Merge tag 'powerpc-5.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / kernel / sched / core.c
blob15d2562118d1727aa197bd5f9cc6314cfebace6c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
5 * Core kernel scheduler code and related syscalls
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
13 #include "sched.h"
15 #include <linux/nospec.h>
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
27 #include "pelt.h"
28 #include "smp.h"
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
47 #ifdef CONFIG_SCHED_DEBUG
49 * Debugging: various feature bits
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
60 #undef SCHED_FEAT
61 #endif
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
70 * period over which we measure -rt task CPU usage in us.
71 * default: 1s
73 unsigned int sysctl_sched_rt_period = 1000000;
75 __read_mostly int scheduler_running;
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
81 int sysctl_sched_rt_runtime = 950000;
85 * Serialization rules:
87 * Lock order:
89 * p->pi_lock
90 * rq->lock
91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
93 * rq1->lock
94 * rq2->lock where: rq1 < rq2
96 * Regular state:
98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99 * local CPU's rq->lock, it optionally removes the task from the runqueue and
100 * always looks at the local rq data structures to find the most eligible task
101 * to run next.
103 * Task enqueue is also under rq->lock, possibly taken from another CPU.
104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105 * the local CPU to avoid bouncing the runqueue state around [ see
106 * ttwu_queue_wakelist() ]
108 * Task wakeup, specifically wakeups that involve migration, are horribly
109 * complicated to avoid having to take two rq->locks.
111 * Special state:
113 * System-calls and anything external will use task_rq_lock() which acquires
114 * both p->pi_lock and rq->lock. As a consequence the state they change is
115 * stable while holding either lock:
117 * - sched_setaffinity()/
118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
119 * - set_user_nice(): p->se.load, p->*prio
120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
121 * p->se.load, p->rt_priority,
122 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
123 * - sched_setnuma(): p->numa_preferred_nid
124 * - sched_move_task()/
125 * cpu_cgroup_fork(): p->sched_task_group
126 * - uclamp_update_active() p->uclamp*
128 * p->state <- TASK_*:
130 * is changed locklessly using set_current_state(), __set_current_state() or
131 * set_special_state(), see their respective comments, or by
132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
133 * concurrent self.
135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
137 * is set by activate_task() and cleared by deactivate_task(), under
138 * rq->lock. Non-zero indicates the task is runnable, the special
139 * ON_RQ_MIGRATING state is used for migration without holding both
140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
142 * p->on_cpu <- { 0, 1 }:
144 * is set by prepare_task() and cleared by finish_task() such that it will be
145 * set before p is scheduled-in and cleared after p is scheduled-out, both
146 * under rq->lock. Non-zero indicates the task is running on its CPU.
148 * [ The astute reader will observe that it is possible for two tasks on one
149 * CPU to have ->on_cpu = 1 at the same time. ]
151 * task_cpu(p): is changed by set_task_cpu(), the rules are:
153 * - Don't call set_task_cpu() on a blocked task:
155 * We don't care what CPU we're not running on, this simplifies hotplug,
156 * the CPU assignment of blocked tasks isn't required to be valid.
158 * - for try_to_wake_up(), called under p->pi_lock:
160 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
162 * - for migration called under rq->lock:
163 * [ see task_on_rq_migrating() in task_rq_lock() ]
165 * o move_queued_task()
166 * o detach_task()
168 * - for migration called under double_rq_lock():
170 * o __migrate_swap_task()
171 * o push_rt_task() / pull_rt_task()
172 * o push_dl_task() / pull_dl_task()
173 * o dl_task_offline_migration()
178 * __task_rq_lock - lock the rq @p resides on.
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 __acquires(rq->lock)
183 struct rq *rq;
185 lockdep_assert_held(&p->pi_lock);
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 rq_pin_lock(rq, rf);
192 return rq;
194 raw_spin_unlock(&rq->lock);
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
208 struct rq *rq;
210 for (;;) {
211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
215 * move_queued_task() task_rq_lock()
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
224 * If we observe the old CPU in task_rq_lock(), the acquire of
225 * the old rq->lock will fully serialize against the stores.
227 * If we observe the new CPU in task_rq_lock(), the address
228 * dependency headed by '[L] rq = task_rq()' and the acquire
229 * will pair with the WMB to ensure we then also see migrating.
231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 rq_pin_lock(rq, rf);
233 return rq;
235 raw_spin_unlock(&rq->lock);
236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
238 while (unlikely(task_on_rq_migrating(p)))
239 cpu_relax();
244 * RQ-clock updating methods:
247 static void update_rq_clock_task(struct rq *rq, s64 delta)
250 * In theory, the compile should just see 0 here, and optimize out the call
251 * to sched_rt_avg_update. But I don't trust it...
253 s64 __maybe_unused steal = 0, irq_delta = 0;
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
259 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 * this case when a previous update_rq_clock() happened inside a
261 * {soft,}irq region.
263 * When this happens, we stop ->clock_task and only update the
264 * prev_irq_time stamp to account for the part that fit, so that a next
265 * update will consume the rest. This ensures ->clock_task is
266 * monotonic.
268 * It does however cause some slight miss-attribution of {soft,}irq
269 * time, a more accurate solution would be to update the irq_time using
270 * the current rq->clock timestamp, except that would require using
271 * atomic ops.
273 if (irq_delta > delta)
274 irq_delta = delta;
276 rq->prev_irq_time += irq_delta;
277 delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 if (static_key_false((&paravirt_steal_rq_enabled))) {
281 steal = paravirt_steal_clock(cpu_of(rq));
282 steal -= rq->prev_steal_time_rq;
284 if (unlikely(steal > delta))
285 steal = delta;
287 rq->prev_steal_time_rq += steal;
288 delta -= steal;
290 #endif
292 rq->clock_task += delta;
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 update_rq_clock_pelt(rq, delta);
301 void update_rq_clock(struct rq *rq)
303 s64 delta;
305 lockdep_assert_held(&rq->lock);
307 if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 return;
310 #ifdef CONFIG_SCHED_DEBUG
311 if (sched_feat(WARN_DOUBLE_CLOCK))
312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 if (delta < 0)
318 return;
319 rq->clock += delta;
320 update_rq_clock_task(rq, delta);
323 #ifdef CONFIG_SCHED_HRTICK
325 * Use HR-timers to deliver accurate preemption points.
328 static void hrtick_clear(struct rq *rq)
330 if (hrtimer_active(&rq->hrtick_timer))
331 hrtimer_cancel(&rq->hrtick_timer);
335 * High-resolution timer tick.
336 * Runs from hardirq context with interrupts disabled.
338 static enum hrtimer_restart hrtick(struct hrtimer *timer)
340 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
341 struct rq_flags rf;
343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
345 rq_lock(rq, &rf);
346 update_rq_clock(rq);
347 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 rq_unlock(rq, &rf);
350 return HRTIMER_NORESTART;
353 #ifdef CONFIG_SMP
355 static void __hrtick_restart(struct rq *rq)
357 struct hrtimer *timer = &rq->hrtick_timer;
359 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
363 * called from hardirq (IPI) context
365 static void __hrtick_start(void *arg)
367 struct rq *rq = arg;
368 struct rq_flags rf;
370 rq_lock(rq, &rf);
371 __hrtick_restart(rq);
372 rq_unlock(rq, &rf);
376 * Called to set the hrtick timer state.
378 * called with rq->lock held and irqs disabled
380 void hrtick_start(struct rq *rq, u64 delay)
382 struct hrtimer *timer = &rq->hrtick_timer;
383 ktime_t time;
384 s64 delta;
387 * Don't schedule slices shorter than 10000ns, that just
388 * doesn't make sense and can cause timer DoS.
390 delta = max_t(s64, delay, 10000LL);
391 time = ktime_add_ns(timer->base->get_time(), delta);
393 hrtimer_set_expires(timer, time);
395 if (rq == this_rq())
396 __hrtick_restart(rq);
397 else
398 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
401 #else
403 * Called to set the hrtick timer state.
405 * called with rq->lock held and irqs disabled
407 void hrtick_start(struct rq *rq, u64 delay)
410 * Don't schedule slices shorter than 10000ns, that just
411 * doesn't make sense. Rely on vruntime for fairness.
413 delay = max_t(u64, delay, 10000LL);
414 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
415 HRTIMER_MODE_REL_PINNED_HARD);
418 #endif /* CONFIG_SMP */
420 static void hrtick_rq_init(struct rq *rq)
422 #ifdef CONFIG_SMP
423 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
424 #endif
425 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
426 rq->hrtick_timer.function = hrtick;
428 #else /* CONFIG_SCHED_HRTICK */
429 static inline void hrtick_clear(struct rq *rq)
433 static inline void hrtick_rq_init(struct rq *rq)
436 #endif /* CONFIG_SCHED_HRTICK */
439 * cmpxchg based fetch_or, macro so it works for different integer types
441 #define fetch_or(ptr, mask) \
442 ({ \
443 typeof(ptr) _ptr = (ptr); \
444 typeof(mask) _mask = (mask); \
445 typeof(*_ptr) _old, _val = *_ptr; \
447 for (;;) { \
448 _old = cmpxchg(_ptr, _val, _val | _mask); \
449 if (_old == _val) \
450 break; \
451 _val = _old; \
453 _old; \
456 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
458 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
459 * this avoids any races wrt polling state changes and thereby avoids
460 * spurious IPIs.
462 static bool set_nr_and_not_polling(struct task_struct *p)
464 struct thread_info *ti = task_thread_info(p);
465 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
469 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
471 * If this returns true, then the idle task promises to call
472 * sched_ttwu_pending() and reschedule soon.
474 static bool set_nr_if_polling(struct task_struct *p)
476 struct thread_info *ti = task_thread_info(p);
477 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
479 for (;;) {
480 if (!(val & _TIF_POLLING_NRFLAG))
481 return false;
482 if (val & _TIF_NEED_RESCHED)
483 return true;
484 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
485 if (old == val)
486 break;
487 val = old;
489 return true;
492 #else
493 static bool set_nr_and_not_polling(struct task_struct *p)
495 set_tsk_need_resched(p);
496 return true;
499 #ifdef CONFIG_SMP
500 static bool set_nr_if_polling(struct task_struct *p)
502 return false;
504 #endif
505 #endif
507 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
509 struct wake_q_node *node = &task->wake_q;
512 * Atomically grab the task, if ->wake_q is !nil already it means
513 * it's already queued (either by us or someone else) and will get the
514 * wakeup due to that.
516 * In order to ensure that a pending wakeup will observe our pending
517 * state, even in the failed case, an explicit smp_mb() must be used.
519 smp_mb__before_atomic();
520 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
521 return false;
524 * The head is context local, there can be no concurrency.
526 *head->lastp = node;
527 head->lastp = &node->next;
528 return true;
532 * wake_q_add() - queue a wakeup for 'later' waking.
533 * @head: the wake_q_head to add @task to
534 * @task: the task to queue for 'later' wakeup
536 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
537 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
538 * instantly.
540 * This function must be used as-if it were wake_up_process(); IOW the task
541 * must be ready to be woken at this location.
543 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
545 if (__wake_q_add(head, task))
546 get_task_struct(task);
550 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
551 * @head: the wake_q_head to add @task to
552 * @task: the task to queue for 'later' wakeup
554 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
555 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
556 * instantly.
558 * This function must be used as-if it were wake_up_process(); IOW the task
559 * must be ready to be woken at this location.
561 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
562 * that already hold reference to @task can call the 'safe' version and trust
563 * wake_q to do the right thing depending whether or not the @task is already
564 * queued for wakeup.
566 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
568 if (!__wake_q_add(head, task))
569 put_task_struct(task);
572 void wake_up_q(struct wake_q_head *head)
574 struct wake_q_node *node = head->first;
576 while (node != WAKE_Q_TAIL) {
577 struct task_struct *task;
579 task = container_of(node, struct task_struct, wake_q);
580 BUG_ON(!task);
581 /* Task can safely be re-inserted now: */
582 node = node->next;
583 task->wake_q.next = NULL;
586 * wake_up_process() executes a full barrier, which pairs with
587 * the queueing in wake_q_add() so as not to miss wakeups.
589 wake_up_process(task);
590 put_task_struct(task);
595 * resched_curr - mark rq's current task 'to be rescheduled now'.
597 * On UP this means the setting of the need_resched flag, on SMP it
598 * might also involve a cross-CPU call to trigger the scheduler on
599 * the target CPU.
601 void resched_curr(struct rq *rq)
603 struct task_struct *curr = rq->curr;
604 int cpu;
606 lockdep_assert_held(&rq->lock);
608 if (test_tsk_need_resched(curr))
609 return;
611 cpu = cpu_of(rq);
613 if (cpu == smp_processor_id()) {
614 set_tsk_need_resched(curr);
615 set_preempt_need_resched();
616 return;
619 if (set_nr_and_not_polling(curr))
620 smp_send_reschedule(cpu);
621 else
622 trace_sched_wake_idle_without_ipi(cpu);
625 void resched_cpu(int cpu)
627 struct rq *rq = cpu_rq(cpu);
628 unsigned long flags;
630 raw_spin_lock_irqsave(&rq->lock, flags);
631 if (cpu_online(cpu) || cpu == smp_processor_id())
632 resched_curr(rq);
633 raw_spin_unlock_irqrestore(&rq->lock, flags);
636 #ifdef CONFIG_SMP
637 #ifdef CONFIG_NO_HZ_COMMON
639 * In the semi idle case, use the nearest busy CPU for migrating timers
640 * from an idle CPU. This is good for power-savings.
642 * We don't do similar optimization for completely idle system, as
643 * selecting an idle CPU will add more delays to the timers than intended
644 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
646 int get_nohz_timer_target(void)
648 int i, cpu = smp_processor_id(), default_cpu = -1;
649 struct sched_domain *sd;
651 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
652 if (!idle_cpu(cpu))
653 return cpu;
654 default_cpu = cpu;
657 rcu_read_lock();
658 for_each_domain(cpu, sd) {
659 for_each_cpu_and(i, sched_domain_span(sd),
660 housekeeping_cpumask(HK_FLAG_TIMER)) {
661 if (cpu == i)
662 continue;
664 if (!idle_cpu(i)) {
665 cpu = i;
666 goto unlock;
671 if (default_cpu == -1)
672 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
673 cpu = default_cpu;
674 unlock:
675 rcu_read_unlock();
676 return cpu;
680 * When add_timer_on() enqueues a timer into the timer wheel of an
681 * idle CPU then this timer might expire before the next timer event
682 * which is scheduled to wake up that CPU. In case of a completely
683 * idle system the next event might even be infinite time into the
684 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
685 * leaves the inner idle loop so the newly added timer is taken into
686 * account when the CPU goes back to idle and evaluates the timer
687 * wheel for the next timer event.
689 static void wake_up_idle_cpu(int cpu)
691 struct rq *rq = cpu_rq(cpu);
693 if (cpu == smp_processor_id())
694 return;
696 if (set_nr_and_not_polling(rq->idle))
697 smp_send_reschedule(cpu);
698 else
699 trace_sched_wake_idle_without_ipi(cpu);
702 static bool wake_up_full_nohz_cpu(int cpu)
705 * We just need the target to call irq_exit() and re-evaluate
706 * the next tick. The nohz full kick at least implies that.
707 * If needed we can still optimize that later with an
708 * empty IRQ.
710 if (cpu_is_offline(cpu))
711 return true; /* Don't try to wake offline CPUs. */
712 if (tick_nohz_full_cpu(cpu)) {
713 if (cpu != smp_processor_id() ||
714 tick_nohz_tick_stopped())
715 tick_nohz_full_kick_cpu(cpu);
716 return true;
719 return false;
723 * Wake up the specified CPU. If the CPU is going offline, it is the
724 * caller's responsibility to deal with the lost wakeup, for example,
725 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
727 void wake_up_nohz_cpu(int cpu)
729 if (!wake_up_full_nohz_cpu(cpu))
730 wake_up_idle_cpu(cpu);
733 static void nohz_csd_func(void *info)
735 struct rq *rq = info;
736 int cpu = cpu_of(rq);
737 unsigned int flags;
740 * Release the rq::nohz_csd.
742 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
743 WARN_ON(!(flags & NOHZ_KICK_MASK));
745 rq->idle_balance = idle_cpu(cpu);
746 if (rq->idle_balance && !need_resched()) {
747 rq->nohz_idle_balance = flags;
748 raise_softirq_irqoff(SCHED_SOFTIRQ);
752 #endif /* CONFIG_NO_HZ_COMMON */
754 #ifdef CONFIG_NO_HZ_FULL
755 bool sched_can_stop_tick(struct rq *rq)
757 int fifo_nr_running;
759 /* Deadline tasks, even if single, need the tick */
760 if (rq->dl.dl_nr_running)
761 return false;
764 * If there are more than one RR tasks, we need the tick to affect the
765 * actual RR behaviour.
767 if (rq->rt.rr_nr_running) {
768 if (rq->rt.rr_nr_running == 1)
769 return true;
770 else
771 return false;
775 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
776 * forced preemption between FIFO tasks.
778 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
779 if (fifo_nr_running)
780 return true;
783 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
784 * if there's more than one we need the tick for involuntary
785 * preemption.
787 if (rq->nr_running > 1)
788 return false;
790 return true;
792 #endif /* CONFIG_NO_HZ_FULL */
793 #endif /* CONFIG_SMP */
795 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
796 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
798 * Iterate task_group tree rooted at *from, calling @down when first entering a
799 * node and @up when leaving it for the final time.
801 * Caller must hold rcu_lock or sufficient equivalent.
803 int walk_tg_tree_from(struct task_group *from,
804 tg_visitor down, tg_visitor up, void *data)
806 struct task_group *parent, *child;
807 int ret;
809 parent = from;
811 down:
812 ret = (*down)(parent, data);
813 if (ret)
814 goto out;
815 list_for_each_entry_rcu(child, &parent->children, siblings) {
816 parent = child;
817 goto down;
820 continue;
822 ret = (*up)(parent, data);
823 if (ret || parent == from)
824 goto out;
826 child = parent;
827 parent = parent->parent;
828 if (parent)
829 goto up;
830 out:
831 return ret;
834 int tg_nop(struct task_group *tg, void *data)
836 return 0;
838 #endif
840 static void set_load_weight(struct task_struct *p, bool update_load)
842 int prio = p->static_prio - MAX_RT_PRIO;
843 struct load_weight *load = &p->se.load;
846 * SCHED_IDLE tasks get minimal weight:
848 if (task_has_idle_policy(p)) {
849 load->weight = scale_load(WEIGHT_IDLEPRIO);
850 load->inv_weight = WMULT_IDLEPRIO;
851 return;
855 * SCHED_OTHER tasks have to update their load when changing their
856 * weight
858 if (update_load && p->sched_class == &fair_sched_class) {
859 reweight_task(p, prio);
860 } else {
861 load->weight = scale_load(sched_prio_to_weight[prio]);
862 load->inv_weight = sched_prio_to_wmult[prio];
866 #ifdef CONFIG_UCLAMP_TASK
868 * Serializes updates of utilization clamp values
870 * The (slow-path) user-space triggers utilization clamp value updates which
871 * can require updates on (fast-path) scheduler's data structures used to
872 * support enqueue/dequeue operations.
873 * While the per-CPU rq lock protects fast-path update operations, user-space
874 * requests are serialized using a mutex to reduce the risk of conflicting
875 * updates or API abuses.
877 static DEFINE_MUTEX(uclamp_mutex);
879 /* Max allowed minimum utilization */
880 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
882 /* Max allowed maximum utilization */
883 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
886 * By default RT tasks run at the maximum performance point/capacity of the
887 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
888 * SCHED_CAPACITY_SCALE.
890 * This knob allows admins to change the default behavior when uclamp is being
891 * used. In battery powered devices, particularly, running at the maximum
892 * capacity and frequency will increase energy consumption and shorten the
893 * battery life.
895 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
897 * This knob will not override the system default sched_util_clamp_min defined
898 * above.
900 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
902 /* All clamps are required to be less or equal than these values */
903 static struct uclamp_se uclamp_default[UCLAMP_CNT];
906 * This static key is used to reduce the uclamp overhead in the fast path. It
907 * primarily disables the call to uclamp_rq_{inc, dec}() in
908 * enqueue/dequeue_task().
910 * This allows users to continue to enable uclamp in their kernel config with
911 * minimum uclamp overhead in the fast path.
913 * As soon as userspace modifies any of the uclamp knobs, the static key is
914 * enabled, since we have an actual users that make use of uclamp
915 * functionality.
917 * The knobs that would enable this static key are:
919 * * A task modifying its uclamp value with sched_setattr().
920 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
921 * * An admin modifying the cgroup cpu.uclamp.{min, max}
923 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
925 /* Integer rounded range for each bucket */
926 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
928 #define for_each_clamp_id(clamp_id) \
929 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
931 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
933 return clamp_value / UCLAMP_BUCKET_DELTA;
936 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
938 if (clamp_id == UCLAMP_MIN)
939 return 0;
940 return SCHED_CAPACITY_SCALE;
943 static inline void uclamp_se_set(struct uclamp_se *uc_se,
944 unsigned int value, bool user_defined)
946 uc_se->value = value;
947 uc_se->bucket_id = uclamp_bucket_id(value);
948 uc_se->user_defined = user_defined;
951 static inline unsigned int
952 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
953 unsigned int clamp_value)
956 * Avoid blocked utilization pushing up the frequency when we go
957 * idle (which drops the max-clamp) by retaining the last known
958 * max-clamp.
960 if (clamp_id == UCLAMP_MAX) {
961 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
962 return clamp_value;
965 return uclamp_none(UCLAMP_MIN);
968 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
969 unsigned int clamp_value)
971 /* Reset max-clamp retention only on idle exit */
972 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
973 return;
975 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
978 static inline
979 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
980 unsigned int clamp_value)
982 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
983 int bucket_id = UCLAMP_BUCKETS - 1;
986 * Since both min and max clamps are max aggregated, find the
987 * top most bucket with tasks in.
989 for ( ; bucket_id >= 0; bucket_id--) {
990 if (!bucket[bucket_id].tasks)
991 continue;
992 return bucket[bucket_id].value;
995 /* No tasks -- default clamp values */
996 return uclamp_idle_value(rq, clamp_id, clamp_value);
999 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1001 unsigned int default_util_min;
1002 struct uclamp_se *uc_se;
1004 lockdep_assert_held(&p->pi_lock);
1006 uc_se = &p->uclamp_req[UCLAMP_MIN];
1008 /* Only sync if user didn't override the default */
1009 if (uc_se->user_defined)
1010 return;
1012 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1013 uclamp_se_set(uc_se, default_util_min, false);
1016 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1018 struct rq_flags rf;
1019 struct rq *rq;
1021 if (!rt_task(p))
1022 return;
1024 /* Protect updates to p->uclamp_* */
1025 rq = task_rq_lock(p, &rf);
1026 __uclamp_update_util_min_rt_default(p);
1027 task_rq_unlock(rq, p, &rf);
1030 static void uclamp_sync_util_min_rt_default(void)
1032 struct task_struct *g, *p;
1035 * copy_process() sysctl_uclamp
1036 * uclamp_min_rt = X;
1037 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1038 * // link thread smp_mb__after_spinlock()
1039 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1040 * sched_post_fork() for_each_process_thread()
1041 * __uclamp_sync_rt() __uclamp_sync_rt()
1043 * Ensures that either sched_post_fork() will observe the new
1044 * uclamp_min_rt or for_each_process_thread() will observe the new
1045 * task.
1047 read_lock(&tasklist_lock);
1048 smp_mb__after_spinlock();
1049 read_unlock(&tasklist_lock);
1051 rcu_read_lock();
1052 for_each_process_thread(g, p)
1053 uclamp_update_util_min_rt_default(p);
1054 rcu_read_unlock();
1057 static inline struct uclamp_se
1058 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1060 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1061 #ifdef CONFIG_UCLAMP_TASK_GROUP
1062 struct uclamp_se uc_max;
1065 * Tasks in autogroups or root task group will be
1066 * restricted by system defaults.
1068 if (task_group_is_autogroup(task_group(p)))
1069 return uc_req;
1070 if (task_group(p) == &root_task_group)
1071 return uc_req;
1073 uc_max = task_group(p)->uclamp[clamp_id];
1074 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1075 return uc_max;
1076 #endif
1078 return uc_req;
1082 * The effective clamp bucket index of a task depends on, by increasing
1083 * priority:
1084 * - the task specific clamp value, when explicitly requested from userspace
1085 * - the task group effective clamp value, for tasks not either in the root
1086 * group or in an autogroup
1087 * - the system default clamp value, defined by the sysadmin
1089 static inline struct uclamp_se
1090 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1092 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1093 struct uclamp_se uc_max = uclamp_default[clamp_id];
1095 /* System default restrictions always apply */
1096 if (unlikely(uc_req.value > uc_max.value))
1097 return uc_max;
1099 return uc_req;
1102 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1104 struct uclamp_se uc_eff;
1106 /* Task currently refcounted: use back-annotated (effective) value */
1107 if (p->uclamp[clamp_id].active)
1108 return (unsigned long)p->uclamp[clamp_id].value;
1110 uc_eff = uclamp_eff_get(p, clamp_id);
1112 return (unsigned long)uc_eff.value;
1116 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1117 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1118 * updates the rq's clamp value if required.
1120 * Tasks can have a task-specific value requested from user-space, track
1121 * within each bucket the maximum value for tasks refcounted in it.
1122 * This "local max aggregation" allows to track the exact "requested" value
1123 * for each bucket when all its RUNNABLE tasks require the same clamp.
1125 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1126 enum uclamp_id clamp_id)
1128 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1129 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1130 struct uclamp_bucket *bucket;
1132 lockdep_assert_held(&rq->lock);
1134 /* Update task effective clamp */
1135 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1137 bucket = &uc_rq->bucket[uc_se->bucket_id];
1138 bucket->tasks++;
1139 uc_se->active = true;
1141 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1144 * Local max aggregation: rq buckets always track the max
1145 * "requested" clamp value of its RUNNABLE tasks.
1147 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1148 bucket->value = uc_se->value;
1150 if (uc_se->value > READ_ONCE(uc_rq->value))
1151 WRITE_ONCE(uc_rq->value, uc_se->value);
1155 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1156 * is released. If this is the last task reference counting the rq's max
1157 * active clamp value, then the rq's clamp value is updated.
1159 * Both refcounted tasks and rq's cached clamp values are expected to be
1160 * always valid. If it's detected they are not, as defensive programming,
1161 * enforce the expected state and warn.
1163 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1164 enum uclamp_id clamp_id)
1166 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1167 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1168 struct uclamp_bucket *bucket;
1169 unsigned int bkt_clamp;
1170 unsigned int rq_clamp;
1172 lockdep_assert_held(&rq->lock);
1175 * If sched_uclamp_used was enabled after task @p was enqueued,
1176 * we could end up with unbalanced call to uclamp_rq_dec_id().
1178 * In this case the uc_se->active flag should be false since no uclamp
1179 * accounting was performed at enqueue time and we can just return
1180 * here.
1182 * Need to be careful of the following enqueue/dequeue ordering
1183 * problem too
1185 * enqueue(taskA)
1186 * // sched_uclamp_used gets enabled
1187 * enqueue(taskB)
1188 * dequeue(taskA)
1189 * // Must not decrement bucket->tasks here
1190 * dequeue(taskB)
1192 * where we could end up with stale data in uc_se and
1193 * bucket[uc_se->bucket_id].
1195 * The following check here eliminates the possibility of such race.
1197 if (unlikely(!uc_se->active))
1198 return;
1200 bucket = &uc_rq->bucket[uc_se->bucket_id];
1202 SCHED_WARN_ON(!bucket->tasks);
1203 if (likely(bucket->tasks))
1204 bucket->tasks--;
1206 uc_se->active = false;
1209 * Keep "local max aggregation" simple and accept to (possibly)
1210 * overboost some RUNNABLE tasks in the same bucket.
1211 * The rq clamp bucket value is reset to its base value whenever
1212 * there are no more RUNNABLE tasks refcounting it.
1214 if (likely(bucket->tasks))
1215 return;
1217 rq_clamp = READ_ONCE(uc_rq->value);
1219 * Defensive programming: this should never happen. If it happens,
1220 * e.g. due to future modification, warn and fixup the expected value.
1222 SCHED_WARN_ON(bucket->value > rq_clamp);
1223 if (bucket->value >= rq_clamp) {
1224 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1225 WRITE_ONCE(uc_rq->value, bkt_clamp);
1229 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1231 enum uclamp_id clamp_id;
1234 * Avoid any overhead until uclamp is actually used by the userspace.
1236 * The condition is constructed such that a NOP is generated when
1237 * sched_uclamp_used is disabled.
1239 if (!static_branch_unlikely(&sched_uclamp_used))
1240 return;
1242 if (unlikely(!p->sched_class->uclamp_enabled))
1243 return;
1245 for_each_clamp_id(clamp_id)
1246 uclamp_rq_inc_id(rq, p, clamp_id);
1248 /* Reset clamp idle holding when there is one RUNNABLE task */
1249 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1250 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1253 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1255 enum uclamp_id clamp_id;
1258 * Avoid any overhead until uclamp is actually used by the userspace.
1260 * The condition is constructed such that a NOP is generated when
1261 * sched_uclamp_used is disabled.
