1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 * High-resolution kernel timers
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
13 * Started by: Thomas Gleixner and Ingo Molnar
16 * Based on the original timer wheel code
18 * Help, testing, suggestions, bugfixes, improvements were
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
45 #include <linux/uaccess.h>
47 #include <trace/events/timer.h>
49 #include "tick-internal.h"
52 * Masks for selecting the soft and hard context timers from
55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
63 * There are more clockids than hrtimer bases. Thus, we index
64 * into the timer bases by the hrtimer_base_type enum. When trying
65 * to reach a base using a clockid, hrtimer_clockid_to_base()
66 * is used to convert from clockid to the proper hrtimer_base_type.
68 DEFINE_PER_CPU(struct hrtimer_cpu_base
, hrtimer_bases
) =
70 .lock
= __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases
.lock
),
74 .index
= HRTIMER_BASE_MONOTONIC
,
75 .clockid
= CLOCK_MONOTONIC
,
76 .get_time
= &ktime_get
,
79 .index
= HRTIMER_BASE_REALTIME
,
80 .clockid
= CLOCK_REALTIME
,
81 .get_time
= &ktime_get_real
,
84 .index
= HRTIMER_BASE_BOOTTIME
,
85 .clockid
= CLOCK_BOOTTIME
,
86 .get_time
= &ktime_get_boottime
,
89 .index
= HRTIMER_BASE_TAI
,
91 .get_time
= &ktime_get_clocktai
,
94 .index
= HRTIMER_BASE_MONOTONIC_SOFT
,
95 .clockid
= CLOCK_MONOTONIC
,
96 .get_time
= &ktime_get
,
99 .index
= HRTIMER_BASE_REALTIME_SOFT
,
100 .clockid
= CLOCK_REALTIME
,
101 .get_time
= &ktime_get_real
,
104 .index
= HRTIMER_BASE_BOOTTIME_SOFT
,
105 .clockid
= CLOCK_BOOTTIME
,
106 .get_time
= &ktime_get_boottime
,
109 .index
= HRTIMER_BASE_TAI_SOFT
,
110 .clockid
= CLOCK_TAI
,
111 .get_time
= &ktime_get_clocktai
,
116 static const int hrtimer_clock_to_base_table
[MAX_CLOCKS
] = {
117 /* Make sure we catch unsupported clockids */
118 [0 ... MAX_CLOCKS
- 1] = HRTIMER_MAX_CLOCK_BASES
,
120 [CLOCK_REALTIME
] = HRTIMER_BASE_REALTIME
,
121 [CLOCK_MONOTONIC
] = HRTIMER_BASE_MONOTONIC
,
122 [CLOCK_BOOTTIME
] = HRTIMER_BASE_BOOTTIME
,
123 [CLOCK_TAI
] = HRTIMER_BASE_TAI
,
127 * Functions and macros which are different for UP/SMP systems are kept in a
133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134 * such that hrtimer_callback_running() can unconditionally dereference
135 * timer->base->cpu_base
137 static struct hrtimer_cpu_base migration_cpu_base
= {
139 .cpu_base
= &migration_cpu_base
,
140 .seq
= SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base
.seq
,
141 &migration_cpu_base
.lock
),
145 #define migration_base migration_cpu_base.clock_base[0]
147 static inline bool is_migration_base(struct hrtimer_clock_base
*base
)
149 return base
== &migration_base
;
153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154 * means that all timers which are tied to this base via timer->base are
155 * locked, and the base itself is locked too.
157 * So __run_timers/migrate_timers can safely modify all timers which could
158 * be found on the lists/queues.
160 * When the timer's base is locked, and the timer removed from list, it is
161 * possible to set timer->base = &migration_base and drop the lock: the timer
165 struct hrtimer_clock_base
*lock_hrtimer_base(const struct hrtimer
*timer
,
166 unsigned long *flags
)
168 struct hrtimer_clock_base
*base
;
171 base
= READ_ONCE(timer
->base
);
172 if (likely(base
!= &migration_base
)) {
173 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
174 if (likely(base
== timer
->base
))
176 /* The timer has migrated to another CPU: */
177 raw_spin_unlock_irqrestore(&base
->cpu_base
->lock
, *flags
);
184 * We do not migrate the timer when it is expiring before the next
185 * event on the target cpu. When high resolution is enabled, we cannot
186 * reprogram the target cpu hardware and we would cause it to fire
187 * late. To keep it simple, we handle the high resolution enabled and
188 * disabled case similar.
190 * Called with cpu_base->lock of target cpu held.
193 hrtimer_check_target(struct hrtimer
*timer
, struct hrtimer_clock_base
*new_base
)
197 expires
= ktime_sub(hrtimer_get_expires(timer
), new_base
->offset
);
198 return expires
< new_base
->cpu_base
->expires_next
;
202 struct hrtimer_cpu_base
*get_target_base(struct hrtimer_cpu_base
*base
,
205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
206 if (static_branch_likely(&timers_migration_enabled
) && !pinned
)
207 return &per_cpu(hrtimer_bases
, get_nohz_timer_target());
213 * We switch the timer base to a power-optimized selected CPU target,
215 * - NO_HZ_COMMON is enabled
216 * - timer migration is enabled
217 * - the timer callback is not running
218 * - the timer is not the first expiring timer on the new target
220 * If one of the above requirements is not fulfilled we move the timer
221 * to the current CPU or leave it on the previously assigned CPU if
222 * the timer callback is currently running.
224 static inline struct hrtimer_clock_base
*
225 switch_hrtimer_base(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
,
228 struct hrtimer_cpu_base
*new_cpu_base
, *this_cpu_base
;
229 struct hrtimer_clock_base
*new_base
;
230 int basenum
= base
->index
;
232 this_cpu_base
= this_cpu_ptr(&hrtimer_bases
);
233 new_cpu_base
= get_target_base(this_cpu_base
, pinned
);
235 new_base
= &new_cpu_base
->clock_base
[basenum
];
237 if (base
!= new_base
) {
239 * We are trying to move timer to new_base.
240 * However we can't change timer's base while it is running,
241 * so we keep it on the same CPU. No hassle vs. reprogramming
242 * the event source in the high resolution case. The softirq
243 * code will take care of this when the timer function has
244 * completed. There is no conflict as we hold the lock until
245 * the timer is enqueued.
