Merge tag 'powerpc-5.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / kernel / bpf / devmap.c
blobf6e9c68afdd4213db56a90f4e1f6d10a3fbbde42
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
3 */
5 /* Devmaps primary use is as a backend map for XDP BPF helper call
6 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
7 * spent some effort to ensure the datapath with redirect maps does not use
8 * any locking. This is a quick note on the details.
10 * We have three possible paths to get into the devmap control plane bpf
11 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
12 * will invoke an update, delete, or lookup operation. To ensure updates and
13 * deletes appear atomic from the datapath side xchg() is used to modify the
14 * netdev_map array. Then because the datapath does a lookup into the netdev_map
15 * array (read-only) from an RCU critical section we use call_rcu() to wait for
16 * an rcu grace period before free'ing the old data structures. This ensures the
17 * datapath always has a valid copy. However, the datapath does a "flush"
18 * operation that pushes any pending packets in the driver outside the RCU
19 * critical section. Each bpf_dtab_netdev tracks these pending operations using
20 * a per-cpu flush list. The bpf_dtab_netdev object will not be destroyed until
21 * this list is empty, indicating outstanding flush operations have completed.
23 * BPF syscalls may race with BPF program calls on any of the update, delete
24 * or lookup operations. As noted above the xchg() operation also keep the
25 * netdev_map consistent in this case. From the devmap side BPF programs
26 * calling into these operations are the same as multiple user space threads
27 * making system calls.
29 * Finally, any of the above may race with a netdev_unregister notifier. The
30 * unregister notifier must search for net devices in the map structure that
31 * contain a reference to the net device and remove them. This is a two step
32 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
33 * check to see if the ifindex is the same as the net_device being removed.
34 * When removing the dev a cmpxchg() is used to ensure the correct dev is
35 * removed, in the case of a concurrent update or delete operation it is
36 * possible that the initially referenced dev is no longer in the map. As the
37 * notifier hook walks the map we know that new dev references can not be
38 * added by the user because core infrastructure ensures dev_get_by_index()
39 * calls will fail at this point.
41 * The devmap_hash type is a map type which interprets keys as ifindexes and
42 * indexes these using a hashmap. This allows maps that use ifindex as key to be
43 * densely packed instead of having holes in the lookup array for unused
44 * ifindexes. The setup and packet enqueue/send code is shared between the two
45 * types of devmap; only the lookup and insertion is different.
47 #include <linux/bpf.h>
48 #include <net/xdp.h>
49 #include <linux/filter.h>
50 #include <trace/events/xdp.h>
52 #define DEV_CREATE_FLAG_MASK \
53 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
55 struct xdp_dev_bulk_queue {
56 struct xdp_frame *q[DEV_MAP_BULK_SIZE];
57 struct list_head flush_node;
58 struct net_device *dev;
59 struct net_device *dev_rx;
60 unsigned int count;
63 struct bpf_dtab_netdev {
64 struct net_device *dev; /* must be first member, due to tracepoint */
65 struct hlist_node index_hlist;
66 struct bpf_dtab *dtab;
