1 // SPDX-License-Identifier: GPL-2.0+
3 * This file contains the functions which manage clocksource drivers.
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
18 #include "tick-internal.h"
19 #include "timekeeping_internal.h"
22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
23 * @mult: pointer to mult variable
24 * @shift: pointer to shift variable
25 * @from: frequency to convert from
26 * @to: frequency to convert to
27 * @maxsec: guaranteed runtime conversion range in seconds
29 * The function evaluates the shift/mult pair for the scaled math
30 * operations of clocksources and clockevents.
32 * @to and @from are frequency values in HZ. For clock sources @to is
33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
36 * The @maxsec conversion range argument controls the time frame in
37 * seconds which must be covered by the runtime conversion with the
38 * calculated mult and shift factors. This guarantees that no 64bit
39 * overflow happens when the input value of the conversion is
40 * multiplied with the calculated mult factor. Larger ranges may
41 * reduce the conversion accuracy by chosing smaller mult and shift
45 clocks_calc_mult_shift(u32
*mult
, u32
*shift
, u32 from
, u32 to
, u32 maxsec
)
51 * Calculate the shift factor which is limiting the conversion
54 tmp
= ((u64
)maxsec
* from
) >> 32;
61 * Find the conversion shift/mult pair which has the best
62 * accuracy and fits the maxsec conversion range:
64 for (sft
= 32; sft
> 0; sft
--) {
65 tmp
= (u64
) to
<< sft
;
68 if ((tmp
>> sftacc
) == 0)
74 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift
);
76 /*[Clocksource internal variables]---------
78 * currently selected clocksource.
79 * suspend_clocksource:
80 * used to calculate the suspend time.
82 * linked list with the registered clocksources
84 * protects manipulations to curr_clocksource and the clocksource_list
86 * Name of the user-specified clocksource.
88 static struct clocksource
*curr_clocksource
;
89 static struct clocksource
*suspend_clocksource
;
90 static LIST_HEAD(clocksource_list
);
91 static DEFINE_MUTEX(clocksource_mutex
);
92 static char override_name
[CS_NAME_LEN
];
93 static int finished_booting
;
94 static u64 suspend_start
;
96 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
97 static void clocksource_watchdog_work(struct work_struct
*work
);
98 static void clocksource_select(void);
100 static LIST_HEAD(watchdog_list
);
101 static struct clocksource
*watchdog
;
102 static struct timer_list watchdog_timer
;
103 static DECLARE_WORK(watchdog_work
, clocksource_watchdog_work
);
104 static DEFINE_SPINLOCK(watchdog_lock
);
105 static int watchdog_running
;
106 static atomic_t watchdog_reset_pending
;
108 static inline void clocksource_watchdog_lock(unsigned long *flags
)
110 spin_lock_irqsave(&watchdog_lock
, *flags
);
113 static inline void clocksource_watchdog_unlock(unsigned long *flags
)
115 spin_unlock_irqrestore(&watchdog_lock
, *flags
);
118 static int clocksource_watchdog_kthread(void *data
);
119 static void __clocksource_change_rating(struct clocksource
*cs
, int rating
);
122 * Interval: 0.5sec Threshold: 0.0625s
124 #define WATCHDOG_INTERVAL (HZ >> 1)
125 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
127 static void clocksource_watchdog_work(struct work_struct
*work
)
130 * We cannot directly run clocksource_watchdog_kthread() here, because
131 * clocksource_select() calls timekeeping_notify() which uses
132 * stop_machine(). One cannot use stop_machine() from a workqueue() due
133 * lock inversions wrt CPU hotplug.
135 * Also, we only ever run this work once or twice during the lifetime
136 * of the kernel, so there is no point in creating a more permanent
139 * If kthread_run fails the next watchdog scan over the
140 * watchdog_list will find the unstable clock again.
142 kthread_run(clocksource_watchdog_kthread
, NULL
, "kwatchdog");
145 static void __clocksource_unstable(struct clocksource
*cs
)
147 cs
->flags
&= ~(CLOCK_SOURCE_VALID_FOR_HRES
| CLOCK_SOURCE_WATCHDOG
);
148 cs
->flags
|= CLOCK_SOURCE_UNSTABLE
;
151 * If the clocksource is registered clocksource_watchdog_kthread() will
152 * re-rate and re-select.