247 if (unlikely(hrtimer_callback_running(timer
)))
250 /* See the comment in lock_hrtimer_base() */
251 WRITE_ONCE(timer
->base
, &migration_base
);
252 raw_spin_unlock(&base
->cpu_base
->lock
);
253 raw_spin_lock(&new_base
->cpu_base
->lock
);
255 if (new_cpu_base
!= this_cpu_base
&&
256 hrtimer_check_target(timer
, new_base
)) {
257 raw_spin_unlock(&new_base
->cpu_base
->lock
);
258 raw_spin_lock(&base
->cpu_base
->lock
);
259 new_cpu_base
= this_cpu_base
;
260 WRITE_ONCE(timer
->base
, base
);
263 WRITE_ONCE(timer
->base
, new_base
);
265 if (new_cpu_base
!= this_cpu_base
&&
266 hrtimer_check_target(timer
, new_base
)) {
267 new_cpu_base
= this_cpu_base
;
274 #else /* CONFIG_SMP */
276 static inline bool is_migration_base(struct hrtimer_clock_base
*base
)
281 static inline struct hrtimer_clock_base
*
282 lock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
284 struct hrtimer_clock_base
*base
= timer
->base
;
286 raw_spin_lock_irqsave(&base
->cpu_base
->lock
, *flags
);
291 # define switch_hrtimer_base(t, b, p) (b)
293 #endif /* !CONFIG_SMP */
296 * Functions for the union type storage format of ktime_t which are
297 * too large for inlining:
299 #if BITS_PER_LONG < 64
301 * Divide a ktime value by a nanosecond value
303 s64
__ktime_divns(const ktime_t kt
, s64 div
)
309 dclc
= ktime_to_ns(kt
);
310 tmp
= dclc
< 0 ? -dclc
: dclc
;
312 /* Make sure the divisor is less than 2^32: */
318 do_div(tmp
, (u32
) div
);
319 return dclc
< 0 ? -tmp
: tmp
;
321 EXPORT_SYMBOL_GPL(__ktime_divns
);
322 #endif /* BITS_PER_LONG >= 64 */
325 * Add two ktime values and do a safety check for overflow:
327 ktime_t
ktime_add_safe(const ktime_t lhs
, const ktime_t rhs
)
329 ktime_t res
= ktime_add_unsafe(lhs
, rhs
);
332 * We use KTIME_SEC_MAX here, the maximum timeout which we can
333 * return to user space in a timespec:
335 if (res
< 0 || res
< lhs
|| res
< rhs
)
336 res
= ktime_set(KTIME_SEC_MAX
, 0);
341 EXPORT_SYMBOL_GPL(ktime_add_safe
);
343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
345 static const struct debug_obj_descr hrtimer_debug_descr
;
347 static void *hrtimer_debug_hint(void *addr
)
349 return ((struct hrtimer
*) addr
)->function
;
353 * fixup_init is called when:
354 * - an active object is initialized
356 static bool hrtimer_fixup_init(void *addr
, enum debug_obj_state state
)
358 struct hrtimer
*timer
= addr
;
361 case ODEBUG_STATE_ACTIVE
:
362 hrtimer_cancel(timer
);
363 debug_object_init(timer
, &hrtimer_debug_descr
);
371 * fixup_activate is called when:
372 * - an active object is activated
373 * - an unknown non-static object is activated
375 static bool hrtimer_fixup_activate(void *addr
, enum debug_obj_state state
)
378 case ODEBUG_STATE_ACTIVE
:
387 * fixup_free is called when:
388 * - an active object is freed
390 static bool hrtimer_fixup_free(void *addr
, enum debug_obj_state state
)
392 struct hrtimer
*timer
= addr
;
395 case ODEBUG_STATE_ACTIVE
:
396 hrtimer_cancel(timer
);
397 debug_object_free(timer
, &hrtimer_debug_descr
);
404 static const struct debug_obj_descr hrtimer_debug_descr
= {
406 .debug_hint
= hrtimer_debug_hint
,
407 .fixup_init
= hrtimer_fixup_init
,
408 .fixup_activate
= hrtimer_fixup_activate
,
409 .fixup_free
= hrtimer_fixup_free
,
412 static inline void debug_hrtimer_init(struct hrtimer
*timer
)
414 debug_object_init(timer
, &hrtimer_debug_descr
);
417 static inline void debug_hrtimer_activate(struct hrtimer
*timer
,
418 enum hrtimer_mode mode
)
420 debug_object_activate(timer
, &hrtimer_debug_descr
);
423 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
)
425 debug_object_deactivate(timer
, &hrtimer_debug_descr
);
428 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
429 enum hrtimer_mode mode
);
431 void hrtimer_init_on_stack(struct hrtimer
*timer
, clockid_t clock_id
,
432 enum hrtimer_mode mode
)
434 debug_object_init_on_stack(timer
, &hrtimer_debug_descr
);
435 __hrtimer_init(timer
, clock_id
, mode
);
437 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack
);
439 static void __hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
,
440 clockid_t clock_id
, enum hrtimer_mode mode
);
442 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper
*sl
,
443 clockid_t clock_id
, enum hrtimer_mode mode
)
445 debug_object_init_on_stack(&sl
->timer
, &hrtimer_debug_descr
);
446 __hrtimer_init_sleeper(sl
, clock_id
, mode
);
448 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack
);
450 void destroy_hrtimer_on_stack(struct hrtimer
*timer
)
452 debug_object_free(timer
, &hrtimer_debug_descr
);
454 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack
);
458 static inline void debug_hrtimer_init(struct hrtimer
*timer
) { }
459 static inline void debug_hrtimer_activate(struct hrtimer
*timer
,
460 enum hrtimer_mode mode
) { }
461 static inline void debug_hrtimer_deactivate(struct hrtimer
*timer
) { }
465 debug_init(struct hrtimer
*timer
, clockid_t clockid
,
466 enum hrtimer_mode mode
)
468 debug_hrtimer_init(timer
);
469 trace_hrtimer_init(timer
, clockid
, mode
);
472 static inline void debug_activate(struct hrtimer
*timer
,
473 enum hrtimer_mode mode
)
475 debug_hrtimer_activate(timer
, mode
);
476 trace_hrtimer_start(timer
, mode
);
479 static inline void debug_deactivate(struct hrtimer
*timer
)
481 debug_hrtimer_deactivate(timer
);
482 trace_hrtimer_cancel(timer
);
485 static struct hrtimer_clock_base
*
486 __next_base(struct hrtimer_cpu_base
*cpu_base
, unsigned int *active
)
493 idx
= __ffs(*active
);
494 *active
&= ~(1U << idx
);
496 return &cpu_base
->clock_base
[idx
];
499 #define for_each_active_base(base, cpu_base, active) \
500 while ((base = __next_base((cpu_base), &(active))))
502 static ktime_t
__hrtimer_next_event_base(struct hrtimer_cpu_base
*cpu_base
,
503 const struct hrtimer
*exclude
,
505 ktime_t expires_next
)
507 struct hrtimer_clock_base
*base
;
510 for_each_active_base(base
, cpu_base
, active
) {
511 struct timerqueue_node
*next
;
512 struct hrtimer
*timer
;
514 next
= timerqueue_getnext(&base
->active
);
515 timer
= container_of(next
, struct hrtimer
, node
);
516 if (timer
== exclude
) {
517 /* Get to the next timer in the queue. */
518 next
= timerqueue_iterate_next(next
);
522 timer
= container_of(next
, struct hrtimer
, node
);
524 expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
525 if (expires
< expires_next
) {
526 expires_next
= expires
;
528 /* Skip cpu_base update if a timer is being excluded. */
533 cpu_base
->softirq_next_timer
= timer
;
535 cpu_base
->next_timer
= timer
;
539 * clock_was_set() might have changed base->offset of any of
540 * the clock bases so the result might be negative. Fix it up
541 * to prevent a false positive in clockevents_program_event().
543 if (expires_next
< 0)
549 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
550 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
552 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
553 * those timers will get run whenever the softirq gets handled, at the end of
554 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
556 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
557 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
558 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
560 * @active_mask must be one of:
561 * - HRTIMER_ACTIVE_ALL,
562 * - HRTIMER_ACTIVE_SOFT, or
563 * - HRTIMER_ACTIVE_HARD.
566 __hrtimer_get_next_event(struct hrtimer_cpu_base
*cpu_base
, unsigned int active_mask
)
569 struct hrtimer
*next_timer
= NULL
;
570 ktime_t expires_next
= KTIME_MAX
;
572 if (!cpu_base
->softirq_activated
&& (active_mask
& HRTIMER_ACTIVE_SOFT
)) {
573 active
= cpu_base
->active_bases
& HRTIMER_ACTIVE_SOFT
;
574 cpu_base
->softirq_next_timer
= NULL
;
575 expires_next
= __hrtimer_next_event_base(cpu_base
, NULL
,
578 next_timer
= cpu_base
->softirq_next_timer
;
581 if (active_mask
& HRTIMER_ACTIVE_HARD
) {
582 active
= cpu_base
->active_bases
& HRTIMER_ACTIVE_HARD
;
583 cpu_base
->next_timer
= next_timer
;
584 expires_next
= __hrtimer_next_event_base(cpu_base
, NULL
, active
,
591 static inline ktime_t
hrtimer_update_base(struct hrtimer_cpu_base
*base
)
593 ktime_t
*offs_real
= &base
->clock_base
[HRTIMER_BASE_REALTIME
].offset
;
594 ktime_t
*offs_boot
= &base
->clock_base
[HRTIMER_BASE_BOOTTIME
].offset
;
595 ktime_t
*offs_tai
= &base
->clock_base
[HRTIMER_BASE_TAI
].offset
;
597 ktime_t now
= ktime_get_update_offsets_now(&base
->clock_was_set_seq
,
598 offs_real
, offs_boot
, offs_tai
);
600 base
->clock_base
[HRTIMER_BASE_REALTIME_SOFT
].offset
= *offs_real
;
601 base
->clock_base
[HRTIMER_BASE_BOOTTIME_SOFT
].offset
= *offs_boot
;
602 base
->clock_base
[HRTIMER_BASE_TAI_SOFT
].offset
= *offs_tai
;
608 * Is the high resolution mode active ?
610 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base
*cpu_base
)
612 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS
) ?