1263 if (!static_branch_unlikely(&sched_uclamp_used))
1264 return;
1266 if (unlikely(!p->sched_class->uclamp_enabled))
1267 return;
1269 for_each_clamp_id(clamp_id)
1270 uclamp_rq_dec_id(rq, p, clamp_id);
1273 static inline void
1274 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1276 struct rq_flags rf;
1277 struct rq *rq;
1280 * Lock the task and the rq where the task is (or was) queued.
1282 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1283 * price to pay to safely serialize util_{min,max} updates with
1284 * enqueues, dequeues and migration operations.
1285 * This is the same locking schema used by __set_cpus_allowed_ptr().
1287 rq = task_rq_lock(p, &rf);
1290 * Setting the clamp bucket is serialized by task_rq_lock().
1291 * If the task is not yet RUNNABLE and its task_struct is not
1292 * affecting a valid clamp bucket, the next time it's enqueued,
1293 * it will already see the updated clamp bucket value.
1295 if (p->uclamp[clamp_id].active) {
1296 uclamp_rq_dec_id(rq, p, clamp_id);
1297 uclamp_rq_inc_id(rq, p, clamp_id);
1300 task_rq_unlock(rq, p, &rf);
1303 #ifdef CONFIG_UCLAMP_TASK_GROUP
1304 static inline void
1305 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1306 unsigned int clamps)
1308 enum uclamp_id clamp_id;
1309 struct css_task_iter it;
1310 struct task_struct *p;
1312 css_task_iter_start(css, 0, &it);
1313 while ((p = css_task_iter_next(&it))) {
1314 for_each_clamp_id(clamp_id) {
1315 if ((0x1 << clamp_id) & clamps)
1316 uclamp_update_active(p, clamp_id);
1319 css_task_iter_end(&it);
1322 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1323 static void uclamp_update_root_tg(void)
1325 struct task_group *tg = &root_task_group;
1327 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1328 sysctl_sched_uclamp_util_min, false);
1329 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1330 sysctl_sched_uclamp_util_max, false);
1332 rcu_read_lock();
1333 cpu_util_update_eff(&root_task_group.css);
1334 rcu_read_unlock();
1336 #else
1337 static void uclamp_update_root_tg(void) { }
1338 #endif
1340 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1341 void *buffer, size_t *lenp, loff_t *ppos)
1343 bool update_root_tg = false;
1344 int old_min, old_max, old_min_rt;
1345 int result;
1347 mutex_lock(&uclamp_mutex);
1348 old_min = sysctl_sched_uclamp_util_min;
1349 old_max = sysctl_sched_uclamp_util_max;
1350 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1352 result = proc_dointvec(table, write, buffer, lenp, ppos);
1353 if (result)
1354 goto undo;
1355 if (!write)
1356 goto done;
1358 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1359 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1360 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1362 result = -EINVAL;
1363 goto undo;
1366 if (old_min != sysctl_sched_uclamp_util_min) {
1367 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1368 sysctl_sched_uclamp_util_min, false);
1369 update_root_tg = true;
1371 if (old_max != sysctl_sched_uclamp_util_max) {
1372 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1373 sysctl_sched_uclamp_util_max, false);
1374 update_root_tg = true;
1377 if (update_root_tg) {
1378 static_branch_enable(&sched_uclamp_used);
1379 uclamp_update_root_tg();
1382 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1383 static_branch_enable(&sched_uclamp_used);
1384 uclamp_sync_util_min_rt_default();
1388 * We update all RUNNABLE tasks only when task groups are in use.
1389 * Otherwise, keep it simple and do just a lazy update at each next
1390 * task enqueue time.
1393 goto done;
1395 undo:
1396 sysctl_sched_uclamp_util_min = old_min;
1397 sysctl_sched_uclamp_util_max = old_max;
1398 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1399 done:
1400 mutex_unlock(&uclamp_mutex);
1402 return result;
1405 static int uclamp_validate(struct task_struct *p,
1406 const struct sched_attr *attr)
1408 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1409 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1411 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1412 util_min = attr->sched_util_min;
1414 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1415 return -EINVAL;
1418 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1419 util_max = attr->sched_util_max;
1421 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1422 return -EINVAL;
1425 if (util_min != -1 && util_max != -1 && util_min > util_max)
1426 return -EINVAL;
1429 * We have valid uclamp attributes; make sure uclamp is enabled.
1431 * We need to do that here, because enabling static branches is a
1432 * blocking operation which obviously cannot be done while holding
1433 * scheduler locks.
1435 static_branch_enable(&sched_uclamp_used);
1437 return 0;
1440 static bool uclamp_reset(const struct sched_attr *attr,
1441 enum uclamp_id clamp_id,
1442 struct uclamp_se *uc_se)
1444 /* Reset on sched class change for a non user-defined clamp value. */
1445 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1446 !uc_se->user_defined)
1447 return true;
1449 /* Reset on sched_util_{min,max} == -1. */
1450 if (clamp_id == UCLAMP_MIN &&
1451 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1452 attr->sched_util_min == -1) {
1453 return true;
1456 if (clamp_id == UCLAMP_MAX &&
1457 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1458 attr->sched_util_max == -1) {
1459 return true;
1462 return false;
1465 static void __setscheduler_uclamp(struct task_struct *p,
1466 const struct sched_attr *attr)
1468 enum uclamp_id clamp_id;
1470 for_each_clamp_id(clamp_id) {
1471 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1472 unsigned int value;
1474 if (!uclamp_reset(attr, clamp_id, uc_se))
1475 continue;
1478 * RT by default have a 100% boost value that could be modified
1479 * at runtime.
1481 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1482 value = sysctl_sched_uclamp_util_min_rt_default;
1483 else
1484 value = uclamp_none(clamp_id);
1486 uclamp_se_set(uc_se, value, false);
1490 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1491 return;
1493 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1494 attr->sched_util_min != -1) {
1495 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1496 attr->sched_util_min, true);
1499 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1500 attr->sched_util_max != -1) {
1501 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1502 attr->sched_util_max, true);
1506 static void uclamp_fork(struct task_struct *p)
1508 enum uclamp_id clamp_id;
1511 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1512 * as the task is still at its early fork stages.
1514 for_each_clamp_id(clamp_id)
1515 p->uclamp[clamp_id].active = false;
1517 if (likely(!p->sched_reset_on_fork))
1518 return;
1520 for_each_clamp_id(clamp_id) {
1521 uclamp_se_set(&p->uclamp_req[clamp_id],
1522 uclamp_none(clamp_id), false);
1526 static void uclamp_post_fork(struct task_struct *p)
1528 uclamp_update_util_min_rt_default(p);
1531 static void __init init_uclamp_rq(struct rq *rq)
1533 enum uclamp_id clamp_id;
1534 struct uclamp_rq *uc_rq = rq->uclamp;
1536 for_each_clamp_id(clamp_id) {
1537 uc_rq[clamp_id] = (struct uclamp_rq) {
1538 .value = uclamp_none(clamp_id)
1542 rq->uclamp_flags = 0;
1545 static void __init init_uclamp(void)
1547 struct uclamp_se uc_max = {};
1548 enum uclamp_id clamp_id;
1549 int cpu;
1551 for_each_possible_cpu(cpu)
1552 init_uclamp_rq(cpu_rq(cpu));
1554 for_each_clamp_id(clamp_id) {
1555 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1556 uclamp_none(clamp_id), false);
1559 /* System defaults allow max clamp values for both indexes */
1560 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1561 for_each_clamp_id(clamp_id) {
1562 uclamp_default[clamp_id] = uc_max;
1563 #ifdef CONFIG_UCLAMP_TASK_GROUP
1564 root_task_group.uclamp_req[clamp_id] = uc_max;
1565 root_task_group.uclamp[clamp_id] = uc_max;
1566 #endif
1570 #else /* CONFIG_UCLAMP_TASK */
1571 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1572 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1573 static inline int uclamp_validate(struct task_struct *p,
1574 const struct sched_attr *attr)
1576 return -EOPNOTSUPP;
1578 static void __setscheduler_uclamp(struct task_struct *p,
1579 const struct sched_attr *attr) { }
1580 static inline void uclamp_fork(struct task_struct *p) { }
1581 static inline void uclamp_post_fork(struct task_struct *p) { }
1582 static inline void init_uclamp(void) { }
1583 #endif /* CONFIG_UCLAMP_TASK */
1585 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1587 if (!(flags & ENQUEUE_NOCLOCK))
1588 update_rq_clock(rq);
1590 if (!(flags & ENQUEUE_RESTORE)) {
1591 sched_info_queued(rq, p);
1592 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1595 uclamp_rq_inc(rq, p);
1596 p->sched_class->enqueue_task(rq, p, flags);
1599 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1601 if (!(flags & DEQUEUE_NOCLOCK))
1602 update_rq_clock(rq);
1604 if (!(flags & DEQUEUE_SAVE)) {
1605 sched_info_dequeued(rq, p);
1606 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1609 uclamp_rq_dec(rq, p);
1610 p->sched_class->dequeue_task(rq, p, flags);
1613 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1615 enqueue_task(rq, p, flags);
1617 p->on_rq = TASK_ON_RQ_QUEUED;
1620 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1622 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1624 dequeue_task(rq, p, flags);
1628 * __normal_prio - return the priority that is based on the static prio
1630 static inline int __normal_prio(struct task_struct *p)
1632 return p->static_prio;
1636 * Calculate the expected normal priority: i.e. priority
1637 * without taking RT-inheritance into account. Might be
1638 * boosted by interactivity modifiers. Changes upon fork,
1639 * setprio syscalls, and whenever the interactivity
1640 * estimator recalculates.
1642 static inline int normal_prio(struct task_struct *p)
1644 int prio;
1646 if (task_has_dl_policy(p))
1647 prio = MAX_DL_PRIO-1;
1648 else if (task_has_rt_policy(p))
1649 prio = MAX_RT_PRIO-1 - p->rt_priority;
1650 else
1651 prio = __normal_prio(p);
1652 return prio;
1656 * Calculate the current priority, i.e. the priority
1657 * taken into account by the scheduler. This value might
1658 * be boosted by RT tasks, or might be boosted by
1659 * interactivity modifiers. Will be RT if the task got
1660 * RT-boosted. If not then it returns p->normal_prio.
1662 static int effective_prio(struct task_struct *p)
1664 p->normal_prio = normal_prio(p);
1666 * If we are RT tasks or we were boosted to RT priority,
1667 * keep the priority unchanged. Otherwise, update priority
1668 * to the normal priority:
1670 if (!rt_prio(p->prio))
1671 return p->normal_prio;
1672 return p->prio;
1676 * task_curr - is this task currently executing on a CPU?
1677 * @p: the task in question.
1679 * Return: 1 if the task is currently executing. 0 otherwise.
1681 inline int task_curr(const struct task_struct *p)
1683 return cpu_curr(task_cpu(p)) == p;
1687 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1688 * use the balance_callback list if you want balancing.
1690 * this means any call to check_class_changed() must be followed by a call to
1691 * balance_callback().
1693 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1694 const struct sched_class *prev_class,
1695 int oldprio)
1697 if (prev_class != p->sched_class) {
1698 if (prev_class->switched_from)
1699 prev_class->switched_from(rq, p);
1701 p->sched_class->switched_to(rq, p);
1702 } else if (oldprio != p->prio || dl_task(p))
1703 p->sched_class->prio_changed(rq, p, oldprio);
1706 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1708 if (p->sched_class == rq->curr->sched_class)
1709 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1710 else if (p->sched_class > rq->curr->sched_class)
1711 resched_curr(rq);
1714 * A queue event has occurred, and we're going to schedule. In
1715 * this case, we can save a useless back to back clock update.
1717 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1718 rq_clock_skip_update(rq);
1721 #ifdef CONFIG_SMP
1723 static void
1724 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1726 static int __set_cpus_allowed_ptr(struct task_struct *p,
1727 const struct cpumask *new_mask,
1728 u32 flags);
1730 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1732 if (likely(!p->migration_disabled))
1733 return;
1735 if (p->cpus_ptr != &p->cpus_mask)
1736 return;
1739 * Violates locking rules! see comment in __do_set_cpus_allowed().
1741 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1744 void migrate_disable(void)
1746 struct task_struct *p = current;
1748 if (p->migration_disabled) {
1749 p->migration_disabled++;
1750 return;
1753 preempt_disable();
1754 this_rq()->nr_pinned++;
1755 p->migration_disabled = 1;
1756 preempt_enable();
1758 EXPORT_SYMBOL_GPL(migrate_disable);
1760 void migrate_enable(void)
1762 struct task_struct *p = current;
1764 if (p->migration_disabled > 1) {
1765 p->migration_disabled--;
1766 return;
1770 * Ensure stop_task runs either before or after this, and that
1771 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1773 preempt_disable();
1774 if (p->cpus_ptr != &p->cpus_mask)
1775 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1777 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1778 * regular cpus_mask, otherwise things that race (eg.
1779 * select_fallback_rq) get confused.
1781 barrier();
1782 p->migration_disabled = 0;
1783 this_rq()->nr_pinned--;
1784 preempt_enable();
1786 EXPORT_SYMBOL_GPL(migrate_enable);
1788 static inline bool rq_has_pinned_tasks(struct rq *rq)
1790 return rq->nr_pinned;
1794 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1795 * __set_cpus_allowed_ptr() and select_fallback_rq().
1797 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1799 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1800 return false;
1802 if (is_per_cpu_kthread(p) || is_migration_disabled(p))
1803 return cpu_online(cpu);
1805 return cpu_active(cpu);
1809 * This is how migration works:
1811 * 1) we invoke migration_cpu_stop() on the target CPU using
1812 * stop_one_cpu().
1813 * 2) stopper starts to run (implicitly forcing the migrated thread
1814 * off the CPU)
1815 * 3) it checks whether the migrated task is still in the wrong runqueue.
1816 * 4) if it's in the wrong runqueue then the migration thread removes
1817 * it and puts it into the right queue.
1818 * 5) stopper completes and stop_one_cpu() returns and the migration
1819 * is done.
1823 * move_queued_task - move a queued task to new rq.
1825 * Returns (locked) new rq. Old rq's lock is released.
1827 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1828 struct task_struct *p, int new_cpu)
1830 lockdep_assert_held(&rq->lock);
1832 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1833 set_task_cpu(p, new_cpu);
1834 rq_unlock(rq, rf);
1836 rq = cpu_rq(new_cpu);
1838 rq_lock(rq, rf);
1839 BUG_ON(task_cpu(p) != new_cpu);
1840 activate_task(rq, p, 0);
1841 check_preempt_curr(rq, p, 0);
1843 return rq;
1846 struct migration_arg {
1847 struct task_struct *task;
1848 int dest_cpu;
1849 struct set_affinity_pending *pending;
1852 struct set_affinity_pending {
1853 refcount_t refs;
1854 struct completion done;
1855 struct cpu_stop_work stop_work;
1856 struct migration_arg arg;
1860 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1861 * this because either it can't run here any more (set_cpus_allowed()
1862 * away from this CPU, or CPU going down), or because we're
1863 * attempting to rebalance this task on exec (sched_exec).
1865 * So we race with normal scheduler movements, but that's OK, as long
1866 * as the task is no longer on this CPU.
1868 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1869 struct task_struct *p, int dest_cpu)
1871 /* Affinity changed (again). */
1872 if (!is_cpu_allowed(p, dest_cpu))
1873 return rq;
1875 update_rq_clock(rq);
1876 rq = move_queued_task(rq, rf, p, dest_cpu);
1878 return rq;
1882 * migration_cpu_stop - this will be executed by a highprio stopper thread
1883 * and performs thread migration by bumping thread off CPU then
1884 * 'pushing' onto another runqueue.
1886 static int migration_cpu_stop(void *data)
1888 struct set_affinity_pending *pending;
1889 struct migration_arg *arg = data;
1890 struct task_struct *p = arg->task;
1891 int dest_cpu = arg->dest_cpu;
1892 struct rq *rq = this_rq();
1893 bool complete = false;
1894 struct rq_flags rf;
1897 * The original target CPU might have gone down and we might
1898 * be on another CPU but it doesn't matter.
1900 local_irq_save(rf.flags);
1902 * We need to explicitly wake pending tasks before running
1903 * __migrate_task() such that we will not miss enforcing cpus_ptr
1904 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1906 flush_smp_call_function_from_idle();
1908 raw_spin_lock(&p->pi_lock);
1909 rq_lock(rq, &rf);
1911 pending = p->migration_pending;
1913 * If task_rq(p) != rq, it cannot be migrated here, because we're
1914 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1915 * we're holding p->pi_lock.
1917 if (task_rq(p) == rq) {
1918 if (is_migration_disabled(p))
1919 goto out;
1921 if (pending) {
1922 p->migration_pending = NULL;
1923 complete = true;
1926 /* migrate_enable() -- we must not race against SCA */
1927 if (dest_cpu < 0) {
1929 * When this was migrate_enable() but we no longer
1930 * have a @pending, a concurrent SCA 'fixed' things
1931 * and we should be valid again. Nothing to do.
1933 if (!pending) {
1934 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1935 goto out;
1938 dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1941 if (task_on_rq_queued(p))
1942 rq = __migrate_task(rq, &rf, p, dest_cpu);
1943 else
1944 p->wake_cpu = dest_cpu;
1946 } else if (dest_cpu < 0 || pending) {
1948 * This happens when we get migrated between migrate_enable()'s
1949 * preempt_enable() and scheduling the stopper task. At that
1950 * point we're a regular task again and not current anymore.
1952 * A !PREEMPT kernel has a giant hole here, which makes it far
1953 * more likely.
1957 * The task moved before the stopper got to run. We're holding
1958 * ->pi_lock, so the allowed mask is stable - if it got
1959 * somewhere allowed, we're done.
1961 if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1962 p->migration_pending = NULL;
1963 complete = true;
1964 goto out;
1968 * When this was migrate_enable() but we no longer have an
1969 * @pending, a concurrent SCA 'fixed' things and we should be
1970 * valid again. Nothing to do.
1972 if (!pending) {
1973 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1974 goto out;
1978 * When migrate_enable() hits a rq mis-match we can't reliably
1979 * determine is_migration_disabled() and so have to chase after
1980 * it.
1982 task_rq_unlock(rq, p, &rf);
1983 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1984 &pending->arg, &pending->stop_work);
1985 return 0;
1987 out:
1988 task_rq_unlock(rq, p, &rf);
1990 if (complete)
1991 complete_all(&pending->done);
1993 /* For pending->{arg,stop_work} */
1994 pending = arg->pending;
1995 if (pending && refcount_dec_and_test(&pending->refs))
1996 wake_up_var(&pending->refs);
1998 return 0;
2001 int push_cpu_stop(void *arg)
2003 struct rq *lowest_rq = NULL, *rq = this_rq();
2004 struct task_struct *p = arg;
2006 raw_spin_lock_irq(&p->pi_lock);
2007 raw_spin_lock(&rq->lock);
2009 if (task_rq(p) != rq)
2010 goto out_unlock;
2012 if (is_migration_disabled(p)) {
2013 p->migration_flags |= MDF_PUSH;
2014 goto out_unlock;
2017 p->migration_flags &= ~MDF_PUSH;
2019 if (p->sched_class->find_lock_rq)
2020 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2022 if (!lowest_rq)
2023 goto out_unlock;
2025 // XXX validate p is still the highest prio task
2026 if (task_rq(p) == rq) {
2027 deactivate_task(rq, p, 0);
2028 set_task_cpu(p, lowest_rq->cpu);
2029 activate_task(lowest_rq, p, 0);
2030 resched_curr(lowest_rq);
2033 double_unlock_balance(rq, lowest_rq);
2035 out_unlock:
2036 rq->push_busy = false;
2037 raw_spin_unlock(&rq->lock);
2038 raw_spin_unlock_irq(&p->pi_lock);
2040 put_task_struct(p);
2041 return 0;
2045 * sched_class::set_cpus_allowed must do the below, but is not required to
2046 * actually call this function.
2048 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2050 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2051 p->cpus_ptr = new_mask;
2052 return;
2055 cpumask_copy(&p->cpus_mask, new_mask);
2056 p->nr_cpus_allowed = cpumask_weight(new_mask);
2059 static void
2060 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2062 struct rq *rq = task_rq(p);
2063 bool queued, running;
2066 * This here violates the locking rules for affinity, since we're only
2067 * supposed to change these variables while holding both rq->lock and
2068 * p->pi_lock.
2070 * HOWEVER, it magically works, because ttwu() is the only code that
2071 * accesses these variables under p->pi_lock and only does so after
2072 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2073 * before finish_task().
2075 * XXX do further audits, this smells like something putrid.
2077 if (flags & SCA_MIGRATE_DISABLE)
2078 SCHED_WARN_ON(!p->on_cpu);
2079 else
2080 lockdep_assert_held(&p->pi_lock);
2082 queued = task_on_rq_queued(p);
2083 running = task_current(rq, p);
2085 if (queued) {
2087 * Because __kthread_bind() calls this on blocked tasks without
2088 * holding rq->lock.
2090 lockdep_assert_held(&rq->lock);
2091 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2093 if (running)
2094 put_prev_task(rq, p);
2096 p->sched_class->set_cpus_allowed(p, new_mask, flags);
2098 if (queued)
2099 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2100 if (running)
2101 set_next_task(rq, p);
2104 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2106 __do_set_cpus_allowed(p, new_mask, 0);
2110 * This function is wildly self concurrent; here be dragons.
2113 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2114 * designated task is enqueued on an allowed CPU. If that task is currently
2115 * running, we have to kick it out using the CPU stopper.
2117 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2118 * Consider:
2120 * Initial conditions: P0->cpus_mask = [0, 1]
2122 * P0@CPU0 P1
2124 * migrate_disable();
2125 * <preempted>
2126 * set_cpus_allowed_ptr(P0, [1]);
2128 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2129 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2130 * This means we need the following scheme:
2132 * P0@CPU0 P1
2134 * migrate_disable();
2135 * <preempted>
2136 * set_cpus_allowed_ptr(P0, [1]);
2137 * <blocks>
2138 * <resumes>
2139 * migrate_enable();
2140 * __set_cpus_allowed_ptr();
2141 * <wakes local stopper>
2142 * `--> <woken on migration completion>
2144 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2145 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2146 * task p are serialized by p->pi_lock, which we can leverage: the one that
2147 * should come into effect at the end of the Migrate-Disable region is the last
2148 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2149 * but we still need to properly signal those waiting tasks at the appropriate
2150 * moment.
2152 * This is implemented using struct set_affinity_pending. The first
2153 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2154 * setup an instance of that struct and install it on the targeted task_struct.
2155 * Any and all further callers will reuse that instance. Those then wait for
2156 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2157 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2160 * (1) In the cases covered above. There is one more where the completion is
2161 * signaled within affine_move_task() itself: when a subsequent affinity request
2162 * cancels the need for an active migration. Consider:
2164 * Initial conditions: P0->cpus_mask = [0, 1]
2166 * P0@CPU0 P1 P2
2168 * migrate_disable();
2169 * <preempted>
2170 * set_cpus_allowed_ptr(P0, [1]);
2171 * <blocks>
2172 * set_cpus_allowed_ptr(P0, [0, 1]);
2173 * <signal completion>
2174 * <awakes>
2176 * Note that the above is safe vs a concurrent migrate_enable(), as any
2177 * pending affinity completion is preceded by an uninstallation of
2178 * p->migration_pending done with p->pi_lock held.
2180 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2181 int dest_cpu, unsigned int flags)
2183 struct set_affinity_pending my_pending = { }, *pending = NULL;
2184 struct migration_arg arg = {
2185 .task = p,
2186 .dest_cpu = dest_cpu,
2188 bool complete = false;
2190 /* Can the task run on the task's current CPU? If so, we're done */
2191 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2192 struct task_struct *push_task = NULL;
2194 if ((flags & SCA_MIGRATE_ENABLE) &&
2195 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2196 rq->push_busy = true;
2197 push_task = get_task_struct(p);
2200 pending = p->migration_pending;
2201 if (pending) {
2202 refcount_inc(&pending->refs);
2203 p->migration_pending = NULL;
2204 complete = true;
2206 task_rq_unlock(rq, p, rf);
2208 if (push_task) {
2209 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2210 p, &rq->push_work);
2213 if (complete)
2214 goto do_complete;
2216 return 0;
2219 if (!(flags & SCA_MIGRATE_ENABLE)) {
2220 /* serialized by p->pi_lock */
2221 if (!p->migration_pending) {
2222 /* Install the request */
2223 refcount_set(&my_pending.refs, 1);
2224 init_completion(&my_pending.done);
2225 p->migration_pending = &my_pending;
2226 } else {
2227 pending = p->migration_pending;
2228 refcount_inc(&pending->refs);
2231 pending = p->migration_pending;
2233 * - !MIGRATE_ENABLE:
2234 * we'll have installed a pending if there wasn't one already.
2236 * - MIGRATE_ENABLE:
2237 * we're here because the current CPU isn't matching anymore,
2238 * the only way that can happen is because of a concurrent
2239 * set_cpus_allowed_ptr() call, which should then still be
2240 * pending completion.
2242 * Either way, we really should have a @pending here.
2244 if (WARN_ON_ONCE(!pending)) {
2245 task_rq_unlock(rq, p, rf);
2246 return -EINVAL;
2249 if (flags & SCA_MIGRATE_ENABLE) {
2251 refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2252 p->migration_flags &= ~MDF_PUSH;
2253 task_rq_unlock(rq, p, rf);
2255 pending->arg = (struct migration_arg) {
2256 .task = p,
2257 .dest_cpu = -1,
2258 .pending = pending,
2261 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2262 &pending->arg, &pending->stop_work);
2264 return 0;
2267 if (task_running(rq, p) || p->state == TASK_WAKING) {
2269 * Lessen races (and headaches) by delegating
2270 * is_migration_disabled(p) checks to the stopper, which will
2271 * run on the same CPU as said p.
2273 task_rq_unlock(rq, p, rf);
2274 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2276 } else {
2278 if (!is_migration_disabled(p)) {
2279 if (task_on_rq_queued(p))
2280 rq = move_queued_task(rq, rf, p, dest_cpu);
2282 p->migration_pending = NULL;
2283 complete = true;
2285 task_rq_unlock(rq, p, rf);
2287 do_complete:
2288 if (complete)
2289 complete_all(&pending->done);
2292 wait_for_completion(&pending->done);
2294 if (refcount_dec_and_test(&pending->refs))
2295 wake_up_var(&pending->refs);
2298 * Block the original owner of &pending until all subsequent callers
2299 * have seen the completion and decremented the refcount
2301 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2303 return 0;
2307 * Change a given task's CPU affinity. Migrate the thread to a
2308 * proper CPU and schedule it away if the CPU it's executing on
2309 * is removed from the allowed bitmask.
2311 * NOTE: the caller must have a valid reference to the task, the
2312 * task must not exit() & deallocate itself prematurely. The
2313 * call is not atomic; no spinlocks may be held.
2315 static int __set_cpus_allowed_ptr(struct task_struct *p,
2316 const struct cpumask *new_mask,
2317 u32 flags)
2319 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2320 unsigned int dest_cpu;
2321 struct rq_flags rf;
2322 struct rq *rq;
2323 int ret = 0;
2325 rq = task_rq_lock(p, &rf);
2326 update_rq_clock(rq);
2328 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2330 * Kernel threads are allowed on online && !active CPUs.
2332 * Specifically, migration_disabled() tasks must not fail the
2333 * cpumask_any_and_distribute() pick below, esp. so on
2334 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2335 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2337 cpu_valid_mask = cpu_online_mask;
2341 * Must re-check here, to close a race against __kthread_bind(),
2342 * sched_setaffinity() is not guaranteed to observe the flag.
2344 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2345 ret = -EINVAL;
2346 goto out;
2349 if (!(flags & SCA_MIGRATE_ENABLE)) {
2350 if (cpumask_equal(&p->cpus_mask, new_mask))
2351 goto out;
2353 if (WARN_ON_ONCE(p == current &&
2354 is_migration_disabled(p) &&
2355 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2356 ret = -EBUSY;
2357 goto out;
2362 * Picking a ~random cpu helps in cases where we are changing affinity
2363 * for groups of tasks (ie. cpuset), so that load balancing is not
2364 * immediately required to distribute the tasks within their new mask.
2366 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2367 if (dest_cpu >= nr_cpu_ids) {
2368 ret = -EINVAL;
2369 goto out;
2372 __do_set_cpus_allowed(p, new_mask, flags);
2374 if (p->flags & PF_KTHREAD) {
2376 * For kernel threads that do indeed end up on online &&
2377 * !active we want to ensure they are strict per-CPU threads.
2379 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
2380 !cpumask_intersects(new_mask, cpu_active_mask) &&
2381 p->nr_cpus_allowed != 1);
2384 return affine_move_task(rq, p, &rf, dest_cpu, flags);
2386 out:
2387 task_rq_unlock(rq, p, &rf);
2389 return ret;
2392 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2394 return __set_cpus_allowed_ptr(p, new_mask, 0);
2396 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2398 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2400 #ifdef CONFIG_SCHED_DEBUG
2402 * We should never call set_task_cpu() on a blocked task,
2403 * ttwu() will sort out the placement.
2405 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2406 !p->on_rq);
2409 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2410 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2411 * time relying on p->on_rq.
2413 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2414 p->sched_class == &fair_sched_class &&
2415 (p->on_rq && !task_on_rq_migrating(p)));
2417 #ifdef CONFIG_LOCKDEP
2419 * The caller should hold either p->pi_lock or rq->lock, when changing
2420 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2422 * sched_move_task() holds both and thus holding either pins the cgroup,
2423 * see task_group().