154 if (list_empty(&cs
->list
)) {
159 if (cs
->mark_unstable
)
160 cs
->mark_unstable(cs
);
162 /* kick clocksource_watchdog_kthread() */
163 if (finished_booting
)
164 schedule_work(&watchdog_work
);
168 * clocksource_mark_unstable - mark clocksource unstable via watchdog
169 * @cs: clocksource to be marked unstable
171 * This function is called by the x86 TSC code to mark clocksources as unstable;
172 * it defers demotion and re-selection to a kthread.
174 void clocksource_mark_unstable(struct clocksource
*cs
)
178 spin_lock_irqsave(&watchdog_lock
, flags
);
179 if (!(cs
->flags
& CLOCK_SOURCE_UNSTABLE
)) {
180 if (!list_empty(&cs
->list
) && list_empty(&cs
->wd_list
))
181 list_add(&cs
->wd_list
, &watchdog_list
);
182 __clocksource_unstable(cs
);
184 spin_unlock_irqrestore(&watchdog_lock
, flags
);
187 static void clocksource_watchdog(struct timer_list
*unused
)
189 struct clocksource
*cs
;
190 u64 csnow
, wdnow
, cslast
, wdlast
, delta
;
191 int64_t wd_nsec
, cs_nsec
;
192 int next_cpu
, reset_pending
;
194 spin_lock(&watchdog_lock
);
195 if (!watchdog_running
)
198 reset_pending
= atomic_read(&watchdog_reset_pending
);
200 list_for_each_entry(cs
, &watchdog_list
, wd_list
) {
202 /* Clocksource already marked unstable? */
203 if (cs
->flags
& CLOCK_SOURCE_UNSTABLE
) {
204 if (finished_booting
)
205 schedule_work(&watchdog_work
);
210 csnow
= cs
->read(cs
);
211 wdnow
= watchdog
->read(watchdog
);
214 /* Clocksource initialized ? */
215 if (!(cs
->flags
& CLOCK_SOURCE_WATCHDOG
) ||
216 atomic_read(&watchdog_reset_pending
)) {
217 cs
->flags
|= CLOCK_SOURCE_WATCHDOG
;
223 delta
= clocksource_delta(wdnow
, cs
->wd_last
, watchdog
->mask
);
224 wd_nsec
= clocksource_cyc2ns(delta
, watchdog
->mult
,
227 delta
= clocksource_delta(csnow
, cs
->cs_last
, cs
->mask
);
228 cs_nsec
= clocksource_cyc2ns(delta
, cs
->mult
, cs
->shift
);
229 wdlast
= cs
->wd_last
; /* save these in case we print them */
230 cslast
= cs
->cs_last
;
234 if (atomic_read(&watchdog_reset_pending
))
237 /* Check the deviation from the watchdog clocksource. */
238 if (abs(cs_nsec
- wd_nsec
) > WATCHDOG_THRESHOLD
) {
239 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
240 smp_processor_id(), cs
->name
);
241 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
242 watchdog
->name
, wdnow
, wdlast
, watchdog
->mask
);
243 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
244 cs
->name
, csnow
, cslast
, cs
->mask
);
245 __clocksource_unstable(cs
);
249 if (cs
== curr_clocksource
&& cs
->tick_stable
)
252 if (!(cs
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
) &&
253 (cs
->flags
& CLOCK_SOURCE_IS_CONTINUOUS
) &&
254 (watchdog
->flags
& CLOCK_SOURCE_IS_CONTINUOUS
)) {
255 /* Mark it valid for high-res. */
256 cs
->flags
|= CLOCK_SOURCE_VALID_FOR_HRES
;
259 * clocksource_done_booting() will sort it if
260 * finished_booting is not set yet.
262 if (!finished_booting
)
266 * If this is not the current clocksource let
267 * the watchdog thread reselect it. Due to the
268 * change to high res this clocksource might
269 * be preferred now. If it is the current
270 * clocksource let the tick code know about
273 if (cs
!= curr_clocksource
) {
274 cs
->flags
|= CLOCK_SOURCE_RESELECT
;
275 schedule_work(&watchdog_work
);
283 * We only clear the watchdog_reset_pending, when we did a
284 * full cycle through all clocksources.