613 cpu_base
->hres_active
: 0;
616 static inline int hrtimer_hres_active(void)
618 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases
));
622 * Reprogram the event source with checking both queues for the
624 * Called with interrupts disabled and base->lock held
627 hrtimer_force_reprogram(struct hrtimer_cpu_base
*cpu_base
, int skip_equal
)
629 ktime_t expires_next
;
632 * Find the current next expiration time.
634 expires_next
= __hrtimer_get_next_event(cpu_base
, HRTIMER_ACTIVE_ALL
);
636 if (cpu_base
->next_timer
&& cpu_base
->next_timer
->is_soft
) {
638 * When the softirq is activated, hrtimer has to be
639 * programmed with the first hard hrtimer because soft
640 * timer interrupt could occur too late.
642 if (cpu_base
->softirq_activated
)
643 expires_next
= __hrtimer_get_next_event(cpu_base
,
644 HRTIMER_ACTIVE_HARD
);
646 cpu_base
->softirq_expires_next
= expires_next
;
649 if (skip_equal
&& expires_next
== cpu_base
->expires_next
)
652 cpu_base
->expires_next
= expires_next
;
655 * If hres is not active, hardware does not have to be
658 * If a hang was detected in the last timer interrupt then we
659 * leave the hang delay active in the hardware. We want the
660 * system to make progress. That also prevents the following
662 * T1 expires 50ms from now
663 * T2 expires 5s from now
665 * T1 is removed, so this code is called and would reprogram
666 * the hardware to 5s from now. Any hrtimer_start after that
667 * will not reprogram the hardware due to hang_detected being
668 * set. So we'd effectivly block all timers until the T2 event
671 if (!__hrtimer_hres_active(cpu_base
) || cpu_base
->hang_detected
)
674 tick_program_event(cpu_base
->expires_next
, 1);
677 /* High resolution timer related functions */
678 #ifdef CONFIG_HIGH_RES_TIMERS
681 * High resolution timer enabled ?
683 static bool hrtimer_hres_enabled __read_mostly
= true;
684 unsigned int hrtimer_resolution __read_mostly
= LOW_RES_NSEC
;
685 EXPORT_SYMBOL_GPL(hrtimer_resolution
);
688 * Enable / Disable high resolution mode
690 static int __init
setup_hrtimer_hres(char *str
)
692 return (kstrtobool(str
, &hrtimer_hres_enabled
) == 0);
695 __setup("highres=", setup_hrtimer_hres
);
698 * hrtimer_high_res_enabled - query, if the highres mode is enabled
700 static inline int hrtimer_is_hres_enabled(void)
702 return hrtimer_hres_enabled
;
706 * Retrigger next event is called after clock was set
708 * Called with interrupts disabled via on_each_cpu()
710 static void retrigger_next_event(void *arg
)
712 struct hrtimer_cpu_base
*base
= this_cpu_ptr(&hrtimer_bases
);
714 if (!__hrtimer_hres_active(base
))
717 raw_spin_lock(&base
->lock
);
718 hrtimer_update_base(base
);
719 hrtimer_force_reprogram(base
, 0);
720 raw_spin_unlock(&base
->lock
);
724 * Switch to high resolution mode
726 static void hrtimer_switch_to_hres(void)
728 struct hrtimer_cpu_base
*base
= this_cpu_ptr(&hrtimer_bases
);
730 if (tick_init_highres()) {
731 pr_warn("Could not switch to high resolution mode on CPU %u\n",
735 base
->hres_active
= 1;
736 hrtimer_resolution
= HIGH_RES_NSEC
;
738 tick_setup_sched_timer();
739 /* "Retrigger" the interrupt to get things going */
740 retrigger_next_event(NULL
);
743 static void clock_was_set_work(struct work_struct
*work
)
748 static DECLARE_WORK(hrtimer_work
, clock_was_set_work
);
751 * Called from timekeeping and resume code to reprogram the hrtimer
752 * interrupt device on all cpus.
754 void clock_was_set_delayed(void)
756 schedule_work(&hrtimer_work
);
761 static inline int hrtimer_is_hres_enabled(void) { return 0; }
762 static inline void hrtimer_switch_to_hres(void) { }
763 static inline void retrigger_next_event(void *arg
) { }
765 #endif /* CONFIG_HIGH_RES_TIMERS */
768 * When a timer is enqueued and expires earlier than the already enqueued
769 * timers, we have to check, whether it expires earlier than the timer for
770 * which the clock event device was armed.
772 * Called with interrupts disabled and base->cpu_base.lock held
774 static void hrtimer_reprogram(struct hrtimer
*timer
, bool reprogram
)
776 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
777 struct hrtimer_clock_base
*base
= timer
->base
;
778 ktime_t expires
= ktime_sub(hrtimer_get_expires(timer
), base
->offset
);
780 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer
) < 0);
783 * CLOCK_REALTIME timer might be requested with an absolute
784 * expiry time which is less than base->offset. Set it to 0.
789 if (timer
->is_soft
) {
791 * soft hrtimer could be started on a remote CPU. In this
792 * case softirq_expires_next needs to be updated on the
793 * remote CPU. The soft hrtimer will not expire before the
794 * first hard hrtimer on the remote CPU -
795 * hrtimer_check_target() prevents this case.
797 struct hrtimer_cpu_base
*timer_cpu_base
= base
->cpu_base
;
799 if (timer_cpu_base
->softirq_activated
)
802 if (!ktime_before(expires
, timer_cpu_base
->softirq_expires_next
))
805 timer_cpu_base
->softirq_next_timer
= timer
;
806 timer_cpu_base
->softirq_expires_next
= expires
;
808 if (!ktime_before(expires
, timer_cpu_base
->expires_next
) ||
814 * If the timer is not on the current cpu, we cannot reprogram
815 * the other cpus clock event device.
817 if (base
->cpu_base
!= cpu_base
)
821 * If the hrtimer interrupt is running, then it will
822 * reevaluate the clock bases and reprogram the clock event
823 * device. The callbacks are always executed in hard interrupt
824 * context so we don't need an extra check for a running
827 if (cpu_base
->in_hrtirq
)
830 if (expires
>= cpu_base
->expires_next
)
833 /* Update the pointer to the next expiring timer */
834 cpu_base
->next_timer
= timer
;
835 cpu_base
->expires_next
= expires
;
838 * If hres is not active, hardware does not have to be
841 * If a hang was detected in the last timer interrupt then we
842 * do not schedule a timer which is earlier than the expiry
843 * which we enforced in the hang detection. We want the system
846 if (!__hrtimer_hres_active(cpu_base
) || cpu_base
->hang_detected
)
850 * Program the timer hardware. We enforce the expiry for
851 * events which are already in the past.
853 tick_program_event(expires
, 1);
857 * Clock realtime was set
859 * Change the offset of the realtime clock vs. the monotonic
862 * We might have to reprogram the high resolution timer interrupt. On
863 * SMP we call the architecture specific code to retrigger _all_ high
864 * resolution timer interrupts. On UP we just disable interrupts and
865 * call the high resolution interrupt code.
867 void clock_was_set(void)
869 #ifdef CONFIG_HIGH_RES_TIMERS
870 /* Retrigger the CPU local events everywhere */
871 on_each_cpu(retrigger_next_event
, NULL
, 1);
873 timerfd_clock_was_set();
877 * During resume we might have to reprogram the high resolution timer
878 * interrupt on all online CPUs. However, all other CPUs will be
879 * stopped with IRQs interrupts disabled so the clock_was_set() call
882 void hrtimers_resume(void)
884 lockdep_assert_irqs_disabled();
885 /* Retrigger on the local CPU */
886 retrigger_next_event(NULL
);
887 /* And schedule a retrigger for all others */
888 clock_was_set_delayed();
892 * Counterpart to lock_hrtimer_base above:
895 void unlock_hrtimer_base(const struct hrtimer
*timer
, unsigned long *flags
)
897 raw_spin_unlock_irqrestore(&timer
->base
->cpu_base
->lock
, *flags
);
901 * hrtimer_forward - forward the timer expiry
902 * @timer: hrtimer to forward
903 * @now: forward past this time
904 * @interval: the interval to forward
906 * Forward the timer expiry so it will expire in the future.
907 * Returns the number of overruns.