67 struct bpf_prog *xdp_prog;
68 struct rcu_head rcu;
69 unsigned int idx;
70 struct bpf_devmap_val val;
73 struct bpf_dtab {
74 struct bpf_map map;
75 struct bpf_dtab_netdev **netdev_map; /* DEVMAP type only */
76 struct list_head list;
78 /* these are only used for DEVMAP_HASH type maps */
79 struct hlist_head *dev_index_head;
80 spinlock_t index_lock;
81 unsigned int items;
82 u32 n_buckets;
85 static DEFINE_PER_CPU(struct list_head, dev_flush_list);
86 static DEFINE_SPINLOCK(dev_map_lock);
87 static LIST_HEAD(dev_map_list);
89 static struct hlist_head *dev_map_create_hash(unsigned int entries,
90 int numa_node)
92 int i;
93 struct hlist_head *hash;
95 hash = bpf_map_area_alloc(entries * sizeof(*hash), numa_node);
96 if (hash != NULL)
97 for (i = 0; i < entries; i++)
98 INIT_HLIST_HEAD(&hash[i]);
100 return hash;
103 static inline struct hlist_head *dev_map_index_hash(struct bpf_dtab *dtab,
104 int idx)
106 return &dtab->dev_index_head[idx & (dtab->n_buckets - 1)];
109 static int dev_map_init_map(struct bpf_dtab *dtab, union bpf_attr *attr)
111 u32 valsize = attr->value_size;
113 /* check sanity of attributes. 2 value sizes supported:
114 * 4 bytes: ifindex
115 * 8 bytes: ifindex + prog fd
117 if (attr->max_entries == 0 || attr->key_size != 4 ||
118 (valsize != offsetofend(struct bpf_devmap_val, ifindex) &&
119 valsize != offsetofend(struct bpf_devmap_val, bpf_prog.fd)) ||
120 attr->map_flags & ~DEV_CREATE_FLAG_MASK)
121 return -EINVAL;
123 /* Lookup returns a pointer straight to dev->ifindex, so make sure the
124 * verifier prevents writes from the BPF side
126 attr->map_flags |= BPF_F_RDONLY_PROG;
129 bpf_map_init_from_attr(&dtab->map, attr);
131 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
132 dtab->n_buckets = roundup_pow_of_two(dtab->map.max_entries);
134 if (!dtab->n_buckets) /* Overflow check */
135 return -EINVAL;
138 if (attr->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
139 dtab->dev_index_head = dev_map_create_hash(dtab->n_buckets,
140 dtab->map.numa_node);
141 if (!dtab->dev_index_head)
142 return -ENOMEM;
144 spin_lock_init(&dtab->index_lock);
145 } else {
146 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
147 sizeof(struct bpf_dtab_netdev *),
148 dtab->map.numa_node);
149 if (!dtab->netdev_map)
150 return -ENOMEM;
153 return 0;
156 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
158 struct bpf_dtab *dtab;
159 int err;
161 if (!capable(CAP_NET_ADMIN))
162 return ERR_PTR(-EPERM);
164 dtab = kzalloc(sizeof(*dtab), GFP_USER | __GFP_ACCOUNT);
165 if (!dtab)
166 return ERR_PTR(-ENOMEM);
168 err = dev_map_init_map(dtab, attr);
169 if (err) {
170 kfree(dtab);
171 return ERR_PTR(err);
174 spin_lock(&dev_map_lock);
175 list_add_tail_rcu(&dtab->list, &dev_map_list);
176 spin_unlock(&dev_map_lock);
178 return &dtab->map;
181 static void dev_map_free(struct bpf_map *map)
183 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
184 int i;
186 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
187 * so the programs (can be more than one that used this map) were
188 * disconnected from events. The following synchronize_rcu() guarantees
189 * both rcu read critical sections complete and waits for
190 * preempt-disable regions (NAPI being the relevant context here) so we
191 * are certain there will be no further reads against the netdev_map and
192 * all flush operations are complete. Flush operations can only be done
193 * from NAPI context for this reason.