2425 * Furthermore, all task_rq users should acquire both locks, see
2426 * task_rq_lock().
2428 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2429 lockdep_is_held(&task_rq(p)->lock)));
2430 #endif
2432 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2434 WARN_ON_ONCE(!cpu_online(new_cpu));
2436 WARN_ON_ONCE(is_migration_disabled(p));
2437 #endif
2439 trace_sched_migrate_task(p, new_cpu);
2441 if (task_cpu(p) != new_cpu) {
2442 if (p->sched_class->migrate_task_rq)
2443 p->sched_class->migrate_task_rq(p, new_cpu);
2444 p->se.nr_migrations++;
2445 rseq_migrate(p);
2446 perf_event_task_migrate(p);
2449 __set_task_cpu(p, new_cpu);
2452 #ifdef CONFIG_NUMA_BALANCING
2453 static void __migrate_swap_task(struct task_struct *p, int cpu)
2455 if (task_on_rq_queued(p)) {
2456 struct rq *src_rq, *dst_rq;
2457 struct rq_flags srf, drf;
2459 src_rq = task_rq(p);
2460 dst_rq = cpu_rq(cpu);
2462 rq_pin_lock(src_rq, &srf);
2463 rq_pin_lock(dst_rq, &drf);
2465 deactivate_task(src_rq, p, 0);
2466 set_task_cpu(p, cpu);
2467 activate_task(dst_rq, p, 0);
2468 check_preempt_curr(dst_rq, p, 0);
2470 rq_unpin_lock(dst_rq, &drf);
2471 rq_unpin_lock(src_rq, &srf);
2473 } else {
2475 * Task isn't running anymore; make it appear like we migrated
2476 * it before it went to sleep. This means on wakeup we make the
2477 * previous CPU our target instead of where it really is.
2479 p->wake_cpu = cpu;
2483 struct migration_swap_arg {
2484 struct task_struct *src_task, *dst_task;
2485 int src_cpu, dst_cpu;
2488 static int migrate_swap_stop(void *data)
2490 struct migration_swap_arg *arg = data;
2491 struct rq *src_rq, *dst_rq;
2492 int ret = -EAGAIN;
2494 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2495 return -EAGAIN;
2497 src_rq = cpu_rq(arg->src_cpu);
2498 dst_rq = cpu_rq(arg->dst_cpu);
2500 double_raw_lock(&arg->src_task->pi_lock,
2501 &arg->dst_task->pi_lock);
2502 double_rq_lock(src_rq, dst_rq);
2504 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2505 goto unlock;
2507 if (task_cpu(arg->src_task) != arg->src_cpu)
2508 goto unlock;
2510 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2511 goto unlock;
2513 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2514 goto unlock;
2516 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2517 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2519 ret = 0;
2521 unlock:
2522 double_rq_unlock(src_rq, dst_rq);
2523 raw_spin_unlock(&arg->dst_task->pi_lock);
2524 raw_spin_unlock(&arg->src_task->pi_lock);
2526 return ret;
2530 * Cross migrate two tasks
2532 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2533 int target_cpu, int curr_cpu)
2535 struct migration_swap_arg arg;
2536 int ret = -EINVAL;
2538 arg = (struct migration_swap_arg){
2539 .src_task = cur,
2540 .src_cpu = curr_cpu,
2541 .dst_task = p,
2542 .dst_cpu = target_cpu,
2545 if (arg.src_cpu == arg.dst_cpu)
2546 goto out;
2549 * These three tests are all lockless; this is OK since all of them
2550 * will be re-checked with proper locks held further down the line.
2552 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2553 goto out;
2555 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2556 goto out;
2558 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2559 goto out;
2561 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2562 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2564 out:
2565 return ret;
2567 #endif /* CONFIG_NUMA_BALANCING */
2570 * wait_task_inactive - wait for a thread to unschedule.
2572 * If @match_state is nonzero, it's the @p->state value just checked and
2573 * not expected to change. If it changes, i.e. @p might have woken up,
2574 * then return zero. When we succeed in waiting for @p to be off its CPU,
2575 * we return a positive number (its total switch count). If a second call
2576 * a short while later returns the same number, the caller can be sure that
2577 * @p has remained unscheduled the whole time.
2579 * The caller must ensure that the task *will* unschedule sometime soon,
2580 * else this function might spin for a *long* time. This function can't
2581 * be called with interrupts off, or it may introduce deadlock with
2582 * smp_call_function() if an IPI is sent by the same process we are
2583 * waiting to become inactive.
2585 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2587 int running, queued;
2588 struct rq_flags rf;
2589 unsigned long ncsw;
2590 struct rq *rq;
2592 for (;;) {
2594 * We do the initial early heuristics without holding
2595 * any task-queue locks at all. We'll only try to get
2596 * the runqueue lock when things look like they will
2597 * work out!
2599 rq = task_rq(p);
2602 * If the task is actively running on another CPU
2603 * still, just relax and busy-wait without holding
2604 * any locks.
2606 * NOTE! Since we don't hold any locks, it's not
2607 * even sure that "rq" stays as the right runqueue!
2608 * But we don't care, since "task_running()" will
2609 * return false if the runqueue has changed and p
2610 * is actually now running somewhere else!
2612 while (task_running(rq, p)) {
2613 if (match_state && unlikely(p->state != match_state))
2614 return 0;
2615 cpu_relax();
2619 * Ok, time to look more closely! We need the rq
2620 * lock now, to be *sure*. If we're wrong, we'll
2621 * just go back and repeat.
2623 rq = task_rq_lock(p, &rf);
2624 trace_sched_wait_task(p);
2625 running = task_running(rq, p);
2626 queued = task_on_rq_queued(p);
2627 ncsw = 0;
2628 if (!match_state || p->state == match_state)
2629 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2630 task_rq_unlock(rq, p, &rf);
2633 * If it changed from the expected state, bail out now.
2635 if (unlikely(!ncsw))
2636 break;
2639 * Was it really running after all now that we
2640 * checked with the proper locks actually held?
2642 * Oops. Go back and try again..
2644 if (unlikely(running)) {
2645 cpu_relax();
2646 continue;
2650 * It's not enough that it's not actively running,
2651 * it must be off the runqueue _entirely_, and not
2652 * preempted!
2654 * So if it was still runnable (but just not actively
2655 * running right now), it's preempted, and we should
2656 * yield - it could be a while.
2658 if (unlikely(queued)) {
2659 ktime_t to = NSEC_PER_SEC / HZ;
2661 set_current_state(TASK_UNINTERRUPTIBLE);
2662 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2663 continue;
2667 * Ahh, all good. It wasn't running, and it wasn't
2668 * runnable, which means that it will never become
2669 * running in the future either. We're all done!
2671 break;
2674 return ncsw;
2677 /***
2678 * kick_process - kick a running thread to enter/exit the kernel
2679 * @p: the to-be-kicked thread
2681 * Cause a process which is running on another CPU to enter
2682 * kernel-mode, without any delay. (to get signals handled.)
2684 * NOTE: this function doesn't have to take the runqueue lock,
2685 * because all it wants to ensure is that the remote task enters
2686 * the kernel. If the IPI races and the task has been migrated
2687 * to another CPU then no harm is done and the purpose has been
2688 * achieved as well.
2690 void kick_process(struct task_struct *p)
2692 int cpu;
2694 preempt_disable();
2695 cpu = task_cpu(p);
2696 if ((cpu != smp_processor_id()) && task_curr(p))
2697 smp_send_reschedule(cpu);
2698 preempt_enable();
2700 EXPORT_SYMBOL_GPL(kick_process);
2703 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2705 * A few notes on cpu_active vs cpu_online:
2707 * - cpu_active must be a subset of cpu_online
2709 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2710 * see __set_cpus_allowed_ptr(). At this point the newly online
2711 * CPU isn't yet part of the sched domains, and balancing will not
2712 * see it.
2714 * - on CPU-down we clear cpu_active() to mask the sched domains and
2715 * avoid the load balancer to place new tasks on the to be removed
2716 * CPU. Existing tasks will remain running there and will be taken
2717 * off.
2719 * This means that fallback selection must not select !active CPUs.
2720 * And can assume that any active CPU must be online. Conversely
2721 * select_task_rq() below may allow selection of !active CPUs in order
2722 * to satisfy the above rules.
2724 static int select_fallback_rq(int cpu, struct task_struct *p)
2726 int nid = cpu_to_node(cpu);
2727 const struct cpumask *nodemask = NULL;
2728 enum { cpuset, possible, fail } state = cpuset;
2729 int dest_cpu;
2732 * If the node that the CPU is on has been offlined, cpu_to_node()
2733 * will return -1. There is no CPU on the node, and we should
2734 * select the CPU on the other node.
2736 if (nid != -1) {
2737 nodemask = cpumask_of_node(nid);
2739 /* Look for allowed, online CPU in same node. */
2740 for_each_cpu(dest_cpu, nodemask) {
2741 if (!cpu_active(dest_cpu))
2742 continue;
2743 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2744 return dest_cpu;
2748 for (;;) {
2749 /* Any allowed, online CPU? */
2750 for_each_cpu(dest_cpu, p->cpus_ptr) {
2751 if (!is_cpu_allowed(p, dest_cpu))
2752 continue;
2754 goto out;
2757 /* No more Mr. Nice Guy. */
2758 switch (state) {
2759 case cpuset:
2760 if (IS_ENABLED(CONFIG_CPUSETS)) {
2761 cpuset_cpus_allowed_fallback(p);
2762 state = possible;
2763 break;
2765 fallthrough;
2766 case possible:
2768 * XXX When called from select_task_rq() we only
2769 * hold p->pi_lock and again violate locking order.
2771 * More yuck to audit.
2773 do_set_cpus_allowed(p, cpu_possible_mask);
2774 state = fail;
2775 break;
2777 case fail:
2778 BUG();
2779 break;
2783 out:
2784 if (state != cpuset) {
2786 * Don't tell them about moving exiting tasks or
2787 * kernel threads (both mm NULL), since they never
2788 * leave kernel.
2790 if (p->mm && printk_ratelimit()) {
2791 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2792 task_pid_nr(p), p->comm, cpu);
2796 return dest_cpu;
2800 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2802 static inline
2803 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2805 lockdep_assert_held(&p->pi_lock);
2807 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2808 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2809 else
2810 cpu = cpumask_any(p->cpus_ptr);
2813 * In order not to call set_task_cpu() on a blocking task we need
2814 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2815 * CPU.
2817 * Since this is common to all placement strategies, this lives here.
2819 * [ this allows ->select_task() to simply return task_cpu(p) and
2820 * not worry about this generic constraint ]
2822 if (unlikely(!is_cpu_allowed(p, cpu)))
2823 cpu = select_fallback_rq(task_cpu(p), p);
2825 return cpu;
2828 void sched_set_stop_task(int cpu, struct task_struct *stop)
2830 static struct lock_class_key stop_pi_lock;
2831 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2832 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2834 if (stop) {
2836 * Make it appear like a SCHED_FIFO task, its something
2837 * userspace knows about and won't get confused about.
2839 * Also, it will make PI more or less work without too
2840 * much confusion -- but then, stop work should not
2841 * rely on PI working anyway.
2843 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2845 stop->sched_class = &stop_sched_class;
2848 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2849 * adjust the effective priority of a task. As a result,
2850 * rt_mutex_setprio() can trigger (RT) balancing operations,
2851 * which can then trigger wakeups of the stop thread to push
2852 * around the current task.
2854 * The stop task itself will never be part of the PI-chain, it
2855 * never blocks, therefore that ->pi_lock recursion is safe.
2856 * Tell lockdep about this by placing the stop->pi_lock in its
2857 * own class.
2859 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2862 cpu_rq(cpu)->stop = stop;
2864 if (old_stop) {
2866 * Reset it back to a normal scheduling class so that
2867 * it can die in pieces.
2869 old_stop->sched_class = &rt_sched_class;
2873 #else /* CONFIG_SMP */
2875 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2876 const struct cpumask *new_mask,
2877 u32 flags)
2879 return set_cpus_allowed_ptr(p, new_mask);
2882 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2884 static inline bool rq_has_pinned_tasks(struct rq *rq)
2886 return false;
2889 #endif /* !CONFIG_SMP */
2891 static void
2892 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2894 struct rq *rq;
2896 if (!schedstat_enabled())
2897 return;
2899 rq = this_rq();
2901 #ifdef CONFIG_SMP
2902 if (cpu == rq->cpu) {
2903 __schedstat_inc(rq->ttwu_local);
2904 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2905 } else {
2906 struct sched_domain *sd;
2908 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2909 rcu_read_lock();
2910 for_each_domain(rq->cpu, sd) {
2911 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2912 __schedstat_inc(sd->ttwu_wake_remote);
2913 break;
2916 rcu_read_unlock();
2919 if (wake_flags & WF_MIGRATED)
2920 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2921 #endif /* CONFIG_SMP */
2923 __schedstat_inc(rq->ttwu_count);
2924 __schedstat_inc(p->se.statistics.nr_wakeups);
2926 if (wake_flags & WF_SYNC)
2927 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2931 * Mark the task runnable and perform wakeup-preemption.
2933 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2934 struct rq_flags *rf)
2936 check_preempt_curr(rq, p, wake_flags);
2937 p->state = TASK_RUNNING;
2938 trace_sched_wakeup(p);
2940 #ifdef CONFIG_SMP
2941 if (p->sched_class->task_woken) {
2943 * Our task @p is fully woken up and running; so it's safe to
2944 * drop the rq->lock, hereafter rq is only used for statistics.
2946 rq_unpin_lock(rq, rf);
2947 p->sched_class->task_woken(rq, p);
2948 rq_repin_lock(rq, rf);
2951 if (rq->idle_stamp) {
2952 u64 delta = rq_clock(rq) - rq->idle_stamp;
2953 u64 max = 2*rq->max_idle_balance_cost;
2955 update_avg(&rq->avg_idle, delta);
2957 if (rq->avg_idle > max)
2958 rq->avg_idle = max;
2960 rq->idle_stamp = 0;
2962 #endif
2965 static void
2966 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2967 struct rq_flags *rf)
2969 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2971 lockdep_assert_held(&rq->lock);
2973 if (p->sched_contributes_to_load)
2974 rq->nr_uninterruptible--;
2976 #ifdef CONFIG_SMP
2977 if (wake_flags & WF_MIGRATED)
2978 en_flags |= ENQUEUE_MIGRATED;
2979 else
2980 #endif
2981 if (p->in_iowait) {
2982 delayacct_blkio_end(p);
2983 atomic_dec(&task_rq(p)->nr_iowait);
2986 activate_task(rq, p, en_flags);
2987 ttwu_do_wakeup(rq, p, wake_flags, rf);
2991 * Consider @p being inside a wait loop:
2993 * for (;;) {
2994 * set_current_state(TASK_UNINTERRUPTIBLE);
2996 * if (CONDITION)
2997 * break;
2999 * schedule();
3001 * __set_current_state(TASK_RUNNING);
3003 * between set_current_state() and schedule(). In this case @p is still
3004 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3005 * an atomic manner.
3007 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3008 * then schedule() must still happen and p->state can be changed to
3009 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3010 * need to do a full wakeup with enqueue.
3012 * Returns: %true when the wakeup is done,
3013 * %false otherwise.
3015 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3017 struct rq_flags rf;
3018 struct rq *rq;
3019 int ret = 0;
3021 rq = __task_rq_lock(p, &rf);
3022 if (task_on_rq_queued(p)) {
3023 /* check_preempt_curr() may use rq clock */
3024 update_rq_clock(rq);
3025 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3026 ret = 1;
3028 __task_rq_unlock(rq, &rf);
3030 return ret;
3033 #ifdef CONFIG_SMP
3034 void sched_ttwu_pending(void *arg)
3036 struct llist_node *llist = arg;
3037 struct rq *rq = this_rq();
3038 struct task_struct *p, *t;
3039 struct rq_flags rf;
3041 if (!llist)
3042 return;
3045 * rq::ttwu_pending racy indication of out-standing wakeups.
3046 * Races such that false-negatives are possible, since they
3047 * are shorter lived that false-positives would be.
3049 WRITE_ONCE(rq->ttwu_pending, 0);
3051 rq_lock_irqsave(rq, &rf);
3052 update_rq_clock(rq);
3054 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3055 if (WARN_ON_ONCE(p->on_cpu))
3056 smp_cond_load_acquire(&p->on_cpu, !VAL);
3058 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3059 set_task_cpu(p, cpu_of(rq));
3061 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3064 rq_unlock_irqrestore(rq, &rf);
3067 void send_call_function_single_ipi(int cpu)
3069 struct rq *rq = cpu_rq(cpu);
3071 if (!set_nr_if_polling(rq->idle))
3072 arch_send_call_function_single_ipi(cpu);
3073 else
3074 trace_sched_wake_idle_without_ipi(cpu);
3078 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3079 * necessary. The wakee CPU on receipt of the IPI will queue the task
3080 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3081 * of the wakeup instead of the waker.
3083 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3085 struct rq *rq = cpu_rq(cpu);
3087 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3089 WRITE_ONCE(rq->ttwu_pending, 1);
3090 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3093 void wake_up_if_idle(int cpu)
3095 struct rq *rq = cpu_rq(cpu);
3096 struct rq_flags rf;
3098 rcu_read_lock();
3100 if (!is_idle_task(rcu_dereference(rq->curr)))
3101 goto out;
3103 if (set_nr_if_polling(rq->idle)) {
3104 trace_sched_wake_idle_without_ipi(cpu);
3105 } else {
3106 rq_lock_irqsave(rq, &rf);
3107 if (is_idle_task(rq->curr))
3108 smp_send_reschedule(cpu);
3109 /* Else CPU is not idle, do nothing here: */
3110 rq_unlock_irqrestore(rq, &rf);
3113 out:
3114 rcu_read_unlock();
3117 bool cpus_share_cache(int this_cpu, int that_cpu)
3119 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3122 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3125 * If the CPU does not share cache, then queue the task on the
3126 * remote rqs wakelist to avoid accessing remote data.
3128 if (!cpus_share_cache(smp_processor_id(), cpu))
3129 return true;
3132 * If the task is descheduling and the only running task on the
3133 * CPU then use the wakelist to offload the task activation to
3134 * the soon-to-be-idle CPU as the current CPU is likely busy.
3135 * nr_running is checked to avoid unnecessary task stacking.
3137 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3138 return true;
3140 return false;
3143 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3145 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3146 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3147 return false;
3149 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3150 __ttwu_queue_wakelist(p, cpu, wake_flags);
3151 return true;
3154 return false;
3157 #else /* !CONFIG_SMP */
3159 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3161 return false;
3164 #endif /* CONFIG_SMP */
3166 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3168 struct rq *rq = cpu_rq(cpu);
3169 struct rq_flags rf;
3171 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3172 return;
3174 rq_lock(rq, &rf);
3175 update_rq_clock(rq);
3176 ttwu_do_activate(rq, p, wake_flags, &rf);
3177 rq_unlock(rq, &rf);
3181 * Notes on Program-Order guarantees on SMP systems.
3183 * MIGRATION
3185 * The basic program-order guarantee on SMP systems is that when a task [t]
3186 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3187 * execution on its new CPU [c1].
3189 * For migration (of runnable tasks) this is provided by the following means:
3191 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3192 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3193 * rq(c1)->lock (if not at the same time, then in that order).
3194 * C) LOCK of the rq(c1)->lock scheduling in task
3196 * Release/acquire chaining guarantees that B happens after A and C after B.
3197 * Note: the CPU doing B need not be c0 or c1
3199 * Example:
3201 * CPU0 CPU1 CPU2
3203 * LOCK rq(0)->lock
3204 * sched-out X
3205 * sched-in Y
3206 * UNLOCK rq(0)->lock
3208 * LOCK rq(0)->lock // orders against CPU0
3209 * dequeue X
3210 * UNLOCK rq(0)->lock
3212 * LOCK rq(1)->lock
3213 * enqueue X
3214 * UNLOCK rq(1)->lock
3216 * LOCK rq(1)->lock // orders against CPU2
3217 * sched-out Z
3218 * sched-in X
3219 * UNLOCK rq(1)->lock
3222 * BLOCKING -- aka. SLEEP + WAKEUP
3224 * For blocking we (obviously) need to provide the same guarantee as for
3225 * migration. However the means are completely different as there is no lock
3226 * chain to provide order. Instead we do:
3228 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3229 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3231 * Example:
3233 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3235 * LOCK rq(0)->lock LOCK X->pi_lock
3236 * dequeue X
3237 * sched-out X
3238 * smp_store_release(X->on_cpu, 0);
3240 * smp_cond_load_acquire(&X->on_cpu, !VAL);
3241 * X->state = WAKING
3242 * set_task_cpu(X,2)
3244 * LOCK rq(2)->lock
3245 * enqueue X
3246 * X->state = RUNNING
3247 * UNLOCK rq(2)->lock
3249 * LOCK rq(2)->lock // orders against CPU1
3250 * sched-out Z
3251 * sched-in X
3252 * UNLOCK rq(2)->lock
3254 * UNLOCK X->pi_lock
3255 * UNLOCK rq(0)->lock
3258 * However, for wakeups there is a second guarantee we must provide, namely we
3259 * must ensure that CONDITION=1 done by the caller can not be reordered with
3260 * accesses to the task state; see try_to_wake_up() and set_current_state().
3264 * try_to_wake_up - wake up a thread
3265 * @p: the thread to be awakened
3266 * @state: the mask of task states that can be woken
3267 * @wake_flags: wake modifier flags (WF_*)
3269 * Conceptually does:
3271 * If (@state & @p->state) @p->state = TASK_RUNNING.
3273 * If the task was not queued/runnable, also place it back on a runqueue.
3275 * This function is atomic against schedule() which would dequeue the task.
3277 * It issues a full memory barrier before accessing @p->state, see the comment
3278 * with set_current_state().
3280 * Uses p->pi_lock to serialize against concurrent wake-ups.
3282 * Relies on p->pi_lock stabilizing:
3283 * - p->sched_class
3284 * - p->cpus_ptr
3285 * - p->sched_task_group
3286 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3288 * Tries really hard to only take one task_rq(p)->lock for performance.
3289 * Takes rq->lock in:
3290 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3291 * - ttwu_queue() -- new rq, for enqueue of the task;
3292 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3294 * As a consequence we race really badly with just about everything. See the
3295 * many memory barriers and their comments for details.
3297 * Return: %true if @p->state changes (an actual wakeup was done),
3298 * %false otherwise.
3300 static int
3301 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3303 unsigned long flags;
3304 int cpu, success = 0;
3306 preempt_disable();
3307 if (p == current) {
3309 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3310 * == smp_processor_id()'. Together this means we can special
3311 * case the whole 'p->on_rq && ttwu_runnable()' case below
3312 * without taking any locks.
3314 * In particular:
3315 * - we rely on Program-Order guarantees for all the ordering,
3316 * - we're serialized against set_special_state() by virtue of
3317 * it disabling IRQs (this allows not taking ->pi_lock).
3319 if (!(p->state & state))
3320 goto out;
3322 success = 1;
3323 trace_sched_waking(p);
3324 p->state = TASK_RUNNING;
3325 trace_sched_wakeup(p);
3326 goto out;
3330 * If we are going to wake up a thread waiting for CONDITION we
3331 * need to ensure that CONDITION=1 done by the caller can not be
3332 * reordered with p->state check below. This pairs with smp_store_mb()
3333 * in set_current_state() that the waiting thread does.
3335 raw_spin_lock_irqsave(&p->pi_lock, flags);
3336 smp_mb__after_spinlock();
3337 if (!(p->state & state))
3338 goto unlock;
3340 trace_sched_waking(p);
3342 /* We're going to change ->state: */
3343 success = 1;
3346 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3347 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3348 * in smp_cond_load_acquire() below.
3350 * sched_ttwu_pending() try_to_wake_up()
3351 * STORE p->on_rq = 1 LOAD p->state
3352 * UNLOCK rq->lock
3354 * __schedule() (switch to task 'p')
3355 * LOCK rq->lock smp_rmb();
3356 * smp_mb__after_spinlock();
3357 * UNLOCK rq->lock
3359 * [task p]
3360 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
3362 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3363 * __schedule(). See the comment for smp_mb__after_spinlock().
3365 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3367 smp_rmb();
3368 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3369 goto unlock;
3371 #ifdef CONFIG_SMP
3373 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3374 * possible to, falsely, observe p->on_cpu == 0.
3376 * One must be running (->on_cpu == 1) in order to remove oneself
3377 * from the runqueue.
3379 * __schedule() (switch to task 'p') try_to_wake_up()
3380 * STORE p->on_cpu = 1 LOAD p->on_rq
3381 * UNLOCK rq->lock
3383 * __schedule() (put 'p' to sleep)
3384 * LOCK rq->lock smp_rmb();
3385 * smp_mb__after_spinlock();
3386 * STORE p->on_rq = 0 LOAD p->on_cpu
3388 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3389 * __schedule(). See the comment for smp_mb__after_spinlock().
3391 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3392 * schedule()'s deactivate_task() has 'happened' and p will no longer
3393 * care about it's own p->state. See the comment in __schedule().
3395 smp_acquire__after_ctrl_dep();
3398 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3399 * == 0), which means we need to do an enqueue, change p->state to
3400 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3401 * enqueue, such as ttwu_queue_wakelist().
3403 p->state = TASK_WAKING;
3406 * If the owning (remote) CPU is still in the middle of schedule() with
3407 * this task as prev, considering queueing p on the remote CPUs wake_list
3408 * which potentially sends an IPI instead of spinning on p->on_cpu to
3409 * let the waker make forward progress. This is safe because IRQs are
3410 * disabled and the IPI will deliver after on_cpu is cleared.
3412 * Ensure we load task_cpu(p) after p->on_cpu:
3414 * set_task_cpu(p, cpu);
3415 * STORE p->cpu = @cpu
3416 * __schedule() (switch to task 'p')
3417 * LOCK rq->lock
3418 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3419 * STORE p->on_cpu = 1 LOAD p->cpu
3421 * to ensure we observe the correct CPU on which the task is currently
3422 * scheduling.
3424 if (smp_load_acquire(&p->on_cpu) &&
3425 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3426 goto unlock;
3429 * If the owning (remote) CPU is still in the middle of schedule() with
3430 * this task as prev, wait until it's done referencing the task.
3432 * Pairs with the smp_store_release() in finish_task().
3434 * This ensures that tasks getting woken will be fully ordered against
3435 * their previous state and preserve Program Order.
3437 smp_cond_load_acquire(&p->on_cpu, !VAL);
3439 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3440 if (task_cpu(p) != cpu) {
3441 if (p->in_iowait) {
3442 delayacct_blkio_end(p);
3443 atomic_dec(&task_rq(p)->nr_iowait);
3446 wake_flags |= WF_MIGRATED;
3447 psi_ttwu_dequeue(p);
3448 set_task_cpu(p, cpu);
3450 #else
3451 cpu = task_cpu(p);
3452 #endif /* CONFIG_SMP */
3454 ttwu_queue(p, cpu, wake_flags);
3455 unlock:
3456 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3457 out:
3458 if (success)
3459 ttwu_stat(p, task_cpu(p), wake_flags);
3460 preempt_enable();
3462 return success;
3466 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3467 * @p: Process for which the function is to be invoked.
3468 * @func: Function to invoke.
3469 * @arg: Argument to function.
3471 * If the specified task can be quickly locked into a definite state
3472 * (either sleeping or on a given runqueue), arrange to keep it in that
3473 * state while invoking @func(@arg). This function can use ->on_rq and
3474 * task_curr() to work out what the state is, if required. Given that
3475 * @func can be invoked with a runqueue lock held, it had better be quite
3476 * lightweight.
3478 * Returns:
3479 * @false if the task slipped out from under the locks.
3480 * @true if the task was locked onto a runqueue or is sleeping.
3481 * However, @func can override this by returning @false.
3483 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3485 bool ret = false;
3486 struct rq_flags rf;
3487 struct rq *rq;
3489 lockdep_assert_irqs_enabled();
3490 raw_spin_lock_irq(&p->pi_lock);
3491 if (p->on_rq) {
3492 rq = __task_rq_lock(p, &rf);
3493 if (task_rq(p) == rq)
3494 ret = func(p, arg);
3495 rq_unlock(rq, &rf);
3496 } else {
3497 switch (p->state) {
3498 case TASK_RUNNING:
3499 case TASK_WAKING:
3500 break;
3501 default:
3502 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3503 if (!p->on_rq)
3504 ret = func(p, arg);
3507 raw_spin_unlock_irq(&p->pi_lock);
3508 return ret;
3512 * wake_up_process - Wake up a specific process
3513 * @p: The process to be woken up.
3515 * Attempt to wake up the nominated process and move it to the set of runnable
3516 * processes.
3518 * Return: 1 if the process was woken up, 0 if it was already running.
3520 * This function executes a full memory barrier before accessing the task state.
3522 int wake_up_process(struct task_struct *p)
3524 return try_to_wake_up(p, TASK_NORMAL, 0);
3526 EXPORT_SYMBOL(wake_up_process);
3528 int wake_up_state(struct task_struct *p, unsigned int state)
3530 return try_to_wake_up(p, state, 0);
3534 * Perform scheduler related setup for a newly forked process p.
