)->nid_list_lock);
2849 if (to_journal) {
2850 up_write(&curseg->journal_rwsem);
2851 } else {
2852 __update_nat_bits(sbi, start_nid, page);
2853 f2fs_put_page(page, 1);
2856 /* Allow dirty nats by node block allocation in write_begin */
2857 if (!set->entry_cnt) {
2858 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2859 kmem_cache_free(nat_entry_set_slab, set);
2861 return 0;
2865 * This function is called during the checkpointing process.
2867 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2869 struct f2fs_nm_info *nm_i = NM_I(sbi);
2870 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2871 struct f2fs_journal *journal = curseg->journal;
2872 struct nat_entry_set *setvec[SETVEC_SIZE];
2873 struct nat_entry_set *set, *tmp;
2874 unsigned int found;
2875 nid_t set_idx = 0;
2876 LIST_HEAD(sets);
2877 int err = 0;
2879 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2880 if (enabled_nat_bits(sbi, cpc)) {
2881 down_write(&nm_i->nat_tree_lock);
2882 remove_nats_in_journal(sbi);
2883 up_write(&nm_i->nat_tree_lock);
2886 if (!nm_i->dirty_nat_cnt)
2887 return 0;
2889 down_write(&nm_i->nat_tree_lock);
2892 * if there are no enough space in journal to store dirty nat
2893 * entries, remove all entries from journal and merge them
2894 * into nat entry set.
2896 if (enabled_nat_bits(sbi, cpc) ||
2897 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2898 remove_nats_in_journal(sbi);
2900 while ((found = __gang_lookup_nat_set(nm_i,
2901 set_idx, SETVEC_SIZE, setvec))) {
2902 unsigned idx;
2903 set_idx = setvec[found - 1]->set + 1;
2904 for (idx = 0; idx < found; idx++)
2905 __adjust_nat_entry_set(setvec[idx], &sets,
2906 MAX_NAT_JENTRIES(journal));
2909 /* flush dirty nats in nat entry set */
2910 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2911 err = __flush_nat_entry_set(sbi, set, cpc);
2912 if (err)
2913 break;
2916 up_write(&nm_i->nat_tree_lock);
2917 /* Allow dirty nats by node block allocation in write_begin */
2919 return err;
2922 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2924 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2925 struct f2fs_nm_info *nm_i = NM_I(sbi);
2926 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2927 unsigned int i;
2928 __u64 cp_ver = cur_cp_version(ckpt);
2929 block_t nat_bits_addr;
2931 if (!enabled_nat_bits(sbi, NULL))
2932 return 0;
2934 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2935 nm_i->nat_bits = f2fs_kzalloc(sbi,
2936 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2937 if (!nm_i->nat_bits)
2938 return -ENOMEM;
2940 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2941 nm_i->nat_bits_blocks;
2942 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2943 struct page *page;
2945 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2946 if (IS_ERR(page))
2947 return PTR_ERR(page);
2949 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2950 page_address(page), F2FS_BLKSIZE);
2951 f2fs_put_page(page, 1);
2954 cp_ver |= (cur_cp_crc(ckpt) << 32);
2955 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2956 disable_nat_bits(sbi, true);
2957 return 0;
2960 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2961 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2963 f2fs_notice(sbi, "Found nat_bits in checkpoint");
2964 return 0;
2967 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2969 struct f2fs_nm_info *nm_i = NM_I(sbi);
2970 unsigned int i = 0;
2971 nid_t nid, last_nid;
2973 if (!enabled_nat_bits(sbi, NULL))
2974 return;
2976 for (i = 0; i < nm_i->nat_blocks; i++) {
2977 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2978 if (i >= nm_i->nat_blocks)
2979 break;
2981 __set_bit_le(i, nm_i->nat_block_bitmap);
2983 nid = i * NAT_ENTRY_PER_BLOCK;
2984 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2986 spin_lock(&NM_I(sbi)->nid_list_lock);
2987 for (; nid < last_nid; nid++)
2988 update_free_nid_bitmap(sbi, nid, true, true);
2989 spin_unlock(&NM_I(sbi)->nid_list_lock);
2992 for (i = 0; i < nm_i->nat_blocks; i++) {
2993 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2994 if (i >= nm_i->nat_blocks)
2995 break;
2997 __set_bit_le(i, nm_i->nat_block_bitmap);
3001 static int init_node_manager(struct f2fs_sb_info *sbi)
3003 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3004 struct f2fs_nm_info *nm_i = NM_I(sbi);
3005 unsigned char *version_bitmap;
3006 unsigned int nat_segs;
3007 int err;
3009 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3011 /* segment_count_nat includes pair segment so divide to 2. */
3012 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3013 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3014 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3016 /* not used nids: 0, node, meta, (and root counted as valid node) */
3017 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3018 F2FS_RESERVED_NODE_NUM;
3019 nm_i->nid_cnt[FREE_NID] = 0;
3020 nm_i->nid_cnt[PREALLOC_NID] = 0;
3021 nm_i->nat_cnt = 0;
3022 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3023 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3024 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3026 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3027 INIT_LIST_HEAD(&nm_i->free_nid_list);
3028 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3029 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3030 INIT_LIST_HEAD(&nm_i->nat_entries);