909 * Can be safely called from the callback function of @timer. If
910 * called from other contexts @timer must neither be enqueued nor
911 * running the callback and the caller needs to take care of
914 * Note: This only updates the timer expiry value and does not requeue
917 u64
hrtimer_forward(struct hrtimer
*timer
, ktime_t now
, ktime_t interval
)
922 delta
= ktime_sub(now
, hrtimer_get_expires(timer
));
927 if (WARN_ON(timer
->state
& HRTIMER_STATE_ENQUEUED
))
930 if (interval
< hrtimer_resolution
)
931 interval
= hrtimer_resolution
;
933 if (unlikely(delta
>= interval
)) {
934 s64 incr
= ktime_to_ns(interval
);
936 orun
= ktime_divns(delta
, incr
);
937 hrtimer_add_expires_ns(timer
, incr
* orun
);
938 if (hrtimer_get_expires_tv64(timer
) > now
)
941 * This (and the ktime_add() below) is the
942 * correction for exact:
946 hrtimer_add_expires(timer
, interval
);
950 EXPORT_SYMBOL_GPL(hrtimer_forward
);
953 * enqueue_hrtimer - internal function to (re)start a timer
955 * The timer is inserted in expiry order. Insertion into the
956 * red black tree is O(log(n)). Must hold the base lock.
958 * Returns 1 when the new timer is the leftmost timer in the tree.
960 static int enqueue_hrtimer(struct hrtimer
*timer
,
961 struct hrtimer_clock_base
*base
,
962 enum hrtimer_mode mode
)
964 debug_activate(timer
, mode
);
966 base
->cpu_base
->active_bases
|= 1 << base
->index
;
968 /* Pairs with the lockless read in hrtimer_is_queued() */
969 WRITE_ONCE(timer
->state
, HRTIMER_STATE_ENQUEUED
);
971 return timerqueue_add(&base
->active
, &timer
->node
);
975 * __remove_hrtimer - internal function to remove a timer
977 * Caller must hold the base lock.
979 * High resolution timer mode reprograms the clock event device when the
980 * timer is the one which expires next. The caller can disable this by setting
981 * reprogram to zero. This is useful, when the context does a reprogramming
982 * anyway (e.g. timer interrupt)
984 static void __remove_hrtimer(struct hrtimer
*timer
,
985 struct hrtimer_clock_base
*base
,
986 u8 newstate
, int reprogram
)
988 struct hrtimer_cpu_base
*cpu_base
= base
->cpu_base
;
989 u8 state
= timer
->state
;
991 /* Pairs with the lockless read in hrtimer_is_queued() */
992 WRITE_ONCE(timer
->state
, newstate
);
993 if (!(state
& HRTIMER_STATE_ENQUEUED
))
996 if (!timerqueue_del(&base
->active
, &timer
->node
))
997 cpu_base
->active_bases
&= ~(1 << base
->index
);
1000 * Note: If reprogram is false we do not update
1001 * cpu_base->next_timer. This happens when we remove the first
1002 * timer on a remote cpu. No harm as we never dereference
1003 * cpu_base->next_timer. So the worst thing what can happen is
1004 * an superflous call to hrtimer_force_reprogram() on the
1005 * remote cpu later on if the same timer gets enqueued again.
1007 if (reprogram
&& timer
== cpu_base
->next_timer
)
1008 hrtimer_force_reprogram(cpu_base
, 1);
1012 * remove hrtimer, called with base lock held
1015 remove_hrtimer(struct hrtimer
*timer
, struct hrtimer_clock_base
*base
, bool restart
)
1017 u8 state
= timer
->state
;
1019 if (state
& HRTIMER_STATE_ENQUEUED
) {
1023 * Remove the timer and force reprogramming when high
1024 * resolution mode is active and the timer is on the current
1025 * CPU. If we remove a timer on another CPU, reprogramming is
1026 * skipped. The interrupt event on this CPU is fired and
1027 * reprogramming happens in the interrupt handler. This is a
1028 * rare case and less expensive than a smp call.
1030 debug_deactivate(timer
);
1031 reprogram
= base
->cpu_base
== this_cpu_ptr(&hrtimer_bases
);
1034 state
= HRTIMER_STATE_INACTIVE
;
1036 __remove_hrtimer(timer
, base
, state
, reprogram
);
1042 static inline ktime_t
hrtimer_update_lowres(struct hrtimer
*timer
, ktime_t tim
,
1043 const enum hrtimer_mode mode
)
1045 #ifdef CONFIG_TIME_LOW_RES
1047 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1048 * granular time values. For relative timers we add hrtimer_resolution
1049 * (i.e. one jiffie) to prevent short timeouts.
1051 timer
->is_rel
= mode
& HRTIMER_MODE_REL
;
1053 tim
= ktime_add_safe(tim
, hrtimer_resolution
);
1059 hrtimer_update_softirq_timer(struct hrtimer_cpu_base
*cpu_base
, bool reprogram
)
1064 * Find the next SOFT expiration.
1066 expires
= __hrtimer_get_next_event(cpu_base
, HRTIMER_ACTIVE_SOFT
);
1069 * reprogramming needs to be triggered, even if the next soft
1070 * hrtimer expires at the same time than the next hard
1071 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1073 if (expires
== KTIME_MAX
)
1077 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1078 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1080 hrtimer_reprogram(cpu_base
->softirq_next_timer
, reprogram
);
1083 static int __hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1084 u64 delta_ns
, const enum hrtimer_mode mode
,
1085 struct hrtimer_clock_base
*base
)
1087 struct hrtimer_clock_base
*new_base
;
1089 /* Remove an active timer from the queue: */
1090 remove_hrtimer(timer
, base
, true);
1092 if (mode
& HRTIMER_MODE_REL
)
1093 tim
= ktime_add_safe(tim
, base
->get_time());
1095 tim
= hrtimer_update_lowres(timer
, tim
, mode
);
1097 hrtimer_set_expires_range_ns(timer
, tim
, delta_ns
);
1099 /* Switch the timer base, if necessary: */
1100 new_base
= switch_hrtimer_base(timer
, base
, mode
& HRTIMER_MODE_PINNED
);
1102 return enqueue_hrtimer(timer
, new_base
, mode
);
1106 * hrtimer_start_range_ns - (re)start an hrtimer
1107 * @timer: the timer to be added
1109 * @delta_ns: "slack" range for the timer
1110 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
1111 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1112 * softirq based mode is considered for debug purpose only!
1114 void hrtimer_start_range_ns(struct hrtimer
*timer
, ktime_t tim
,
1115 u64 delta_ns
, const enum hrtimer_mode mode
)
1117 struct hrtimer_clock_base
*base
;
1118 unsigned long flags
;
1121 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1122 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1123 * expiry mode because unmarked timers are moved to softirq expiry.
1125 if (!IS_ENABLED(CONFIG_PREEMPT_RT
))
1126 WARN_ON_ONCE(!(mode
& HRTIMER_MODE_SOFT
) ^ !timer
->is_soft
);
1128 WARN_ON_ONCE(!(mode
& HRTIMER_MODE_HARD
) ^ !timer
->is_hard
);
1130 base
= lock_hrtimer_base(timer
, &flags
);
1132 if (__hrtimer_start_range_ns(timer
, tim
, delta_ns
, mode
, base
))
1133 hrtimer_reprogram(timer
, true);
1135 unlock_hrtimer_base(timer
, &flags
);
1137 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns
);
1140 * hrtimer_try_to_cancel - try to deactivate a timer
1141 * @timer: hrtimer to stop
1145 * * 0 when the timer was not active
1146 * * 1 when the timer was active
1147 * * -1 when the timer is currently executing the callback function and
1150 int hrtimer_try_to_cancel(struct hrtimer
*timer
)
1152 struct hrtimer_clock_base
*base
;
1153 unsigned long flags
;
1157 * Check lockless first. If the timer is not active (neither
1158 * enqueued nor running the callback, nothing to do here. The
1159 * base lock does not serialize against a concurrent enqueue,
1160 * so we can avoid taking it.
1162 if (!hrtimer_active(timer
))
1165 base
= lock_hrtimer_base(timer
, &flags
);
1167 if (!hrtimer_callback_running(timer
))
1168 ret
= remove_hrtimer(timer
, base
, false);
1170 unlock_hrtimer_base(timer
, &flags
);
1175 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel
);
1177 #ifdef CONFIG_PREEMPT_RT
1178 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base
*base
)
1180 spin_lock_init(&base
->softirq_expiry_lock
);
1183 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base
*base
)
1185 spin_lock(&base
->softirq_expiry_lock
);
1188 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base
*base
)
1190 spin_unlock(&base
->softirq_expiry_lock
);
1194 * The counterpart to hrtimer_cancel_wait_running().