3535 * p is forked by current.
3537 * __sched_fork() is basic setup used by init_idle() too:
3539 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3541 p->on_rq = 0;
3543 p->se.on_rq = 0;
3544 p->se.exec_start = 0;
3545 p->se.sum_exec_runtime = 0;
3546 p->se.prev_sum_exec_runtime = 0;
3547 p->se.nr_migrations = 0;
3548 p->se.vruntime = 0;
3549 INIT_LIST_HEAD(&p->se.group_node);
3551 #ifdef CONFIG_FAIR_GROUP_SCHED
3552 p->se.cfs_rq = NULL;
3553 #endif
3555 #ifdef CONFIG_SCHEDSTATS
3556 /* Even if schedstat is disabled, there should not be garbage */
3557 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3558 #endif
3560 RB_CLEAR_NODE(&p->dl.rb_node);
3561 init_dl_task_timer(&p->dl);
3562 init_dl_inactive_task_timer(&p->dl);
3563 __dl_clear_params(p);
3565 INIT_LIST_HEAD(&p->rt.run_list);
3566 p->rt.timeout = 0;
3567 p->rt.time_slice = sched_rr_timeslice;
3568 p->rt.on_rq = 0;
3569 p->rt.on_list = 0;
3571 #ifdef CONFIG_PREEMPT_NOTIFIERS
3572 INIT_HLIST_HEAD(&p->preempt_notifiers);
3573 #endif
3575 #ifdef CONFIG_COMPACTION
3576 p->capture_control = NULL;
3577 #endif
3578 init_numa_balancing(clone_flags, p);
3579 #ifdef CONFIG_SMP
3580 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3581 p->migration_pending = NULL;
3582 #endif
3585 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3587 #ifdef CONFIG_NUMA_BALANCING
3589 void set_numabalancing_state(bool enabled)
3591 if (enabled)
3592 static_branch_enable(&sched_numa_balancing);
3593 else
3594 static_branch_disable(&sched_numa_balancing);
3597 #ifdef CONFIG_PROC_SYSCTL
3598 int sysctl_numa_balancing(struct ctl_table *table, int write,
3599 void *buffer, size_t *lenp, loff_t *ppos)
3601 struct ctl_table t;
3602 int err;
3603 int state = static_branch_likely(&sched_numa_balancing);
3605 if (write && !capable(CAP_SYS_ADMIN))
3606 return -EPERM;
3608 t = *table;
3609 t.data = &state;
3610 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3611 if (err < 0)
3612 return err;
3613 if (write)
3614 set_numabalancing_state(state);
3615 return err;
3617 #endif
3618 #endif
3620 #ifdef CONFIG_SCHEDSTATS
3622 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3623 static bool __initdata __sched_schedstats = false;
3625 static void set_schedstats(bool enabled)
3627 if (enabled)
3628 static_branch_enable(&sched_schedstats);
3629 else
3630 static_branch_disable(&sched_schedstats);
3633 void force_schedstat_enabled(void)
3635 if (!schedstat_enabled()) {
3636 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3637 static_branch_enable(&sched_schedstats);
3641 static int __init setup_schedstats(char *str)
3643 int ret = 0;
3644 if (!str)
3645 goto out;
3648 * This code is called before jump labels have been set up, so we can't
3649 * change the static branch directly just yet. Instead set a temporary
3650 * variable so init_schedstats() can do it later.
3652 if (!strcmp(str, "enable")) {
3653 __sched_schedstats = true;
3654 ret = 1;
3655 } else if (!strcmp(str, "disable")) {
3656 __sched_schedstats = false;
3657 ret = 1;
3659 out:
3660 if (!ret)
3661 pr_warn("Unable to parse schedstats=\n");
3663 return ret;
3665 __setup("schedstats=", setup_schedstats);
3667 static void __init init_schedstats(void)
3669 set_schedstats(__sched_schedstats);
3672 #ifdef CONFIG_PROC_SYSCTL
3673 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3674 size_t *lenp, loff_t *ppos)
3676 struct ctl_table t;
3677 int err;
3678 int state = static_branch_likely(&sched_schedstats);
3680 if (write && !capable(CAP_SYS_ADMIN))
3681 return -EPERM;
3683 t = *table;
3684 t.data = &state;
3685 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3686 if (err < 0)
3687 return err;
3688 if (write)
3689 set_schedstats(state);
3690 return err;
3692 #endif /* CONFIG_PROC_SYSCTL */
3693 #else /* !CONFIG_SCHEDSTATS */
3694 static inline void init_schedstats(void) {}
3695 #endif /* CONFIG_SCHEDSTATS */
3698 * fork()/clone()-time setup:
3700 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3702 unsigned long flags;
3704 __sched_fork(clone_flags, p);
3706 * We mark the process as NEW here. This guarantees that
3707 * nobody will actually run it, and a signal or other external
3708 * event cannot wake it up and insert it on the runqueue either.
3710 p->state = TASK_NEW;
3713 * Make sure we do not leak PI boosting priority to the child.
3715 p->prio = current->normal_prio;
3717 uclamp_fork(p);
3720 * Revert to default priority/policy on fork if requested.
3722 if (unlikely(p->sched_reset_on_fork)) {
3723 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3724 p->policy = SCHED_NORMAL;
3725 p->static_prio = NICE_TO_PRIO(0);
3726 p->rt_priority = 0;
3727 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3728 p->static_prio = NICE_TO_PRIO(0);
3730 p->prio = p->normal_prio = __normal_prio(p);
3731 set_load_weight(p, false);
3734 * We don't need the reset flag anymore after the fork. It has
3735 * fulfilled its duty:
3737 p->sched_reset_on_fork = 0;
3740 if (dl_prio(p->prio))
3741 return -EAGAIN;
3742 else if (rt_prio(p->prio))
3743 p->sched_class = &rt_sched_class;
3744 else
3745 p->sched_class = &fair_sched_class;
3747 init_entity_runnable_average(&p->se);
3750 * The child is not yet in the pid-hash so no cgroup attach races,
3751 * and the cgroup is pinned to this child due to cgroup_fork()
3752 * is ran before sched_fork().
3754 * Silence PROVE_RCU.
3756 raw_spin_lock_irqsave(&p->pi_lock, flags);
3757 rseq_migrate(p);
3759 * We're setting the CPU for the first time, we don't migrate,
3760 * so use __set_task_cpu().
3762 __set_task_cpu(p, smp_processor_id());
3763 if (p->sched_class->task_fork)
3764 p->sched_class->task_fork(p);
3765 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3767 #ifdef CONFIG_SCHED_INFO
3768 if (likely(sched_info_on()))
3769 memset(&p->sched_info, 0, sizeof(p->sched_info));
3770 #endif
3771 #if defined(CONFIG_SMP)
3772 p->on_cpu = 0;
3773 #endif
3774 init_task_preempt_count(p);
3775 #ifdef CONFIG_SMP
3776 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3777 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3778 #endif
3779 return 0;
3782 void sched_post_fork(struct task_struct *p)
3784 uclamp_post_fork(p);
3787 unsigned long to_ratio(u64 period, u64 runtime)
3789 if (runtime == RUNTIME_INF)
3790 return BW_UNIT;
3793 * Doing this here saves a lot of checks in all
3794 * the calling paths, and returning zero seems
3795 * safe for them anyway.
3797 if (period == 0)
3798 return 0;
3800 return div64_u64(runtime << BW_SHIFT, period);
3804 * wake_up_new_task - wake up a newly created task for the first time.
3806 * This function will do some initial scheduler statistics housekeeping
3807 * that must be done for every newly created context, then puts the task
3808 * on the runqueue and wakes it.
3810 void wake_up_new_task(struct task_struct *p)
3812 struct rq_flags rf;
3813 struct rq *rq;
3815 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3816 p->state = TASK_RUNNING;
3817 #ifdef CONFIG_SMP
3819 * Fork balancing, do it here and not earlier because:
3820 * - cpus_ptr can change in the fork path
3821 * - any previously selected CPU might disappear through hotplug
3823 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3824 * as we're not fully set-up yet.
3826 p->recent_used_cpu = task_cpu(p);
3827 rseq_migrate(p);
3828 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3829 #endif
3830 rq = __task_rq_lock(p, &rf);
3831 update_rq_clock(rq);
3832 post_init_entity_util_avg(p);
3834 activate_task(rq, p, ENQUEUE_NOCLOCK);
3835 trace_sched_wakeup_new(p);
3836 check_preempt_curr(rq, p, WF_FORK);
3837 #ifdef CONFIG_SMP
3838 if (p->sched_class->task_woken) {
3840 * Nothing relies on rq->lock after this, so it's fine to
3841 * drop it.
3843 rq_unpin_lock(rq, &rf);
3844 p->sched_class->task_woken(rq, p);
3845 rq_repin_lock(rq, &rf);
3847 #endif
3848 task_rq_unlock(rq, p, &rf);
3851 #ifdef CONFIG_PREEMPT_NOTIFIERS
3853 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3855 void preempt_notifier_inc(void)
3857 static_branch_inc(&preempt_notifier_key);
3859 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3861 void preempt_notifier_dec(void)
3863 static_branch_dec(&preempt_notifier_key);
3865 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3868 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3869 * @notifier: notifier struct to register
3871 void preempt_notifier_register(struct preempt_notifier *notifier)
3873 if (!static_branch_unlikely(&preempt_notifier_key))
3874 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3876 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3878 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3881 * preempt_notifier_unregister - no longer interested in preemption notifications
3882 * @notifier: notifier struct to unregister
3884 * This is *not* safe to call from within a preemption notifier.
3886 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3888 hlist_del(&notifier->link);
3890 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3892 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3894 struct preempt_notifier *notifier;
3896 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3897 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3900 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3902 if (static_branch_unlikely(&preempt_notifier_key))
3903 __fire_sched_in_preempt_notifiers(curr);
3906 static void
3907 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3908 struct task_struct *next)
3910 struct preempt_notifier *notifier;
3912 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3913 notifier->ops->sched_out(notifier, next);
3916 static __always_inline void
3917 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3918 struct task_struct *next)
3920 if (static_branch_unlikely(&preempt_notifier_key))
3921 __fire_sched_out_preempt_notifiers(curr, next);
3924 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3926 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3930 static inline void
3931 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3932 struct task_struct *next)
3936 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3938 static inline void prepare_task(struct task_struct *next)
3940 #ifdef CONFIG_SMP
3942 * Claim the task as running, we do this before switching to it
3943 * such that any running task will have this set.
3945 * See the ttwu() WF_ON_CPU case and its ordering comment.
3947 WRITE_ONCE(next->on_cpu, 1);
3948 #endif
3951 static inline void finish_task(struct task_struct *prev)
3953 #ifdef CONFIG_SMP
3955 * This must be the very last reference to @prev from this CPU. After
3956 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3957 * must ensure this doesn't happen until the switch is completely
3958 * finished.
3960 * In particular, the load of prev->state in finish_task_switch() must
3961 * happen before this.
3963 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3965 smp_store_release(&prev->on_cpu, 0);
3966 #endif
3969 #ifdef CONFIG_SMP
3971 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3973 void (*func)(struct rq *rq);
3974 struct callback_head *next;
3976 lockdep_assert_held(&rq->lock);
3978 while (head) {
3979 func = (void (*)(struct rq *))head->func;
3980 next = head->next;
3981 head->next = NULL;
3982 head = next;
3984 func(rq);
3988 static void balance_push(struct rq *rq);
3990 struct callback_head balance_push_callback = {
3991 .next = NULL,
3992 .func = (void (*)(struct callback_head *))balance_push,
3995 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
3997 struct callback_head *head = rq->balance_callback;
3999 lockdep_assert_held(&rq->lock);
4000 if (head)
4001 rq->balance_callback = NULL;
4003 return head;
4006 static void __balance_callbacks(struct rq *rq)
4008 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4011 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4013 unsigned long flags;
4015 if (unlikely(head)) {
4016 raw_spin_lock_irqsave(&rq->lock, flags);
4017 do_balance_callbacks(rq, head);
4018 raw_spin_unlock_irqrestore(&rq->lock, flags);
4022 #else
4024 static inline void __balance_callbacks(struct rq *rq)
4028 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4030 return NULL;
4033 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4037 #endif
4039 static inline void
4040 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4043 * Since the runqueue lock will be released by the next
4044 * task (which is an invalid locking op but in the case
4045 * of the scheduler it's an obvious special-case), so we
4046 * do an early lockdep release here:
4048 rq_unpin_lock(rq, rf);
4049 spin_release(&rq->lock.dep_map, _THIS_IP_);
4050 #ifdef CONFIG_DEBUG_SPINLOCK
4051 /* this is a valid case when another task releases the spinlock */
4052 rq->lock.owner = next;
4053 #endif
4056 static inline void finish_lock_switch(struct rq *rq)
4059 * If we are tracking spinlock dependencies then we have to
4060 * fix up the runqueue lock - which gets 'carried over' from
4061 * prev into current:
4063 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4064 __balance_callbacks(rq);
4065 raw_spin_unlock_irq(&rq->lock);
4069 * NOP if the arch has not defined these:
4072 #ifndef prepare_arch_switch
4073 # define prepare_arch_switch(next) do { } while (0)
4074 #endif
4076 #ifndef finish_arch_post_lock_switch
4077 # define finish_arch_post_lock_switch() do { } while (0)
4078 #endif
4080 static inline void kmap_local_sched_out(void)
4082 #ifdef CONFIG_KMAP_LOCAL
4083 if (unlikely(current->kmap_ctrl.idx))
4084 __kmap_local_sched_out();
4085 #endif
4088 static inline void kmap_local_sched_in(void)
4090 #ifdef CONFIG_KMAP_LOCAL
4091 if (unlikely(current->kmap_ctrl.idx))
4092 __kmap_local_sched_in();
4093 #endif
4097 * prepare_task_switch - prepare to switch tasks
4098 * @rq: the runqueue preparing to switch
4099 * @prev: the current task that is being switched out
4100 * @next: the task we are going to switch to.
4102 * This is called with the rq lock held and interrupts off. It must
4103 * be paired with a subsequent finish_task_switch after the context
4104 * switch.
4106 * prepare_task_switch sets up locking and calls architecture specific
4107 * hooks.
4109 static inline void
4110 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4111 struct task_struct *next)
4113 kcov_prepare_switch(prev);
4114 sched_info_switch(rq, prev, next);
4115 perf_event_task_sched_out(prev, next);
4116 rseq_preempt(prev);
4117 fire_sched_out_preempt_notifiers(prev, next);
4118 kmap_local_sched_out();
4119 prepare_task(next);
4120 prepare_arch_switch(next);
4124 * finish_task_switch - clean up after a task-switch
4125 * @prev: the thread we just switched away from.
4127 * finish_task_switch must be called after the context switch, paired
4128 * with a prepare_task_switch call before the context switch.
4129 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4130 * and do any other architecture-specific cleanup actions.
4132 * Note that we may have delayed dropping an mm in context_switch(). If
4133 * so, we finish that here outside of the runqueue lock. (Doing it
4134 * with the lock held can cause deadlocks; see schedule() for
4135 * details.)
4137 * The context switch have flipped the stack from under us and restored the
4138 * local variables which were saved when this task called schedule() in the
4139 * past. prev == current is still correct but we need to recalculate this_rq
4140 * because prev may have moved to another CPU.
4142 static struct rq *finish_task_switch(struct task_struct *prev)
4143 __releases(rq->lock)
4145 struct rq *rq = this_rq();
4146 struct mm_struct *mm = rq->prev_mm;
4147 long prev_state;
4150 * The previous task will have left us with a preempt_count of 2
4151 * because it left us after:
4153 * schedule()
4154 * preempt_disable(); // 1
4155 * __schedule()
4156 * raw_spin_lock_irq(&rq->lock) // 2
4158 * Also, see FORK_PREEMPT_COUNT.
4160 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4161 "corrupted preempt_count: %s/%d/0x%x\n",
4162 current->comm, current->pid, preempt_count()))
4163 preempt_count_set(FORK_PREEMPT_COUNT);
4165 rq->prev_mm = NULL;
4168 * A task struct has one reference for the use as "current".
4169 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4170 * schedule one last time. The schedule call will never return, and
4171 * the scheduled task must drop that reference.
4173 * We must observe prev->state before clearing prev->on_cpu (in
4174 * finish_task), otherwise a concurrent wakeup can get prev
4175 * running on another CPU and we could rave with its RUNNING -> DEAD
4176 * transition, resulting in a double drop.
4178 prev_state = prev->state;
4179 vtime_task_switch(prev);
4180 perf_event_task_sched_in(prev, current);
4181 finish_task(prev);
4182 finish_lock_switch(rq);
4183 finish_arch_post_lock_switch();
4184 kcov_finish_switch(current);
4186 * kmap_local_sched_out() is invoked with rq::lock held and
4187 * interrupts disabled. There is no requirement for that, but the
4188 * sched out code does not have an interrupt enabled section.
4189 * Restoring the maps on sched in does not require interrupts being
4190 * disabled either.
4192 kmap_local_sched_in();
4194 fire_sched_in_preempt_notifiers(current);
4196 * When switching through a kernel thread, the loop in
4197 * membarrier_{private,global}_expedited() may have observed that
4198 * kernel thread and not issued an IPI. It is therefore possible to
4199 * schedule between user->kernel->user threads without passing though
4200 * switch_mm(). Membarrier requires a barrier after storing to
4201 * rq->curr, before returning to userspace, so provide them here:
4203 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4204 * provided by mmdrop(),
4205 * - a sync_core for SYNC_CORE.
4207 if (mm) {
4208 membarrier_mm_sync_core_before_usermode(mm);
4209 mmdrop(mm);
4211 if (unlikely(prev_state == TASK_DEAD)) {
4212 if (prev->sched_class->task_dead)
4213 prev->sched_class->task_dead(prev);
4216 * Remove function-return probe instances associated with this
4217 * task and put them back on the free list.
4219 kprobe_flush_task(prev);
4221 /* Task is done with its stack. */
4222 put_task_stack(prev);
4224 put_task_struct_rcu_user(prev);
4227 tick_nohz_task_switch();
4228 return rq;
4232 * schedule_tail - first thing a freshly forked thread must call.
4233 * @prev: the thread we just switched away from.
4235 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4236 __releases(rq->lock)
4238 struct rq *rq;
4241 * New tasks start with FORK_PREEMPT_COUNT, see there and
4242 * finish_task_switch() for details.
4244 * finish_task_switch() will drop rq->lock() and lower preempt_count
4245 * and the preempt_enable() will end up enabling preemption (on
4246 * PREEMPT_COUNT kernels).
4249 rq = finish_task_switch(prev);
4250 preempt_enable();
4252 if (current->set_child_tid)
4253 put_user(task_pid_vnr(current), current->set_child_tid);
4255 calculate_sigpending();
4259 * context_switch - switch to the new MM and the new thread's register state.
4261 static __always_inline struct rq *
4262 context_switch(struct rq *rq, struct task_struct *prev,
4263 struct task_struct *next, struct rq_flags *rf)
4265 prepare_task_switch(rq, prev, next);
4268 * For paravirt, this is coupled with an exit in switch_to to
4269 * combine the page table reload and the switch backend into
4270 * one hypercall.
4272 arch_start_context_switch(prev);
4275 * kernel -> kernel lazy + transfer active
4276 * user -> kernel lazy + mmgrab() active
4278 * kernel -> user switch + mmdrop() active
4279 * user -> user switch
4281 if (!next->mm) { // to kernel
4282 enter_lazy_tlb(prev->active_mm, next);
4284 next->active_mm = prev->active_mm;
4285 if (prev->mm) // from user
4286 mmgrab(prev->active_mm);
4287 else
4288 prev->active_mm = NULL;
4289 } else { // to user
4290 membarrier_switch_mm(rq, prev->active_mm, next->mm);
4292 * sys_membarrier() requires an smp_mb() between setting
4293 * rq->curr / membarrier_switch_mm() and returning to userspace.
4295 * The below provides this either through switch_mm(), or in
4296 * case 'prev->active_mm == next->mm' through
4297 * finish_task_switch()'s mmdrop().
4299 switch_mm_irqs_off(prev->active_mm, next->mm, next);
4301 if (!prev->mm) { // from kernel
4302 /* will mmdrop() in finish_task_switch(). */
4303 rq->prev_mm = prev->active_mm;
4304 prev->active_mm = NULL;
4308 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4310 prepare_lock_switch(rq, next, rf);
4312 /* Here we just switch the register state and the stack. */
4313 switch_to(prev, next, prev);
4314 barrier();
4316 return finish_task_switch(prev);
4320 * nr_running and nr_context_switches:
4322 * externally visible scheduler statistics: current number of runnable
4323 * threads, total number of context switches performed since bootup.
4325 unsigned long nr_running(void)
4327 unsigned long i, sum = 0;
4329 for_each_online_cpu(i)
4330 sum += cpu_rq(i)->nr_running;
4332 return sum;
4336 * Check if only the current task is running on the CPU.
4338 * Caution: this function does not check that the caller has disabled
4339 * preemption, thus the result might have a time-of-check-to-time-of-use
4340 * race. The caller is responsible to use it correctly, for example:
4342 * - from a non-preemptible section (of course)
4344 * - from a thread that is bound to a single CPU
4346 * - in a loop with very short iterations (e.g. a polling loop)
4348 bool single_task_running(void)
4350 return raw_rq()->nr_running == 1;
4352 EXPORT_SYMBOL(single_task_running);
4354 unsigned long long nr_context_switches(void)
4356 int i;
4357 unsigned long long sum = 0;
4359 for_each_possible_cpu(i)
4360 sum += cpu_rq(i)->nr_switches;
4362 return sum;
4366 * Consumers of these two interfaces, like for example the cpuidle menu
4367 * governor, are using nonsensical data. Preferring shallow idle state selection
4368 * for a CPU that has IO-wait which might not even end up running the task when
4369 * it does become runnable.
4372 unsigned long nr_iowait_cpu(int cpu)
4374 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4378 * IO-wait accounting, and how it's mostly bollocks (on SMP).
4380 * The idea behind IO-wait account is to account the idle time that we could
4381 * have spend running if it were not for IO. That is, if we were to improve the
4382 * storage performance, we'd have a proportional reduction in IO-wait time.
4384 * This all works nicely on UP, where, when a task blocks on IO, we account
4385 * idle time as IO-wait, because if the storage were faster, it could've been
4386 * running and we'd not be idle.
4388 * This has been extended to SMP, by doing the same for each CPU. This however
4389 * is broken.
4391 * Imagine for instance the case where two tasks block on one CPU, only the one
4392 * CPU will have IO-wait accounted, while the other has regular idle. Even
4393 * though, if the storage were faster, both could've ran at the same time,
4394 * utilising both CPUs.
4396 * This means, that when looking globally, the current IO-wait accounting on
4397 * SMP is a lower bound, by reason of under accounting.
4399 * Worse, since the numbers are provided per CPU, they are sometimes
4400 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4401 * associated with any one particular CPU, it can wake to another CPU than it
4402 * blocked on. This means the per CPU IO-wait number is meaningless.
4404 * Task CPU affinities can make all that even more 'interesting'.
4407 unsigned long nr_iowait(void)
4409 unsigned long i, sum = 0;
4411 for_each_possible_cpu(i)
4412 sum += nr_iowait_cpu(i);
4414 return sum;
4417 #ifdef CONFIG_SMP
4420 * sched_exec - execve() is a valuable balancing opportunity, because at
4421 * this point the task has the smallest effective memory and cache footprint.
4423 void sched_exec(void)
4425 struct task_struct *p = current;
4426 unsigned long flags;
4427 int dest_cpu;
4429 raw_spin_lock_irqsave(&p->pi_lock, flags);
4430 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4431 if (dest_cpu == smp_processor_id())
4432 goto unlock;
4434 if (likely(cpu_active(dest_cpu))) {
4435 struct migration_arg arg = { p, dest_cpu };
4437 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4438 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4439 return;
4441 unlock:
4442 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4445 #endif
4447 DEFINE_PER_CPU(struct kernel_stat, kstat);
4448 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4450 EXPORT_PER_CPU_SYMBOL(kstat);
4451 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4454 * The function fair_sched_class.update_curr accesses the struct curr
4455 * and its field curr->exec_start; when called from task_sched_runtime(),
4456 * we observe a high rate of cache misses in practice.
4457 * Prefetching this data results in improved performance.
4459 static inline void prefetch_curr_exec_start(struct task_struct *p)
4461 #ifdef CONFIG_FAIR_GROUP_SCHED
4462 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4463 #else
4464 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4465 #endif
4466 prefetch(curr);
4467 prefetch(&curr->exec_start);
4471 * Return accounted runtime for the task.
4472 * In case the task is currently running, return the runtime plus current's
4473 * pending runtime that have not been accounted yet.
4475 unsigned long long task_sched_runtime(struct task_struct *p)
4477 struct rq_flags rf;
4478 struct rq *rq;
4479 u64 ns;
4481 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4483 * 64-bit doesn't need locks to atomically read a 64-bit value.
4484 * So we have a optimization chance when the task's delta_exec is 0.
4485 * Reading ->on_cpu is racy, but this is ok.
4487 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4488 * If we race with it entering CPU, unaccounted time is 0. This is
4489 * indistinguishable from the read occurring a few cycles earlier.
4490 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4491 * been accounted, so we're correct here as well.
4493 if (!p->on_cpu || !task_on_rq_queued(p))
4494 return p->se.sum_exec_runtime;
4495 #endif
4497 rq = task_rq_lock(p, &rf);
4499 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4500 * project cycles that may never be accounted to this
4501 * thread, breaking clock_gettime().
4503 if (task_current(rq, p) && task_on_rq_queued(p)) {
4504 prefetch_curr_exec_start(p);
4505 update_rq_clock(rq);
4506 p->sched_class->update_curr(rq);
4508 ns = p->se.sum_exec_runtime;
4509 task_rq_unlock(rq, p, &rf);
4511 return ns;
4515 * This function gets called by the timer code, with HZ frequency.
4516 * We call it with interrupts disabled.
4518 void scheduler_tick(void)
4520 int cpu = smp_processor_id();
4521 struct rq *rq = cpu_rq(cpu);
4522 struct task_struct *curr = rq->curr;
4523 struct rq_flags rf;
4524 unsigned long thermal_pressure;
4526 arch_scale_freq_tick();
4527 sched_clock_tick();
4529 rq_lock(rq, &rf);
4531 update_rq_clock(rq);
4532 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4533 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4534 curr->sched_class->task_tick(rq, curr, 0);
4535 calc_global_load_tick(rq);
4536 psi_task_tick(rq);
4538 rq_unlock(rq, &rf);
4540 perf_event_task_tick();
4542 #ifdef CONFIG_SMP
4543 rq->idle_balance = idle_cpu(cpu);
4544 trigger_load_balance(rq);
4545 #endif
4548 #ifdef CONFIG_NO_HZ_FULL
4550 struct tick_work {
4551 int cpu;
4552 atomic_t state;
4553 struct delayed_work work;
4555 /* Values for ->state, see diagram below. */
4556 #define TICK_SCHED_REMOTE_OFFLINE 0
4557 #define TICK_SCHED_REMOTE_OFFLINING 1
4558 #define TICK_SCHED_REMOTE_RUNNING 2
4561 * State diagram for ->state:
4564 * TICK_SCHED_REMOTE_OFFLINE
4565 * | ^
4566 * | |
4567 * | | sched_tick_remote()
4568 * | |
4569 * | |
4570 * +--TICK_SCHED_REMOTE_OFFLINING
4571 * | ^
4572 * | |
4573 * sched_tick_start() | | sched_tick_stop()
4574 * | |
4575 * V |
4576 * TICK_SCHED_REMOTE_RUNNING
4579 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4580 * and sched_tick_start() are happy to leave the state in RUNNING.
4583 static struct tick_work __percpu *tick_work_cpu;
4585 static void sched_tick_remote(struct work_struct *work)
4587 struct delayed_work *dwork = to_delayed_work(work);
4588 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4589 int cpu = twork->cpu;
4590 struct rq *rq = cpu_rq(cpu);
4591 struct task_struct *curr;
4592 struct rq_flags rf;
4593 u64 delta;
4594 int os;
4597 * Handle the tick only if it appears the remote CPU is running in full
4598 * dynticks mode. The check is racy by nature, but missing a tick or
4599 * having one too much is no big deal because the scheduler tick updates
4600 * statistics and checks timeslices in a time-independent way, regardless
4601 * of when exactly it is running.
4603 if (!tick_nohz_tick_stopped_cpu(cpu))
4604 goto out_requeue;
4606 rq_lock_irq(rq, &rf);
4607 curr = rq->curr;
4608 if (cpu_is_offline(cpu))
4609 goto out_unlock;
4611 update_rq_clock(rq);
4613 if (!is_idle_task(curr)) {
4615 * Make sure the next tick runs within a reasonable
4616 * amount of time.
4618 delta = rq_clock_task(rq) - curr->se.exec_start;
4619 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4621 curr->sched_class->task_tick(rq, curr, 0);
4623 calc_load_nohz_remote(rq);
4624 out_unlock:
4625 rq_unlock_irq(rq, &rf);
4626 out_requeue:
4629 * Run the remote tick once per second (1Hz). This arbitrary
4630 * frequency is large enough to avoid overload but short enough
4631 * to keep scheduler internal stats reasonably up to date. But
4632 * first update state to reflect hotplug activity if required.