287 atomic_dec(&watchdog_reset_pending
);
290 * Cycle through CPUs to check if the CPUs stay synchronized
293 next_cpu
= cpumask_next(raw_smp_processor_id(), cpu_online_mask
);
294 if (next_cpu
>= nr_cpu_ids
)
295 next_cpu
= cpumask_first(cpu_online_mask
);
298 * Arm timer if not already pending: could race with concurrent
299 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
301 if (!timer_pending(&watchdog_timer
)) {
302 watchdog_timer
.expires
+= WATCHDOG_INTERVAL
;
303 add_timer_on(&watchdog_timer
, next_cpu
);
306 spin_unlock(&watchdog_lock
);
309 static inline void clocksource_start_watchdog(void)
311 if (watchdog_running
|| !watchdog
|| list_empty(&watchdog_list
))
313 timer_setup(&watchdog_timer
, clocksource_watchdog
, 0);
314 watchdog_timer
.expires
= jiffies
+ WATCHDOG_INTERVAL
;
315 add_timer_on(&watchdog_timer
, cpumask_first(cpu_online_mask
));
316 watchdog_running
= 1;
319 static inline void clocksource_stop_watchdog(void)
321 if (!watchdog_running
|| (watchdog
&& !list_empty(&watchdog_list
)))
323 del_timer(&watchdog_timer
);
324 watchdog_running
= 0;
327 static inline void clocksource_reset_watchdog(void)
329 struct clocksource
*cs
;
331 list_for_each_entry(cs
, &watchdog_list
, wd_list
)
332 cs
->flags
&= ~CLOCK_SOURCE_WATCHDOG
;
335 static void clocksource_resume_watchdog(void)
337 atomic_inc(&watchdog_reset_pending
);
340 static void clocksource_enqueue_watchdog(struct clocksource
*cs
)
342 INIT_LIST_HEAD(&cs
->wd_list
);
344 if (cs
->flags
& CLOCK_SOURCE_MUST_VERIFY
) {
345 /* cs is a clocksource to be watched. */
346 list_add(&cs
->wd_list
, &watchdog_list
);
347 cs
->flags
&= ~CLOCK_SOURCE_WATCHDOG
;
349 /* cs is a watchdog. */
350 if (cs
->flags
& CLOCK_SOURCE_IS_CONTINUOUS
)
351 cs
->flags
|= CLOCK_SOURCE_VALID_FOR_HRES
;
355 static void clocksource_select_watchdog(bool fallback
)
357 struct clocksource
*cs
, *old_wd
;
360 spin_lock_irqsave(&watchdog_lock
, flags
);
361 /* save current watchdog */
366 list_for_each_entry(cs
, &clocksource_list
, list
) {
367 /* cs is a clocksource to be watched. */
368 if (cs
->flags
& CLOCK_SOURCE_MUST_VERIFY
)
371 /* Skip current if we were requested for a fallback. */
372 if (fallback
&& cs
== old_wd
)
375 /* Pick the best watchdog. */
376 if (!watchdog
|| cs
->rating
> watchdog
->rating
)
379 /* If we failed to find a fallback restore the old one. */
383 /* If we changed the watchdog we need to reset cycles. */
384 if (watchdog
!= old_wd
)
385 clocksource_reset_watchdog();
387 /* Check if the watchdog timer needs to be started. */
388 clocksource_start_watchdog();
389 spin_unlock_irqrestore(&watchdog_lock
, flags
);
392 static void clocksource_dequeue_watchdog(struct clocksource
*cs
)
394 if (cs
!= watchdog
) {
395 if (cs
->flags
& CLOCK_SOURCE_MUST_VERIFY
) {
396 /* cs is a watched clocksource. */
397 list_del_init(&cs
->wd_list
);
398 /* Check if the watchdog timer needs to be stopped. */
399 clocksource_stop_watchdog();
404 static int __clocksource_watchdog_kthread(void)
406 struct clocksource
*cs
, *tmp
;
410 spin_lock_irqsave(&watchdog_lock
, flags
);
411 list_for_each_entry_safe(cs
, tmp
, &watchdog_list
, wd_list
) {
412 if (cs
->flags
& CLOCK_SOURCE_UNSTABLE
) {
413 list_del_init(&cs
->wd_list
);
414 __clocksource_change_rating(cs
, 0);
417 if (cs
->flags
& CLOCK_SOURCE_RESELECT
) {
418 cs
->flags
&= ~CLOCK_SOURCE_RESELECT
;
422 /* Check if the watchdog timer needs to be stopped. */
423 clocksource_stop_watchdog();
424 spin_unlock_irqrestore(&watchdog_lock
, flags
);
429 static int clocksource_watchdog_kthread(void *data
)
431 mutex_lock(&clocksource_mutex
);
432 if (__clocksource_watchdog_kthread())
433 clocksource_select();
434 mutex_unlock(&clocksource_mutex
);
438 static bool clocksource_is_watchdog(struct clocksource
*cs
)
440 return cs
== watchdog
;
443 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
445 static void clocksource_enqueue_watchdog(struct clocksource
*cs
)
447 if (cs
->flags
& CLOCK_SOURCE_IS_CONTINUOUS
)
448 cs
->flags
|= CLOCK_SOURCE_VALID_FOR_HRES
;
451 static void clocksource_select_watchdog(bool fallback
) { }
452 static inline void clocksource_dequeue_watchdog(struct clocksource
*cs
) { }
453 static inline void clocksource_resume_watchdog(void) { }
454 static inline int __clocksource_watchdog_kthread(void) { return 0; }
455 static bool clocksource_is_watchdog(struct clocksource
*cs
) { return false; }
456 void clocksource_mark_unstable(struct clocksource
*cs
) { }
458 static inline void clocksource_watchdog_lock(unsigned long *flags
) { }
459 static inline void clocksource_watchdog_unlock(unsigned long *flags
) { }
461 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
463 static bool clocksource_is_suspend(struct clocksource
*cs
)
465 return cs
== suspend_clocksource
;
468 static void __clocksource_suspend_select(struct clocksource
*cs
)
471 * Skip the clocksource which will be stopped in suspend state.