1196 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1197 * the timer callback to finish. Drop expiry_lock and reaquire it. That
1198 * allows the waiter to acquire the lock and make progress.
1200 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base
*cpu_base
,
1201 unsigned long flags
)
1203 if (atomic_read(&cpu_base
->timer_waiters
)) {
1204 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1205 spin_unlock(&cpu_base
->softirq_expiry_lock
);
1206 spin_lock(&cpu_base
->softirq_expiry_lock
);
1207 raw_spin_lock_irq(&cpu_base
->lock
);
1212 * This function is called on PREEMPT_RT kernels when the fast path
1213 * deletion of a timer failed because the timer callback function was
1216 * This prevents priority inversion: if the soft irq thread is preempted
1217 * in the middle of a timer callback, then calling del_timer_sync() can
1218 * lead to two issues:
1220 * - If the caller is on a remote CPU then it has to spin wait for the timer
1221 * handler to complete. This can result in unbound priority inversion.
1223 * - If the caller originates from the task which preempted the timer
1224 * handler on the same CPU, then spin waiting for the timer handler to
1225 * complete is never going to end.
1227 void hrtimer_cancel_wait_running(const struct hrtimer
*timer
)
1229 /* Lockless read. Prevent the compiler from reloading it below */
1230 struct hrtimer_clock_base
*base
= READ_ONCE(timer
->base
);
1233 * Just relax if the timer expires in hard interrupt context or if
1234 * it is currently on the migration base.
1236 if (!timer
->is_soft
|| is_migration_base(base
)) {
1242 * Mark the base as contended and grab the expiry lock, which is
1243 * held by the softirq across the timer callback. Drop the lock
1244 * immediately so the softirq can expire the next timer. In theory
1245 * the timer could already be running again, but that's more than
1246 * unlikely and just causes another wait loop.
1248 atomic_inc(&base
->cpu_base
->timer_waiters
);
1249 spin_lock_bh(&base
->cpu_base
->softirq_expiry_lock
);
1250 atomic_dec(&base
->cpu_base
->timer_waiters
);
1251 spin_unlock_bh(&base
->cpu_base
->softirq_expiry_lock
);
1255 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base
*base
) { }
1257 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base
*base
) { }
1259 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base
*base
) { }
1260 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base
*base
,
1261 unsigned long flags
) { }
1265 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1266 * @timer: the timer to be cancelled
1269 * 0 when the timer was not active
1270 * 1 when the timer was active
1272 int hrtimer_cancel(struct hrtimer
*timer
)
1277 ret
= hrtimer_try_to_cancel(timer
);
1280 hrtimer_cancel_wait_running(timer
);
1284 EXPORT_SYMBOL_GPL(hrtimer_cancel
);
1287 * __hrtimer_get_remaining - get remaining time for the timer
1288 * @timer: the timer to read
1289 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
1291 ktime_t
__hrtimer_get_remaining(const struct hrtimer
*timer
, bool adjust
)
1293 unsigned long flags
;
1296 lock_hrtimer_base(timer
, &flags
);
1297 if (IS_ENABLED(CONFIG_TIME_LOW_RES
) && adjust
)
1298 rem
= hrtimer_expires_remaining_adjusted(timer
);
1300 rem
= hrtimer_expires_remaining(timer
);
1301 unlock_hrtimer_base(timer
, &flags
);
1305 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining
);
1307 #ifdef CONFIG_NO_HZ_COMMON
1309 * hrtimer_get_next_event - get the time until next expiry event
1311 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1313 u64
hrtimer_get_next_event(void)
1315 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1316 u64 expires
= KTIME_MAX
;
1317 unsigned long flags
;
1319 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1321 if (!__hrtimer_hres_active(cpu_base
))
1322 expires
= __hrtimer_get_next_event(cpu_base
, HRTIMER_ACTIVE_ALL
);
1324 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1330 * hrtimer_next_event_without - time until next expiry event w/o one timer
1331 * @exclude: timer to exclude
1333 * Returns the next expiry time over all timers except for the @exclude one or
1334 * KTIME_MAX if none of them is pending.
1336 u64
hrtimer_next_event_without(const struct hrtimer
*exclude
)
1338 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1339 u64 expires
= KTIME_MAX
;
1340 unsigned long flags
;
1342 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1344 if (__hrtimer_hres_active(cpu_base
)) {
1345 unsigned int active
;
1347 if (!cpu_base
->softirq_activated
) {
1348 active
= cpu_base
->active_bases
& HRTIMER_ACTIVE_SOFT
;
1349 expires
= __hrtimer_next_event_base(cpu_base
, exclude
,
1352 active
= cpu_base
->active_bases
& HRTIMER_ACTIVE_HARD
;
1353 expires
= __hrtimer_next_event_base(cpu_base
, exclude
, active
,
1357 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1363 static inline int hrtimer_clockid_to_base(clockid_t clock_id
)
1365 if (likely(clock_id
< MAX_CLOCKS
)) {
1366 int base
= hrtimer_clock_to_base_table
[clock_id
];
1368 if (likely(base
!= HRTIMER_MAX_CLOCK_BASES
))
1371 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id
);
1372 return HRTIMER_BASE_MONOTONIC
;
1375 static void __hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1376 enum hrtimer_mode mode
)
1378 bool softtimer
= !!(mode
& HRTIMER_MODE_SOFT
);
1379 struct hrtimer_cpu_base
*cpu_base
;
1383 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1384 * marked for hard interrupt expiry mode are moved into soft
1385 * interrupt context for latency reasons and because the callbacks
1386 * can invoke functions which might sleep on RT, e.g. spin_lock().
1388 if (IS_ENABLED(CONFIG_PREEMPT_RT
) && !(mode
& HRTIMER_MODE_HARD
))
1391 memset(timer
, 0, sizeof(struct hrtimer
));
1393 cpu_base
= raw_cpu_ptr(&hrtimer_bases
);
1396 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1397 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1398 * ensure POSIX compliance.
1400 if (clock_id
== CLOCK_REALTIME
&& mode
& HRTIMER_MODE_REL
)
1401 clock_id
= CLOCK_MONOTONIC
;
1403 base
= softtimer
? HRTIMER_MAX_CLOCK_BASES
/ 2 : 0;
1404 base
+= hrtimer_clockid_to_base(clock_id
);
1405 timer
->is_soft
= softtimer
;
1406 timer
->is_hard
= !!(mode
& HRTIMER_MODE_HARD
);
1407 timer
->base
= &cpu_base
->clock_base
[base
];
1408 timerqueue_init(&timer
->node
);
1412 * hrtimer_init - initialize a timer to the given clock
1413 * @timer: the timer to be initialized
1414 * @clock_id: the clock to be used
1415 * @mode: The modes which are relevant for intitialization:
1416 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1417 * HRTIMER_MODE_REL_SOFT
1419 * The PINNED variants of the above can be handed in,
1420 * but the PINNED bit is ignored as pinning happens
1421 * when the hrtimer is started
1423 void hrtimer_init(struct hrtimer
*timer
, clockid_t clock_id
,
1424 enum hrtimer_mode mode
)
1426 debug_init(timer
, clock_id
, mode
);
1427 __hrtimer_init(timer
, clock_id
, mode
);
1429 EXPORT_SYMBOL_GPL(hrtimer_init
);
1432 * A timer is active, when it is enqueued into the rbtree or the
1433 * callback function is running or it's in the state of being migrated
1436 * It is important for this function to not return a false negative.
1438 bool hrtimer_active(const struct hrtimer
*timer
)
1440 struct hrtimer_clock_base
*base
;
1444 base
= READ_ONCE(timer
->base
);
1445 seq
= raw_read_seqcount_begin(&base
->seq
);
1447 if (timer
->state
!= HRTIMER_STATE_INACTIVE
||
1448 base
->running
== timer
)
1451 } while (read_seqcount_retry(&base
->seq
, seq
) ||
1452 base
!= READ_ONCE(timer
->base
));
1456 EXPORT_SYMBOL_GPL(hrtimer_active
);
1459 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1460 * distinct sections:
1462 * - queued: the timer is queued
1463 * - callback: the timer is being ran
1464 * - post: the timer is inactive or (re)queued
1466 * On the read side we ensure we observe timer->state and cpu_base->running
1467 * from the same section, if anything changed while we looked at it, we retry.