4634 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4635 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4636 if (os == TICK_SCHED_REMOTE_RUNNING)
4637 queue_delayed_work(system_unbound_wq, dwork, HZ);
4640 static void sched_tick_start(int cpu)
4642 int os;
4643 struct tick_work *twork;
4645 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4646 return;
4648 WARN_ON_ONCE(!tick_work_cpu);
4650 twork = per_cpu_ptr(tick_work_cpu, cpu);
4651 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4652 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4653 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4654 twork->cpu = cpu;
4655 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4656 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4660 #ifdef CONFIG_HOTPLUG_CPU
4661 static void sched_tick_stop(int cpu)
4663 struct tick_work *twork;
4664 int os;
4666 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4667 return;
4669 WARN_ON_ONCE(!tick_work_cpu);
4671 twork = per_cpu_ptr(tick_work_cpu, cpu);
4672 /* There cannot be competing actions, but don't rely on stop-machine. */
4673 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4674 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4675 /* Don't cancel, as this would mess up the state machine. */
4677 #endif /* CONFIG_HOTPLUG_CPU */
4679 int __init sched_tick_offload_init(void)
4681 tick_work_cpu = alloc_percpu(struct tick_work);
4682 BUG_ON(!tick_work_cpu);
4683 return 0;
4686 #else /* !CONFIG_NO_HZ_FULL */
4687 static inline void sched_tick_start(int cpu) { }
4688 static inline void sched_tick_stop(int cpu) { }
4689 #endif
4691 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4692 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4694 * If the value passed in is equal to the current preempt count
4695 * then we just disabled preemption. Start timing the latency.
4697 static inline void preempt_latency_start(int val)
4699 if (preempt_count() == val) {
4700 unsigned long ip = get_lock_parent_ip();
4701 #ifdef CONFIG_DEBUG_PREEMPT
4702 current->preempt_disable_ip = ip;
4703 #endif
4704 trace_preempt_off(CALLER_ADDR0, ip);
4708 void preempt_count_add(int val)
4710 #ifdef CONFIG_DEBUG_PREEMPT
4712 * Underflow?
4714 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4715 return;
4716 #endif
4717 __preempt_count_add(val);
4718 #ifdef CONFIG_DEBUG_PREEMPT
4720 * Spinlock count overflowing soon?
4722 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4723 PREEMPT_MASK - 10);
4724 #endif
4725 preempt_latency_start(val);
4727 EXPORT_SYMBOL(preempt_count_add);
4728 NOKPROBE_SYMBOL(preempt_count_add);
4731 * If the value passed in equals to the current preempt count
4732 * then we just enabled preemption. Stop timing the latency.
4734 static inline void preempt_latency_stop(int val)
4736 if (preempt_count() == val)
4737 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4740 void preempt_count_sub(int val)
4742 #ifdef CONFIG_DEBUG_PREEMPT
4744 * Underflow?
4746 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4747 return;
4749 * Is the spinlock portion underflowing?
4751 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4752 !(preempt_count() & PREEMPT_MASK)))
4753 return;
4754 #endif
4756 preempt_latency_stop(val);
4757 __preempt_count_sub(val);
4759 EXPORT_SYMBOL(preempt_count_sub);
4760 NOKPROBE_SYMBOL(preempt_count_sub);
4762 #else
4763 static inline void preempt_latency_start(int val) { }
4764 static inline void preempt_latency_stop(int val) { }
4765 #endif
4767 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4769 #ifdef CONFIG_DEBUG_PREEMPT
4770 return p->preempt_disable_ip;
4771 #else
4772 return 0;
4773 #endif
4777 * Print scheduling while atomic bug:
4779 static noinline void __schedule_bug(struct task_struct *prev)
4781 /* Save this before calling printk(), since that will clobber it */
4782 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4784 if (oops_in_progress)
4785 return;
4787 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4788 prev->comm, prev->pid, preempt_count());
4790 debug_show_held_locks(prev);
4791 print_modules();
4792 if (irqs_disabled())
4793 print_irqtrace_events(prev);
4794 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4795 && in_atomic_preempt_off()) {
4796 pr_err("Preemption disabled at:");
4797 print_ip_sym(KERN_ERR, preempt_disable_ip);
4799 if (panic_on_warn)
4800 panic("scheduling while atomic\n");
4802 dump_stack();
4803 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4807 * Various schedule()-time debugging checks and statistics:
4809 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4811 #ifdef CONFIG_SCHED_STACK_END_CHECK
4812 if (task_stack_end_corrupted(prev))
4813 panic("corrupted stack end detected inside scheduler\n");
4815 if (task_scs_end_corrupted(prev))
4816 panic("corrupted shadow stack detected inside scheduler\n");
4817 #endif
4819 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4820 if (!preempt && prev->state && prev->non_block_count) {
4821 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4822 prev->comm, prev->pid, prev->non_block_count);
4823 dump_stack();
4824 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4826 #endif
4828 if (unlikely(in_atomic_preempt_off())) {
4829 __schedule_bug(prev);
4830 preempt_count_set(PREEMPT_DISABLED);
4832 rcu_sleep_check();
4833 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4835 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4837 schedstat_inc(this_rq()->sched_count);
4840 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4841 struct rq_flags *rf)
4843 #ifdef CONFIG_SMP
4844 const struct sched_class *class;
4846 * We must do the balancing pass before put_prev_task(), such
4847 * that when we release the rq->lock the task is in the same
4848 * state as before we took rq->lock.
4850 * We can terminate the balance pass as soon as we know there is
4851 * a runnable task of @class priority or higher.
4853 for_class_range(class, prev->sched_class, &idle_sched_class) {
4854 if (class->balance(rq, prev, rf))
4855 break;
4857 #endif
4859 put_prev_task(rq, prev);
4863 * Pick up the highest-prio task:
4865 static inline struct task_struct *
4866 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4868 const struct sched_class *class;
4869 struct task_struct *p;
4872 * Optimization: we know that if all tasks are in the fair class we can
4873 * call that function directly, but only if the @prev task wasn't of a
4874 * higher scheduling class, because otherwise those lose the
4875 * opportunity to pull in more work from other CPUs.
4877 if (likely(prev->sched_class <= &fair_sched_class &&
4878 rq->nr_running == rq->cfs.h_nr_running)) {
4880 p = pick_next_task_fair(rq, prev, rf);
4881 if (unlikely(p == RETRY_TASK))
4882 goto restart;
4884 /* Assumes fair_sched_class->next == idle_sched_class */
4885 if (!p) {
4886 put_prev_task(rq, prev);
4887 p = pick_next_task_idle(rq);
4890 return p;
4893 restart:
4894 put_prev_task_balance(rq, prev, rf);
4896 for_each_class(class) {
4897 p = class->pick_next_task(rq);
4898 if (p)
4899 return p;
4902 /* The idle class should always have a runnable task: */
4903 BUG();
4907 * __schedule() is the main scheduler function.
4909 * The main means of driving the scheduler and thus entering this function are:
4911 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4913 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4914 * paths. For example, see arch/x86/entry_64.S.
4916 * To drive preemption between tasks, the scheduler sets the flag in timer
4917 * interrupt handler scheduler_tick().
4919 * 3. Wakeups don't really cause entry into schedule(). They add a
4920 * task to the run-queue and that's it.
4922 * Now, if the new task added to the run-queue preempts the current
4923 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4924 * called on the nearest possible occasion:
4926 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4928 * - in syscall or exception context, at the next outmost
4929 * preempt_enable(). (this might be as soon as the wake_up()'s
4930 * spin_unlock()!)
4932 * - in IRQ context, return from interrupt-handler to
4933 * preemptible context
4935 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4936 * then at the next:
4938 * - cond_resched() call
4939 * - explicit schedule() call
4940 * - return from syscall or exception to user-space
4941 * - return from interrupt-handler to user-space
4943 * WARNING: must be called with preemption disabled!
4945 static void __sched notrace __schedule(bool preempt)
4947 struct task_struct *prev, *next;
4948 unsigned long *switch_count;
4949 unsigned long prev_state;
4950 struct rq_flags rf;
4951 struct rq *rq;
4952 int cpu;
4954 cpu = smp_processor_id();
4955 rq = cpu_rq(cpu);
4956 prev = rq->curr;
4958 schedule_debug(prev, preempt);
4960 if (sched_feat(HRTICK))
4961 hrtick_clear(rq);
4963 local_irq_disable();
4964 rcu_note_context_switch(preempt);
4967 * Make sure that signal_pending_state()->signal_pending() below
4968 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4969 * done by the caller to avoid the race with signal_wake_up():
4971 * __set_current_state(@state) signal_wake_up()
4972 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4973 * wake_up_state(p, state)
4974 * LOCK rq->lock LOCK p->pi_state
4975 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4976 * if (signal_pending_state()) if (p->state & @state)
4978 * Also, the membarrier system call requires a full memory barrier
4979 * after coming from user-space, before storing to rq->curr.
4981 rq_lock(rq, &rf);
4982 smp_mb__after_spinlock();
4984 /* Promote REQ to ACT */
4985 rq->clock_update_flags <<= 1;
4986 update_rq_clock(rq);
4988 switch_count = &prev->nivcsw;
4991 * We must load prev->state once (task_struct::state is volatile), such
4992 * that:
4994 * - we form a control dependency vs deactivate_task() below.
4995 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
4997 prev_state = prev->state;
4998 if (!preempt && prev_state) {
4999 if (signal_pending_state(prev_state, prev)) {
5000 prev->state = TASK_RUNNING;
5001 } else {
5002 prev->sched_contributes_to_load =
5003 (prev_state & TASK_UNINTERRUPTIBLE) &&
5004 !(prev_state & TASK_NOLOAD) &&
5005 !(prev->flags & PF_FROZEN);
5007 if (prev->sched_contributes_to_load)
5008 rq->nr_uninterruptible++;
5011 * __schedule() ttwu()
5012 * prev_state = prev->state; if (p->on_rq && ...)
5013 * if (prev_state) goto out;
5014 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5015 * p->state = TASK_WAKING
5017 * Where __schedule() and ttwu() have matching control dependencies.
5019 * After this, schedule() must not care about p->state any more.
5021 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5023 if (prev->in_iowait) {
5024 atomic_inc(&rq->nr_iowait);
5025 delayacct_blkio_start();
5028 switch_count = &prev->nvcsw;
5031 next = pick_next_task(rq, prev, &rf);
5032 clear_tsk_need_resched(prev);
5033 clear_preempt_need_resched();
5035 if (likely(prev != next)) {
5036 rq->nr_switches++;
5038 * RCU users of rcu_dereference(rq->curr) may not see
5039 * changes to task_struct made by pick_next_task().
5041 RCU_INIT_POINTER(rq->curr, next);
5043 * The membarrier system call requires each architecture
5044 * to have a full memory barrier after updating
5045 * rq->curr, before returning to user-space.
5047 * Here are the schemes providing that barrier on the
5048 * various architectures:
5049 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5050 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5051 * - finish_lock_switch() for weakly-ordered
5052 * architectures where spin_unlock is a full barrier,
5053 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5054 * is a RELEASE barrier),
5056 ++*switch_count;
5058 migrate_disable_switch(rq, prev);
5059 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5061 trace_sched_switch(preempt, prev, next);
5063 /* Also unlocks the rq: */
5064 rq = context_switch(rq, prev, next, &rf);
5065 } else {
5066 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5068 rq_unpin_lock(rq, &rf);
5069 __balance_callbacks(rq);
5070 raw_spin_unlock_irq(&rq->lock);
5074 void __noreturn do_task_dead(void)
5076 /* Causes final put_task_struct in finish_task_switch(): */
5077 set_special_state(TASK_DEAD);
5079 /* Tell freezer to ignore us: */
5080 current->flags |= PF_NOFREEZE;
5082 __schedule(false);
5083 BUG();
5085 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5086 for (;;)
5087 cpu_relax();
5090 static inline void sched_submit_work(struct task_struct *tsk)
5092 unsigned int task_flags;
5094 if (!tsk->state)
5095 return;
5097 task_flags = tsk->flags;
5099 * If a worker went to sleep, notify and ask workqueue whether
5100 * it wants to wake up a task to maintain concurrency.
5101 * As this function is called inside the schedule() context,
5102 * we disable preemption to avoid it calling schedule() again
5103 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5104 * requires it.
5106 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5107 preempt_disable();
5108 if (task_flags & PF_WQ_WORKER)
5109 wq_worker_sleeping(tsk);
5110 else
5111 io_wq_worker_sleeping(tsk);
5112 preempt_enable_no_resched();
5115 if (tsk_is_pi_blocked(tsk))
5116 return;
5119 * If we are going to sleep and we have plugged IO queued,
5120 * make sure to submit it to avoid deadlocks.
5122 if (blk_needs_flush_plug(tsk))
5123 blk_schedule_flush_plug(tsk);
5126 static void sched_update_worker(struct task_struct *tsk)
5128 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5129 if (tsk->flags & PF_WQ_WORKER)
5130 wq_worker_running(tsk);
5131 else
5132 io_wq_worker_running(tsk);
5136 asmlinkage __visible void __sched schedule(void)
5138 struct task_struct *tsk = current;
5140 sched_submit_work(tsk);
5141 do {
5142 preempt_disable();
5143 __schedule(false);
5144 sched_preempt_enable_no_resched();
5145 } while (need_resched());
5146 sched_update_worker(tsk);
5148 EXPORT_SYMBOL(schedule);
5151 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5152 * state (have scheduled out non-voluntarily) by making sure that all
5153 * tasks have either left the run queue or have gone into user space.
5154 * As idle tasks do not do either, they must not ever be preempted
5155 * (schedule out non-voluntarily).
5157 * schedule_idle() is similar to schedule_preempt_disable() except that it
5158 * never enables preemption because it does not call sched_submit_work().
5160 void __sched schedule_idle(void)
5163 * As this skips calling sched_submit_work(), which the idle task does
5164 * regardless because that function is a nop when the task is in a
5165 * TASK_RUNNING state, make sure this isn't used someplace that the
5166 * current task can be in any other state. Note, idle is always in the
5167 * TASK_RUNNING state.
5169 WARN_ON_ONCE(current->state);
5170 do {
5171 __schedule(false);
5172 } while (need_resched());
5175 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5176 asmlinkage __visible void __sched schedule_user(void)
5179 * If we come here after a random call to set_need_resched(),
5180 * or we have been woken up remotely but the IPI has not yet arrived,
5181 * we haven't yet exited the RCU idle mode. Do it here manually until
5182 * we find a better solution.
5184 * NB: There are buggy callers of this function. Ideally we
5185 * should warn if prev_state != CONTEXT_USER, but that will trigger
5186 * too frequently to make sense yet.
5188 enum ctx_state prev_state = exception_enter();
5189 schedule();
5190 exception_exit(prev_state);
5192 #endif
5195 * schedule_preempt_disabled - called with preemption disabled
5197 * Returns with preemption disabled. Note: preempt_count must be 1
5199 void __sched schedule_preempt_disabled(void)
5201 sched_preempt_enable_no_resched();
5202 schedule();
5203 preempt_disable();
5206 static void __sched notrace preempt_schedule_common(void)
5208 do {
5210 * Because the function tracer can trace preempt_count_sub()
5211 * and it also uses preempt_enable/disable_notrace(), if
5212 * NEED_RESCHED is set, the preempt_enable_notrace() called
5213 * by the function tracer will call this function again and
5214 * cause infinite recursion.
5216 * Preemption must be disabled here before the function
5217 * tracer can trace. Break up preempt_disable() into two
5218 * calls. One to disable preemption without fear of being
5219 * traced. The other to still record the preemption latency,
5220 * which can also be traced by the function tracer.
5222 preempt_disable_notrace();
5223 preempt_latency_start(1);
5224 __schedule(true);
5225 preempt_latency_stop(1);
5226 preempt_enable_no_resched_notrace();
5229 * Check again in case we missed a preemption opportunity
5230 * between schedule and now.
5232 } while (need_resched());
5235 #ifdef CONFIG_PREEMPTION
5237 * This is the entry point to schedule() from in-kernel preemption
5238 * off of preempt_enable.
5240 asmlinkage __visible void __sched notrace preempt_schedule(void)
5243 * If there is a non-zero preempt_count or interrupts are disabled,
5244 * we do not want to preempt the current task. Just return..
5246 if (likely(!preemptible()))
5247 return;
5249 preempt_schedule_common();
5251 NOKPROBE_SYMBOL(preempt_schedule);
5252 EXPORT_SYMBOL(preempt_schedule);
5255 * preempt_schedule_notrace - preempt_schedule called by tracing
5257 * The tracing infrastructure uses preempt_enable_notrace to prevent
5258 * recursion and tracing preempt enabling caused by the tracing
5259 * infrastructure itself. But as tracing can happen in areas coming
5260 * from userspace or just about to enter userspace, a preempt enable
5261 * can occur before user_exit() is called. This will cause the scheduler
5262 * to be called when the system is still in usermode.
5264 * To prevent this, the preempt_enable_notrace will use this function
5265 * instead of preempt_schedule() to exit user context if needed before
5266 * calling the scheduler.
5268 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5270 enum ctx_state prev_ctx;
5272 if (likely(!preemptible()))
5273 return;
5275 do {
5277 * Because the function tracer can trace preempt_count_sub()
5278 * and it also uses preempt_enable/disable_notrace(), if
5279 * NEED_RESCHED is set, the preempt_enable_notrace() called
5280 * by the function tracer will call this function again and
5281 * cause infinite recursion.
5283 * Preemption must be disabled here before the function
5284 * tracer can trace. Break up preempt_disable() into two
5285 * calls. One to disable preemption without fear of being
5286 * traced. The other to still record the preemption latency,
5287 * which can also be traced by the function tracer.
5289 preempt_disable_notrace();
5290 preempt_latency_start(1);
5292 * Needs preempt disabled in case user_exit() is traced
5293 * and the tracer calls preempt_enable_notrace() causing
5294 * an infinite recursion.
5296 prev_ctx = exception_enter();
5297 __schedule(true);
5298 exception_exit(prev_ctx);
5300 preempt_latency_stop(1);
5301 preempt_enable_no_resched_notrace();
5302 } while (need_resched());
5304 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5306 #endif /* CONFIG_PREEMPTION */
5309 * This is the entry point to schedule() from kernel preemption
5310 * off of irq context.
5311 * Note, that this is called and return with irqs disabled. This will
5312 * protect us against recursive calling from irq.
5314 asmlinkage __visible void __sched preempt_schedule_irq(void)
5316 enum ctx_state prev_state;
5318 /* Catch callers which need to be fixed */
5319 BUG_ON(preempt_count() || !irqs_disabled());
5321 prev_state = exception_enter();
5323 do {
5324 preempt_disable();
5325 local_irq_enable();
5326 __schedule(true);
5327 local_irq_disable();
5328 sched_preempt_enable_no_resched();
5329 } while (need_resched());
5331 exception_exit(prev_state);
5334 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5335 void *key)
5337 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5338 return try_to_wake_up(curr->private, mode, wake_flags);
5340 EXPORT_SYMBOL(default_wake_function);
5342 #ifdef CONFIG_RT_MUTEXES
5344 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5346 if (pi_task)
5347 prio = min(prio, pi_task->prio);
5349 return prio;
5352 static inline int rt_effective_prio(struct task_struct *p, int prio)
5354 struct task_struct *pi_task = rt_mutex_get_top_task(p);
5356 return __rt_effective_prio(pi_task, prio);
5360 * rt_mutex_setprio - set the current priority of a task
5361 * @p: task to boost
5362 * @pi_task: donor task
5364 * This function changes the 'effective' priority of a task. It does
5365 * not touch ->normal_prio like __setscheduler().
5367 * Used by the rt_mutex code to implement priority inheritance
5368 * logic. Call site only calls if the priority of the task changed.
5370 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5372 int prio, oldprio, queued, running, queue_flag =
5373 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5374 const struct sched_class *prev_class;
5375 struct rq_flags rf;
5376 struct rq *rq;
5378 /* XXX used to be waiter->prio, not waiter->task->prio */
5379 prio = __rt_effective_prio(pi_task, p->normal_prio);
5382 * If nothing changed; bail early.
5384 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5385 return;
5387 rq = __task_rq_lock(p, &rf);
5388 update_rq_clock(rq);
5390 * Set under pi_lock && rq->lock, such that the value can be used under
5391 * either lock.
5393 * Note that there is loads of tricky to make this pointer cache work
5394 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5395 * ensure a task is de-boosted (pi_task is set to NULL) before the
5396 * task is allowed to run again (and can exit). This ensures the pointer
5397 * points to a blocked task -- which guarantees the task is present.
5399 p->pi_top_task = pi_task;
5402 * For FIFO/RR we only need to set prio, if that matches we're done.
5404 if (prio == p->prio && !dl_prio(prio))
5405 goto out_unlock;
5408 * Idle task boosting is a nono in general. There is one
5409 * exception, when PREEMPT_RT and NOHZ is active:
5411 * The idle task calls get_next_timer_interrupt() and holds
5412 * the timer wheel base->lock on the CPU and another CPU wants
5413 * to access the timer (probably to cancel it). We can safely
5414 * ignore the boosting request, as the idle CPU runs this code
5415 * with interrupts disabled and will complete the lock
5416 * protected section without being interrupted. So there is no
5417 * real need to boost.
5419 if (unlikely(p == rq->idle)) {
5420 WARN_ON(p != rq->curr);
5421 WARN_ON(p->pi_blocked_on);
5422 goto out_unlock;
5425 trace_sched_pi_setprio(p, pi_task);
5426 oldprio = p->prio;
5428 if (oldprio == prio)
5429 queue_flag &= ~DEQUEUE_MOVE;
5431 prev_class = p->sched_class;
5432 queued = task_on_rq_queued(p);
5433 running = task_current(rq, p);
5434 if (queued)
5435 dequeue_task(rq, p, queue_flag);
5436 if (running)
5437 put_prev_task(rq, p);
5440 * Boosting condition are:
5441 * 1. -rt task is running and holds mutex A
5442 * --> -dl task blocks on mutex A
5444 * 2. -dl task is running and holds mutex A
5445 * --> -dl task blocks on mutex A and could preempt the
5446 * running task
5448 if (dl_prio(prio)) {
5449 if (!dl_prio(p->normal_prio) ||
5450 (pi_task && dl_prio(pi_task->prio) &&
5451 dl_entity_preempt(&pi_task->dl, &p->dl))) {
5452 p->dl.pi_se = pi_task->dl.pi_se;
5453 queue_flag |= ENQUEUE_REPLENISH;
5454 } else {
5455 p->dl.pi_se = &p->dl;
5457 p->sched_class = &dl_sched_class;
5458 } else if (rt_prio(prio)) {
5459 if (dl_prio(oldprio))
5460 p->dl.pi_se = &p->dl;
5461 if (oldprio < prio)
5462 queue_flag |= ENQUEUE_HEAD;
5463 p->sched_class = &rt_sched_class;
5464 } else {
5465 if (dl_prio(oldprio))
5466 p->dl.pi_se = &p->dl;
5467 if (rt_prio(oldprio))
5468 p->rt.timeout = 0;
5469 p->sched_class = &fair_sched_class;
5472 p->prio = prio;
5474 if (queued)
5475 enqueue_task(rq, p, queue_flag);
5476 if (running)
5477 set_next_task(rq, p);
5479 check_class_changed(rq, p, prev_class, oldprio);
5480 out_unlock:
5481 /* Avoid rq from going away on us: */
5482 preempt_disable();
5484 rq_unpin_lock(rq, &rf);
5485 __balance_callbacks(rq);
5486 raw_spin_unlock(&rq->lock);
5488 preempt_enable();
5490 #else
5491 static inline int rt_effective_prio(struct task_struct *p, int prio)
5493 return prio;
5495 #endif
5497 void set_user_nice(struct task_struct *p, long nice)
5499 bool queued, running;
5500 int old_prio;
5501 struct rq_flags rf;
5502 struct rq *rq;
5504 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5505 return;
5507 * We have to be careful, if called from sys_setpriority(),
5508 * the task might be in the middle of scheduling on another CPU.
5510 rq = task_rq_lock(p, &rf);
5511 update_rq_clock(rq);
5514 * The RT priorities are set via sched_setscheduler(), but we still
5515 * allow the 'normal' nice value to be set - but as expected
5516 * it won't have any effect on scheduling until the task is
5517 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5519 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5520 p->static_prio = NICE_TO_PRIO(nice);
5521 goto out_unlock;
5523 queued = task_on_rq_queued(p);
5524 running = task_current(rq, p);
5525 if (queued)
5526 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5527 if (running)
5528 put_prev_task(rq, p);
5530 p->static_prio = NICE_TO_PRIO(nice);
5531 set_load_weight(p, true);
5532 old_prio = p->prio;
5533 p->prio = effective_prio(p);
5535 if (queued)
5536 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5537 if (running)
5538 set_next_task(rq, p);
5541 * If the task increased its priority or is running and
5542 * lowered its priority, then reschedule its CPU:
5544 p->sched_class->prio_changed(rq, p, old_prio);
5546 out_unlock:
5547 task_rq_unlock(rq, p, &rf);
5549 EXPORT_SYMBOL(set_user_nice);
5552 * can_nice - check if a task can reduce its nice value
5553 * @p: task
5554 * @nice: nice value
5556 int can_nice(const struct task_struct *p, const int nice)
5558 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5559 int nice_rlim = nice_to_rlimit(nice);
5561 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5562 capable(CAP_SYS_NICE));
5565 #ifdef __ARCH_WANT_SYS_NICE
5568 * sys_nice - change the priority of the current process.
5569 * @increment: priority increment
5571 * sys_setpriority is a more generic, but much slower function that
5572 * does similar things.
5574 SYSCALL_DEFINE1(nice, int, increment)
5576 long nice, retval;
5579 * Setpriority might change our priority at the same moment.
5580 * We don't have to worry. Conceptually one call occurs first
5581 * and we have a single winner.
5583 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5584 nice = task_nice(current) + increment;
5586 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5587 if (increment < 0 && !can_nice(current, nice))
5588 return -EPERM;
5590 retval = security_task_setnice(current, nice);
5591 if (retval)
5592 return retval;
5594 set_user_nice(current, nice);
5595 return 0;
5598 #endif
5601 * task_prio - return the priority value of a given task.
5602 * @p: the task in question.
5604 * Return: The priority value as seen by users in /proc.
5605 * RT tasks are offset by -200. Normal tasks are centered
5606 * around 0, value goes from -16 to +15.
5608 int task_prio(const struct task_struct *p)
5610 return p->prio - MAX_RT_PRIO;
5614 * idle_cpu - is a given CPU idle currently?
5615 * @cpu: the processor in question.
5617 * Return: 1 if the CPU is currently idle. 0 otherwise.
5619 int idle_cpu(int cpu)
5621 struct rq *rq = cpu_rq(cpu);
5623 if (rq->curr != rq->idle)
5624 return 0;
5626 if (rq->nr_running)
5627 return 0;
5629 #ifdef CONFIG_SMP
5630 if (rq->ttwu_pending)
5631 return 0;
5632 #endif
5634 return 1;
5638 * available_idle_cpu - is a given CPU idle for enqueuing work.
5639 * @cpu: the CPU in question.
5641 * Return: 1 if the CPU is currently idle. 0 otherwise.
5643 int available_idle_cpu(int cpu)
5645 if (!idle_cpu(cpu))
5646 return 0;
5648 if (vcpu_is_preempted(cpu))
5649 return 0;
5651 return 1;
5655 * idle_task - return the idle task for a given CPU.
5656 * @cpu: the processor in question.
5658 * Return: The idle task for the CPU @cpu.
5660 struct task_struct *idle_task(int cpu)
5662 return cpu_rq(cpu)->idle;
5666 * find_process_by_pid - find a process with a matching PID value.
5667 * @pid: the pid in question.
5669 * The task of @pid, if found. %NULL otherwise.
5671 static struct task_struct *find_process_by_pid(pid_t pid)
5673 return pid ? find_task_by_vpid(pid) : current;
5677 * sched_setparam() passes in -1 for its policy, to let the functions
5678 * it calls know not to change it.
5680 #define SETPARAM_POLICY -1
5682 static void __setscheduler_params(struct task_struct *p,
5683 const struct sched_attr *attr)
5685 int policy = attr->sched_policy;
5687 if (policy == SETPARAM_POLICY)
5688 policy = p->policy;
5690 p->policy = policy;
5692 if (dl_policy(policy))
5693 __setparam_dl(p, attr);
5694 else if (fair_policy(policy))
5695 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5698 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5699 * !rt_policy. Always setting this ensures that things like
5700 * getparam()/getattr() don't report silly values for !rt tasks.
5702 p->rt_priority = attr->sched_priority;
5703 p->normal_prio = normal_prio(p);
5704 set_load_weight(p, true);
5707 /* Actually do priority change: must hold pi & rq lock. */
5708 static void __setscheduler(struct rq *rq, struct task_struct *p,
5709 const struct sched_attr *attr, bool keep_boost)
5712 * If params can't change scheduling class changes aren't allowed
5713 * either.
5715 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5716 return;
5718 __setscheduler_params(p, attr);
5721 * Keep a potential priority boosting if called from
5722 * sched_setscheduler().