473 if (!(cs
->flags
& CLOCK_SOURCE_SUSPEND_NONSTOP
))
477 * The nonstop clocksource can be selected as the suspend clocksource to
478 * calculate the suspend time, so it should not supply suspend/resume
479 * interfaces to suspend the nonstop clocksource when system suspends.
481 if (cs
->suspend
|| cs
->resume
) {
482 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
486 /* Pick the best rating. */
487 if (!suspend_clocksource
|| cs
->rating
> suspend_clocksource
->rating
)
488 suspend_clocksource
= cs
;
492 * clocksource_suspend_select - Select the best clocksource for suspend timing
493 * @fallback: if select a fallback clocksource
495 static void clocksource_suspend_select(bool fallback
)
497 struct clocksource
*cs
, *old_suspend
;
499 old_suspend
= suspend_clocksource
;
501 suspend_clocksource
= NULL
;
503 list_for_each_entry(cs
, &clocksource_list
, list
) {
504 /* Skip current if we were requested for a fallback. */
505 if (fallback
&& cs
== old_suspend
)
508 __clocksource_suspend_select(cs
);
513 * clocksource_start_suspend_timing - Start measuring the suspend timing
514 * @cs: current clocksource from timekeeping
515 * @start_cycles: current cycles from timekeeping
517 * This function will save the start cycle values of suspend timer to calculate
518 * the suspend time when resuming system.
520 * This function is called late in the suspend process from timekeeping_suspend(),
521 * that means processes are freezed, non-boot cpus and interrupts are disabled
522 * now. It is therefore possible to start the suspend timer without taking the
525 void clocksource_start_suspend_timing(struct clocksource
*cs
, u64 start_cycles
)
527 if (!suspend_clocksource
)
531 * If current clocksource is the suspend timer, we should use the
532 * tkr_mono.cycle_last value as suspend_start to avoid same reading
533 * from suspend timer.
535 if (clocksource_is_suspend(cs
)) {
536 suspend_start
= start_cycles
;
540 if (suspend_clocksource
->enable
&&
541 suspend_clocksource
->enable(suspend_clocksource
)) {
542 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
546 suspend_start
= suspend_clocksource
->read(suspend_clocksource
);
550 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
551 * @cs: current clocksource from timekeeping
552 * @cycle_now: current cycles from timekeeping
554 * This function will calculate the suspend time from suspend timer.
556 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
558 * This function is called early in the resume process from timekeeping_resume(),
559 * that means there is only one cpu, no processes are running and the interrupts
560 * are disabled. It is therefore possible to stop the suspend timer without
561 * taking the clocksource mutex.
563 u64
clocksource_stop_suspend_timing(struct clocksource
*cs
, u64 cycle_now
)
565 u64 now
, delta
, nsec
= 0;
567 if (!suspend_clocksource
)
571 * If current clocksource is the suspend timer, we should use the
572 * tkr_mono.cycle_last value from timekeeping as current cycle to
573 * avoid same reading from suspend timer.
