Merge tag 'powerpc-5.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / block / blk-merge.c
blob808768f6b174cce90f799f35ecb00d4a5072e0e4
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/scatterlist.h>
11 #include <trace/events/block.h>
13 #include "blk.h"
14 #include "blk-rq-qos.h"
16 static inline bool bio_will_gap(struct request_queue *q,
17 struct request *prev_rq, struct bio *prev, struct bio *next)
19 struct bio_vec pb, nb;
21 if (!bio_has_data(prev) || !queue_virt_boundary(q))
22 return false;
25 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
26 * is quite difficult to respect the sg gap limit. We work hard to
27 * merge a huge number of small single bios in case of mkfs.
29 if (prev_rq)
30 bio_get_first_bvec(prev_rq->bio, &pb);
31 else
32 bio_get_first_bvec(prev, &pb);
33 if (pb.bv_offset & queue_virt_boundary(q))
34 return true;
37 * We don't need to worry about the situation that the merged segment
38 * ends in unaligned virt boundary:
40 * - if 'pb' ends aligned, the merged segment ends aligned
41 * - if 'pb' ends unaligned, the next bio must include
42 * one single bvec of 'nb', otherwise the 'nb' can't
43 * merge with 'pb'
45 bio_get_last_bvec(prev, &pb);
46 bio_get_first_bvec(next, &nb);
47 if (biovec_phys_mergeable(q, &pb, &nb))
48 return false;
49 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
52 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
54 return bio_will_gap(req->q, req, req->biotail, bio);
57 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
59 return bio_will_gap(req->q, NULL, bio, req->bio);
62 static struct bio *blk_bio_discard_split(struct request_queue *q,
63 struct bio *bio,
64 struct bio_set *bs,
65 unsigned *nsegs)
67 unsigned int max_discard_sectors, granularity;
68 int alignment;
69 sector_t tmp;
70 unsigned split_sectors;
72 *nsegs = 1;
74 /* Zero-sector (unknown) and one-sector granularities are the same. */
75 granularity = max(q->limits.discard_granularity >> 9, 1U);
77 max_discard_sectors = min(q->limits.max_discard_sectors,
78 bio_allowed_max_sectors(q));
79 max_discard_sectors -= max_discard_sectors % granularity;
81 if (unlikely(!max_discard_sectors)) {
82 /* XXX: warn */
83 return NULL;
86 if (bio_sectors(bio) <= max_discard_sectors)
87 return NULL;
89 split_sectors = max_discard_sectors;
92 * If the next starting sector would be misaligned, stop the discard at
93 * the previous aligned sector.
95 alignment = (q->limits.discard_alignment >> 9) % granularity;
97 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
98 tmp = sector_div(tmp, granularity);
100 if (split_sectors > tmp)
101 split_sectors -= tmp;
103 return bio_split(bio, split_sectors, GFP_NOIO, bs);
106 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
107 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
109 *nsegs = 0;
111 if (!q->limits.max_write_zeroes_sectors)
112 return NULL;
114 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
115 return NULL;
117 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
120 static struct bio *blk_bio_write_same_split(struct request_queue *q,
121 struct bio *bio,
122 struct bio_set *bs,
123 unsigned *nsegs)
125 *nsegs = 1;
127 if (!q->limits.max_write_same_sectors)
128 return NULL;
130 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
131 return NULL;
133 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
137 * Return the maximum number of sectors from the start of a bio that may be
138 * submitted as a single request to a block device. If enough sectors remain,
139 * align the end to the physical block size. Otherwise align the end to the
140 * logical block size. This approach minimizes the number of non-aligned
141 * requests that are submitted to a block device if the start of a bio is not
142 * aligned to a physical block boundary.
144 static inline unsigned get_max_io_size(struct request_queue *q,
145 struct bio *bio)
147 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
148 unsigned max_sectors = sectors;
149 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
150 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
151 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
153 max_sectors += start_offset;
154 max_sectors &= ~(pbs - 1);
155 if (max_sectors > start_offset)
156 return max_sectors - start_offset;
158 return sectors & ~(lbs - 1);
161 static inline unsigned get_max_segment_size(const struct request_queue *q,
162 struct page *start_page,
163 unsigned long offset)
165 unsigned long mask = queue_segment_boundary(q);
167 offset = mask & (page_to_phys(start_page) + offset);
170 * overflow may be triggered in case of zero page physical address
171 * on 32bit arch, use queue's max segment size when that happens.