1468 * This includes timer->base changing because sequence numbers alone are
1469 * insufficient for that.
1471 * The sequence numbers are required because otherwise we could still observe
1472 * a false negative if the read side got smeared over multiple consequtive
1473 * __run_hrtimer() invocations.
1476 static void __run_hrtimer(struct hrtimer_cpu_base
*cpu_base
,
1477 struct hrtimer_clock_base
*base
,
1478 struct hrtimer
*timer
, ktime_t
*now
,
1479 unsigned long flags
) __must_hold(&cpu_base
->lock
)
1481 enum hrtimer_restart (*fn
)(struct hrtimer
*);
1482 bool expires_in_hardirq
;
1485 lockdep_assert_held(&cpu_base
->lock
);
1487 debug_deactivate(timer
);
1488 base
->running
= timer
;
1491 * Separate the ->running assignment from the ->state assignment.
1493 * As with a regular write barrier, this ensures the read side in
1494 * hrtimer_active() cannot observe base->running == NULL &&
1495 * timer->state == INACTIVE.
1497 raw_write_seqcount_barrier(&base
->seq
);
1499 __remove_hrtimer(timer
, base
, HRTIMER_STATE_INACTIVE
, 0);
1500 fn
= timer
->function
;
1503 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1504 * timer is restarted with a period then it becomes an absolute
1505 * timer. If its not restarted it does not matter.
1507 if (IS_ENABLED(CONFIG_TIME_LOW_RES
))
1508 timer
->is_rel
= false;
1511 * The timer is marked as running in the CPU base, so it is
1512 * protected against migration to a different CPU even if the lock
1515 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1516 trace_hrtimer_expire_entry(timer
, now
);
1517 expires_in_hardirq
= lockdep_hrtimer_enter(timer
);
1519 restart
= fn(timer
);
1521 lockdep_hrtimer_exit(expires_in_hardirq
);
1522 trace_hrtimer_expire_exit(timer
);
1523 raw_spin_lock_irq(&cpu_base
->lock
);
1526 * Note: We clear the running state after enqueue_hrtimer and
1527 * we do not reprogram the event hardware. Happens either in
1528 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1530 * Note: Because we dropped the cpu_base->lock above,
1531 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1534 if (restart
!= HRTIMER_NORESTART
&&
1535 !(timer
->state
& HRTIMER_STATE_ENQUEUED
))
1536 enqueue_hrtimer(timer
, base
, HRTIMER_MODE_ABS
);
1539 * Separate the ->running assignment from the ->state assignment.
1541 * As with a regular write barrier, this ensures the read side in
1542 * hrtimer_active() cannot observe base->running.timer == NULL &&
1543 * timer->state == INACTIVE.
1545 raw_write_seqcount_barrier(&base
->seq
);
1547 WARN_ON_ONCE(base
->running
!= timer
);
1548 base
->running
= NULL
;
1551 static void __hrtimer_run_queues(struct hrtimer_cpu_base
*cpu_base
, ktime_t now
,
1552 unsigned long flags
, unsigned int active_mask
)
1554 struct hrtimer_clock_base
*base
;
1555 unsigned int active
= cpu_base
->active_bases
& active_mask
;
1557 for_each_active_base(base
, cpu_base
, active
) {
1558 struct timerqueue_node
*node
;
1561 basenow
= ktime_add(now
, base
->offset
);
1563 while ((node
= timerqueue_getnext(&base
->active
))) {
1564 struct hrtimer
*timer
;
1566 timer
= container_of(node
, struct hrtimer
, node
);
1569 * The immediate goal for using the softexpires is
1570 * minimizing wakeups, not running timers at the
1571 * earliest interrupt after their soft expiration.
1572 * This allows us to avoid using a Priority Search
1573 * Tree, which can answer a stabbing querry for
1574 * overlapping intervals and instead use the simple
1575 * BST we already have.
1576 * We don't add extra wakeups by delaying timers that
1577 * are right-of a not yet expired timer, because that
1578 * timer will have to trigger a wakeup anyway.
1580 if (basenow
< hrtimer_get_softexpires_tv64(timer
))
1583 __run_hrtimer(cpu_base
, base
, timer
, &basenow
, flags
);
1584 if (active_mask
== HRTIMER_ACTIVE_SOFT
)
1585 hrtimer_sync_wait_running(cpu_base
, flags
);
1590 static __latent_entropy
void hrtimer_run_softirq(struct softirq_action
*h
)
1592 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1593 unsigned long flags
;
1596 hrtimer_cpu_base_lock_expiry(cpu_base
);
1597 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1599 now
= hrtimer_update_base(cpu_base
);
1600 __hrtimer_run_queues(cpu_base
, now
, flags
, HRTIMER_ACTIVE_SOFT
);
1602 cpu_base
->softirq_activated
= 0;
1603 hrtimer_update_softirq_timer(cpu_base
, true);
1605 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1606 hrtimer_cpu_base_unlock_expiry(cpu_base
);
1609 #ifdef CONFIG_HIGH_RES_TIMERS
1612 * High resolution timer interrupt
1613 * Called with interrupts disabled
1615 void hrtimer_interrupt(struct clock_event_device
*dev
)
1617 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1618 ktime_t expires_next
, now
, entry_time
, delta
;
1619 unsigned long flags
;
1622 BUG_ON(!cpu_base
->hres_active
);
1623 cpu_base
->nr_events
++;
1624 dev
->next_event
= KTIME_MAX
;
1626 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1627 entry_time
= now
= hrtimer_update_base(cpu_base
);
1629 cpu_base
->in_hrtirq
= 1;
1631 * We set expires_next to KTIME_MAX here with cpu_base->lock
1632 * held to prevent that a timer is enqueued in our queue via
1633 * the migration code. This does not affect enqueueing of
1634 * timers which run their callback and need to be requeued on
1637 cpu_base
->expires_next
= KTIME_MAX
;
1639 if (!ktime_before(now
, cpu_base
->softirq_expires_next
)) {
1640 cpu_base
->softirq_expires_next
= KTIME_MAX
;
1641 cpu_base
->softirq_activated
= 1;
1642 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1645 __hrtimer_run_queues(cpu_base
, now
, flags
, HRTIMER_ACTIVE_HARD
);
1647 /* Reevaluate the clock bases for the next expiry */
1648 expires_next
= __hrtimer_get_next_event(cpu_base
, HRTIMER_ACTIVE_ALL
);
1650 * Store the new expiry value so the migration code can verify
1653 cpu_base
->expires_next
= expires_next
;
1654 cpu_base
->in_hrtirq
= 0;
1655 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1657 /* Reprogramming necessary ? */
1658 if (!tick_program_event(expires_next
, 0)) {
1659 cpu_base
->hang_detected
= 0;
1664 * The next timer was already expired due to:
1666 * - long lasting callbacks
1667 * - being scheduled away when running in a VM
1669 * We need to prevent that we loop forever in the hrtimer
1670 * interrupt routine. We give it 3 attempts to avoid
1671 * overreacting on some spurious event.
1673 * Acquire base lock for updating the offsets and retrieving
1676 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1677 now
= hrtimer_update_base(cpu_base
);
1678 cpu_base
->nr_retries
++;
1682 * Give the system a chance to do something else than looping
1683 * here. We stored the entry time, so we know exactly how long
1684 * we spent here. We schedule the next event this amount of
1687 cpu_base
->nr_hangs
++;
1688 cpu_base
->hang_detected
= 1;
1689 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1691 delta
= ktime_sub(now
, entry_time
);
1692 if ((unsigned int)delta
> cpu_base
->max_hang_time
)
1693 cpu_base
->max_hang_time
= (unsigned int) delta
;
1695 * Limit it to a sensible value as we enforce a longer
1696 * delay. Give the CPU at least 100ms to catch up.