575 if (clocksource_is_suspend(cs
))
578 now
= suspend_clocksource
->read(suspend_clocksource
);
580 if (now
> suspend_start
) {
581 delta
= clocksource_delta(now
, suspend_start
,
582 suspend_clocksource
->mask
);
583 nsec
= mul_u64_u32_shr(delta
, suspend_clocksource
->mult
,
584 suspend_clocksource
->shift
);
588 * Disable the suspend timer to save power if current clocksource is
589 * not the suspend timer.
591 if (!clocksource_is_suspend(cs
) && suspend_clocksource
->disable
)
592 suspend_clocksource
->disable(suspend_clocksource
);
598 * clocksource_suspend - suspend the clocksource(s)
600 void clocksource_suspend(void)
602 struct clocksource
*cs
;
604 list_for_each_entry_reverse(cs
, &clocksource_list
, list
)
610 * clocksource_resume - resume the clocksource(s)
612 void clocksource_resume(void)
614 struct clocksource
*cs
;
616 list_for_each_entry(cs
, &clocksource_list
, list
)
620 clocksource_resume_watchdog();
624 * clocksource_touch_watchdog - Update watchdog
626 * Update the watchdog after exception contexts such as kgdb so as not
627 * to incorrectly trip the watchdog. This might fail when the kernel
628 * was stopped in code which holds watchdog_lock.
630 void clocksource_touch_watchdog(void)
632 clocksource_resume_watchdog();
636 * clocksource_max_adjustment- Returns max adjustment amount
637 * @cs: Pointer to clocksource
640 static u32
clocksource_max_adjustment(struct clocksource
*cs
)
644 * We won't try to correct for more than 11% adjustments (110,000 ppm),
646 ret
= (u64
)cs
->mult
* 11;
652 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
653 * @mult: cycle to nanosecond multiplier
654 * @shift: cycle to nanosecond divisor (power of two)
655 * @maxadj: maximum adjustment value to mult (~11%)
656 * @mask: bitmask for two's complement subtraction of non 64 bit counters
657 * @max_cyc: maximum cycle value before potential overflow (does not include
660 * NOTE: This function includes a safety margin of 50%, in other words, we
661 * return half the number of nanoseconds the hardware counter can technically
662 * cover. This is done so that we can potentially detect problems caused by
663 * delayed timers or bad hardware, which might result in time intervals that
664 * are larger than what the math used can handle without overflows.
666 u64
clocks_calc_max_nsecs(u32 mult
, u32 shift
, u32 maxadj
, u64 mask
, u64
*max_cyc
)
668 u64 max_nsecs
, max_cycles
;
671 * Calculate the maximum number of cycles that we can pass to the
672 * cyc2ns() function without overflowing a 64-bit result.
674 max_cycles
= ULLONG_MAX
;
675 do_div(max_cycles
, mult
+maxadj
);
678 * The actual maximum number of cycles we can defer the clocksource is
679 * determined by the minimum of max_cycles and mask.
680 * Note: Here we subtract the maxadj to make sure we don't sleep for
681 * too long if there's a large negative adjustment.
683 max_cycles
= min(max_cycles
, mask
);
684 max_nsecs
= clocksource_cyc2ns(max_cycles
, mult
- maxadj
, shift
);
686 /* return the max_cycles value as well if requested */
688 *max_cyc
= max_cycles
;
690 /* Return 50% of the actual maximum, so we can detect bad values */
697 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
698 * @cs: Pointer to clocksource to be updated
701 static inline void clocksource_update_max_deferment(struct clocksource
*cs
)
703 cs
->max_idle_ns
= clocks_calc_max_nsecs(cs
->mult
, cs
->shift
,
704 cs
->maxadj
, cs
->mask
,
708 static struct clocksource
*clocksource_find_best(bool oneshot
, bool skipcur
)
710 struct clocksource
*cs
;
712 if (!finished_booting
|| list_empty(&clocksource_list
))
716 * We pick the clocksource with the highest rating. If oneshot
717 * mode is active, we pick the highres valid clocksource with
720 list_for_each_entry(cs
, &clocksource_list
, list
) {
721 if (skipcur
&& cs
== curr_clocksource
)
723 if (oneshot
&& !(cs
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
))
730 static void __clocksource_select(bool skipcur
)
732 bool oneshot
= tick_oneshot_mode_active();
733 struct clocksource
*best
, *cs
;
735 /* Find the best suitable clocksource */
736 best
= clocksource_find_best(oneshot
, skipcur
);
740 if (!strlen(override_name
))
743 /* Check for the override clocksource. */
744 list_for_each_entry(cs
, &clocksource_list
, list
) {
745 if (skipcur
&& cs
== curr_clocksource
)
747 if (strcmp(cs
->name
, override_name
) != 0)
750 * Check to make sure we don't switch to a non-highres
751 * capable clocksource if the tick code is in oneshot
752 * mode (highres or nohz)
754 if (!(cs
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
) && oneshot
) {
755 /* Override clocksource cannot be used. */
756 if (cs
->flags
& CLOCK_SOURCE_UNSTABLE
) {
757 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
759 override_name
[0] = 0;
762 * The override cannot be currently verified.