173 return min_not_zero(mask - offset + 1,
174 (unsigned long)queue_max_segment_size(q));
178 * bvec_split_segs - verify whether or not a bvec should be split in the middle
179 * @q: [in] request queue associated with the bio associated with @bv
180 * @bv: [in] bvec to examine
181 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
182 * by the number of segments from @bv that may be appended to that
183 * bio without exceeding @max_segs
184 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
185 * by the number of sectors from @bv that may be appended to that
186 * bio without exceeding @max_sectors
187 * @max_segs: [in] upper bound for *@nsegs
188 * @max_sectors: [in] upper bound for *@sectors
190 * When splitting a bio, it can happen that a bvec is encountered that is too
191 * big to fit in a single segment and hence that it has to be split in the
192 * middle. This function verifies whether or not that should happen. The value
193 * %true is returned if and only if appending the entire @bv to a bio with
194 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
195 * the block driver.
197 static bool bvec_split_segs(const struct request_queue *q,
198 const struct bio_vec *bv, unsigned *nsegs,
199 unsigned *sectors, unsigned max_segs,
200 unsigned max_sectors)
202 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
203 unsigned len = min(bv->bv_len, max_len);
204 unsigned total_len = 0;
205 unsigned seg_size = 0;
207 while (len && *nsegs < max_segs) {
208 seg_size = get_max_segment_size(q, bv->bv_page,
209 bv->bv_offset + total_len);
210 seg_size = min(seg_size, len);
212 (*nsegs)++;
213 total_len += seg_size;
214 len -= seg_size;
216 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
217 break;
220 *sectors += total_len >> 9;
222 /* tell the caller to split the bvec if it is too big to fit */
223 return len > 0 || bv->bv_len > max_len;
227 * blk_bio_segment_split - split a bio in two bios
228 * @q: [in] request queue pointer
229 * @bio: [in] bio to be split
230 * @bs: [in] bio set to allocate the clone from
231 * @segs: [out] number of segments in the bio with the first half of the sectors
233 * Clone @bio, update the bi_iter of the clone to represent the first sectors
234 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
235 * following is guaranteed for the cloned bio:
236 * - That it has at most get_max_io_size(@q, @bio) sectors.
237 * - That it has at most queue_max_segments(@q) segments.
239 * Except for discard requests the cloned bio will point at the bi_io_vec of
240 * the original bio. It is the responsibility of the caller to ensure that the
241 * original bio is not freed before the cloned bio. The caller is also
242 * responsible for ensuring that @bs is only destroyed after processing of the
243 * split bio has finished.
245 static struct bio *blk_bio_segment_split(struct request_queue *q,
246 struct bio *bio,
247 struct bio_set *bs,
248 unsigned *segs)
250 struct bio_vec bv, bvprv, *bvprvp = NULL;
251 struct bvec_iter iter;
252 unsigned nsegs = 0, sectors = 0;
253 const unsigned max_sectors = get_max_io_size(q, bio);
254 const unsigned max_segs = queue_max_segments(q);
256 bio_for_each_bvec(bv, bio, iter) {
258 * If the queue doesn't support SG gaps and adding this
259 * offset would create a gap, disallow it.
261 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
262 goto split;
264 if (nsegs < max_segs &&
265 sectors + (bv.bv_len >> 9) <= max_sectors &&
266 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
267 nsegs++;
268 sectors += bv.bv_len >> 9;
269 } else if (bvec_split_segs(q, &bv, &nsegs, &sectors, max_segs,
270 max_sectors)) {
271 goto split;
274 bvprv = bv;
275 bvprvp = &bvprv;
278 *segs = nsegs;
279 return NULL;
280 split:
281 *segs = nsegs;
284 * Bio splitting may cause subtle trouble such as hang when doing sync
285 * iopoll in direct IO routine. Given performance gain of iopoll for
286 * big IO can be trival, disable iopoll when split needed.
288 bio->bi_opf &= ~REQ_HIPRI;
290 return bio_split(bio, sectors, GFP_NOIO, bs);
294 * __blk_queue_split - split a bio and submit the second half
295 * @bio: [in, out] bio to be split
296 * @nr_segs: [out] number of segments in the first bio
298 * Split a bio into two bios, chain the two bios, submit the second half and
299 * store a pointer to the first half in *@bio. If the second bio is still too
300 * big it will be split by a recursive call to this function. Since this
301 * function may allocate a new bio from @bio->bi_disk->queue->bio_split, it is
302 * the responsibility of the caller to ensure that
303 * @bio->bi_disk->queue->bio_split is only released after processing of the
304 * split bio has finished.