1698 if (delta
> 100 * NSEC_PER_MSEC
)
1699 expires_next
= ktime_add_ns(now
, 100 * NSEC_PER_MSEC
);
1701 expires_next
= ktime_add(now
, delta
);
1702 tick_program_event(expires_next
, 1);
1703 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta
));
1706 /* called with interrupts disabled */
1707 static inline void __hrtimer_peek_ahead_timers(void)
1709 struct tick_device
*td
;
1711 if (!hrtimer_hres_active())
1714 td
= this_cpu_ptr(&tick_cpu_device
);
1715 if (td
&& td
->evtdev
)
1716 hrtimer_interrupt(td
->evtdev
);
1719 #else /* CONFIG_HIGH_RES_TIMERS */
1721 static inline void __hrtimer_peek_ahead_timers(void) { }
1723 #endif /* !CONFIG_HIGH_RES_TIMERS */
1726 * Called from run_local_timers in hardirq context every jiffy
1728 void hrtimer_run_queues(void)
1730 struct hrtimer_cpu_base
*cpu_base
= this_cpu_ptr(&hrtimer_bases
);
1731 unsigned long flags
;
1734 if (__hrtimer_hres_active(cpu_base
))
1738 * This _is_ ugly: We have to check periodically, whether we
1739 * can switch to highres and / or nohz mode. The clocksource
1740 * switch happens with xtime_lock held. Notification from
1741 * there only sets the check bit in the tick_oneshot code,
1742 * otherwise we might deadlock vs. xtime_lock.
1744 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1745 hrtimer_switch_to_hres();
1749 raw_spin_lock_irqsave(&cpu_base
->lock
, flags
);
1750 now
= hrtimer_update_base(cpu_base
);
1752 if (!ktime_before(now
, cpu_base
->softirq_expires_next
)) {
1753 cpu_base
->softirq_expires_next
= KTIME_MAX
;
1754 cpu_base
->softirq_activated
= 1;
1755 raise_softirq_irqoff(HRTIMER_SOFTIRQ
);
1758 __hrtimer_run_queues(cpu_base
, now
, flags
, HRTIMER_ACTIVE_HARD
);
1759 raw_spin_unlock_irqrestore(&cpu_base
->lock
, flags
);
1763 * Sleep related functions:
1765 static enum hrtimer_restart
hrtimer_wakeup(struct hrtimer
*timer
)
1767 struct hrtimer_sleeper
*t
=
1768 container_of(timer
, struct hrtimer_sleeper
, timer
);
1769 struct task_struct
*task
= t
->task
;
1773 wake_up_process(task
);
1775 return HRTIMER_NORESTART
;
1779 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1780 * @sl: sleeper to be started
1781 * @mode: timer mode abs/rel
1783 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1784 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1786 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper
*sl
,
1787 enum hrtimer_mode mode
)
1790 * Make the enqueue delivery mode check work on RT. If the sleeper
1791 * was initialized for hard interrupt delivery, force the mode bit.
1792 * This is a special case for hrtimer_sleepers because
1793 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1794 * fiddling with this decision is avoided at the call sites.
1796 if (IS_ENABLED(CONFIG_PREEMPT_RT
) && sl
->timer
.is_hard
)
1797 mode
|= HRTIMER_MODE_HARD
;
1799 hrtimer_start_expires(&sl
->timer
, mode
);
1801 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires
);
1803 static void __hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
,
1804 clockid_t clock_id
, enum hrtimer_mode mode
)
1807 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1808 * marked for hard interrupt expiry mode are moved into soft
1809 * interrupt context either for latency reasons or because the
1810 * hrtimer callback takes regular spinlocks or invokes other
1811 * functions which are not suitable for hard interrupt context on
1814 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1815 * context, but there is a latency concern: Untrusted userspace can
1816 * spawn many threads which arm timers for the same expiry time on
1817 * the same CPU. That causes a latency spike due to the wakeup of
1818 * a gazillion threads.
1820 * OTOH, priviledged real-time user space applications rely on the
1821 * low latency of hard interrupt wakeups. If the current task is in
1822 * a real-time scheduling class, mark the mode for hard interrupt
1825 if (IS_ENABLED(CONFIG_PREEMPT_RT
)) {
1826 if (task_is_realtime(current
) && !(mode
& HRTIMER_MODE_SOFT
))
1827 mode
|= HRTIMER_MODE_HARD
;
1830 __hrtimer_init(&sl
->timer
, clock_id
, mode
);
1831 sl
->timer
.function
= hrtimer_wakeup
;
1836 * hrtimer_init_sleeper - initialize sleeper to the given clock
1837 * @sl: sleeper to be initialized
1838 * @clock_id: the clock to be used
1839 * @mode: timer mode abs/rel
1841 void hrtimer_init_sleeper(struct hrtimer_sleeper
*sl
, clockid_t clock_id
,
1842 enum hrtimer_mode mode
)
1844 debug_init(&sl
->timer
, clock_id
, mode
);
1845 __hrtimer_init_sleeper(sl
, clock_id
, mode
);
1848 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper
);
1850 int nanosleep_copyout(struct restart_block
*restart
, struct timespec64
*ts
)
1852 switch(restart
->nanosleep
.type
) {
1853 #ifdef CONFIG_COMPAT_32BIT_TIME
1855 if (put_old_timespec32(ts
, restart
->nanosleep
.compat_rmtp
))
1860 if (put_timespec64(ts
, restart
->nanosleep
.rmtp
))
1866 return -ERESTART_RESTARTBLOCK
;
1869 static int __sched
do_nanosleep(struct hrtimer_sleeper
*t
, enum hrtimer_mode mode
)
1871 struct restart_block
*restart
;
1874 set_current_state(TASK_INTERRUPTIBLE
);
1875 hrtimer_sleeper_start_expires(t
, mode
);
1877 if (likely(t
->task
))
1878 freezable_schedule();
1880 hrtimer_cancel(&t
->timer
);
1881 mode
= HRTIMER_MODE_ABS
;
1883 } while (t
->task
&& !signal_pending(current
));
1885 __set_current_state(TASK_RUNNING
);
1890 restart
= ¤t
->restart_block
;
1891 if (restart
->nanosleep
.type
!= TT_NONE
) {
1892 ktime_t rem
= hrtimer_expires_remaining(&t
->timer
);
1893 struct timespec64 rmt
;
1897 rmt
= ktime_to_timespec64(rem
);
1899 return nanosleep_copyout(restart
, &rmt
);
1901 return -ERESTART_RESTARTBLOCK
;
1904 static long __sched
hrtimer_nanosleep_restart(struct restart_block
*restart
)
1906 struct hrtimer_sleeper t
;
1909 hrtimer_init_sleeper_on_stack(&t
, restart
->nanosleep
.clockid
,
1911 hrtimer_set_expires_tv64(&t
.timer
, restart
->nanosleep
.expires
);
1912 ret
= do_nanosleep(&t
, HRTIMER_MODE_ABS
);
1913 destroy_hrtimer_on_stack(&t
.timer
);
1917 long hrtimer_nanosleep(ktime_t rqtp
, const enum hrtimer_mode mode
,
1918 const clockid_t clockid
)
1920 struct restart_block
*restart
;
1921 struct hrtimer_sleeper t
;
1925 slack
= current
->timer_slack_ns
;
1926 if (dl_task(current
) || rt_task(current
))
1929 hrtimer_init_sleeper_on_stack(&t
, clockid
, mode
);
1930 hrtimer_set_expires_range_ns(&t
.timer
, rqtp
, slack
);
1931 ret
= do_nanosleep(&t
, mode
);
1932 if (ret
!= -ERESTART_RESTARTBLOCK
)
1935 /* Absolute timers do not update the rmtp value and restart: */
1936 if (mode
== HRTIMER_MODE_ABS
) {
1937 ret
= -ERESTARTNOHAND
;
1941 restart
= ¤t
->restart_block
;
1942 restart
->fn
= hrtimer_nanosleep_restart
;
1943 restart
->nanosleep
.clockid
= t
.timer
.base
->clockid
;
1944 restart
->nanosleep
.expires
= hrtimer_get_expires_tv64(&t
.timer
);
1946 destroy_hrtimer_on_stack(&t
.timer
);
1952 SYSCALL_DEFINE2(nanosleep
, struct __kernel_timespec __user
*, rqtp
,
1953 struct __kernel_timespec __user
*, rmtp
)
1955 struct timespec64 tu
;
1957 if (get_timespec64(&tu
, rqtp
))
1960 if (!timespec64_valid(&tu
))
1963 current
->restart_block
.nanosleep
.type
= rmtp
? TT_NATIVE
: TT_NONE
;
1964 current
->restart_block
.nanosleep
.rmtp
= rmtp
;
