1 // SPDX-License-Identifier: GPL-2.0
3 * Implement CPU time clocks for the POSIX clock interface.
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17 #include <linux/sched/deadline.h>
19 #include "posix-timers.h"
21 static void posix_cpu_timer_rearm(struct k_itimer
*timer
);
23 void posix_cputimers_group_init(struct posix_cputimers
*pct
, u64 cpu_limit
)
25 posix_cputimers_init(pct
);
26 if (cpu_limit
!= RLIM_INFINITY
) {
27 pct
->bases
[CPUCLOCK_PROF
].nextevt
= cpu_limit
* NSEC_PER_SEC
;
28 pct
->timers_active
= true;
33 * Called after updating RLIMIT_CPU to run cpu timer and update
34 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
35 * necessary. Needs siglock protection since other code may update the
36 * expiration cache as well.
38 void update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
40 u64 nsecs
= rlim_new
* NSEC_PER_SEC
;
42 spin_lock_irq(&task
->sighand
->siglock
);
43 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &nsecs
, NULL
);
44 spin_unlock_irq(&task
->sighand
->siglock
);
48 * Functions for validating access to tasks.
50 static struct pid
*pid_for_clock(const clockid_t clock
, bool gettime
)
52 const bool thread
= !!CPUCLOCK_PERTHREAD(clock
);
53 const pid_t upid
= CPUCLOCK_PID(clock
);
56 if (CPUCLOCK_WHICH(clock
) >= CPUCLOCK_MAX
)
60 * If the encoded PID is 0, then the timer is targeted at current
61 * or the process to which current belongs.
64 return thread
? task_pid(current
) : task_tgid(current
);
66 pid
= find_vpid(upid
);
71 struct task_struct
*tsk
= pid_task(pid
, PIDTYPE_PID
);
72 return (tsk
&& same_thread_group(tsk
, current
)) ? pid
: NULL
;
76 * For clock_gettime(PROCESS) allow finding the process by
77 * with the pid of the current task. The code needs the tgid
78 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
79 * used to find the process.
81 if (gettime
&& (pid
== task_pid(current
)))
82 return task_tgid(current
);
85 * For processes require that pid identifies a process.
87 return pid_has_task(pid
, PIDTYPE_TGID
) ? pid
: NULL
;
90 static inline int validate_clock_permissions(const clockid_t clock
)
95 ret
= pid_for_clock(clock
, false) ? 0 : -EINVAL
;
101 static inline enum pid_type
clock_pid_type(const clockid_t clock
)
103 return CPUCLOCK_PERTHREAD(clock
) ? PIDTYPE_PID
: PIDTYPE_TGID
;
106 static inline struct task_struct
*cpu_timer_task_rcu(struct k_itimer
*timer
)
108 return pid_task(timer
->it
.cpu
.pid
, clock_pid_type(timer
->it_clock
));
112 * Update expiry time from increment, and increase overrun count,
113 * given the current clock sample.
115 static u64
bump_cpu_timer(struct k_itimer
*timer
, u64 now
)
117 u64 delta
, incr
, expires
= timer
->it
.cpu
.node
.expires
;
120 if (!timer
->it_interval
)
126 incr
= timer
->it_interval
;
127 delta
= now
+ incr
- expires
;
129 /* Don't use (incr*2 < delta), incr*2 might overflow. */
130 for (i
= 0; incr
< delta
- incr
; i
++)
133 for (; i
>= 0; incr
>>= 1, i
--) {
137 timer
->it
.cpu
.node
.expires
+= incr
;
138 timer
->it_overrun
+= 1LL << i
;
141 return timer
->it
.cpu
.node
.expires
;
144 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
145 static inline bool expiry_cache_is_inactive(const struct posix_cputimers
*pct
)
147 return !(~pct
->bases
[CPUCLOCK_PROF
].nextevt
|
148 ~pct
->bases
[CPUCLOCK_VIRT
].nextevt
|
149 ~pct
->bases
[CPUCLOCK_SCHED
].nextevt
);
153 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec64
*tp
)
155 int error
= validate_clock_permissions(which_clock
);
159 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
160 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
173 posix_cpu_clock_set(const clockid_t clock
, const struct timespec64
*tp
)
175 int error
= validate_clock_permissions(clock
);
178 * You can never reset a CPU clock, but we check for other errors
179 * in the call before failing with EPERM.
181 return error
? : -EPERM
;
185 * Sample a per-thread clock for the given task. clkid is validated.