196 spin_lock(&dev_map_lock);
197 list_del_rcu(&dtab->list);
198 spin_unlock(&dev_map_lock);
200 bpf_clear_redirect_map(map);
201 synchronize_rcu();
203 /* Make sure prior __dev_map_entry_free() have completed. */
204 rcu_barrier();
206 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
207 for (i = 0; i < dtab->n_buckets; i++) {
208 struct bpf_dtab_netdev *dev;
209 struct hlist_head *head;
210 struct hlist_node *next;
212 head = dev_map_index_hash(dtab, i);
214 hlist_for_each_entry_safe(dev, next, head, index_hlist) {
215 hlist_del_rcu(&dev->index_hlist);
216 if (dev->xdp_prog)
217 bpf_prog_put(dev->xdp_prog);
218 dev_put(dev->dev);
219 kfree(dev);
223 bpf_map_area_free(dtab->dev_index_head);
224 } else {
225 for (i = 0; i < dtab->map.max_entries; i++) {
226 struct bpf_dtab_netdev *dev;
228 dev = dtab->netdev_map[i];
229 if (!dev)
230 continue;
232 if (dev->xdp_prog)
233 bpf_prog_put(dev->xdp_prog);
234 dev_put(dev->dev);
235 kfree(dev);
238 bpf_map_area_free(dtab->netdev_map);
241 kfree(dtab);
244 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
246 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
247 u32 index = key ? *(u32 *)key : U32_MAX;
248 u32 *next = next_key;
250 if (index >= dtab->map.max_entries) {
251 *next = 0;
252 return 0;
255 if (index == dtab->map.max_entries - 1)
256 return -ENOENT;
257 *next = index + 1;
258 return 0;
261 struct bpf_dtab_netdev *__dev_map_hash_lookup_elem(struct bpf_map *map, u32 key)
263 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
264 struct hlist_head *head = dev_map_index_hash(dtab, key);
265 struct bpf_dtab_netdev *dev;
267 hlist_for_each_entry_rcu(dev, head, index_hlist,
268 lockdep_is_held(&dtab->index_lock))
269 if (dev->idx == key)
270 return dev;
272 return NULL;
275 static int dev_map_hash_get_next_key(struct bpf_map *map, void *key,
276 void *next_key)
278 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
279 u32 idx, *next = next_key;
280 struct bpf_dtab_netdev *dev, *next_dev;
281 struct hlist_head *head;
282 int i = 0;
284 if (!key)
285 goto find_first;
287 idx = *(u32 *)key;
289 dev = __dev_map_hash_lookup_elem(map, idx);
290 if (!dev)
291 goto find_first;
293 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(&dev->index_hlist)),
294 struct bpf_dtab_netdev, index_hlist);
296 if (next_dev) {
297 *next = next_dev->idx;
298 return 0;
301 i = idx & (dtab->n_buckets - 1);
302 i++;
304 find_first:
305 for (; i < dtab->n_buckets; i++) {
306 head = dev_map_index_hash(dtab, i);
308 next_dev = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),
309 struct bpf_dtab_netdev,
310 index_hlist);
311 if (next_dev) {
312 *next = next_dev->idx;
313 return 0;
317 return -ENOENT;
320 bool dev_map_can_have_prog(struct bpf_map *map)
322 if ((map->map_type == BPF_MAP_TYPE_DEVMAP ||
323 map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) &&
324 map->value_size != offsetofend(struct bpf_devmap_val, ifindex))
325 return true;
327 return false;
330 static void bq_xmit_all(struct xdp_dev_bulk_queue *bq, u32 flags)
332 struct net_device *dev = bq->dev;
333 int sent = 0, drops = 0, err = 0;
334 int i;
336 if (unlikely(!bq->count))
337 return;
339 for (i = 0; i < bq->count; i++) {
340 struct xdp_frame *xdpf = bq->q[i];
342 prefetch(xdpf);
345 sent = dev->netdev_ops->ndo_xdp_xmit(dev, bq->count, bq->q, flags);
346 if (sent < 0) {
347 err = sent;
348 sent = 0;
349 goto error;
351 drops = bq->count - sent;
352 out:
353 bq->count = 0;
355 trace_xdp_devmap_xmit(bq->dev_rx, dev, sent, drops, err);
356 bq->dev_rx = NULL;
357 __list_del_clearprev(&bq->flush_node);
358 return;
359 error:
360 /* If ndo_xdp_xmit fails with an errno, no frames have been
361 * xmit'ed and it's our responsibility to them free all.
363 for (i = 0; i < bq->count; i++) {
364 struct xdp_frame *xdpf = bq->q[i];
366 xdp_return_frame_rx_napi(xdpf);
367 drops++;
369 goto out;
372 /* __dev_flush is called from xdp_do_flush() which _must_ be signaled
373 * from the driver before returning from its napi->poll() routine. The poll()
374 * routine is called either from busy_poll context or net_rx_action signaled
375 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
376 * net device can be torn down. On devmap tear down we ensure the flush list
377 * is empty before completing to ensure all flush operations have completed.