763 * Deferring to let the watchdog check.
765 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
769 /* Override clocksource can be used. */
775 if (curr_clocksource
!= best
&& !timekeeping_notify(best
)) {
776 pr_info("Switched to clocksource %s\n", best
->name
);
777 curr_clocksource
= best
;
782 * clocksource_select - Select the best clocksource available
784 * Private function. Must hold clocksource_mutex when called.
786 * Select the clocksource with the best rating, or the clocksource,
787 * which is selected by userspace override.
789 static void clocksource_select(void)
791 __clocksource_select(false);
794 static void clocksource_select_fallback(void)
796 __clocksource_select(true);
800 * clocksource_done_booting - Called near the end of core bootup
802 * Hack to avoid lots of clocksource churn at boot time.
803 * We use fs_initcall because we want this to start before
804 * device_initcall but after subsys_initcall.
806 static int __init
clocksource_done_booting(void)
808 mutex_lock(&clocksource_mutex
);
809 curr_clocksource
= clocksource_default_clock();
810 finished_booting
= 1;
812 * Run the watchdog first to eliminate unstable clock sources
814 __clocksource_watchdog_kthread();
815 clocksource_select();
816 mutex_unlock(&clocksource_mutex
);
819 fs_initcall(clocksource_done_booting
);
822 * Enqueue the clocksource sorted by rating
824 static void clocksource_enqueue(struct clocksource
*cs
)
826 struct list_head
*entry
= &clocksource_list
;
827 struct clocksource
*tmp
;
829 list_for_each_entry(tmp
, &clocksource_list
, list
) {
830 /* Keep track of the place, where to insert */
831 if (tmp
->rating
< cs
->rating
)
835 list_add(&cs
->list
, entry
);
839 * __clocksource_update_freq_scale - Used update clocksource with new freq
840 * @cs: clocksource to be registered
841 * @scale: Scale factor multiplied against freq to get clocksource hz
842 * @freq: clocksource frequency (cycles per second) divided by scale
844 * This should only be called from the clocksource->enable() method.
846 * This *SHOULD NOT* be called directly! Please use the
847 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
850 void __clocksource_update_freq_scale(struct clocksource
*cs
, u32 scale
, u32 freq
)
855 * Default clocksources are *special* and self-define their mult/shift.
856 * But, you're not special, so you should specify a freq value.
860 * Calc the maximum number of seconds which we can run before
861 * wrapping around. For clocksources which have a mask > 32-bit
862 * we need to limit the max sleep time to have a good
863 * conversion precision. 10 minutes is still a reasonable
864 * amount. That results in a shift value of 24 for a
865 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
866 * ~ 0.06ppm granularity for NTP.
873 else if (sec
> 600 && cs
->mask
> UINT_MAX
)
876 clocks_calc_mult_shift(&cs
->mult
, &cs
->shift
, freq
,
877 NSEC_PER_SEC
/ scale
, sec
* scale
);
880 * Ensure clocksources that have large 'mult' values don't overflow
883 cs
->maxadj
= clocksource_max_adjustment(cs
);
884 while (freq
&& ((cs
->mult
+ cs
->maxadj
< cs
->mult
)
885 || (cs
->mult
- cs
->maxadj
> cs
->mult
))) {
888 cs
->maxadj
= clocksource_max_adjustment(cs
);
892 * Only warn for *special* clocksources that self-define
893 * their mult/shift values and don't specify a freq.
895 WARN_ONCE(cs
->mult
+ cs
->maxadj
< cs
->mult
,
896 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
899 clocksource_update_max_deferment(cs
);
901 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
902 cs
->name
, cs
->mask
, cs
->max_cycles
, cs
->max_idle_ns
);
904 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale
);
907 * __clocksource_register_scale - Used to install new clocksources
908 * @cs: clocksource to be registered
909 * @scale: Scale factor multiplied against freq to get clocksource hz
910 * @freq: clocksource frequency (cycles per second) divided by scale
912 * Returns -EBUSY if registration fails, zero otherwise.