5724 p->prio = normal_prio(p);
5725 if (keep_boost)
5726 p->prio = rt_effective_prio(p, p->prio);
5728 if (dl_prio(p->prio))
5729 p->sched_class = &dl_sched_class;
5730 else if (rt_prio(p->prio))
5731 p->sched_class = &rt_sched_class;
5732 else
5733 p->sched_class = &fair_sched_class;
5737 * Check the target process has a UID that matches the current process's:
5739 static bool check_same_owner(struct task_struct *p)
5741 const struct cred *cred = current_cred(), *pcred;
5742 bool match;
5744 rcu_read_lock();
5745 pcred = __task_cred(p);
5746 match = (uid_eq(cred->euid, pcred->euid) ||
5747 uid_eq(cred->euid, pcred->uid));
5748 rcu_read_unlock();
5749 return match;
5752 static int __sched_setscheduler(struct task_struct *p,
5753 const struct sched_attr *attr,
5754 bool user, bool pi)
5756 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5757 MAX_RT_PRIO - 1 - attr->sched_priority;
5758 int retval, oldprio, oldpolicy = -1, queued, running;
5759 int new_effective_prio, policy = attr->sched_policy;
5760 const struct sched_class *prev_class;
5761 struct callback_head *head;
5762 struct rq_flags rf;
5763 int reset_on_fork;
5764 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5765 struct rq *rq;
5767 /* The pi code expects interrupts enabled */
5768 BUG_ON(pi && in_interrupt());
5769 recheck:
5770 /* Double check policy once rq lock held: */
5771 if (policy < 0) {
5772 reset_on_fork = p->sched_reset_on_fork;
5773 policy = oldpolicy = p->policy;
5774 } else {
5775 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5777 if (!valid_policy(policy))
5778 return -EINVAL;
5781 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5782 return -EINVAL;
5785 * Valid priorities for SCHED_FIFO and SCHED_RR are
5786 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5787 * SCHED_BATCH and SCHED_IDLE is 0.
5789 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5790 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5791 return -EINVAL;
5792 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5793 (rt_policy(policy) != (attr->sched_priority != 0)))
5794 return -EINVAL;
5797 * Allow unprivileged RT tasks to decrease priority:
5799 if (user && !capable(CAP_SYS_NICE)) {
5800 if (fair_policy(policy)) {
5801 if (attr->sched_nice < task_nice(p) &&
5802 !can_nice(p, attr->sched_nice))
5803 return -EPERM;
5806 if (rt_policy(policy)) {
5807 unsigned long rlim_rtprio =
5808 task_rlimit(p, RLIMIT_RTPRIO);
5810 /* Can't set/change the rt policy: */
5811 if (policy != p->policy && !rlim_rtprio)
5812 return -EPERM;
5814 /* Can't increase priority: */
5815 if (attr->sched_priority > p->rt_priority &&
5816 attr->sched_priority > rlim_rtprio)
5817 return -EPERM;
5821 * Can't set/change SCHED_DEADLINE policy at all for now
5822 * (safest behavior); in the future we would like to allow
5823 * unprivileged DL tasks to increase their relative deadline
5824 * or reduce their runtime (both ways reducing utilization)
5826 if (dl_policy(policy))
5827 return -EPERM;
5830 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5831 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5833 if (task_has_idle_policy(p) && !idle_policy(policy)) {
5834 if (!can_nice(p, task_nice(p)))
5835 return -EPERM;
5838 /* Can't change other user's priorities: */
5839 if (!check_same_owner(p))
5840 return -EPERM;
5842 /* Normal users shall not reset the sched_reset_on_fork flag: */
5843 if (p->sched_reset_on_fork && !reset_on_fork)
5844 return -EPERM;
5847 if (user) {
5848 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5849 return -EINVAL;
5851 retval = security_task_setscheduler(p);
5852 if (retval)
5853 return retval;
5856 /* Update task specific "requested" clamps */
5857 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5858 retval = uclamp_validate(p, attr);
5859 if (retval)
5860 return retval;
5863 if (pi)
5864 cpuset_read_lock();
5867 * Make sure no PI-waiters arrive (or leave) while we are
5868 * changing the priority of the task:
5870 * To be able to change p->policy safely, the appropriate
5871 * runqueue lock must be held.
5873 rq = task_rq_lock(p, &rf);
5874 update_rq_clock(rq);
5877 * Changing the policy of the stop threads its a very bad idea:
5879 if (p == rq->stop) {
5880 retval = -EINVAL;
5881 goto unlock;
5885 * If not changing anything there's no need to proceed further,
5886 * but store a possible modification of reset_on_fork.
5888 if (unlikely(policy == p->policy)) {
5889 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5890 goto change;
5891 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5892 goto change;
5893 if (dl_policy(policy) && dl_param_changed(p, attr))
5894 goto change;
5895 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5896 goto change;
5898 p->sched_reset_on_fork = reset_on_fork;
5899 retval = 0;
5900 goto unlock;
5902 change:
5904 if (user) {
5905 #ifdef CONFIG_RT_GROUP_SCHED
5907 * Do not allow realtime tasks into groups that have no runtime
5908 * assigned.
5910 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5911 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5912 !task_group_is_autogroup(task_group(p))) {
5913 retval = -EPERM;
5914 goto unlock;
5916 #endif
5917 #ifdef CONFIG_SMP
5918 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5919 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5920 cpumask_t *span = rq->rd->span;
5923 * Don't allow tasks with an affinity mask smaller than
5924 * the entire root_domain to become SCHED_DEADLINE. We
5925 * will also fail if there's no bandwidth available.
5927 if (!cpumask_subset(span, p->cpus_ptr) ||
5928 rq->rd->dl_bw.bw == 0) {
5929 retval = -EPERM;
5930 goto unlock;
5933 #endif
5936 /* Re-check policy now with rq lock held: */
5937 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5938 policy = oldpolicy = -1;
5939 task_rq_unlock(rq, p, &rf);
5940 if (pi)
5941 cpuset_read_unlock();
5942 goto recheck;
5946 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5947 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5948 * is available.
5950 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5951 retval = -EBUSY;
5952 goto unlock;
5955 p->sched_reset_on_fork = reset_on_fork;
5956 oldprio = p->prio;
5958 if (pi) {
5960 * Take priority boosted tasks into account. If the new
5961 * effective priority is unchanged, we just store the new
5962 * normal parameters and do not touch the scheduler class and
5963 * the runqueue. This will be done when the task deboost
5964 * itself.
5966 new_effective_prio = rt_effective_prio(p, newprio);
5967 if (new_effective_prio == oldprio)
5968 queue_flags &= ~DEQUEUE_MOVE;
5971 queued = task_on_rq_queued(p);
5972 running = task_current(rq, p);
5973 if (queued)
5974 dequeue_task(rq, p, queue_flags);
5975 if (running)
5976 put_prev_task(rq, p);
5978 prev_class = p->sched_class;
5980 __setscheduler(rq, p, attr, pi);
5981 __setscheduler_uclamp(p, attr);
5983 if (queued) {
5985 * We enqueue to tail when the priority of a task is
5986 * increased (user space view).
5988 if (oldprio < p->prio)
5989 queue_flags |= ENQUEUE_HEAD;
5991 enqueue_task(rq, p, queue_flags);
5993 if (running)
5994 set_next_task(rq, p);
5996 check_class_changed(rq, p, prev_class, oldprio);
5998 /* Avoid rq from going away on us: */
5999 preempt_disable();
6000 head = splice_balance_callbacks(rq);
6001 task_rq_unlock(rq, p, &rf);
6003 if (pi) {
6004 cpuset_read_unlock();
6005 rt_mutex_adjust_pi(p);
6008 /* Run balance callbacks after we've adjusted the PI chain: */
6009 balance_callbacks(rq, head);
6010 preempt_enable();
6012 return 0;
6014 unlock:
6015 task_rq_unlock(rq, p, &rf);
6016 if (pi)
6017 cpuset_read_unlock();
6018 return retval;
6021 static int _sched_setscheduler(struct task_struct *p, int policy,
6022 const struct sched_param *param, bool check)
6024 struct sched_attr attr = {
6025 .sched_policy = policy,
6026 .sched_priority = param->sched_priority,
6027 .sched_nice = PRIO_TO_NICE(p->static_prio),
6030 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6031 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6032 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6033 policy &= ~SCHED_RESET_ON_FORK;
6034 attr.sched_policy = policy;
6037 return __sched_setscheduler(p, &attr, check, true);
6040 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6041 * @p: the task in question.
6042 * @policy: new policy.
6043 * @param: structure containing the new RT priority.
6045 * Use sched_set_fifo(), read its comment.
6047 * Return: 0 on success. An error code otherwise.
6049 * NOTE that the task may be already dead.
6051 int sched_setscheduler(struct task_struct *p, int policy,
6052 const struct sched_param *param)
6054 return _sched_setscheduler(p, policy, param, true);
6057 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6059 return __sched_setscheduler(p, attr, true, true);
6062 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6064 return __sched_setscheduler(p, attr, false, true);
6068 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6069 * @p: the task in question.
6070 * @policy: new policy.
6071 * @param: structure containing the new RT priority.
6073 * Just like sched_setscheduler, only don't bother checking if the
6074 * current context has permission. For example, this is needed in
6075 * stop_machine(): we create temporary high priority worker threads,
6076 * but our caller might not have that capability.
6078 * Return: 0 on success. An error code otherwise.
6080 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6081 const struct sched_param *param)
6083 return _sched_setscheduler(p, policy, param, false);
6087 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6088 * incapable of resource management, which is the one thing an OS really should
6089 * be doing.
6091 * This is of course the reason it is limited to privileged users only.
6093 * Worse still; it is fundamentally impossible to compose static priority
6094 * workloads. You cannot take two correctly working static prio workloads
6095 * and smash them together and still expect them to work.
6097 * For this reason 'all' FIFO tasks the kernel creates are basically at:
6099 * MAX_RT_PRIO / 2
6101 * The administrator _MUST_ configure the system, the kernel simply doesn't
6102 * know enough information to make a sensible choice.
6104 void sched_set_fifo(struct task_struct *p)
6106 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6107 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6109 EXPORT_SYMBOL_GPL(sched_set_fifo);
6112 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6114 void sched_set_fifo_low(struct task_struct *p)
6116 struct sched_param sp = { .sched_priority = 1 };
6117 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6119 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6121 void sched_set_normal(struct task_struct *p, int nice)
6123 struct sched_attr attr = {
6124 .sched_policy = SCHED_NORMAL,
6125 .sched_nice = nice,
6127 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6129 EXPORT_SYMBOL_GPL(sched_set_normal);
6131 static int
6132 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6134 struct sched_param lparam;
6135 struct task_struct *p;
6136 int retval;
6138 if (!param || pid < 0)
6139 return -EINVAL;
6140 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6141 return -EFAULT;
6143 rcu_read_lock();
6144 retval = -ESRCH;
6145 p = find_process_by_pid(pid);
6146 if (likely(p))
6147 get_task_struct(p);
6148 rcu_read_unlock();
6150 if (likely(p)) {
6151 retval = sched_setscheduler(p, policy, &lparam);
6152 put_task_struct(p);
6155 return retval;
6159 * Mimics kernel/events/core.c perf_copy_attr().
6161 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6163 u32 size;
6164 int ret;
6166 /* Zero the full structure, so that a short copy will be nice: */
6167 memset(attr, 0, sizeof(*attr));
6169 ret = get_user(size, &uattr->size);
6170 if (ret)
6171 return ret;
6173 /* ABI compatibility quirk: */
6174 if (!size)
6175 size = SCHED_ATTR_SIZE_VER0;
6176 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6177 goto err_size;
6179 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6180 if (ret) {
6181 if (ret == -E2BIG)
6182 goto err_size;
6183 return ret;
6186 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6187 size < SCHED_ATTR_SIZE_VER1)
6188 return -EINVAL;
6191 * XXX: Do we want to be lenient like existing syscalls; or do we want
6192 * to be strict and return an error on out-of-bounds values?
6194 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6196 return 0;
6198 err_size:
6199 put_user(sizeof(*attr), &uattr->size);
6200 return -E2BIG;
6204 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6205 * @pid: the pid in question.
6206 * @policy: new policy.
6207 * @param: structure containing the new RT priority.
6209 * Return: 0 on success. An error code otherwise.
6211 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6213 if (policy < 0)
6214 return -EINVAL;
6216 return do_sched_setscheduler(pid, policy, param);
6220 * sys_sched_setparam - set/change the RT priority of a thread
6221 * @pid: the pid in question.
6222 * @param: structure containing the new RT priority.
6224 * Return: 0 on success. An error code otherwise.
6226 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6228 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6232 * sys_sched_setattr - same as above, but with extended sched_attr
6233 * @pid: the pid in question.
6234 * @uattr: structure containing the extended parameters.
6235 * @flags: for future extension.
6237 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6238 unsigned int, flags)
6240 struct sched_attr attr;
6241 struct task_struct *p;
6242 int retval;
6244 if (!uattr || pid < 0 || flags)
6245 return -EINVAL;
6247 retval = sched_copy_attr(uattr, &attr);
6248 if (retval)
6249 return retval;
6251 if ((int)attr.sched_policy < 0)
6252 return -EINVAL;
6253 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6254 attr.sched_policy = SETPARAM_POLICY;
6256 rcu_read_lock();
6257 retval = -ESRCH;
6258 p = find_process_by_pid(pid);
6259 if (likely(p))
6260 get_task_struct(p);
6261 rcu_read_unlock();
6263 if (likely(p)) {
6264 retval = sched_setattr(p, &attr);
6265 put_task_struct(p);
6268 return retval;
6272 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6273 * @pid: the pid in question.
6275 * Return: On success, the policy of the thread. Otherwise, a negative error
6276 * code.
6278 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6280 struct task_struct *p;
6281 int retval;
6283 if (pid < 0)
6284 return -EINVAL;
6286 retval = -ESRCH;
6287 rcu_read_lock();
6288 p = find_process_by_pid(pid);
6289 if (p) {
6290 retval = security_task_getscheduler(p);
6291 if (!retval)
6292 retval = p->policy
6293 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6295 rcu_read_unlock();
6296 return retval;
6300 * sys_sched_getparam - get the RT priority of a thread
6301 * @pid: the pid in question.
6302 * @param: structure containing the RT priority.
6304 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6305 * code.
6307 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6309 struct sched_param lp = { .sched_priority = 0 };
6310 struct task_struct *p;
6311 int retval;
6313 if (!param || pid < 0)
6314 return -EINVAL;
6316 rcu_read_lock();
6317 p = find_process_by_pid(pid);
6318 retval = -ESRCH;
6319 if (!p)
6320 goto out_unlock;
6322 retval = security_task_getscheduler(p);
6323 if (retval)
6324 goto out_unlock;
6326 if (task_has_rt_policy(p))
6327 lp.sched_priority = p->rt_priority;
6328 rcu_read_unlock();
6331 * This one might sleep, we cannot do it with a spinlock held ...
6333 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6335 return retval;
6337 out_unlock:
6338 rcu_read_unlock();
6339 return retval;
6343 * Copy the kernel size attribute structure (which might be larger
6344 * than what user-space knows about) to user-space.
6346 * Note that all cases are valid: user-space buffer can be larger or
6347 * smaller than the kernel-space buffer. The usual case is that both
6348 * have the same size.
6350 static int
6351 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6352 struct sched_attr *kattr,
6353 unsigned int usize)
6355 unsigned int ksize = sizeof(*kattr);
6357 if (!access_ok(uattr, usize))
6358 return -EFAULT;
6361 * sched_getattr() ABI forwards and backwards compatibility:
6363 * If usize == ksize then we just copy everything to user-space and all is good.
6365 * If usize < ksize then we only copy as much as user-space has space for,
6366 * this keeps ABI compatibility as well. We skip the rest.
6368 * If usize > ksize then user-space is using a newer version of the ABI,
6369 * which part the kernel doesn't know about. Just ignore it - tooling can
6370 * detect the kernel's knowledge of attributes from the attr->size value
6371 * which is set to ksize in this case.
6373 kattr->size = min(usize, ksize);
6375 if (copy_to_user(uattr, kattr, kattr->size))
6376 return -EFAULT;
6378 return 0;
6382 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6383 * @pid: the pid in question.
6384 * @uattr: structure containing the extended parameters.
6385 * @usize: sizeof(attr) for fwd/bwd comp.
6386 * @flags: for future extension.
6388 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6389 unsigned int, usize, unsigned int, flags)
6391 struct sched_attr kattr = { };
6392 struct task_struct *p;
6393 int retval;
6395 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6396 usize < SCHED_ATTR_SIZE_VER0 || flags)
6397 return -EINVAL;
6399 rcu_read_lock();
6400 p = find_process_by_pid(pid);
6401 retval = -ESRCH;
6402 if (!p)
6403 goto out_unlock;
6405 retval = security_task_getscheduler(p);
6406 if (retval)
6407 goto out_unlock;
6409 kattr.sched_policy = p->policy;
6410 if (p->sched_reset_on_fork)
6411 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6412 if (task_has_dl_policy(p))
6413 __getparam_dl(p, &kattr);
6414 else if (task_has_rt_policy(p))
6415 kattr.sched_priority = p->rt_priority;
6416 else
6417 kattr.sched_nice = task_nice(p);
6419 #ifdef CONFIG_UCLAMP_TASK
6421 * This could race with another potential updater, but this is fine
6422 * because it'll correctly read the old or the new value. We don't need
6423 * to guarantee who wins the race as long as it doesn't return garbage.
6425 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6426 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6427 #endif
6429 rcu_read_unlock();
6431 return sched_attr_copy_to_user(uattr, &kattr, usize);
6433 out_unlock:
6434 rcu_read_unlock();
6435 return retval;
6438 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6440 cpumask_var_t cpus_allowed, new_mask;
6441 struct task_struct *p;
6442 int retval;
6444 rcu_read_lock();
6446 p = find_process_by_pid(pid);
6447 if (!p) {
6448 rcu_read_unlock();
6449 return -ESRCH;
6452 /* Prevent p going away */
6453 get_task_struct(p);
6454 rcu_read_unlock();
6456 if (p->flags & PF_NO_SETAFFINITY) {
6457 retval = -EINVAL;
6458 goto out_put_task;
6460 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6461 retval = -ENOMEM;
6462 goto out_put_task;
6464 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6465 retval = -ENOMEM;
6466 goto out_free_cpus_allowed;
6468 retval = -EPERM;
6469 if (!check_same_owner(p)) {
6470 rcu_read_lock();
6471 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6472 rcu_read_unlock();
6473 goto out_free_new_mask;
6475 rcu_read_unlock();
6478 retval = security_task_setscheduler(p);
6479 if (retval)
6480 goto out_free_new_mask;
6483 cpuset_cpus_allowed(p, cpus_allowed);
6484 cpumask_and(new_mask, in_mask, cpus_allowed);
6487 * Since bandwidth control happens on root_domain basis,
6488 * if admission test is enabled, we only admit -deadline
6489 * tasks allowed to run on all the CPUs in the task's
6490 * root_domain.
6492 #ifdef CONFIG_SMP
6493 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6494 rcu_read_lock();
6495 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6496 retval = -EBUSY;
6497 rcu_read_unlock();
6498 goto out_free_new_mask;
6500 rcu_read_unlock();
6502 #endif
6503 again:
6504 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6506 if (!retval) {
6507 cpuset_cpus_allowed(p, cpus_allowed);
6508 if (!cpumask_subset(new_mask, cpus_allowed)) {
6510 * We must have raced with a concurrent cpuset
6511 * update. Just reset the cpus_allowed to the
6512 * cpuset's cpus_allowed
6514 cpumask_copy(new_mask, cpus_allowed);
6515 goto again;
6518 out_free_new_mask:
6519 free_cpumask_var(new_mask);
6520 out_free_cpus_allowed:
6521 free_cpumask_var(cpus_allowed);
6522 out_put_task:
6523 put_task_struct(p);
6524 return retval;
6527 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6528 struct cpumask *new_mask)
6530 if (len < cpumask_size())
6531 cpumask_clear(new_mask);
6532 else if (len > cpumask_size())
6533 len = cpumask_size();
6535 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6539 * sys_sched_setaffinity - set the CPU affinity of a process
6540 * @pid: pid of the process
6541 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6542 * @user_mask_ptr: user-space pointer to the new CPU mask
6544 * Return: 0 on success. An error code otherwise.
6546 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6547 unsigned long __user *, user_mask_ptr)
6549 cpumask_var_t new_mask;
6550 int retval;
6552 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6553 return -ENOMEM;
6555 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6556 if (retval == 0)
6557 retval = sched_setaffinity(pid, new_mask);
6558 free_cpumask_var(new_mask);
6559 return retval;
6562 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6564 struct task_struct *p;
6565 unsigned long flags;
6566 int retval;
6568 rcu_read_lock();
6570 retval = -ESRCH;
6571 p = find_process_by_pid(pid);
6572 if (!p)
6573 goto out_unlock;
6575 retval = security_task_getscheduler(p);
6576 if (retval)
6577 goto out_unlock;
6579 raw_spin_lock_irqsave(&p->pi_lock, flags);
6580 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6581 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6583 out_unlock:
6584 rcu_read_unlock();
6586 return retval;
6590 * sys_sched_getaffinity - get the CPU affinity of a process
6591 * @pid: pid of the process
6592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6593 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6595 * Return: size of CPU mask copied to user_mask_ptr on success. An
6596 * error code otherwise.
6598 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6599 unsigned long __user *, user_mask_ptr)
6601 int ret;
6602 cpumask_var_t mask;
6604 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6605 return -EINVAL;
6606 if (len & (sizeof(unsigned long)-1))
6607 return -EINVAL;
6609 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6610 return -ENOMEM;
6612 ret = sched_getaffinity(pid, mask);
6613 if (ret == 0) {
6614 unsigned int retlen = min(len, cpumask_size());
6616 if (copy_to_user(user_mask_ptr, mask, retlen))
6617 ret = -EFAULT;
6618 else
6619 ret = retlen;
6621 free_cpumask_var(mask);
6623 return ret;
6626 static void do_sched_yield(void)
6628 struct rq_flags rf;
6629 struct rq *rq;
6631 rq = this_rq_lock_irq(&rf);
6633 schedstat_inc(rq->yld_count);
6634 current->sched_class->yield_task(rq);
6636 preempt_disable();
6637 rq_unlock_irq(rq, &rf);
6638 sched_preempt_enable_no_resched();
6640 schedule();
6644 * sys_sched_yield - yield the current processor to other threads.
6646 * This function yields the current CPU to other tasks. If there are no
6647 * other threads running on this CPU then this function will return.
6649 * Return: 0.
6651 SYSCALL_DEFINE0(sched_yield)
6653 do_sched_yield();
6654 return 0;
6657 #ifndef CONFIG_PREEMPTION
6658 int __sched _cond_resched(void)
6660 if (should_resched(0)) {
6661 preempt_schedule_common();
6662 return 1;
6664 rcu_all_qs();
6665 return 0;
6667 EXPORT_SYMBOL(_cond_resched);
6668 #endif
6671 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6672 * call schedule, and on return reacquire the lock.
6674 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6675 * operations here to prevent schedule() from being called twice (once via
6676 * spin_unlock(), once by hand).
6678 int __cond_resched_lock(spinlock_t *lock)
6680 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6681 int ret = 0;
6683 lockdep_assert_held(lock);
6685 if (spin_needbreak(lock) || resched) {
6686 spin_unlock(lock);
6687 if (resched)
6688 preempt_schedule_common();
6689 else
6690 cpu_relax();
6691 ret = 1;
6692 spin_lock(lock);
6694 return ret;
6696 EXPORT_SYMBOL(__cond_resched_lock);
6699 * yield - yield the current processor to other threads.
6701 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6703 * The scheduler is at all times free to pick the calling task as the most
6704 * eligible task to run, if removing the yield() call from your code breaks
6705 * it, it's already broken.
6707 * Typical broken usage is:
6709 * while (!event)
6710 * yield();
6712 * where one assumes that yield() will let 'the other' process run that will
6713 * make event true. If the current task is a SCHED_FIFO task that will never
6714 * happen. Never use yield() as a progress guarantee!!
6716 * If you want to use yield() to wait for something, use wait_event().
6717 * If you want to use yield() to be 'nice' for others, use cond_resched().
6718 * If you still want to use yield(), do not!
6720 void __sched yield(void)
6722 set_current_state(TASK_RUNNING);
6723 do_sched_yield();
6725 EXPORT_SYMBOL(yield);
6728 * yield_to - yield the current processor to another thread in
6729 * your thread group, or accelerate that thread toward the
6730 * processor it's on.
6731 * @p: target task
6732 * @preempt: whether task preemption is allowed or not
6734 * It's the caller's job to ensure that the target task struct
6735 * can't go away on us before we can do any checks.
6737 * Return:
6738 * true (>0) if we indeed boosted the target task.
6739 * false (0) if we failed to boost the target.
6740 * -ESRCH if there's no task to yield to.
6742 int __sched yield_to(struct task_struct *p, bool preempt)
6744 struct task_struct *curr = current;
6745 struct rq *rq, *p_rq;
6746 unsigned long flags;
6747 int yielded = 0;
6749 local_irq_save(flags);
6750 rq = this_rq();
6752 again:
6753 p_rq = task_rq(p);
6755 * If we're the only runnable task on the rq and target rq also
6756 * has only one task, there's absolutely no point in yielding.
6758 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6759 yielded = -ESRCH;
6760 goto out_irq;
6763 double_rq_lock(rq, p_rq);
6764 if (task_rq(p) != p_rq) {
6765 double_rq_unlock(rq, p_rq);
6766 goto again;
6769 if (!curr->sched_class->yield_to_task)
6770 goto out_unlock;
6772 if (curr->sched_class != p->sched_class)
6773 goto out_unlock;
6775 if (task_running(p_rq, p) || p->state)
6776 goto out_unlock;
6778 yielded = curr->sched_class->yield_to_task(rq, p);
6779 if (yielded) {
6780 schedstat_inc(rq->yld_count);
6782 * Make p's CPU reschedule; pick_next_entity takes care of
6783 * fairness.
6785 if (preempt && rq != p_rq)
6786 resched_curr(p_rq);
6789 out_unlock:
6790 double_rq_unlock(rq, p_rq);
6791 out_irq:
6792 local_irq_restore(flags);
6794 if (yielded > 0)
6795 schedule();
6797 return yielded;
6799 EXPORT_SYMBOL_GPL(yield_to);
6801 int io_schedule_prepare(void)
6803 int old_iowait = current->in_iowait;
6805 current->in_iowait = 1;
6806 blk_schedule_flush_plug(current);
6808 return old_iowait;
6811 void io_schedule_finish(int token)
6813 current->in_iowait = token;
6817 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6818 * that process accounting knows that this is a task in IO wait state.
6820 long __sched io_schedule_timeout(long timeout)
6822 int token;
6823 long ret;
6825 token = io_schedule_prepare();
6826 ret = schedule_timeout(timeout);
6827 io_schedule_finish(token);
6829 return ret;
6831 EXPORT_SYMBOL(io_schedule_timeout);
6833 void __sched io_schedule(void)
6835 int token;
6837 token = io_schedule_prepare();
6838 schedule();
6839 io_schedule_finish(token);
6841 EXPORT_SYMBOL(io_schedule);
6844 * sys_sched_get_priority_max - return maximum RT priority.
6845 * @policy: scheduling class.
6847 * Return: On success, this syscall returns the maximum
6848 * rt_priority that can be used by a given scheduling class.
6849 * On failure, a negative error code is returned.
6851 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6853 int ret = -EINVAL;
6855 switch (policy) {
6856 case SCHED_FIFO:
6857 case SCHED_RR:
6858 ret = MAX_USER_RT_PRIO-1;
6859 break;
6860 case SCHED_DEADLINE:
6861 case SCHED_NORMAL:
6862 case SCHED_BATCH:
6863 case SCHED_IDLE:
6864 ret = 0;
6865 break;
6867 return ret;
6871 * sys_sched_get_priority_min - return minimum RT priority.
6872 * @policy: scheduling class.
6874 * Return: On success, this syscall returns the minimum
6875 * rt_priority that can be used by a given scheduling class.
6876 * On failure, a negative error code is returned.
6878 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6880 int ret = -EINVAL;
6882 switch (policy) {
6883 case SCHED_FIFO:
6884 case SCHED_RR:
6885 ret = 1;
6886 break;
6887 case SCHED_DEADLINE:
6888 case SCHED_NORMAL:
6889 case SCHED_BATCH:
6890 case SCHED_IDLE:
6891 ret = 0;
6893 return ret;
6896 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6898 struct task_struct *p;
6899 unsigned int time_slice;
6900 struct rq_flags rf;
6901 struct rq *rq;
6902 int retval;
6904 if (pid < 0)
6905 return -EINVAL;
6907 retval = -ESRCH;
6908 rcu_read_lock();
6909 p = find_process_by_pid(pid);
6910 if (!p)
6911 goto out_unlock;
6913 retval = security_task_getscheduler(p);
6914 if (retval)
6915 goto out_unlock;
6917 rq = task_rq_lock(p, &rf);
6918 time_slice = 0;
6919 if (p->sched_class->get_rr_interval)
6920 time_slice = p->sched_class->get_rr_interval(rq, p);
6921 task_rq_unlock(rq, p, &rf);
6923 rcu_read_unlock();
6924 jiffies_to_timespec64(time_slice, t);
6925 return 0;
6927 out_unlock:
6928 rcu_read_unlock();
6929 return retval;
6933 * sys_sched_rr_get_interval - return the default timeslice of a process.