378 * When drivers update the bpf program they may need to ensure any flush ops
379 * are also complete. Using synchronize_rcu or call_rcu will suffice for this
380 * because both wait for napi context to exit.
382 void __dev_flush(void)
384 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
385 struct xdp_dev_bulk_queue *bq, *tmp;
387 list_for_each_entry_safe(bq, tmp, flush_list, flush_node)
388 bq_xmit_all(bq, XDP_XMIT_FLUSH);
391 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
392 * update happens in parallel here a dev_put wont happen until after reading the
393 * ifindex.
395 struct bpf_dtab_netdev *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
397 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
398 struct bpf_dtab_netdev *obj;
400 if (key >= map->max_entries)
401 return NULL;
403 obj = READ_ONCE(dtab->netdev_map[key]);
404 return obj;
407 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
408 * Thus, safe percpu variable access.
410 static void bq_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
411 struct net_device *dev_rx)
413 struct list_head *flush_list = this_cpu_ptr(&dev_flush_list);
414 struct xdp_dev_bulk_queue *bq = this_cpu_ptr(dev->xdp_bulkq);
416 if (unlikely(bq->count == DEV_MAP_BULK_SIZE))
417 bq_xmit_all(bq, 0);
419 /* Ingress dev_rx will be the same for all xdp_frame's in
420 * bulk_queue, because bq stored per-CPU and must be flushed
421 * from net_device drivers NAPI func end.
423 if (!bq->dev_rx)
424 bq->dev_rx = dev_rx;
426 bq->q[bq->count++] = xdpf;
428 if (!bq->flush_node.prev)
429 list_add(&bq->flush_node, flush_list);
432 static inline int __xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
433 struct net_device *dev_rx)
435 struct xdp_frame *xdpf;
436 int err;
438 if (!dev->netdev_ops->ndo_xdp_xmit)
439 return -EOPNOTSUPP;
441 err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
442 if (unlikely(err))
443 return err;
445 xdpf = xdp_convert_buff_to_frame(xdp);
446 if (unlikely(!xdpf))
447 return -EOVERFLOW;
449 bq_enqueue(dev, xdpf, dev_rx);
450 return 0;
453 static struct xdp_buff *dev_map_run_prog(struct net_device *dev,
454 struct xdp_buff *xdp,
455 struct bpf_prog *xdp_prog)
457 struct xdp_txq_info txq = { .dev = dev };
458 u32 act;
460 xdp_set_data_meta_invalid(xdp);
461 xdp->txq = &txq;
463 act = bpf_prog_run_xdp(xdp_prog, xdp);
464 switch (act) {
465 case XDP_PASS:
466 return xdp;
467 case XDP_DROP:
468 break;
469 default:
470 bpf_warn_invalid_xdp_action(act);
471 fallthrough;
472 case XDP_ABORTED:
473 trace_xdp_exception(dev, xdp_prog, act);
474 break;
477 xdp_return_buff(xdp);
478 return NULL;
481 int dev_xdp_enqueue(struct net_device *dev, struct xdp_buff *xdp,
482 struct net_device *dev_rx)
484 return __xdp_enqueue(dev, xdp, dev_rx);
487 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_buff *xdp,
488 struct net_device *dev_rx)
490 struct net_device *dev = dst->dev;
492 if (dst->xdp_prog) {
493 xdp = dev_map_run_prog(dev, xdp, dst->xdp_prog);
494 if (!xdp)
495 return 0;
497 return __xdp_enqueue(dev, xdp, dev_rx);
500 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
501 struct bpf_prog *xdp_prog)
503 int err;
505 err = xdp_ok_fwd_dev(dst->dev, skb->len);
506 if (unlikely(err))
507 return err;
508 skb->dev = dst->dev;
509 generic_xdp_tx(skb, xdp_prog);
511 return 0;
514 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
516 struct bpf_dtab_netdev *obj = __dev_map_lookup_elem(map, *(u32 *)key);
518 return obj ? &obj->val : NULL;
521 static void *dev_map_hash_lookup_elem(struct bpf_map *map, void *key)
523 struct bpf_dtab_netdev *obj = __dev_map_hash_lookup_elem(map,
524 *(u32 *)key);