306 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs)
308 struct request_queue *q = (*bio)->bi_disk->queue;
309 struct bio *split = NULL;
311 switch (bio_op(*bio)) {
312 case REQ_OP_DISCARD:
313 case REQ_OP_SECURE_ERASE:
314 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
315 break;
316 case REQ_OP_WRITE_ZEROES:
317 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
318 nr_segs);
319 break;
320 case REQ_OP_WRITE_SAME:
321 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
322 nr_segs);
323 break;
324 default:
326 * All drivers must accept single-segments bios that are <=
327 * PAGE_SIZE. This is a quick and dirty check that relies on
328 * the fact that bi_io_vec[0] is always valid if a bio has data.
329 * The check might lead to occasional false negatives when bios
330 * are cloned, but compared to the performance impact of cloned
331 * bios themselves the loop below doesn't matter anyway.
333 if (!q->limits.chunk_sectors &&
334 (*bio)->bi_vcnt == 1 &&
335 ((*bio)->bi_io_vec[0].bv_len +
336 (*bio)->bi_io_vec[0].bv_offset) <= PAGE_SIZE) {
337 *nr_segs = 1;
338 break;
340 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
341 break;
344 if (split) {
345 /* there isn't chance to merge the splitted bio */
346 split->bi_opf |= REQ_NOMERGE;
348 bio_chain(split, *bio);
349 trace_block_split(split, (*bio)->bi_iter.bi_sector);
350 submit_bio_noacct(*bio);
351 *bio = split;
356 * blk_queue_split - split a bio and submit the second half
357 * @bio: [in, out] bio to be split
359 * Split a bio into two bios, chains the two bios, submit the second half and
360 * store a pointer to the first half in *@bio. Since this function may allocate
361 * a new bio from @bio->bi_disk->queue->bio_split, it is the responsibility of
362 * the caller to ensure that @bio->bi_disk->queue->bio_split is only released
363 * after processing of the split bio has finished.
365 void blk_queue_split(struct bio **bio)
367 unsigned int nr_segs;
369 __blk_queue_split(bio, &nr_segs);
371 EXPORT_SYMBOL(blk_queue_split);
373 unsigned int blk_recalc_rq_segments(struct request *rq)
375 unsigned int nr_phys_segs = 0;
376 unsigned int nr_sectors = 0;
377 struct req_iterator iter;
378 struct bio_vec bv;
380 if (!rq->bio)
381 return 0;
383 switch (bio_op(rq->bio)) {
384 case REQ_OP_DISCARD:
385 case REQ_OP_SECURE_ERASE:
386 case REQ_OP_WRITE_ZEROES:
387 return 0;
388 case REQ_OP_WRITE_SAME:
389 return 1;
392 rq_for_each_bvec(bv, rq, iter)
393 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
394 UINT_MAX, UINT_MAX);
395 return nr_phys_segs;
398 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
399 struct scatterlist *sglist)
401 if (!*sg)
402 return sglist;
405 * If the driver previously mapped a shorter list, we could see a
406 * termination bit prematurely unless it fully inits the sg table
407 * on each mapping. We KNOW that there must be more entries here
408 * or the driver would be buggy, so force clear the termination bit
409 * to avoid doing a full sg_init_table() in drivers for each command.
411 sg_unmark_end(*sg);
412 return sg_next(*sg);
415 static unsigned blk_bvec_map_sg(struct request_queue *q,
416 struct bio_vec *bvec, struct scatterlist *sglist,
417 struct scatterlist **sg)
419 unsigned nbytes = bvec->bv_len;
420 unsigned nsegs = 0, total = 0;
422 while (nbytes > 0) {
423 unsigned offset = bvec->bv_offset + total;
424 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
425 offset), nbytes);
426 struct page *page = bvec->bv_page;
429 * Unfortunately a fair number of drivers barf on scatterlists
430 * that have an offset larger than PAGE_SIZE, despite other
431 * subsystems dealing with that invariant just fine. For now
432 * stick to the legacy format where we never present those from
433 * the block layer, but the code below should be removed once
434 * these offenders (mostly MMC/SD drivers) are fixed.