6934 * @pid: pid of the process.
6935 * @interval: userspace pointer to the timeslice value.
6937 * this syscall writes the default timeslice value of a given process
6938 * into the user-space timespec buffer. A value of '0' means infinity.
6940 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6941 * an error code.
6943 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6944 struct __kernel_timespec __user *, interval)
6946 struct timespec64 t;
6947 int retval = sched_rr_get_interval(pid, &t);
6949 if (retval == 0)
6950 retval = put_timespec64(&t, interval);
6952 return retval;
6955 #ifdef CONFIG_COMPAT_32BIT_TIME
6956 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6957 struct old_timespec32 __user *, interval)
6959 struct timespec64 t;
6960 int retval = sched_rr_get_interval(pid, &t);
6962 if (retval == 0)
6963 retval = put_old_timespec32(&t, interval);
6964 return retval;
6966 #endif
6968 void sched_show_task(struct task_struct *p)
6970 unsigned long free = 0;
6971 int ppid;
6973 if (!try_get_task_stack(p))
6974 return;
6976 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6978 if (p->state == TASK_RUNNING)
6979 pr_cont(" running task ");
6980 #ifdef CONFIG_DEBUG_STACK_USAGE
6981 free = stack_not_used(p);
6982 #endif
6983 ppid = 0;
6984 rcu_read_lock();
6985 if (pid_alive(p))
6986 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6987 rcu_read_unlock();
6988 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6989 free, task_pid_nr(p), ppid,
6990 (unsigned long)task_thread_info(p)->flags);
6992 print_worker_info(KERN_INFO, p);
6993 print_stop_info(KERN_INFO, p);
6994 show_stack(p, NULL, KERN_INFO);
6995 put_task_stack(p);
6997 EXPORT_SYMBOL_GPL(sched_show_task);
6999 static inline bool
7000 state_filter_match(unsigned long state_filter, struct task_struct *p)
7002 /* no filter, everything matches */
7003 if (!state_filter)
7004 return true;
7006 /* filter, but doesn't match */
7007 if (!(p->state & state_filter))
7008 return false;
7011 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7012 * TASK_KILLABLE).
7014 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7015 return false;
7017 return true;
7021 void show_state_filter(unsigned long state_filter)
7023 struct task_struct *g, *p;
7025 rcu_read_lock();
7026 for_each_process_thread(g, p) {
7028 * reset the NMI-timeout, listing all files on a slow
7029 * console might take a lot of time:
7030 * Also, reset softlockup watchdogs on all CPUs, because
7031 * another CPU might be blocked waiting for us to process
7032 * an IPI.
7034 touch_nmi_watchdog();
7035 touch_all_softlockup_watchdogs();
7036 if (state_filter_match(state_filter, p))
7037 sched_show_task(p);
7040 #ifdef CONFIG_SCHED_DEBUG
7041 if (!state_filter)
7042 sysrq_sched_debug_show();
7043 #endif
7044 rcu_read_unlock();
7046 * Only show locks if all tasks are dumped:
7048 if (!state_filter)
7049 debug_show_all_locks();
7053 * init_idle - set up an idle thread for a given CPU
7054 * @idle: task in question
7055 * @cpu: CPU the idle task belongs to
7057 * NOTE: this function does not set the idle thread's NEED_RESCHED
7058 * flag, to make booting more robust.
7060 void init_idle(struct task_struct *idle, int cpu)
7062 struct rq *rq = cpu_rq(cpu);
7063 unsigned long flags;
7065 __sched_fork(0, idle);
7067 raw_spin_lock_irqsave(&idle->pi_lock, flags);
7068 raw_spin_lock(&rq->lock);
7070 idle->state = TASK_RUNNING;
7071 idle->se.exec_start = sched_clock();
7072 idle->flags |= PF_IDLE;
7074 scs_task_reset(idle);
7075 kasan_unpoison_task_stack(idle);
7077 #ifdef CONFIG_SMP
7079 * It's possible that init_idle() gets called multiple times on a task,
7080 * in that case do_set_cpus_allowed() will not do the right thing.
7082 * And since this is boot we can forgo the serialization.
7084 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7085 #endif
7087 * We're having a chicken and egg problem, even though we are
7088 * holding rq->lock, the CPU isn't yet set to this CPU so the
7089 * lockdep check in task_group() will fail.
7091 * Similar case to sched_fork(). / Alternatively we could
7092 * use task_rq_lock() here and obtain the other rq->lock.
7094 * Silence PROVE_RCU
7096 rcu_read_lock();
7097 __set_task_cpu(idle, cpu);
7098 rcu_read_unlock();
7100 rq->idle = idle;
7101 rcu_assign_pointer(rq->curr, idle);
7102 idle->on_rq = TASK_ON_RQ_QUEUED;
7103 #ifdef CONFIG_SMP
7104 idle->on_cpu = 1;
7105 #endif
7106 raw_spin_unlock(&rq->lock);
7107 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7109 /* Set the preempt count _outside_ the spinlocks! */
7110 init_idle_preempt_count(idle, cpu);
7113 * The idle tasks have their own, simple scheduling class:
7115 idle->sched_class = &idle_sched_class;
7116 ftrace_graph_init_idle_task(idle, cpu);
7117 vtime_init_idle(idle, cpu);
7118 #ifdef CONFIG_SMP
7119 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7120 #endif
7123 #ifdef CONFIG_SMP
7125 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7126 const struct cpumask *trial)
7128 int ret = 1;
7130 if (!cpumask_weight(cur))
7131 return ret;
7133 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7135 return ret;
7138 int task_can_attach(struct task_struct *p,
7139 const struct cpumask *cs_cpus_allowed)
7141 int ret = 0;
7144 * Kthreads which disallow setaffinity shouldn't be moved
7145 * to a new cpuset; we don't want to change their CPU
7146 * affinity and isolating such threads by their set of
7147 * allowed nodes is unnecessary. Thus, cpusets are not
7148 * applicable for such threads. This prevents checking for
7149 * success of set_cpus_allowed_ptr() on all attached tasks
7150 * before cpus_mask may be changed.
7152 if (p->flags & PF_NO_SETAFFINITY) {
7153 ret = -EINVAL;
7154 goto out;
7157 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7158 cs_cpus_allowed))
7159 ret = dl_task_can_attach(p, cs_cpus_allowed);
7161 out:
7162 return ret;
7165 bool sched_smp_initialized __read_mostly;
7167 #ifdef CONFIG_NUMA_BALANCING
7168 /* Migrate current task p to target_cpu */
7169 int migrate_task_to(struct task_struct *p, int target_cpu)
7171 struct migration_arg arg = { p, target_cpu };
7172 int curr_cpu = task_cpu(p);
7174 if (curr_cpu == target_cpu)
7175 return 0;
7177 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7178 return -EINVAL;
7180 /* TODO: This is not properly updating schedstats */
7182 trace_sched_move_numa(p, curr_cpu, target_cpu);
7183 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7187 * Requeue a task on a given node and accurately track the number of NUMA
7188 * tasks on the runqueues
7190 void sched_setnuma(struct task_struct *p, int nid)
7192 bool queued, running;
7193 struct rq_flags rf;
7194 struct rq *rq;
7196 rq = task_rq_lock(p, &rf);
7197 queued = task_on_rq_queued(p);
7198 running = task_current(rq, p);
7200 if (queued)
7201 dequeue_task(rq, p, DEQUEUE_SAVE);
7202 if (running)
7203 put_prev_task(rq, p);
7205 p->numa_preferred_nid = nid;
7207 if (queued)
7208 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7209 if (running)
7210 set_next_task(rq, p);
7211 task_rq_unlock(rq, p, &rf);
7213 #endif /* CONFIG_NUMA_BALANCING */
7215 #ifdef CONFIG_HOTPLUG_CPU
7217 * Ensure that the idle task is using init_mm right before its CPU goes
7218 * offline.
7220 void idle_task_exit(void)
7222 struct mm_struct *mm = current->active_mm;
7224 BUG_ON(cpu_online(smp_processor_id()));
7225 BUG_ON(current != this_rq()->idle);
7227 if (mm != &init_mm) {
7228 switch_mm(mm, &init_mm, current);
7229 finish_arch_post_lock_switch();
7232 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7235 static int __balance_push_cpu_stop(void *arg)
7237 struct task_struct *p = arg;
7238 struct rq *rq = this_rq();
7239 struct rq_flags rf;
7240 int cpu;
7242 raw_spin_lock_irq(&p->pi_lock);
7243 rq_lock(rq, &rf);
7245 update_rq_clock(rq);
7247 if (task_rq(p) == rq && task_on_rq_queued(p)) {
7248 cpu = select_fallback_rq(rq->cpu, p);
7249 rq = __migrate_task(rq, &rf, p, cpu);
7252 rq_unlock(rq, &rf);
7253 raw_spin_unlock_irq(&p->pi_lock);
7255 put_task_struct(p);
7257 return 0;
7260 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7263 * Ensure we only run per-cpu kthreads once the CPU goes !active.
7265 static void balance_push(struct rq *rq)
7267 struct task_struct *push_task = rq->curr;
7269 lockdep_assert_held(&rq->lock);
7270 SCHED_WARN_ON(rq->cpu != smp_processor_id());
7272 * Ensure the thing is persistent until balance_push_set(.on = false);
7274 rq->balance_callback = &balance_push_callback;
7277 * Both the cpu-hotplug and stop task are in this case and are
7278 * required to complete the hotplug process.
7280 if (is_per_cpu_kthread(push_task) || is_migration_disabled(push_task)) {
7282 * If this is the idle task on the outgoing CPU try to wake
7283 * up the hotplug control thread which might wait for the
7284 * last task to vanish. The rcuwait_active() check is
7285 * accurate here because the waiter is pinned on this CPU
7286 * and can't obviously be running in parallel.
7288 * On RT kernels this also has to check whether there are
7289 * pinned and scheduled out tasks on the runqueue. They
7290 * need to leave the migrate disabled section first.
7292 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7293 rcuwait_active(&rq->hotplug_wait)) {
7294 raw_spin_unlock(&rq->lock);
7295 rcuwait_wake_up(&rq->hotplug_wait);
7296 raw_spin_lock(&rq->lock);
7298 return;
7301 get_task_struct(push_task);
7303 * Temporarily drop rq->lock such that we can wake-up the stop task.
7304 * Both preemption and IRQs are still disabled.
7306 raw_spin_unlock(&rq->lock);
7307 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7308 this_cpu_ptr(&push_work));
7310 * At this point need_resched() is true and we'll take the loop in
7311 * schedule(). The next pick is obviously going to be the stop task
7312 * which is_per_cpu_kthread() and will push this task away.
7314 raw_spin_lock(&rq->lock);
7317 static void balance_push_set(int cpu, bool on)
7319 struct rq *rq = cpu_rq(cpu);
7320 struct rq_flags rf;
7322 rq_lock_irqsave(rq, &rf);
7323 if (on)
7324 rq->balance_callback = &balance_push_callback;
7325 else
7326 rq->balance_callback = NULL;
7327 rq_unlock_irqrestore(rq, &rf);
7331 * Invoked from a CPUs hotplug control thread after the CPU has been marked
7332 * inactive. All tasks which are not per CPU kernel threads are either
7333 * pushed off this CPU now via balance_push() or placed on a different CPU
7334 * during wakeup. Wait until the CPU is quiescent.
7336 static void balance_hotplug_wait(void)
7338 struct rq *rq = this_rq();
7340 rcuwait_wait_event(&rq->hotplug_wait,
7341 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7342 TASK_UNINTERRUPTIBLE);
7345 #else
7347 static inline void balance_push(struct rq *rq)
7351 static inline void balance_push_set(int cpu, bool on)
7355 static inline void balance_hotplug_wait(void)
7359 #endif /* CONFIG_HOTPLUG_CPU */
7361 void set_rq_online(struct rq *rq)
7363 if (!rq->online) {
7364 const struct sched_class *class;
7366 cpumask_set_cpu(rq->cpu, rq->rd->online);
7367 rq->online = 1;
7369 for_each_class(class) {
7370 if (class->rq_online)
7371 class->rq_online(rq);
7376 void set_rq_offline(struct rq *rq)
7378 if (rq->online) {
7379 const struct sched_class *class;
7381 for_each_class(class) {
7382 if (class->rq_offline)
7383 class->rq_offline(rq);
7386 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7387 rq->online = 0;
7392 * used to mark begin/end of suspend/resume:
7394 static int num_cpus_frozen;
7397 * Update cpusets according to cpu_active mask. If cpusets are
7398 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7399 * around partition_sched_domains().
7401 * If we come here as part of a suspend/resume, don't touch cpusets because we
7402 * want to restore it back to its original state upon resume anyway.
7404 static void cpuset_cpu_active(void)
7406 if (cpuhp_tasks_frozen) {
7408 * num_cpus_frozen tracks how many CPUs are involved in suspend
7409 * resume sequence. As long as this is not the last online
7410 * operation in the resume sequence, just build a single sched
7411 * domain, ignoring cpusets.
7413 partition_sched_domains(1, NULL, NULL);
7414 if (--num_cpus_frozen)
7415 return;
7417 * This is the last CPU online operation. So fall through and
7418 * restore the original sched domains by considering the
7419 * cpuset configurations.
7421 cpuset_force_rebuild();
7423 cpuset_update_active_cpus();
7426 static int cpuset_cpu_inactive(unsigned int cpu)
7428 if (!cpuhp_tasks_frozen) {
7429 if (dl_cpu_busy(cpu))
7430 return -EBUSY;
7431 cpuset_update_active_cpus();
7432 } else {
7433 num_cpus_frozen++;
7434 partition_sched_domains(1, NULL, NULL);
7436 return 0;
7439 int sched_cpu_activate(unsigned int cpu)
7441 struct rq *rq = cpu_rq(cpu);
7442 struct rq_flags rf;
7444 balance_push_set(cpu, false);
7446 #ifdef CONFIG_SCHED_SMT
7448 * When going up, increment the number of cores with SMT present.
7450 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7451 static_branch_inc_cpuslocked(&sched_smt_present);
7452 #endif
7453 set_cpu_active(cpu, true);
7455 if (sched_smp_initialized) {
7456 sched_domains_numa_masks_set(cpu);
7457 cpuset_cpu_active();
7461 * Put the rq online, if not already. This happens:
7463 * 1) In the early boot process, because we build the real domains
7464 * after all CPUs have been brought up.
7466 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7467 * domains.
7469 rq_lock_irqsave(rq, &rf);
7470 if (rq->rd) {
7471 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7472 set_rq_online(rq);
7474 rq_unlock_irqrestore(rq, &rf);
7476 return 0;
7479 int sched_cpu_deactivate(unsigned int cpu)
7481 struct rq *rq = cpu_rq(cpu);
7482 struct rq_flags rf;
7483 int ret;
7485 set_cpu_active(cpu, false);
7487 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7488 * users of this state to go away such that all new such users will
7489 * observe it.
7491 * Do sync before park smpboot threads to take care the rcu boost case.
7493 synchronize_rcu();
7495 balance_push_set(cpu, true);
7497 rq_lock_irqsave(rq, &rf);
7498 if (rq->rd) {
7499 update_rq_clock(rq);
7500 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7501 set_rq_offline(rq);
7503 rq_unlock_irqrestore(rq, &rf);
7505 #ifdef CONFIG_SCHED_SMT
7507 * When going down, decrement the number of cores with SMT present.
7509 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7510 static_branch_dec_cpuslocked(&sched_smt_present);
7511 #endif
7513 if (!sched_smp_initialized)
7514 return 0;
7516 ret = cpuset_cpu_inactive(cpu);
7517 if (ret) {
7518 balance_push_set(cpu, false);
7519 set_cpu_active(cpu, true);
7520 return ret;
7522 sched_domains_numa_masks_clear(cpu);
7523 return 0;
7526 static void sched_rq_cpu_starting(unsigned int cpu)
7528 struct rq *rq = cpu_rq(cpu);
7530 rq->calc_load_update = calc_load_update;
7531 update_max_interval();
7534 int sched_cpu_starting(unsigned int cpu)
7536 sched_rq_cpu_starting(cpu);
7537 sched_tick_start(cpu);
7538 return 0;
7541 #ifdef CONFIG_HOTPLUG_CPU
7544 * Invoked immediately before the stopper thread is invoked to bring the
7545 * CPU down completely. At this point all per CPU kthreads except the
7546 * hotplug thread (current) and the stopper thread (inactive) have been
7547 * either parked or have been unbound from the outgoing CPU. Ensure that
7548 * any of those which might be on the way out are gone.
7550 * If after this point a bound task is being woken on this CPU then the
7551 * responsible hotplug callback has failed to do it's job.
7552 * sched_cpu_dying() will catch it with the appropriate fireworks.
7554 int sched_cpu_wait_empty(unsigned int cpu)
7556 balance_hotplug_wait();
7557 return 0;
7561 * Since this CPU is going 'away' for a while, fold any nr_active delta we
7562 * might have. Called from the CPU stopper task after ensuring that the
7563 * stopper is the last running task on the CPU, so nr_active count is
7564 * stable. We need to take the teardown thread which is calling this into
7565 * account, so we hand in adjust = 1 to the load calculation.
7567 * Also see the comment "Global load-average calculations".
7569 static void calc_load_migrate(struct rq *rq)
7571 long delta = calc_load_fold_active(rq, 1);
7573 if (delta)
7574 atomic_long_add(delta, &calc_load_tasks);
7577 int sched_cpu_dying(unsigned int cpu)
7579 struct rq *rq = cpu_rq(cpu);
7580 struct rq_flags rf;
7582 /* Handle pending wakeups and then migrate everything off */
7583 sched_tick_stop(cpu);
7585 rq_lock_irqsave(rq, &rf);
7586 BUG_ON(rq->nr_running != 1 || rq_has_pinned_tasks(rq));
7587 rq_unlock_irqrestore(rq, &rf);
7589 calc_load_migrate(rq);
7590 update_max_interval();
7591 nohz_balance_exit_idle(rq);
7592 hrtick_clear(rq);
7593 return 0;
7595 #endif
7597 void __init sched_init_smp(void)
7599 sched_init_numa();
7602 * There's no userspace yet to cause hotplug operations; hence all the
7603 * CPU masks are stable and all blatant races in the below code cannot
7604 * happen.
7606 mutex_lock(&sched_domains_mutex);
7607 sched_init_domains(cpu_active_mask);
7608 mutex_unlock(&sched_domains_mutex);
7610 /* Move init over to a non-isolated CPU */
7611 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7612 BUG();
7613 sched_init_granularity();
7615 init_sched_rt_class();
7616 init_sched_dl_class();
7618 sched_smp_initialized = true;
7621 static int __init migration_init(void)
7623 sched_cpu_starting(smp_processor_id());
7624 return 0;
7626 early_initcall(migration_init);
7628 #else
7629 void __init sched_init_smp(void)
7631 sched_init_granularity();
7633 #endif /* CONFIG_SMP */
7635 int in_sched_functions(unsigned long addr)
7637 return in_lock_functions(addr) ||
7638 (addr >= (unsigned long)__sched_text_start
7639 && addr < (unsigned long)__sched_text_end);
7642 #ifdef CONFIG_CGROUP_SCHED
7644 * Default task group.
7645 * Every task in system belongs to this group at bootup.
7647 struct task_group root_task_group;
7648 LIST_HEAD(task_groups);
7650 /* Cacheline aligned slab cache for task_group */
7651 static struct kmem_cache *task_group_cache __read_mostly;
7652 #endif
7654 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7655 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7657 void __init sched_init(void)
7659 unsigned long ptr = 0;
7660 int i;
7662 /* Make sure the linker didn't screw up */
7663 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7664 &fair_sched_class + 1 != &rt_sched_class ||
7665 &rt_sched_class + 1 != &dl_sched_class);
7666 #ifdef CONFIG_SMP
7667 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7668 #endif
7670 wait_bit_init();
7672 #ifdef CONFIG_FAIR_GROUP_SCHED
7673 ptr += 2 * nr_cpu_ids * sizeof(void **);
7674 #endif
7675 #ifdef CONFIG_RT_GROUP_SCHED
7676 ptr += 2 * nr_cpu_ids * sizeof(void **);
7677 #endif
7678 if (ptr) {
7679 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7681 #ifdef CONFIG_FAIR_GROUP_SCHED
7682 root_task_group.se = (struct sched_entity **)ptr;
7683 ptr += nr_cpu_ids * sizeof(void **);
7685 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7686 ptr += nr_cpu_ids * sizeof(void **);
7688 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7689 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7690 #endif /* CONFIG_FAIR_GROUP_SCHED */
7691 #ifdef CONFIG_RT_GROUP_SCHED
7692 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7693 ptr += nr_cpu_ids * sizeof(void **);
7695 root_task_group.rt_rq = (struct rt_rq **)ptr;
7696 ptr += nr_cpu_ids * sizeof(void **);
7698 #endif /* CONFIG_RT_GROUP_SCHED */
7700 #ifdef CONFIG_CPUMASK_OFFSTACK
7701 for_each_possible_cpu(i) {
7702 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7703 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7704 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7705 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7707 #endif /* CONFIG_CPUMASK_OFFSTACK */
7709 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7710 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7712 #ifdef CONFIG_SMP
7713 init_defrootdomain();
7714 #endif
7716 #ifdef CONFIG_RT_GROUP_SCHED
7717 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7718 global_rt_period(), global_rt_runtime());
7719 #endif /* CONFIG_RT_GROUP_SCHED */
7721 #ifdef CONFIG_CGROUP_SCHED
7722 task_group_cache = KMEM_CACHE(task_group, 0);
7724 list_add(&root_task_group.list, &task_groups);
7725 INIT_LIST_HEAD(&root_task_group.children);
7726 INIT_LIST_HEAD(&root_task_group.siblings);
7727 autogroup_init(&init_task);
7728 #endif /* CONFIG_CGROUP_SCHED */
7730 for_each_possible_cpu(i) {
7731 struct rq *rq;
7733 rq = cpu_rq(i);
7734 raw_spin_lock_init(&rq->lock);
7735 rq->nr_running = 0;
7736 rq->calc_load_active = 0;
7737 rq->calc_load_update = jiffies + LOAD_FREQ;
7738 init_cfs_rq(&rq->cfs);
7739 init_rt_rq(&rq->rt);
7740 init_dl_rq(&rq->dl);
7741 #ifdef CONFIG_FAIR_GROUP_SCHED
7742 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7743 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7745 * How much CPU bandwidth does root_task_group get?
7747 * In case of task-groups formed thr' the cgroup filesystem, it
7748 * gets 100% of the CPU resources in the system. This overall
7749 * system CPU resource is divided among the tasks of
7750 * root_task_group and its child task-groups in a fair manner,
7751 * based on each entity's (task or task-group's) weight
7752 * (se->load.weight).
7754 * In other words, if root_task_group has 10 tasks of weight
7755 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7756 * then A0's share of the CPU resource is:
7758 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7760 * We achieve this by letting root_task_group's tasks sit
7761 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7763 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7764 #endif /* CONFIG_FAIR_GROUP_SCHED */
7766 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7767 #ifdef CONFIG_RT_GROUP_SCHED
7768 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7769 #endif
7770 #ifdef CONFIG_SMP
7771 rq->sd = NULL;
7772 rq->rd = NULL;
7773 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7774 rq->balance_callback = NULL;
7775 rq->active_balance = 0;
7776 rq->next_balance = jiffies;
7777 rq->push_cpu = 0;
7778 rq->cpu = i;
7779 rq->online = 0;
7780 rq->idle_stamp = 0;
7781 rq->avg_idle = 2*sysctl_sched_migration_cost;
7782 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7784 INIT_LIST_HEAD(&rq->cfs_tasks);
7786 rq_attach_root(rq, &def_root_domain);
7787 #ifdef CONFIG_NO_HZ_COMMON
7788 rq->last_blocked_load_update_tick = jiffies;
7789 atomic_set(&rq->nohz_flags, 0);
7791 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
7792 #endif
7793 #ifdef CONFIG_HOTPLUG_CPU
7794 rcuwait_init(&rq->hotplug_wait);
7795 #endif
7796 #endif /* CONFIG_SMP */
7797 hrtick_rq_init(rq);
7798 atomic_set(&rq->nr_iowait, 0);
7801 set_load_weight(&init_task, false);
7804 * The boot idle thread does lazy MMU switching as well:
7806 mmgrab(&init_mm);
7807 enter_lazy_tlb(&init_mm, current);
7810 * Make us the idle thread. Technically, schedule() should not be
7811 * called from this thread, however somewhere below it might be,
7812 * but because we are the idle thread, we just pick up running again
7813 * when this runqueue becomes "idle".
7815 init_idle(current, smp_processor_id());
7817 calc_load_update = jiffies + LOAD_FREQ;
7819 #ifdef CONFIG_SMP
7820 idle_thread_set_boot_cpu();
7821 #endif
7822 init_sched_fair_class();
7824 init_schedstats();
7826 psi_init();
7828 init_uclamp();
7830 scheduler_running = 1;
7833 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7834 static inline int preempt_count_equals(int preempt_offset)
7836 int nested = preempt_count() + rcu_preempt_depth();
7838 return (nested == preempt_offset);
7841 void __might_sleep(const char *file, int line, int preempt_offset)
7844 * Blocking primitives will set (and therefore destroy) current->state,
7845 * since we will exit with TASK_RUNNING make sure we enter with it,
7846 * otherwise we will destroy state.
7848 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7849 "do not call blocking ops when !TASK_RUNNING; "
7850 "state=%lx set at [<%p>] %pS\n",
7851 current->state,
7852 (void *)current->task_state_change,
7853 (void *)current->task_state_change);
7855 ___might_sleep(file, line, preempt_offset);
7857 EXPORT_SYMBOL(__might_sleep);
7859 void ___might_sleep(const char *file, int line, int preempt_offset)
7861 /* Ratelimiting timestamp: */
7862 static unsigned long prev_jiffy;
7864 unsigned long preempt_disable_ip;
7866 /* WARN_ON_ONCE() by default, no rate limit required: */
7867 rcu_sleep_check();
7869 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7870 !is_idle_task(current) && !current->non_block_count) ||
7871 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7872 oops_in_progress)
7873 return;
7875 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7876 return;
7877 prev_jiffy = jiffies;
7879 /* Save this before calling printk(), since that will clobber it: */
7880 preempt_disable_ip = get_preempt_disable_ip(current);
7882 printk(KERN_ERR
7883 "BUG: sleeping function called from invalid context at %s:%d\n",
7884 file, line);
7885 printk(KERN_ERR
7886 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7887 in_atomic(), irqs_disabled(), current->non_block_count,
7888 current->pid, current->comm);
7890 if (task_stack_end_corrupted(current))
7891 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7893 debug_show_held_locks(current);
7894 if (irqs_disabled())
7895 print_irqtrace_events(current);
7896 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7897 && !preempt_count_equals(preempt_offset)) {
7898 pr_err("Preemption disabled at:");
7899 print_ip_sym(KERN_ERR, preempt_disable_ip);
7901 dump_stack();
7902 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7904 EXPORT_SYMBOL(___might_sleep);
7906 void __cant_sleep(const char *file, int line, int preempt_offset)
7908 static unsigned long prev_jiffy;
7910 if (irqs_disabled())
7911 return;
7913 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7914 return;
7916 if (preempt_count() > preempt_offset)
7917 return;
7919 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7920 return;
7921 prev_jiffy = jiffies;
7923 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7924 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7925 in_atomic(), irqs_disabled(),
7926 current->pid, current->comm);
7928 debug_show_held_locks(current);
7929 dump_stack();
7930 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7932 EXPORT_SYMBOL_GPL(__cant_sleep);
7934 #ifdef CONFIG_SMP
7935 void __cant_migrate(const char *file, int line)
7937 static unsigned long prev_jiffy;
7939 if (irqs_disabled())
7940 return;
7942 if (is_migration_disabled(current))
7943 return;
7945 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7946 return;
7948 if (preempt_count() > 0)
7949 return;
7951 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7952 return;
7953 prev_jiffy = jiffies;
7955 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
7956 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
7957 in_atomic(), irqs_disabled(), is_migration_disabled(current),
7958 current->pid, current->comm);
7960 debug_show_held_locks(current);
7961 dump_stack();
7962 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7964 EXPORT_SYMBOL_GPL(__cant_migrate);
7965 #endif
7966 #endif
7968 #ifdef CONFIG_MAGIC_SYSRQ
7969 void normalize_rt_tasks(void)
7971 struct task_struct *g, *p;
7972 struct sched_attr attr = {
7973 .sched_policy = SCHED_NORMAL,
7976 read_lock(&tasklist_lock);
7977 for_each_process_thread(g, p) {
7979 * Only normalize user tasks:
7981 if (p->flags & PF_KTHREAD)
7982 continue;
7984 p->se.exec_start = 0;
7985 schedstat_set(p->se.statistics.wait_start, 0);
7986 schedstat_set(p->se.statistics.sleep_start, 0);
7987 schedstat_set(p->se.statistics.block_start, 0);
7989 if (!dl_task(p) && !rt_task(p)) {
7991 * Renice negative nice level userspace
7992 * tasks back to 0:
7994 if (task_nice(p) < 0)
7995 set_user_nice(p, 0);
7996 continue;
7999 __sched_setscheduler(p, &attr, false, false);
8001 read_unlock(&tasklist_lock);
8004 #endif /* CONFIG_MAGIC_SYSRQ */
8006 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8008 * These functions are only useful for the IA64 MCA handling, or kdb.