525 return obj ? &obj->val : NULL;
528 static void __dev_map_entry_free(struct rcu_head *rcu)
530 struct bpf_dtab_netdev *dev;
532 dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
533 if (dev->xdp_prog)
534 bpf_prog_put(dev->xdp_prog);
535 dev_put(dev->dev);
536 kfree(dev);
539 static int dev_map_delete_elem(struct bpf_map *map, void *key)
541 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
542 struct bpf_dtab_netdev *old_dev;
543 int k = *(u32 *)key;
545 if (k >= map->max_entries)
546 return -EINVAL;
548 /* Use call_rcu() here to ensure any rcu critical sections have
549 * completed as well as any flush operations because call_rcu
550 * will wait for preempt-disable region to complete, NAPI in this
551 * context. And additionally, the driver tear down ensures all
552 * soft irqs are complete before removing the net device in the
553 * case of dev_put equals zero.
555 old_dev = xchg(&dtab->netdev_map[k], NULL);
556 if (old_dev)
557 call_rcu(&old_dev->rcu, __dev_map_entry_free);
558 return 0;
561 static int dev_map_hash_delete_elem(struct bpf_map *map, void *key)
563 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
564 struct bpf_dtab_netdev *old_dev;
565 int k = *(u32 *)key;
566 unsigned long flags;
567 int ret = -ENOENT;
569 spin_lock_irqsave(&dtab->index_lock, flags);
571 old_dev = __dev_map_hash_lookup_elem(map, k);
572 if (old_dev) {
573 dtab->items--;
574 hlist_del_init_rcu(&old_dev->index_hlist);
575 call_rcu(&old_dev->rcu, __dev_map_entry_free);
576 ret = 0;
578 spin_unlock_irqrestore(&dtab->index_lock, flags);
580 return ret;
583 static struct bpf_dtab_netdev *__dev_map_alloc_node(struct net *net,
584 struct bpf_dtab *dtab,
585 struct bpf_devmap_val *val,
586 unsigned int idx)
588 struct bpf_prog *prog = NULL;
589 struct bpf_dtab_netdev *dev;
591 dev = bpf_map_kmalloc_node(&dtab->map, sizeof(*dev),
592 GFP_ATOMIC | __GFP_NOWARN,
593 dtab->map.numa_node);
594 if (!dev)
595 return ERR_PTR(-ENOMEM);
597 dev->dev = dev_get_by_index(net, val->ifindex);
598 if (!dev->dev)
599 goto err_out;
601 if (val->bpf_prog.fd > 0) {
602 prog = bpf_prog_get_type_dev(val->bpf_prog.fd,
603 BPF_PROG_TYPE_XDP, false);
604 if (IS_ERR(prog))
605 goto err_put_dev;
606 if (prog->expected_attach_type != BPF_XDP_DEVMAP)
607 goto err_put_prog;
610 dev->idx = idx;
611 dev->dtab = dtab;
612 if (prog) {
613 dev->xdp_prog = prog;
614 dev->val.bpf_prog.id = prog->aux->id;
615 } else {
616 dev->xdp_prog = NULL;
617 dev->val.bpf_prog.id = 0;
619 dev->val.ifindex = val->ifindex;
621 return dev;
622 err_put_prog:
623 bpf_prog_put(prog);
624 err_put_dev:
625 dev_put(dev->dev);
626 err_out:
627 kfree(dev);
628 return ERR_PTR(-EINVAL);
631 static int __dev_map_update_elem(struct net *net, struct bpf_map *map,
632 void *key, void *value, u64 map_flags)
634 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
635 struct bpf_dtab_netdev *dev, *old_dev;
636 struct bpf_devmap_val val = {};
637 u32 i = *(u32 *)key;
639 if (unlikely(map_flags > BPF_EXIST))
640 return -EINVAL;
641 if (unlikely(i >= dtab->map.max_entries))
642 return -E2BIG;
643 if (unlikely(map_flags == BPF_NOEXIST))
644 return -EEXIST;
646 /* already verified value_size <= sizeof val */
647 memcpy(&val, value, map->value_size);
649 if (!val.ifindex) {
650 dev = NULL;
651 /* can not specify fd if ifindex is 0 */
652 if (val.bpf_prog.fd > 0)
653 return -EINVAL;
654 } else {
655 dev = __dev_map_alloc_node(net, dtab, &val, i);
656 if (IS_ERR(dev))
657 return PTR_ERR(dev);
660 /* Use call_rcu() here to ensure rcu critical sections have completed
661 * Remembering the driver side flush operation will happen before the
662 * net device is removed.