914 * This *SHOULD NOT* be called directly! Please use the
915 * clocksource_register_hz() or clocksource_register_khz helper functions.
917 int __clocksource_register_scale(struct clocksource
*cs
, u32 scale
, u32 freq
)
921 clocksource_arch_init(cs
);
923 if (cs
->vdso_clock_mode
< 0 ||
924 cs
->vdso_clock_mode
>= VDSO_CLOCKMODE_MAX
) {
925 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
926 cs
->name
, cs
->vdso_clock_mode
);
927 cs
->vdso_clock_mode
= VDSO_CLOCKMODE_NONE
;
930 /* Initialize mult/shift and max_idle_ns */
931 __clocksource_update_freq_scale(cs
, scale
, freq
);
933 /* Add clocksource to the clocksource list */
934 mutex_lock(&clocksource_mutex
);
936 clocksource_watchdog_lock(&flags
);
937 clocksource_enqueue(cs
);
938 clocksource_enqueue_watchdog(cs
);
939 clocksource_watchdog_unlock(&flags
);
941 clocksource_select();
942 clocksource_select_watchdog(false);
943 __clocksource_suspend_select(cs
);
944 mutex_unlock(&clocksource_mutex
);
947 EXPORT_SYMBOL_GPL(__clocksource_register_scale
);
949 static void __clocksource_change_rating(struct clocksource
*cs
, int rating
)
953 clocksource_enqueue(cs
);
957 * clocksource_change_rating - Change the rating of a registered clocksource
958 * @cs: clocksource to be changed
959 * @rating: new rating
961 void clocksource_change_rating(struct clocksource
*cs
, int rating
)
965 mutex_lock(&clocksource_mutex
);
966 clocksource_watchdog_lock(&flags
);
967 __clocksource_change_rating(cs
, rating
);
968 clocksource_watchdog_unlock(&flags
);
970 clocksource_select();
971 clocksource_select_watchdog(false);
972 clocksource_suspend_select(false);
973 mutex_unlock(&clocksource_mutex
);
975 EXPORT_SYMBOL(clocksource_change_rating
);
978 * Unbind clocksource @cs. Called with clocksource_mutex held
980 static int clocksource_unbind(struct clocksource
*cs
)
984 if (clocksource_is_watchdog(cs
)) {
985 /* Select and try to install a replacement watchdog. */
986 clocksource_select_watchdog(true);
987 if (clocksource_is_watchdog(cs
))
991 if (cs
== curr_clocksource
) {
992 /* Select and try to install a replacement clock source */
993 clocksource_select_fallback();
994 if (curr_clocksource
== cs
)
998 if (clocksource_is_suspend(cs
)) {
1000 * Select and try to install a replacement suspend clocksource.
1001 * If no replacement suspend clocksource, we will just let the
1002 * clocksource go and have no suspend clocksource.
1004 clocksource_suspend_select(true);
1007 clocksource_watchdog_lock(&flags
);
1008 clocksource_dequeue_watchdog(cs
);
1009 list_del_init(&cs
->list
);
1010 clocksource_watchdog_unlock(&flags
);
1016 * clocksource_unregister - remove a registered clocksource
1017 * @cs: clocksource to be unregistered
1019 int clocksource_unregister(struct clocksource
*cs
)
1023 mutex_lock(&clocksource_mutex
);
1024 if (!list_empty(&cs
->list
))
1025 ret
= clocksource_unbind(cs
);
1026 mutex_unlock(&clocksource_mutex
);
1029 EXPORT_SYMBOL(clocksource_unregister
);
1033 * current_clocksource_show - sysfs interface for current clocksource
1036 * @buf: char buffer to be filled with clocksource list
1038 * Provides sysfs interface for listing current clocksource.
1040 static ssize_t
current_clocksource_show(struct device
*dev
,
1041 struct device_attribute
*attr
,
1046 mutex_lock(&clocksource_mutex
);
1047 count
= snprintf(buf
, PAGE_SIZE
, "%s\n", curr_clocksource
->name
);
1048 mutex_unlock(&clocksource_mutex
);
1053 ssize_t
sysfs_get_uname(const char *buf
, char *dst
, size_t cnt
)
1057 /* strings from sysfs write are not 0 terminated! */
1058 if (!cnt
|| cnt
>= CS_NAME_LEN
)
1062 if (buf
[cnt
-1] == '\n')
1065 memcpy(dst
, buf
, cnt
);
1071 * current_clocksource_store - interface for manually overriding clocksource
1074 * @buf: name of override clocksource
1075 * @count: length of buffer
1077 * Takes input from sysfs interface for manually overriding the default
1078 * clocksource selection.