8010 * They can only be called when the whole system has been
8011 * stopped - every CPU needs to be quiescent, and no scheduling
8012 * activity can take place. Using them for anything else would
8013 * be a serious bug, and as a result, they aren't even visible
8014 * under any other configuration.
8018 * curr_task - return the current task for a given CPU.
8019 * @cpu: the processor in question.
8021 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8023 * Return: The current task for @cpu.
8025 struct task_struct *curr_task(int cpu)
8027 return cpu_curr(cpu);
8030 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8032 #ifdef CONFIG_IA64
8034 * ia64_set_curr_task - set the current task for a given CPU.
8035 * @cpu: the processor in question.
8036 * @p: the task pointer to set.
8038 * Description: This function must only be used when non-maskable interrupts
8039 * are serviced on a separate stack. It allows the architecture to switch the
8040 * notion of the current task on a CPU in a non-blocking manner. This function
8041 * must be called with all CPU's synchronized, and interrupts disabled, the
8042 * and caller must save the original value of the current task (see
8043 * curr_task() above) and restore that value before reenabling interrupts and
8044 * re-starting the system.
8046 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8048 void ia64_set_curr_task(int cpu, struct task_struct *p)
8050 cpu_curr(cpu) = p;
8053 #endif
8055 #ifdef CONFIG_CGROUP_SCHED
8056 /* task_group_lock serializes the addition/removal of task groups */
8057 static DEFINE_SPINLOCK(task_group_lock);
8059 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8060 struct task_group *parent)
8062 #ifdef CONFIG_UCLAMP_TASK_GROUP
8063 enum uclamp_id clamp_id;
8065 for_each_clamp_id(clamp_id) {
8066 uclamp_se_set(&tg->uclamp_req[clamp_id],
8067 uclamp_none(clamp_id), false);
8068 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8070 #endif
8073 static void sched_free_group(struct task_group *tg)
8075 free_fair_sched_group(tg);
8076 free_rt_sched_group(tg);
8077 autogroup_free(tg);
8078 kmem_cache_free(task_group_cache, tg);
8081 /* allocate runqueue etc for a new task group */
8082 struct task_group *sched_create_group(struct task_group *parent)
8084 struct task_group *tg;
8086 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8087 if (!tg)
8088 return ERR_PTR(-ENOMEM);
8090 if (!alloc_fair_sched_group(tg, parent))
8091 goto err;
8093 if (!alloc_rt_sched_group(tg, parent))
8094 goto err;
8096 alloc_uclamp_sched_group(tg, parent);
8098 return tg;
8100 err:
8101 sched_free_group(tg);
8102 return ERR_PTR(-ENOMEM);
8105 void sched_online_group(struct task_group *tg, struct task_group *parent)
8107 unsigned long flags;
8109 spin_lock_irqsave(&task_group_lock, flags);
8110 list_add_rcu(&tg->list, &task_groups);
8112 /* Root should already exist: */
8113 WARN_ON(!parent);
8115 tg->parent = parent;
8116 INIT_LIST_HEAD(&tg->children);
8117 list_add_rcu(&tg->siblings, &parent->children);
8118 spin_unlock_irqrestore(&task_group_lock, flags);
8120 online_fair_sched_group(tg);
8123 /* rcu callback to free various structures associated with a task group */
8124 static void sched_free_group_rcu(struct rcu_head *rhp)
8126 /* Now it should be safe to free those cfs_rqs: */
8127 sched_free_group(container_of(rhp, struct task_group, rcu));
8130 void sched_destroy_group(struct task_group *tg)
8132 /* Wait for possible concurrent references to cfs_rqs complete: */
8133 call_rcu(&tg->rcu, sched_free_group_rcu);
8136 void sched_offline_group(struct task_group *tg)
8138 unsigned long flags;
8140 /* End participation in shares distribution: */
8141 unregister_fair_sched_group(tg);
8143 spin_lock_irqsave(&task_group_lock, flags);
8144 list_del_rcu(&tg->list);
8145 list_del_rcu(&tg->siblings);
8146 spin_unlock_irqrestore(&task_group_lock, flags);
8149 static void sched_change_group(struct task_struct *tsk, int type)
8151 struct task_group *tg;
8154 * All callers are synchronized by task_rq_lock(); we do not use RCU
8155 * which is pointless here. Thus, we pass "true" to task_css_check()
8156 * to prevent lockdep warnings.
8158 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8159 struct task_group, css);
8160 tg = autogroup_task_group(tsk, tg);
8161 tsk->sched_task_group = tg;
8163 #ifdef CONFIG_FAIR_GROUP_SCHED
8164 if (tsk->sched_class->task_change_group)
8165 tsk->sched_class->task_change_group(tsk, type);
8166 else
8167 #endif
8168 set_task_rq(tsk, task_cpu(tsk));
8172 * Change task's runqueue when it moves between groups.
8174 * The caller of this function should have put the task in its new group by
8175 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8176 * its new group.
8178 void sched_move_task(struct task_struct *tsk)
8180 int queued, running, queue_flags =
8181 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8182 struct rq_flags rf;
8183 struct rq *rq;
8185 rq = task_rq_lock(tsk, &rf);
8186 update_rq_clock(rq);
8188 running = task_current(rq, tsk);
8189 queued = task_on_rq_queued(tsk);
8191 if (queued)
8192 dequeue_task(rq, tsk, queue_flags);
8193 if (running)
8194 put_prev_task(rq, tsk);
8196 sched_change_group(tsk, TASK_MOVE_GROUP);
8198 if (queued)
8199 enqueue_task(rq, tsk, queue_flags);
8200 if (running) {
8201 set_next_task(rq, tsk);
8203 * After changing group, the running task may have joined a
8204 * throttled one but it's still the running task. Trigger a
8205 * resched to make sure that task can still run.
8207 resched_curr(rq);
8210 task_rq_unlock(rq, tsk, &rf);
8213 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8215 return css ? container_of(css, struct task_group, css) : NULL;
8218 static struct cgroup_subsys_state *
8219 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8221 struct task_group *parent = css_tg(parent_css);
8222 struct task_group *tg;
8224 if (!parent) {
8225 /* This is early initialization for the top cgroup */
8226 return &root_task_group.css;
8229 tg = sched_create_group(parent);
8230 if (IS_ERR(tg))
8231 return ERR_PTR(-ENOMEM);
8233 return &tg->css;
8236 /* Expose task group only after completing cgroup initialization */
8237 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8239 struct task_group *tg = css_tg(css);
8240 struct task_group *parent = css_tg(css->parent);
8242 if (parent)
8243 sched_online_group(tg, parent);
8245 #ifdef CONFIG_UCLAMP_TASK_GROUP
8246 /* Propagate the effective uclamp value for the new group */
8247 cpu_util_update_eff(css);
8248 #endif
8250 return 0;
8253 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8255 struct task_group *tg = css_tg(css);
8257 sched_offline_group(tg);
8260 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8262 struct task_group *tg = css_tg(css);
8265 * Relies on the RCU grace period between css_released() and this.
8267 sched_free_group(tg);
8271 * This is called before wake_up_new_task(), therefore we really only
8272 * have to set its group bits, all the other stuff does not apply.
8274 static void cpu_cgroup_fork(struct task_struct *task)
8276 struct rq_flags rf;
8277 struct rq *rq;
8279 rq = task_rq_lock(task, &rf);
8281 update_rq_clock(rq);
8282 sched_change_group(task, TASK_SET_GROUP);
8284 task_rq_unlock(rq, task, &rf);
8287 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8289 struct task_struct *task;
8290 struct cgroup_subsys_state *css;
8291 int ret = 0;
8293 cgroup_taskset_for_each(task, css, tset) {
8294 #ifdef CONFIG_RT_GROUP_SCHED
8295 if (!sched_rt_can_attach(css_tg(css), task))
8296 return -EINVAL;
8297 #endif
8299 * Serialize against wake_up_new_task() such that if it's
8300 * running, we're sure to observe its full state.
8302 raw_spin_lock_irq(&task->pi_lock);
8304 * Avoid calling sched_move_task() before wake_up_new_task()
8305 * has happened. This would lead to problems with PELT, due to
8306 * move wanting to detach+attach while we're not attached yet.
8308 if (task->state == TASK_NEW)
8309 ret = -EINVAL;
8310 raw_spin_unlock_irq(&task->pi_lock);
8312 if (ret)
8313 break;
8315 return ret;
8318 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8320 struct task_struct *task;
8321 struct cgroup_subsys_state *css;
8323 cgroup_taskset_for_each(task, css, tset)
8324 sched_move_task(task);
8327 #ifdef CONFIG_UCLAMP_TASK_GROUP
8328 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8330 struct cgroup_subsys_state *top_css = css;
8331 struct uclamp_se *uc_parent = NULL;
8332 struct uclamp_se *uc_se = NULL;
8333 unsigned int eff[UCLAMP_CNT];
8334 enum uclamp_id clamp_id;
8335 unsigned int clamps;
8337 css_for_each_descendant_pre(css, top_css) {
8338 uc_parent = css_tg(css)->parent
8339 ? css_tg(css)->parent->uclamp : NULL;
8341 for_each_clamp_id(clamp_id) {
8342 /* Assume effective clamps matches requested clamps */
8343 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8344 /* Cap effective clamps with parent's effective clamps */
8345 if (uc_parent &&
8346 eff[clamp_id] > uc_parent[clamp_id].value) {
8347 eff[clamp_id] = uc_parent[clamp_id].value;
8350 /* Ensure protection is always capped by limit */
8351 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8353 /* Propagate most restrictive effective clamps */
8354 clamps = 0x0;
8355 uc_se = css_tg(css)->uclamp;
8356 for_each_clamp_id(clamp_id) {
8357 if (eff[clamp_id] == uc_se[clamp_id].value)
8358 continue;
8359 uc_se[clamp_id].value = eff[clamp_id];
8360 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8361 clamps |= (0x1 << clamp_id);
8363 if (!clamps) {
8364 css = css_rightmost_descendant(css);
8365 continue;
8368 /* Immediately update descendants RUNNABLE tasks */
8369 uclamp_update_active_tasks(css, clamps);
8374 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8375 * C expression. Since there is no way to convert a macro argument (N) into a
8376 * character constant, use two levels of macros.
8378 #define _POW10(exp) ((unsigned int)1e##exp)
8379 #define POW10(exp) _POW10(exp)
8381 struct uclamp_request {
8382 #define UCLAMP_PERCENT_SHIFT 2
8383 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8384 s64 percent;
8385 u64 util;
8386 int ret;
8389 static inline struct uclamp_request
8390 capacity_from_percent(char *buf)
8392 struct uclamp_request req = {
8393 .percent = UCLAMP_PERCENT_SCALE,
8394 .util = SCHED_CAPACITY_SCALE,
8395 .ret = 0,
8398 buf = strim(buf);
8399 if (strcmp(buf, "max")) {
8400 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8401 &req.percent);
8402 if (req.ret)
8403 return req;
8404 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8405 req.ret = -ERANGE;
8406 return req;
8409 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8410 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8413 return req;
8416 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8417 size_t nbytes, loff_t off,
8418 enum uclamp_id clamp_id)
8420 struct uclamp_request req;
8421 struct task_group *tg;
8423 req = capacity_from_percent(buf);
8424 if (req.ret)
8425 return req.ret;
8427 static_branch_enable(&sched_uclamp_used);
8429 mutex_lock(&uclamp_mutex);
8430 rcu_read_lock();
8432 tg = css_tg(of_css(of));
8433 if (tg->uclamp_req[clamp_id].value != req.util)
8434 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8437 * Because of not recoverable conversion rounding we keep track of the
8438 * exact requested value
8440 tg->uclamp_pct[clamp_id] = req.percent;
8442 /* Update effective clamps to track the most restrictive value */
8443 cpu_util_update_eff(of_css(of));
8445 rcu_read_unlock();
8446 mutex_unlock(&uclamp_mutex);
8448 return nbytes;
8451 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8452 char *buf, size_t nbytes,
8453 loff_t off)
8455 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8458 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8459 char *buf, size_t nbytes,
8460 loff_t off)
8462 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8465 static inline void cpu_uclamp_print(struct seq_file *sf,
8466 enum uclamp_id clamp_id)
8468 struct task_group *tg;
8469 u64 util_clamp;
8470 u64 percent;
8471 u32 rem;
8473 rcu_read_lock();
8474 tg = css_tg(seq_css(sf));
8475 util_clamp = tg->uclamp_req[clamp_id].value;
8476 rcu_read_unlock();
8478 if (util_clamp == SCHED_CAPACITY_SCALE) {
8479 seq_puts(sf, "max\n");
8480 return;
8483 percent = tg->uclamp_pct[clamp_id];
8484 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8485 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8488 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8490 cpu_uclamp_print(sf, UCLAMP_MIN);
8491 return 0;
8494 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8496 cpu_uclamp_print(sf, UCLAMP_MAX);
8497 return 0;
8499 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8501 #ifdef CONFIG_FAIR_GROUP_SCHED
8502 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8503 struct cftype *cftype, u64 shareval)
8505 if (shareval > scale_load_down(ULONG_MAX))
8506 shareval = MAX_SHARES;
8507 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8510 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8511 struct cftype *cft)
8513 struct task_group *tg = css_tg(css);
8515 return (u64) scale_load_down(tg->shares);
8518 #ifdef CONFIG_CFS_BANDWIDTH
8519 static DEFINE_MUTEX(cfs_constraints_mutex);
8521 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8522 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8523 /* More than 203 days if BW_SHIFT equals 20. */
8524 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8526 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8528 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8530 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8531 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8533 if (tg == &root_task_group)
8534 return -EINVAL;
8537 * Ensure we have at some amount of bandwidth every period. This is
8538 * to prevent reaching a state of large arrears when throttled via
8539 * entity_tick() resulting in prolonged exit starvation.
8541 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8542 return -EINVAL;
8545 * Likewise, bound things on the otherside by preventing insane quota
8546 * periods. This also allows us to normalize in computing quota
8547 * feasibility.
8549 if (period > max_cfs_quota_period)
8550 return -EINVAL;
8553 * Bound quota to defend quota against overflow during bandwidth shift.
8555 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8556 return -EINVAL;
8559 * Prevent race between setting of cfs_rq->runtime_enabled and
8560 * unthrottle_offline_cfs_rqs().
8562 get_online_cpus();
8563 mutex_lock(&cfs_constraints_mutex);
8564 ret = __cfs_schedulable(tg, period, quota);
8565 if (ret)
8566 goto out_unlock;
8568 runtime_enabled = quota != RUNTIME_INF;
8569 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8571 * If we need to toggle cfs_bandwidth_used, off->on must occur
8572 * before making related changes, and on->off must occur afterwards
8574 if (runtime_enabled && !runtime_was_enabled)
8575 cfs_bandwidth_usage_inc();
8576 raw_spin_lock_irq(&cfs_b->lock);
8577 cfs_b->period = ns_to_ktime(period);
8578 cfs_b->quota = quota;
8580 __refill_cfs_bandwidth_runtime(cfs_b);
8582 /* Restart the period timer (if active) to handle new period expiry: */
8583 if (runtime_enabled)
8584 start_cfs_bandwidth(cfs_b);
8586 raw_spin_unlock_irq(&cfs_b->lock);
8588 for_each_online_cpu(i) {
8589 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8590 struct rq *rq = cfs_rq->rq;
8591 struct rq_flags rf;
8593 rq_lock_irq(rq, &rf);
8594 cfs_rq->runtime_enabled = runtime_enabled;
8595 cfs_rq->runtime_remaining = 0;
8597 if (cfs_rq->throttled)
8598 unthrottle_cfs_rq(cfs_rq);
8599 rq_unlock_irq(rq, &rf);
8601 if (runtime_was_enabled && !runtime_enabled)
8602 cfs_bandwidth_usage_dec();
8603 out_unlock:
8604 mutex_unlock(&cfs_constraints_mutex);
8605 put_online_cpus();
8607 return ret;
8610 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8612 u64 quota, period;
8614 period = ktime_to_ns(tg->cfs_bandwidth.period);
8615 if (cfs_quota_us < 0)
8616 quota = RUNTIME_INF;
8617 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8618 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8619 else
8620 return -EINVAL;
8622 return tg_set_cfs_bandwidth(tg, period, quota);
8625 static long tg_get_cfs_quota(struct task_group *tg)
8627 u64 quota_us;
8629 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8630 return -1;
8632 quota_us = tg->cfs_bandwidth.quota;
8633 do_div(quota_us, NSEC_PER_USEC);
8635 return quota_us;
8638 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8640 u64 quota, period;
8642 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8643 return -EINVAL;
8645 period = (u64)cfs_period_us * NSEC_PER_USEC;
8646 quota = tg->cfs_bandwidth.quota;
8648 return tg_set_cfs_bandwidth(tg, period, quota);
8651 static long tg_get_cfs_period(struct task_group *tg)
8653 u64 cfs_period_us;
8655 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8656 do_div(cfs_period_us, NSEC_PER_USEC);
8658 return cfs_period_us;
8661 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8662 struct cftype *cft)
8664 return tg_get_cfs_quota(css_tg(css));
8667 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8668 struct cftype *cftype, s64 cfs_quota_us)
8670 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8673 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8674 struct cftype *cft)
8676 return tg_get_cfs_period(css_tg(css));
8679 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8680 struct cftype *cftype, u64 cfs_period_us)
8682 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8685 struct cfs_schedulable_data {
8686 struct task_group *tg;
8687 u64 period, quota;
8691 * normalize group quota/period to be quota/max_period
8692 * note: units are usecs
8694 static u64 normalize_cfs_quota(struct task_group *tg,
8695 struct cfs_schedulable_data *d)
8697 u64 quota, period;
8699 if (tg == d->tg) {
8700 period = d->period;
8701 quota = d->quota;
8702 } else {
8703 period = tg_get_cfs_period(tg);
8704 quota = tg_get_cfs_quota(tg);
8707 /* note: these should typically be equivalent */
8708 if (quota == RUNTIME_INF || quota == -1)
8709 return RUNTIME_INF;
8711 return to_ratio(period, quota);
8714 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8716 struct cfs_schedulable_data *d = data;
8717 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8718 s64 quota = 0, parent_quota = -1;
8720 if (!tg->parent) {
8721 quota = RUNTIME_INF;
8722 } else {
8723 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8725 quota = normalize_cfs_quota(tg, d);
8726 parent_quota = parent_b->hierarchical_quota;
8729 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8730 * always take the min. On cgroup1, only inherit when no
8731 * limit is set:
8733 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8734 quota = min(quota, parent_quota);
8735 } else {
8736 if (quota == RUNTIME_INF)
8737 quota = parent_quota;
8738 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8739 return -EINVAL;
8742 cfs_b->hierarchical_quota = quota;
8744 return 0;
8747 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8749 int ret;
8750 struct cfs_schedulable_data data = {
8751 .tg = tg,
8752 .period = period,
8753 .quota = quota,
8756 if (quota != RUNTIME_INF) {
8757 do_div(data.period, NSEC_PER_USEC);
8758 do_div(data.quota, NSEC_PER_USEC);
8761 rcu_read_lock();
8762 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8763 rcu_read_unlock();
8765 return ret;
8768 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8770 struct task_group *tg = css_tg(seq_css(sf));
8771 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8773 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8774 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8775 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8777 if (schedstat_enabled() && tg != &root_task_group) {
8778 u64 ws = 0;
8779 int i;
8781 for_each_possible_cpu(i)
8782 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8784 seq_printf(sf, "wait_sum %llu\n", ws);
8787 return 0;
8789 #endif /* CONFIG_CFS_BANDWIDTH */
8790 #endif /* CONFIG_FAIR_GROUP_SCHED */
8792 #ifdef CONFIG_RT_GROUP_SCHED
8793 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8794 struct cftype *cft, s64 val)
8796 return sched_group_set_rt_runtime(css_tg(css), val);
8799 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8800 struct cftype *cft)
8802 return sched_group_rt_runtime(css_tg(css));
8805 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8806 struct cftype *cftype, u64 rt_period_us)
8808 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8811 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8812 struct cftype *cft)
8814 return sched_group_rt_period(css_tg(css));
8816 #endif /* CONFIG_RT_GROUP_SCHED */
8818 static struct cftype cpu_legacy_files[] = {
8819 #ifdef CONFIG_FAIR_GROUP_SCHED
8821 .name = "shares",
8822 .read_u64 = cpu_shares_read_u64,
8823 .write_u64 = cpu_shares_write_u64,
8825 #endif
8826 #ifdef CONFIG_CFS_BANDWIDTH
8828 .name = "cfs_quota_us",
8829 .read_s64 = cpu_cfs_quota_read_s64,
8830 .write_s64 = cpu_cfs_quota_write_s64,
8833 .name = "cfs_period_us",
8834 .read_u64 = cpu_cfs_period_read_u64,
8835 .write_u64 = cpu_cfs_period_write_u64,
8838 .name = "stat",
8839 .seq_show = cpu_cfs_stat_show,
8841 #endif
8842 #ifdef CONFIG_RT_GROUP_SCHED
8844 .name = "rt_runtime_us",
8845 .read_s64 = cpu_rt_runtime_read,
8846 .write_s64 = cpu_rt_runtime_write,
8849 .name = "rt_period_us",
8850 .read_u64 = cpu_rt_period_read_uint,
8851 .write_u64 = cpu_rt_period_write_uint,
8853 #endif
8854 #ifdef CONFIG_UCLAMP_TASK_GROUP
8856 .name = "uclamp.min",
8857 .flags = CFTYPE_NOT_ON_ROOT,
8858 .seq_show = cpu_uclamp_min_show,
8859 .write = cpu_uclamp_min_write,
8862 .name = "uclamp.max",
8863 .flags = CFTYPE_NOT_ON_ROOT,
8864 .seq_show = cpu_uclamp_max_show,
8865 .write = cpu_uclamp_max_write,
8867 #endif
8868 { } /* Terminate */
8871 static int cpu_extra_stat_show(struct seq_file *sf,
8872 struct cgroup_subsys_state *css)
8874 #ifdef CONFIG_CFS_BANDWIDTH
8876 struct task_group *tg = css_tg(css);
8877 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8878 u64 throttled_usec;
8880 throttled_usec = cfs_b->throttled_time;
8881 do_div(throttled_usec, NSEC_PER_USEC);
8883 seq_printf(sf, "nr_periods %d\n"
8884 "nr_throttled %d\n"
8885 "throttled_usec %llu\n",
8886 cfs_b->nr_periods, cfs_b->nr_throttled,
8887 throttled_usec);
8889 #endif
8890 return 0;
8893 #ifdef CONFIG_FAIR_GROUP_SCHED
8894 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8895 struct cftype *cft)
8897 struct task_group *tg = css_tg(css);
8898 u64 weight = scale_load_down(tg->shares);
8900 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8903 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8904 struct cftype *cft, u64 weight)
8907 * cgroup weight knobs should use the common MIN, DFL and MAX
8908 * values which are 1, 100 and 10000 respectively. While it loses
8909 * a bit of range on both ends, it maps pretty well onto the shares
8910 * value used by scheduler and the round-trip conversions preserve
8911 * the original value over the entire range.
8913 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8914 return -ERANGE;
8916 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8918 return sched_group_set_shares(css_tg(css), scale_load(weight));
8921 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8922 struct cftype *cft)
8924 unsigned long weight = scale_load_down(css_tg(css)->shares);
8925 int last_delta = INT_MAX;
8926 int prio, delta;
8928 /* find the closest nice value to the current weight */
8929 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8930 delta = abs(sched_prio_to_weight[prio] - weight);
8931 if (delta >= last_delta)
8932 break;
8933 last_delta = delta;
8936 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8939 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8940 struct cftype *cft, s64 nice)
8942 unsigned long weight;
8943 int idx;
8945 if (nice < MIN_NICE || nice > MAX_NICE)
8946 return -ERANGE;
8948 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8949 idx = array_index_nospec(idx, 40);
8950 weight = sched_prio_to_weight[idx];
8952 return sched_group_set_shares(css_tg(css), scale_load(weight));
8954 #endif
8956 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8957 long period, long quota)
8959 if (quota < 0)
8960 seq_puts(sf, "max");
8961 else
8962 seq_printf(sf, "%ld", quota);
8964 seq_printf(sf, " %ld\n", period);
8967 /* caller should put the current value in *@periodp before calling */
8968 static int __maybe_unused cpu_period_quota_parse(char *buf,
8969 u64 *periodp, u64 *quotap)
8971 char tok[21]; /* U64_MAX */
8973 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8974 return -EINVAL;
8976 *periodp *= NSEC_PER_USEC;
8978 if (sscanf(tok, "%llu", quotap))
8979 *quotap *= NSEC_PER_USEC;
8980 else if (!strcmp(tok, "max"))
8981 *quotap = RUNTIME_INF;
8982 else
8983 return -EINVAL;
8985 return 0;
8988 #ifdef CONFIG_CFS_BANDWIDTH
8989 static int cpu_max_show(struct seq_file *sf, void *v)
8991 struct task_group *tg = css_tg(seq_css(sf));
8993 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8994 return 0;
8997 static ssize_t cpu_max_write(struct kernfs_open_file *of,
8998 char *buf, size_t nbytes, loff_t off)
9000 struct task_group *tg = css_tg(of_css(of));
9001 u64 period = tg_get_cfs_period(tg);
9002 u64 quota;
9003 int ret;
9005 ret = cpu_period_quota_parse(buf, &period, &quota);
9006 if (!ret)
9007 ret = tg_set_cfs_bandwidth(tg, period, quota);
9008 return ret ?: nbytes;
9010 #endif
9012 static struct cftype cpu_files[] = {
9013 #ifdef CONFIG_FAIR_GROUP_SCHED
9015 .name = "weight",
9016 .flags = CFTYPE_NOT_ON_ROOT,
9017 .read_u64 = cpu_weight_read_u64,
9018 .write_u64 = cpu_weight_write_u64,
9021 .name = "weight.nice",
9022 .flags = CFTYPE_NOT_ON_ROOT,
9023 .read_s64 = cpu_weight_nice_read_s64,
9024 .write_s64 = cpu_weight_nice_write_s64,
9026 #endif
9027 #ifdef CONFIG_CFS_BANDWIDTH
9029 .name = "max",
9030 .flags = CFTYPE_NOT_ON_ROOT,
9031 .seq_show = cpu_max_show,
9032 .write = cpu_max_write,
9034 #endif
9035 #ifdef CONFIG_UCLAMP_TASK_GROUP
9037 .name = "uclamp.min",
9038 .flags = CFTYPE_NOT_ON_ROOT,
9039 .seq_show = cpu_uclamp_min_show,
9040 .write = cpu_uclamp_min_write,
9043 .name = "uclamp.max",
9044 .flags = CFTYPE_NOT_ON_ROOT,
9045 .seq_show = cpu_uclamp_max_show,
9046 .write = cpu_uclamp_max_write,
9048 #endif
9049 { } /* terminate */
9052 struct cgroup_subsys cpu_cgrp_subsys = {
9053 .css_alloc = cpu_cgroup_css_alloc,
9054 .css_online = cpu_cgroup_css_online,
9055 .css_released = cpu_cgroup_css_released,
9056 .css_free = cpu_cgroup_css_free,
9057 .css_extra_stat_show = cpu_extra_stat_show,
9058 .fork = cpu_cgroup_fork,
9059 .can_attach = cpu_cgroup_can_attach,
9060 .attach = cpu_cgroup_attach,
9061 .legacy_cftypes = cpu_legacy_files,
9062 .dfl_cftypes = cpu_files,
9063 .early_init = true,
9064 .threaded = true,
9067 #endif /* CONFIG_CGROUP_SCHED */
9069 void dump_cpu_task(int cpu)
9071 pr_info("Task dump for CPU %d:\n", cpu);
9072 sched_show_task(cpu_curr(cpu));
9076 * Nice levels are multiplicative, with a gentle 10% change for every
9077 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9078 * nice 1, it will get ~10% less CPU time than another CPU-bound task
9079 * that remained on nice 0.
9081 * The "10% effect" is relative and cumulative: from _any_ nice level,
9082 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9083 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9084 * If a task goes up by ~10% and another task goes down by ~10% then
9085 * the relative distance between them is ~25%.)
9087 const int sched_prio_to_weight[40] = {
9088 /* -20 */ 88761, 71755, 56483, 46273, 36291,
9089 /* -15 */ 29154, 23254, 18705, 14949, 11916,
9090 /* -10 */ 9548, 7620, 6100, 4904, 3906,
9091 /* -5 */ 3121, 2501, 1991, 1586, 1277,
9092 /* 0 */ 1024, 820, 655, 526, 423,
9093 /* 5 */ 335, 272, 215, 172, 137,
9094 /* 10 */ 110, 87, 70, 56, 45,
9095 /* 15 */ 36, 29, 23, 18, 15,
9099 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9101 * In cases where the weight does not change often, we can use the
9102 * precalculated inverse to speed up arithmetics by turning divisions
9103 * into multiplications:
9105 const u32 sched_prio_to_wmult[40] = {
9106 /* -20 */ 48388, 59856, 76040, 92818, 118348,
9107 /* -15 */ 147320, 184698, 229616, 287308, 360437,
9108 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
9109 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
9110 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
9111 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
9112 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
9113 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9116 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9118 trace_sched_update_nr_running_tp(rq, count);