436 page += (offset >> PAGE_SHIFT);
437 offset &= ~PAGE_MASK;
439 *sg = blk_next_sg(sg, sglist);
440 sg_set_page(*sg, page, len, offset);
442 total += len;
443 nbytes -= len;
444 nsegs++;
447 return nsegs;
450 static inline int __blk_bvec_map_sg(struct bio_vec bv,
451 struct scatterlist *sglist, struct scatterlist **sg)
453 *sg = blk_next_sg(sg, sglist);
454 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
455 return 1;
458 /* only try to merge bvecs into one sg if they are from two bios */
459 static inline bool
460 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
461 struct bio_vec *bvprv, struct scatterlist **sg)
464 int nbytes = bvec->bv_len;
466 if (!*sg)
467 return false;
469 if ((*sg)->length + nbytes > queue_max_segment_size(q))
470 return false;
472 if (!biovec_phys_mergeable(q, bvprv, bvec))
473 return false;
475 (*sg)->length += nbytes;
477 return true;
480 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
481 struct scatterlist *sglist,
482 struct scatterlist **sg)
484 struct bio_vec bvec, bvprv = { NULL };
485 struct bvec_iter iter;
486 int nsegs = 0;
487 bool new_bio = false;
489 for_each_bio(bio) {
490 bio_for_each_bvec(bvec, bio, iter) {
492 * Only try to merge bvecs from two bios given we
493 * have done bio internal merge when adding pages
494 * to bio
496 if (new_bio &&
497 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
498 goto next_bvec;
500 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
501 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
502 else
503 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
504 next_bvec:
505 new_bio = false;
507 if (likely(bio->bi_iter.bi_size)) {
508 bvprv = bvec;
509 new_bio = true;
513 return nsegs;
517 * map a request to scatterlist, return number of sg entries setup. Caller
518 * must make sure sg can hold rq->nr_phys_segments entries
520 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
521 struct scatterlist *sglist, struct scatterlist **last_sg)
523 int nsegs = 0;
525 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
526 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
527 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
528 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
529 else if (rq->bio)
530 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
532 if (*last_sg)
533 sg_mark_end(*last_sg);
536 * Something must have been wrong if the figured number of
537 * segment is bigger than number of req's physical segments
539 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
541 return nsegs;
543 EXPORT_SYMBOL(__blk_rq_map_sg);
545 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
547 if (req_op(rq) == REQ_OP_DISCARD)
548 return queue_max_discard_segments(rq->q);
549 return queue_max_segments(rq->q);
552 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
553 unsigned int nr_phys_segs)
555 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
556 goto no_merge;
558 if (blk_integrity_merge_bio(req->q, req, bio) == false)
559 goto no_merge;
562 * This will form the start of a new hw segment. Bump both
563 * counters.
565 req->nr_phys_segments += nr_phys_segs;
566 return 1;
568 no_merge:
569 req_set_nomerge(req->q, req);
570 return 0;
573 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
575 if (req_gap_back_merge(req, bio))
576 return 0;
577 if (blk_integrity_rq(req) &&
578 integrity_req_gap_back_merge(req, bio))
579 return 0;
580 if (!bio_crypt_ctx_back_mergeable(req, bio))
581 return 0;
582 if (blk_rq_sectors(req) + bio_sectors(bio) >
583 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
584 req_set_nomerge(req->q, req);
585 return 0;
588 return ll_new_hw_segment(req, bio, nr_segs);
591 static int ll_front_merge_fn(struct request *req, struct bio *bio,
592 unsigned int nr_segs)
594 if (req_gap_front_merge(req, bio))
595 return 0;
596 if (blk_integrity_rq(req) &&
597 integrity_req_gap_front_merge(req, bio))
598 return 0;
599 if (!bio_crypt_ctx_front_mergeable(req, bio))
600 return 0;
601 if (blk_rq_sectors(req) + bio_sectors(bio) >
602 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
603 req_set_nomerge(req->q, req);
604 return 0;
607 return ll_new_hw_segment(req, bio, nr_segs);
610 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
611 struct request *next)
613 unsigned short segments = blk_rq_nr_discard_segments(req);
615 if (segments >= queue_max_discard_segments(q))
616 goto no_merge;
617 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
618 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
619 goto no_merge;
621 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
622 return true;
623 no_merge:
624 req_set_nomerge(q, req);
625 return false;
628 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
629 struct request *next)
631 int total_phys_segments;
633 if (req_gap_back_merge(req, next->bio))
634 return 0;
637 * Will it become too large?