3031 spin_lock_init(&nm_i->nat_list_lock);
3033 mutex_init(&nm_i->build_lock);
3034 spin_lock_init(&nm_i->nid_list_lock);
3035 init_rwsem(&nm_i->nat_tree_lock);
3037 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3038 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3039 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3040 if (!version_bitmap)
3041 return -EFAULT;
3043 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3044 GFP_KERNEL);
3045 if (!nm_i->nat_bitmap)
3046 return -ENOMEM;
3048 err = __get_nat_bitmaps(sbi);
3049 if (err)
3050 return err;
3052 #ifdef CONFIG_F2FS_CHECK_FS
3053 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3054 GFP_KERNEL);
3055 if (!nm_i->nat_bitmap_mir)
3056 return -ENOMEM;
3057 #endif
3059 return 0;
3062 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3064 struct f2fs_nm_info *nm_i = NM_I(sbi);
3065 int i;
3067 nm_i->free_nid_bitmap =
3068 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
3069 nm_i->nat_blocks),
3070 GFP_KERNEL);
3071 if (!nm_i->free_nid_bitmap)
3072 return -ENOMEM;
3074 for (i = 0; i < nm_i->nat_blocks; i++) {
3075 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3076 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3077 if (!nm_i->free_nid_bitmap[i])
3078 return -ENOMEM;
3081 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3082 GFP_KERNEL);
3083 if (!nm_i->nat_block_bitmap)
3084 return -ENOMEM;
3086 nm_i->free_nid_count =
3087 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3088 nm_i->nat_blocks),
3089 GFP_KERNEL);
3090 if (!nm_i->free_nid_count)
3091 return -ENOMEM;
3092 return 0;
3095 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3097 int err;
3099 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3100 GFP_KERNEL);
3101 if (!sbi->nm_info)
3102 return -ENOMEM;
3104 err = init_node_manager(sbi);
3105 if (err)
3106 return err;
3108 err = init_free_nid_cache(sbi);
3109 if (err)
3110 return err;
3112 /* load free nid status from nat_bits table */
3113 load_free_nid_bitmap(sbi);
3115 return f2fs_build_free_nids(sbi, true, true);
3118 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3120 struct f2fs_nm_info *nm_i = NM_I(sbi);
3121 struct free_nid *i, *next_i;
3122 struct nat_entry *natvec[NATVEC_SIZE];
3123 struct nat_entry_set *setvec[SETVEC_SIZE];
3124 nid_t nid = 0;
3125 unsigned int found;
3127 if (!nm_i)
3128 return;
3130 /* destroy free nid list */
3131 spin_lock(&nm_i->nid_list_lock);
3132 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3133 __remove_free_nid(sbi, i, FREE_NID);
3134 spin_unlock(&nm_i->nid_list_lock);
3135 kmem_cache_free(free_nid_slab, i);
3136 spin_lock(&nm_i->nid_list_lock);
3138 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3139 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3140 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3141 spin_unlock(&nm_i->nid_list_lock);
3143 /* destroy nat cache */
3144 down_write(&nm_i->nat_tree_lock);
3145 while ((found = __gang_lookup_nat_cache(nm_i,
3146 nid, NATVEC_SIZE, natvec))) {
3147 unsigned idx;
3149 nid = nat_get_nid(natvec[found - 1]) + 1;
3150 for (idx = 0; idx < found; idx++) {
3151 spin_lock(&nm_i->nat_list_lock);
3152 list_del(&natvec[idx]->list);
3153 spin_unlock(&nm_i->nat_list_lock);
3155 __del_from_nat_cache(nm_i, natvec[idx]);
3158 f2fs_bug_on(sbi, nm_i->nat_cnt);
3160 /* destroy nat set cache */
3161 nid = 0;
3162 while ((found = __gang_lookup_nat_set(nm_i,
3163 nid, SETVEC_SIZE, setvec))) {
3164 unsigned idx;
3166 nid = setvec[found - 1]->set + 1;
3167 for (idx = 0; idx < found; idx++) {
3168 /* entry_cnt is not zero, when cp_error was occurred */
3169 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3170 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3171 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3174 up_write(&nm_i->nat_tree_lock);
3176 kvfree(nm_i->nat_block_bitmap);
3177 if (nm_i->free_nid_bitmap) {
3178 int i;
3180 for (i = 0; i < nm_i->nat_blocks; i++)
3181 kvfree(nm_i->free_nid_bitmap[i]);
3182 kvfree(nm_i->free_nid_bitmap);
3184 kvfree(nm_i->free_nid_count);
3186 kvfree(nm_i->nat_bitmap);
3187 kvfree(nm_i->nat_bits);
3188 #ifdef CONFIG_F2FS_CHECK_FS
3189 kvfree(nm_i->nat_bitmap_mir);
3190 #endif
3191 sbi->nm_info = NULL;
3192 kvfree(nm_i);
3195 int __init f2fs_create_node_manager_caches(void)
3197 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3198 sizeof(struct nat_entry));
3199 if (!nat_entry_slab)
3200 goto fail;
3202 free_nid_slab = f2fs_kmem_cache_create("free_nid",
3203 sizeof(struct free_nid));
3204 if (!free_nid_slab)
3205 goto destroy_nat_entry;
3207 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3208 sizeof(struct nat_entry_set));
3209 if (!nat_entry_set_slab)
3210 goto destroy_free_nid;
3212 fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3213 sizeof(struct fsync_node_entry));
3214 if (!fsync_node_entry_slab)
3215 goto destroy_nat_entry_set;
3216 return 0;
3218 destroy_nat_entry_set:
3219 kmem_cache_destroy(nat_entry_set_slab);
3220 destroy_free_nid:
3221 kmem_cache_destroy(free_nid_slab);
3222 destroy_nat_entry:
3223 kmem_cache_destroy(nat_entry_slab);
3224 fail:
3225 return -ENOMEM;
3228 void f2fs_destroy_node_manager_caches(void)
3230 kmem_cache_destroy(fsync_node_entry_slab);
3231 kmem_cache_destroy(nat_entry_set_slab);
3232 kmem_cache_destroy(free_nid_slab);
3233 kmem_cache_destroy(nat_entry_slab);