1080 static ssize_t
current_clocksource_store(struct device
*dev
,
1081 struct device_attribute
*attr
,
1082 const char *buf
, size_t count
)
1086 mutex_lock(&clocksource_mutex
);
1088 ret
= sysfs_get_uname(buf
, override_name
, count
);
1090 clocksource_select();
1092 mutex_unlock(&clocksource_mutex
);
1096 static DEVICE_ATTR_RW(current_clocksource
);
1099 * unbind_clocksource_store - interface for manually unbinding clocksource
1103 * @count: length of buffer
1105 * Takes input from sysfs interface for manually unbinding a clocksource.
1107 static ssize_t
unbind_clocksource_store(struct device
*dev
,
1108 struct device_attribute
*attr
,
1109 const char *buf
, size_t count
)
1111 struct clocksource
*cs
;
1112 char name
[CS_NAME_LEN
];
1115 ret
= sysfs_get_uname(buf
, name
, count
);
1120 mutex_lock(&clocksource_mutex
);
1121 list_for_each_entry(cs
, &clocksource_list
, list
) {
1122 if (strcmp(cs
->name
, name
))
1124 ret
= clocksource_unbind(cs
);
1127 mutex_unlock(&clocksource_mutex
);
1129 return ret
? ret
: count
;
1131 static DEVICE_ATTR_WO(unbind_clocksource
);
1134 * available_clocksource_show - sysfs interface for listing clocksource
1137 * @buf: char buffer to be filled with clocksource list
1139 * Provides sysfs interface for listing registered clocksources
1141 static ssize_t
available_clocksource_show(struct device
*dev
,
1142 struct device_attribute
*attr
,
1145 struct clocksource
*src
;
1148 mutex_lock(&clocksource_mutex
);
1149 list_for_each_entry(src
, &clocksource_list
, list
) {
1151 * Don't show non-HRES clocksource if the tick code is
1152 * in one shot mode (highres=on or nohz=on)
1154 if (!tick_oneshot_mode_active() ||
1155 (src
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
))
1156 count
+= snprintf(buf
+ count
,
1157 max((ssize_t
)PAGE_SIZE
- count
, (ssize_t
)0),
1160 mutex_unlock(&clocksource_mutex
);
1162 count
+= snprintf(buf
+ count
,
1163 max((ssize_t
)PAGE_SIZE
- count
, (ssize_t
)0), "\n");
1167 static DEVICE_ATTR_RO(available_clocksource
);
1169 static struct attribute
*clocksource_attrs
[] = {
1170 &dev_attr_current_clocksource
.attr
,
1171 &dev_attr_unbind_clocksource
.attr
,
1172 &dev_attr_available_clocksource
.attr
,
1175 ATTRIBUTE_GROUPS(clocksource
);
1177 static struct bus_type clocksource_subsys
= {
1178 .name
= "clocksource",
1179 .dev_name
= "clocksource",
1182 static struct device device_clocksource
= {
1184 .bus
= &clocksource_subsys
,
1185 .groups
= clocksource_groups
,
1188 static int __init
init_clocksource_sysfs(void)
1190 int error
= subsys_system_register(&clocksource_subsys
, NULL
);
1193 error
= device_register(&device_clocksource
);
1198 device_initcall(init_clocksource_sysfs
);
1199 #endif /* CONFIG_SYSFS */
1202 * boot_override_clocksource - boot clock override
1203 * @str: override name
1205 * Takes a clocksource= boot argument and uses it
1206 * as the clocksource override name.
1208 static int __init
boot_override_clocksource(char* str
)
1210 mutex_lock(&clocksource_mutex
);
1212 strlcpy(override_name
, str
, sizeof(override_name
));
1213 mutex_unlock(&clocksource_mutex
);
1217 __setup("clocksource=", boot_override_clocksource
);
1220 * boot_override_clock - Compatibility layer for deprecated boot option
1221 * @str: override name
1223 * DEPRECATED! Takes a clock= boot argument and uses it
1224 * as the clocksource override name
1226 static int __init
boot_override_clock(char* str
)
1228 if (!strcmp(str
, "pmtmr")) {
1229 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1230 return boot_override_clocksource("acpi_pm");
1232 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1233 return boot_override_clocksource(str
);
1236 __setup("clock=", boot_override_clock
);