639 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
640 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
641 return 0;
643 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
644 if (total_phys_segments > blk_rq_get_max_segments(req))
645 return 0;
647 if (blk_integrity_merge_rq(q, req, next) == false)
648 return 0;
650 if (!bio_crypt_ctx_merge_rq(req, next))
651 return 0;
653 /* Merge is OK... */
654 req->nr_phys_segments = total_phys_segments;
655 return 1;
659 * blk_rq_set_mixed_merge - mark a request as mixed merge
660 * @rq: request to mark as mixed merge
662 * Description:
663 * @rq is about to be mixed merged. Make sure the attributes
664 * which can be mixed are set in each bio and mark @rq as mixed
665 * merged.
667 void blk_rq_set_mixed_merge(struct request *rq)
669 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
670 struct bio *bio;
672 if (rq->rq_flags & RQF_MIXED_MERGE)
673 return;
676 * @rq will no longer represent mixable attributes for all the
677 * contained bios. It will just track those of the first one.
678 * Distributes the attributs to each bio.
680 for (bio = rq->bio; bio; bio = bio->bi_next) {
681 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
682 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
683 bio->bi_opf |= ff;
685 rq->rq_flags |= RQF_MIXED_MERGE;
688 static void blk_account_io_merge_request(struct request *req)
690 if (blk_do_io_stat(req)) {
691 part_stat_lock();
692 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
693 part_stat_unlock();
698 * Two cases of handling DISCARD merge:
699 * If max_discard_segments > 1, the driver takes every bio
700 * as a range and send them to controller together. The ranges
701 * needn't to be contiguous.
702 * Otherwise, the bios/requests will be handled as same as
703 * others which should be contiguous.
705 static inline bool blk_discard_mergable(struct request *req)
707 if (req_op(req) == REQ_OP_DISCARD &&
708 queue_max_discard_segments(req->q) > 1)
709 return true;
710 return false;
713 static enum elv_merge blk_try_req_merge(struct request *req,
714 struct request *next)
716 if (blk_discard_mergable(req))
717 return ELEVATOR_DISCARD_MERGE;
718 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
719 return ELEVATOR_BACK_MERGE;
721 return ELEVATOR_NO_MERGE;
725 * For non-mq, this has to be called with the request spinlock acquired.
726 * For mq with scheduling, the appropriate queue wide lock should be held.
728 static struct request *attempt_merge(struct request_queue *q,
729 struct request *req, struct request *next)
731 if (!rq_mergeable(req) || !rq_mergeable(next))
732 return NULL;
734 if (req_op(req) != req_op(next))
735 return NULL;
737 if (rq_data_dir(req) != rq_data_dir(next)
738 || req->rq_disk != next->rq_disk)
739 return NULL;
741 if (req_op(req) == REQ_OP_WRITE_SAME &&
742 !blk_write_same_mergeable(req->bio, next->bio))
743 return NULL;
746 * Don't allow merge of different write hints, or for a hint with
747 * non-hint IO.
749 if (req->write_hint != next->write_hint)
750 return NULL;
752 if (req->ioprio != next->ioprio)
753 return NULL;
756 * If we are allowed to merge, then append bio list
757 * from next to rq and release next. merge_requests_fn
758 * will have updated segment counts, update sector
759 * counts here. Handle DISCARDs separately, as they
760 * have separate settings.
763 switch (blk_try_req_merge(req, next)) {
764 case ELEVATOR_DISCARD_MERGE:
765 if (!req_attempt_discard_merge(q, req, next))
766 return NULL;
767 break;
768 case ELEVATOR_BACK_MERGE:
769 if (!ll_merge_requests_fn(q, req, next))
770 return NULL;
771 break;
772 default:
773 return NULL;
777 * If failfast settings disagree or any of the two is already
778 * a mixed merge, mark both as mixed before proceeding. This
779 * makes sure that all involved bios have mixable attributes
780 * set properly.
782 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
783 (req->cmd_flags & REQ_FAILFAST_MASK) !=
784 (next->cmd_flags & REQ_FAILFAST_MASK)) {
785 blk_rq_set_mixed_merge(req);
786 blk_rq_set_mixed_merge(next);
790 * At this point we have either done a back merge or front merge. We
791 * need the smaller start_time_ns of the merged requests to be the
792 * current request for accounting purposes.