664 old_dev = xchg(&dtab->netdev_map[i], dev);
665 if (old_dev)
666 call_rcu(&old_dev->rcu, __dev_map_entry_free);
668 return 0;
671 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
672 u64 map_flags)
674 return __dev_map_update_elem(current->nsproxy->net_ns,
675 map, key, value, map_flags);
678 static int __dev_map_hash_update_elem(struct net *net, struct bpf_map *map,
679 void *key, void *value, u64 map_flags)
681 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
682 struct bpf_dtab_netdev *dev, *old_dev;
683 struct bpf_devmap_val val = {};
684 u32 idx = *(u32 *)key;
685 unsigned long flags;
686 int err = -EEXIST;
688 /* already verified value_size <= sizeof val */
689 memcpy(&val, value, map->value_size);
691 if (unlikely(map_flags > BPF_EXIST || !val.ifindex))
692 return -EINVAL;
694 spin_lock_irqsave(&dtab->index_lock, flags);
696 old_dev = __dev_map_hash_lookup_elem(map, idx);
697 if (old_dev && (map_flags & BPF_NOEXIST))
698 goto out_err;
700 dev = __dev_map_alloc_node(net, dtab, &val, idx);
701 if (IS_ERR(dev)) {
702 err = PTR_ERR(dev);
703 goto out_err;
706 if (old_dev) {
707 hlist_del_rcu(&old_dev->index_hlist);
708 } else {
709 if (dtab->items >= dtab->map.max_entries) {
710 spin_unlock_irqrestore(&dtab->index_lock, flags);
711 call_rcu(&dev->rcu, __dev_map_entry_free);
712 return -E2BIG;
714 dtab->items++;
717 hlist_add_head_rcu(&dev->index_hlist,
718 dev_map_index_hash(dtab, idx));
719 spin_unlock_irqrestore(&dtab->index_lock, flags);
721 if (old_dev)
722 call_rcu(&old_dev->rcu, __dev_map_entry_free);
724 return 0;
726 out_err:
727 spin_unlock_irqrestore(&dtab->index_lock, flags);
728 return err;
731 static int dev_map_hash_update_elem(struct bpf_map *map, void *key, void *value,
732 u64 map_flags)
734 return __dev_map_hash_update_elem(current->nsproxy->net_ns,
735 map, key, value, map_flags);
738 static int dev_map_btf_id;
739 const struct bpf_map_ops dev_map_ops = {
740 .map_meta_equal = bpf_map_meta_equal,
741 .map_alloc = dev_map_alloc,
742 .map_free = dev_map_free,
743 .map_get_next_key = dev_map_get_next_key,
744 .map_lookup_elem = dev_map_lookup_elem,
745 .map_update_elem = dev_map_update_elem,
746 .map_delete_elem = dev_map_delete_elem,
747 .map_check_btf = map_check_no_btf,
748 .map_btf_name = "bpf_dtab",
749 .map_btf_id = &dev_map_btf_id,
752 static int dev_map_hash_map_btf_id;
753 const struct bpf_map_ops dev_map_hash_ops = {
754 .map_meta_equal = bpf_map_meta_equal,
755 .map_alloc = dev_map_alloc,
756 .map_free = dev_map_free,
757 .map_get_next_key = dev_map_hash_get_next_key,
758 .map_lookup_elem = dev_map_hash_lookup_elem,
759 .map_update_elem = dev_map_hash_update_elem,
760 .map_delete_elem = dev_map_hash_delete_elem,