1965 return hrtimer_nanosleep(timespec64_to_ktime(tu
), HRTIMER_MODE_REL
,
1971 #ifdef CONFIG_COMPAT_32BIT_TIME
1973 SYSCALL_DEFINE2(nanosleep_time32
, struct old_timespec32 __user
*, rqtp
,
1974 struct old_timespec32 __user
*, rmtp
)
1976 struct timespec64 tu
;
1978 if (get_old_timespec32(&tu
, rqtp
))
1981 if (!timespec64_valid(&tu
))
1984 current
->restart_block
.nanosleep
.type
= rmtp
? TT_COMPAT
: TT_NONE
;
1985 current
->restart_block
.nanosleep
.compat_rmtp
= rmtp
;
1986 return hrtimer_nanosleep(timespec64_to_ktime(tu
), HRTIMER_MODE_REL
,
1992 * Functions related to boot-time initialization:
1994 int hrtimers_prepare_cpu(unsigned int cpu
)
1996 struct hrtimer_cpu_base
*cpu_base
= &per_cpu(hrtimer_bases
, cpu
);
1999 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
2000 struct hrtimer_clock_base
*clock_b
= &cpu_base
->clock_base
[i
];
2002 clock_b
->cpu_base
= cpu_base
;
2003 seqcount_raw_spinlock_init(&clock_b
->seq
, &cpu_base
->lock
);
2004 timerqueue_init_head(&clock_b
->active
);
2007 cpu_base
->cpu
= cpu
;
2008 cpu_base
->active_bases
= 0;
2009 cpu_base
->hres_active
= 0;
2010 cpu_base
->hang_detected
= 0;
2011 cpu_base
->next_timer
= NULL
;
2012 cpu_base
->softirq_next_timer
= NULL
;
2013 cpu_base
->expires_next
= KTIME_MAX
;
2014 cpu_base
->softirq_expires_next
= KTIME_MAX
;
2015 hrtimer_cpu_base_init_expiry_lock(cpu_base
);
2019 #ifdef CONFIG_HOTPLUG_CPU
2021 static void migrate_hrtimer_list(struct hrtimer_clock_base
*old_base
,
2022 struct hrtimer_clock_base
*new_base
)
2024 struct hrtimer
*timer
;
2025 struct timerqueue_node
*node
;
2027 while ((node
= timerqueue_getnext(&old_base
->active
))) {
2028 timer
= container_of(node
, struct hrtimer
, node
);
2029 BUG_ON(hrtimer_callback_running(timer
));
2030 debug_deactivate(timer
);
2033 * Mark it as ENQUEUED not INACTIVE otherwise the
2034 * timer could be seen as !active and just vanish away
2035 * under us on another CPU
2037 __remove_hrtimer(timer
, old_base
, HRTIMER_STATE_ENQUEUED
, 0);
2038 timer
->base
= new_base
;
2040 * Enqueue the timers on the new cpu. This does not
2041 * reprogram the event device in case the timer
2042 * expires before the earliest on this CPU, but we run
2043 * hrtimer_interrupt after we migrated everything to
2044 * sort out already expired timers and reprogram the
2047 enqueue_hrtimer(timer
, new_base
, HRTIMER_MODE_ABS
);
2051 int hrtimers_dead_cpu(unsigned int scpu
)
2053 struct hrtimer_cpu_base
*old_base
, *new_base
;
2056 BUG_ON(cpu_online(scpu
));
2057 tick_cancel_sched_timer(scpu
);
2060 * this BH disable ensures that raise_softirq_irqoff() does
2061 * not wakeup ksoftirqd (and acquire the pi-lock) while
2062 * holding the cpu_base lock
2065 local_irq_disable();
2066 old_base
= &per_cpu(hrtimer_bases
, scpu
);
2067 new_base
= this_cpu_ptr(&hrtimer_bases
);
2069 * The caller is globally serialized and nobody else
2070 * takes two locks at once, deadlock is not possible.
2072 raw_spin_lock(&new_base
->lock
);
2073 raw_spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
2075 for (i
= 0; i
< HRTIMER_MAX_CLOCK_BASES
; i
++) {
2076 migrate_hrtimer_list(&old_base
->clock_base
[i
],
2077 &new_base
->clock_base
[i
]);
2081 * The migration might have changed the first expiring softirq
2082 * timer on this CPU. Update it.
2084 hrtimer_update_softirq_timer(new_base
, false);
2086 raw_spin_unlock(&old_base
->lock
);
2087 raw_spin_unlock(&new_base
->lock
);
2089 /* Check, if we got expired work to do */
2090 __hrtimer_peek_ahead_timers();
2096 #endif /* CONFIG_HOTPLUG_CPU */
2098 void __init
hrtimers_init(void)
2100 hrtimers_prepare_cpu(smp_processor_id());
2101 open_softirq(HRTIMER_SOFTIRQ
, hrtimer_run_softirq
);
2105 * schedule_hrtimeout_range_clock - sleep until timeout
2106 * @expires: timeout value (ktime_t)
2107 * @delta: slack in expires timeout (ktime_t)
2109 * @clock_id: timer clock to be used
2112 schedule_hrtimeout_range_clock(ktime_t
*expires
, u64 delta
,
2113 const enum hrtimer_mode mode
, clockid_t clock_id
)
2115 struct hrtimer_sleeper t
;
2118 * Optimize when a zero timeout value is given. It does not
2119 * matter whether this is an absolute or a relative time.
2121 if (expires
&& *expires
== 0) {
2122 __set_current_state(TASK_RUNNING
);
2127 * A NULL parameter means "infinite"
2134 hrtimer_init_sleeper_on_stack(&t
, clock_id
, mode
);
2135 hrtimer_set_expires_range_ns(&t
.timer
, *expires
, delta
);
2136 hrtimer_sleeper_start_expires(&t
, mode
);
2141 hrtimer_cancel(&t
.timer
);
2142 destroy_hrtimer_on_stack(&t
.timer
);
2144 __set_current_state(TASK_RUNNING
);
2146 return !t
.task
? 0 : -EINTR
;
2150 * schedule_hrtimeout_range - sleep until timeout
2151 * @expires: timeout value (ktime_t)
2152 * @delta: slack in expires timeout (ktime_t)
2155 * Make the current task sleep until the given expiry time has
2156 * elapsed. The routine will return immediately unless
2157 * the current task state has been set (see set_current_state()).
2159 * The @delta argument gives the kernel the freedom to schedule the
2160 * actual wakeup to a time that is both power and performance friendly.
2161 * The kernel give the normal best effort behavior for "@expires+@delta",
2162 * but may decide to fire the timer earlier, but no earlier than @expires.
2164 * You can set the task state as follows -
2166 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2167 * pass before the routine returns unless the current task is explicitly
2168 * woken up, (e.g. by wake_up_process()).
2170 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2171 * delivered to the current task or the current task is explicitly woken
2174 * The current task state is guaranteed to be TASK_RUNNING when this
2177 * Returns 0 when the timer has expired. If the task was woken before the
2178 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2179 * by an explicit wakeup, it returns -EINTR.
2181 int __sched
schedule_hrtimeout_range(ktime_t
*expires
, u64 delta
,
2182 const enum hrtimer_mode mode
)
2184 return schedule_hrtimeout_range_clock(expires
, delta
, mode
,
2187 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range
);
2190 * schedule_hrtimeout - sleep until timeout
2191 * @expires: timeout value (ktime_t)
2194 * Make the current task sleep until the given expiry time has
2195 * elapsed. The routine will return immediately unless
2196 * the current task state has been set (see set_current_state()).
2198 * You can set the task state as follows -
2200 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2201 * pass before the routine returns unless the current task is explicitly
2202 * woken up, (e.g. by wake_up_process()).
2204 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2205 * delivered to the current task or the current task is explicitly woken
2208 * The current task state is guaranteed to be TASK_RUNNING when this
2211 * Returns 0 when the timer has expired. If the task was woken before the
2212 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2213 * by an explicit wakeup, it returns -EINTR.
2215 int __sched
schedule_hrtimeout(ktime_t
*expires
,
2216 const enum hrtimer_mode mode
)
2218 return schedule_hrtimeout_range(expires
, 0, mode
);
2220 EXPORT_SYMBOL_GPL(schedule_hrtimeout
);