794 if (next->start_time_ns < req->start_time_ns)
795 req->start_time_ns = next->start_time_ns;
797 req->biotail->bi_next = next->bio;
798 req->biotail = next->biotail;
800 req->__data_len += blk_rq_bytes(next);
802 if (!blk_discard_mergable(req))
803 elv_merge_requests(q, req, next);
806 * 'next' is going away, so update stats accordingly
808 blk_account_io_merge_request(next);
810 trace_block_rq_merge(next);
813 * ownership of bio passed from next to req, return 'next' for
814 * the caller to free
816 next->bio = NULL;
817 return next;
820 static struct request *attempt_back_merge(struct request_queue *q,
821 struct request *rq)
823 struct request *next = elv_latter_request(q, rq);
825 if (next)
826 return attempt_merge(q, rq, next);
828 return NULL;
831 static struct request *attempt_front_merge(struct request_queue *q,
832 struct request *rq)
834 struct request *prev = elv_former_request(q, rq);
836 if (prev)
837 return attempt_merge(q, prev, rq);
839 return NULL;
842 int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
843 struct request *next)
845 struct request *free;
847 free = attempt_merge(q, rq, next);
848 if (free) {
849 blk_put_request(free);
850 return 1;
853 return 0;
856 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
858 if (!rq_mergeable(rq) || !bio_mergeable(bio))
859 return false;
861 if (req_op(rq) != bio_op(bio))
862 return false;
864 /* different data direction or already started, don't merge */
865 if (bio_data_dir(bio) != rq_data_dir(rq))
866 return false;
868 /* must be same device */
869 if (rq->rq_disk != bio->bi_disk)
870 return false;
872 /* only merge integrity protected bio into ditto rq */
873 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
874 return false;
876 /* Only merge if the crypt contexts are compatible */
877 if (!bio_crypt_rq_ctx_compatible(rq, bio))
878 return false;
880 /* must be using the same buffer */
881 if (req_op(rq) == REQ_OP_WRITE_SAME &&
882 !blk_write_same_mergeable(rq->bio, bio))
883 return false;
886 * Don't allow merge of different write hints, or for a hint with
887 * non-hint IO.
889 if (rq->write_hint != bio->bi_write_hint)
890 return false;
892 if (rq->ioprio != bio_prio(bio))
893 return false;
895 return true;
898 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
900 if (blk_discard_mergable(rq))
901 return ELEVATOR_DISCARD_MERGE;
902 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
903 return ELEVATOR_BACK_MERGE;
904 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
905 return ELEVATOR_FRONT_MERGE;
906 return ELEVATOR_NO_MERGE;
909 static void blk_account_io_merge_bio(struct request *req)
911 if (!blk_do_io_stat(req))
912 return;
914 part_stat_lock();
915 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
916 part_stat_unlock();
919 enum bio_merge_status {
920 BIO_MERGE_OK,
921 BIO_MERGE_NONE,
922 BIO_MERGE_FAILED,
925 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
926 struct bio *bio, unsigned int nr_segs)
928 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
930 if (!ll_back_merge_fn(req, bio, nr_segs))
931 return BIO_MERGE_FAILED;
933 trace_block_bio_backmerge(bio);
934 rq_qos_merge(req->q, req, bio);
936 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
937 blk_rq_set_mixed_merge(req);
939 req->biotail->bi_next = bio;
940 req->biotail = bio;
941 req->__data_len += bio->bi_iter.bi_size;
943 bio_crypt_free_ctx(bio);
945 blk_account_io_merge_bio(req);
946 return BIO_MERGE_OK;
949 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
950 struct bio *bio, unsigned int nr_segs)
952 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
954 if (!ll_front_merge_fn(req, bio, nr_segs))
955 return BIO_MERGE_FAILED;
957 trace_block_bio_frontmerge(bio);
958 rq_qos_merge(req->q, req, bio);
960 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
961 blk_rq_set_mixed_merge(req);
963 bio->bi_next = req->bio;
964 req->bio = bio;
966 req->__sector = bio->bi_iter.bi_sector;
967 req->__data_len += bio->bi_iter.bi_size;
969 bio_crypt_do_front_merge(req, bio);
971 blk_account_io_merge_bio(req);
972 return BIO_MERGE_OK;
975 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
976 struct request *req, struct bio *bio)
978 unsigned short segments = blk_rq_nr_discard_segments(req);
980 if (segments >= queue_max_discard_segments(q))
981 goto no_merge;
982 if (blk_rq_sectors(req) + bio_sectors(bio) >
983 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
984 goto no_merge;