761 .map_check_btf = map_check_no_btf,
762 .map_btf_name = "bpf_dtab",
763 .map_btf_id = &dev_map_hash_map_btf_id,
766 static void dev_map_hash_remove_netdev(struct bpf_dtab *dtab,
767 struct net_device *netdev)
769 unsigned long flags;
770 u32 i;
772 spin_lock_irqsave(&dtab->index_lock, flags);
773 for (i = 0; i < dtab->n_buckets; i++) {
774 struct bpf_dtab_netdev *dev;
775 struct hlist_head *head;
776 struct hlist_node *next;
778 head = dev_map_index_hash(dtab, i);
780 hlist_for_each_entry_safe(dev, next, head, index_hlist) {
781 if (netdev != dev->dev)
782 continue;
784 dtab->items--;
785 hlist_del_rcu(&dev->index_hlist);
786 call_rcu(&dev->rcu, __dev_map_entry_free);
789 spin_unlock_irqrestore(&dtab->index_lock, flags);
792 static int dev_map_notification(struct notifier_block *notifier,
793 ulong event, void *ptr)
795 struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
796 struct bpf_dtab *dtab;
797 int i, cpu;
799 switch (event) {
800 case NETDEV_REGISTER:
801 if (!netdev->netdev_ops->ndo_xdp_xmit || netdev->xdp_bulkq)
802 break;
804 /* will be freed in free_netdev() */
805 netdev->xdp_bulkq =
806 __alloc_percpu_gfp(sizeof(struct xdp_dev_bulk_queue),
807 sizeof(void *), GFP_ATOMIC);
808 if (!netdev->xdp_bulkq)
809 return NOTIFY_BAD;
811 for_each_possible_cpu(cpu)
812 per_cpu_ptr(netdev->xdp_bulkq, cpu)->dev = netdev;
813 break;
814 case NETDEV_UNREGISTER:
815 /* This rcu_read_lock/unlock pair is needed because
816 * dev_map_list is an RCU list AND to ensure a delete
817 * operation does not free a netdev_map entry while we
818 * are comparing it against the netdev being unregistered.
820 rcu_read_lock();
821 list_for_each_entry_rcu(dtab, &dev_map_list, list) {
822 if (dtab->map.map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
823 dev_map_hash_remove_netdev(dtab, netdev);
824 continue;
827 for (i = 0; i < dtab->map.max_entries; i++) {
828 struct bpf_dtab_netdev *dev, *odev;
830 dev = READ_ONCE(dtab->netdev_map[i]);
831 if (!dev || netdev != dev->dev)
832 continue;
833 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
834 if (dev == odev)
835 call_rcu(&dev->rcu,
836 __dev_map_entry_free);
839 rcu_read_unlock();
840 break;
841 default:
842 break;
844 return NOTIFY_OK;
847 static struct notifier_block dev_map_notifier = {
848 .notifier_call = dev_map_notification,
851 static int __init dev_map_init(void)
853 int cpu;
855 /* Assure tracepoint shadow struct _bpf_dtab_netdev is in sync */
856 BUILD_BUG_ON(offsetof(struct bpf_dtab_netdev, dev) !=
857 offsetof(struct _bpf_dtab_netdev, dev));
858 register_netdevice_notifier(&dev_map_notifier);
860 for_each_possible_cpu(cpu)
861 INIT_LIST_HEAD(&per_cpu(dev_flush_list, cpu));
862 return 0;
865 subsys_initcall(dev_map_init);