986 rq_qos_merge(q, req, bio);
988 req->biotail->bi_next = bio;
989 req->biotail = bio;
990 req->__data_len += bio->bi_iter.bi_size;
991 req->nr_phys_segments = segments + 1;
993 blk_account_io_merge_bio(req);
994 return BIO_MERGE_OK;
995 no_merge:
996 req_set_nomerge(q, req);
997 return BIO_MERGE_FAILED;
1000 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1001 struct request *rq,
1002 struct bio *bio,
1003 unsigned int nr_segs,
1004 bool sched_allow_merge)
1006 if (!blk_rq_merge_ok(rq, bio))
1007 return BIO_MERGE_NONE;
1009 switch (blk_try_merge(rq, bio)) {
1010 case ELEVATOR_BACK_MERGE:
1011 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1012 return bio_attempt_back_merge(rq, bio, nr_segs);
1013 break;
1014 case ELEVATOR_FRONT_MERGE:
1015 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1016 return bio_attempt_front_merge(rq, bio, nr_segs);
1017 break;
1018 case ELEVATOR_DISCARD_MERGE:
1019 return bio_attempt_discard_merge(q, rq, bio);
1020 default:
1021 return BIO_MERGE_NONE;
1024 return BIO_MERGE_FAILED;
1028 * blk_attempt_plug_merge - try to merge with %current's plugged list
1029 * @q: request_queue new bio is being queued at
1030 * @bio: new bio being queued
1031 * @nr_segs: number of segments in @bio
1032 * @same_queue_rq: pointer to &struct request that gets filled in when
1033 * another request associated with @q is found on the plug list
1034 * (optional, may be %NULL)
1036 * Determine whether @bio being queued on @q can be merged with a request
1037 * on %current's plugged list. Returns %true if merge was successful,
1038 * otherwise %false.
1040 * Plugging coalesces IOs from the same issuer for the same purpose without
1041 * going through @q->queue_lock. As such it's more of an issuing mechanism
1042 * than scheduling, and the request, while may have elvpriv data, is not
1043 * added on the elevator at this point. In addition, we don't have
1044 * reliable access to the elevator outside queue lock. Only check basic
1045 * merging parameters without querying the elevator.
1047 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1049 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1050 unsigned int nr_segs, struct request **same_queue_rq)
1052 struct blk_plug *plug;
1053 struct request *rq;
1054 struct list_head *plug_list;
1056 plug = blk_mq_plug(q, bio);
1057 if (!plug)
1058 return false;
1060 plug_list = &plug->mq_list;
1062 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1063 if (rq->q == q && same_queue_rq) {
1065 * Only blk-mq multiple hardware queues case checks the
1066 * rq in the same queue, there should be only one such
1067 * rq in a queue
1069 *same_queue_rq = rq;
1072 if (rq->q != q)
1073 continue;
1075 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1076 BIO_MERGE_OK)
1077 return true;
1080 return false;
1084 * Iterate list of requests and see if we can merge this bio with any
1085 * of them.
1087 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1088 struct bio *bio, unsigned int nr_segs)
1090 struct request *rq;
1091 int checked = 8;
1093 list_for_each_entry_reverse(rq, list, queuelist) {
1094 if (!checked--)
1095 break;
1097 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1098 case BIO_MERGE_NONE:
1099 continue;
1100 case BIO_MERGE_OK:
1101 return true;
1102 case BIO_MERGE_FAILED:
1103 return false;
1108 return false;
1110 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1112 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1113 unsigned int nr_segs, struct request **merged_request)
1115 struct request *rq;
1117 switch (elv_merge(q, &rq, bio)) {
1118 case ELEVATOR_BACK_MERGE:
1119 if (!blk_mq_sched_allow_merge(q, rq, bio))
1120 return false;
1121 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1122 return false;
1123 *merged_request = attempt_back_merge(q, rq);
1124 if (!*merged_request)
1125 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1126 return true;
1127 case ELEVATOR_FRONT_MERGE:
1128 if (!blk_mq_sched_allow_merge(q, rq, bio))
1129 return false;
1130 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1131 return false;
1132 *merged_request = attempt_front_merge(q, rq);
1133 if (!*merged_request)
1134 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1135 return true;
1136 case ELEVATOR_DISCARD_MERGE:
1137 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1138 default:
1139 return false;
1142 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);