187 static u64
cpu_clock_sample(const clockid_t clkid
, struct task_struct
*p
)
191 if (clkid
== CPUCLOCK_SCHED
)
192 return task_sched_runtime(p
);
194 task_cputime(p
, &utime
, &stime
);
198 return utime
+ stime
;
207 static inline void store_samples(u64
*samples
, u64 stime
, u64 utime
, u64 rtime
)
209 samples
[CPUCLOCK_PROF
] = stime
+ utime
;
210 samples
[CPUCLOCK_VIRT
] = utime
;
211 samples
[CPUCLOCK_SCHED
] = rtime
;
214 static void task_sample_cputime(struct task_struct
*p
, u64
*samples
)
218 task_cputime(p
, &utime
, &stime
);
219 store_samples(samples
, stime
, utime
, p
->se
.sum_exec_runtime
);
222 static void proc_sample_cputime_atomic(struct task_cputime_atomic
*at
,
225 u64 stime
, utime
, rtime
;
227 utime
= atomic64_read(&at
->utime
);
228 stime
= atomic64_read(&at
->stime
);
229 rtime
= atomic64_read(&at
->sum_exec_runtime
);
230 store_samples(samples
, stime
, utime
, rtime
);
234 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
235 * to avoid race conditions with concurrent updates to cputime.
237 static inline void __update_gt_cputime(atomic64_t
*cputime
, u64 sum_cputime
)
241 curr_cputime
= atomic64_read(cputime
);
242 if (sum_cputime
> curr_cputime
) {
243 if (atomic64_cmpxchg(cputime
, curr_cputime
, sum_cputime
) != curr_cputime
)
248 static void update_gt_cputime(struct task_cputime_atomic
*cputime_atomic
,
249 struct task_cputime
*sum
)
251 __update_gt_cputime(&cputime_atomic
->utime
, sum
->utime
);
252 __update_gt_cputime(&cputime_atomic
->stime
, sum
->stime
);
253 __update_gt_cputime(&cputime_atomic
->sum_exec_runtime
, sum
->sum_exec_runtime
);
257 * thread_group_sample_cputime - Sample cputime for a given task
258 * @tsk: Task for which cputime needs to be started
259 * @samples: Storage for time samples
261 * Called from sys_getitimer() to calculate the expiry time of an active
262 * timer. That means group cputime accounting is already active. Called
263 * with task sighand lock held.
265 * Updates @times with an uptodate sample of the thread group cputimes.
267 void thread_group_sample_cputime(struct task_struct
*tsk
, u64
*samples
)
269 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
270 struct posix_cputimers
*pct
= &tsk
->signal
->posix_cputimers
;
272 WARN_ON_ONCE(!pct
->timers_active
);
274 proc_sample_cputime_atomic(&cputimer
->cputime_atomic
, samples
);
278 * thread_group_start_cputime - Start cputime and return a sample
279 * @tsk: Task for which cputime needs to be started
280 * @samples: Storage for time samples
282 * The thread group cputime accouting is avoided when there are no posix
283 * CPU timers armed. Before starting a timer it's required to check whether
284 * the time accounting is active. If not, a full update of the atomic
285 * accounting store needs to be done and the accounting enabled.
287 * Updates @times with an uptodate sample of the thread group cputimes.
289 static void thread_group_start_cputime(struct task_struct
*tsk
, u64
*samples
)
291 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
292 struct posix_cputimers
*pct
= &tsk
->signal
->posix_cputimers
;
294 /* Check if cputimer isn't running. This is accessed without locking. */
295 if (!READ_ONCE(pct
->timers_active
)) {
296 struct task_cputime sum
;
299 * The POSIX timer interface allows for absolute time expiry
300 * values through the TIMER_ABSTIME flag, therefore we have
301 * to synchronize the timer to the clock every time we start it.
303 thread_group_cputime(tsk
, &sum
);
304 update_gt_cputime(&cputimer
->cputime_atomic
, &sum
);
307 * We're setting timers_active without a lock. Ensure this
308 * only gets written to in one operation. We set it after
309 * update_gt_cputime() as a small optimization, but
310 * barriers are not required because update_gt_cputime()
311 * can handle concurrent updates.
313 WRITE_ONCE(pct
->timers_active
, true);
315 proc_sample_cputime_atomic(&cputimer
->cputime_atomic
, samples
);
318 static void __thread_group_cputime(struct task_struct
*tsk
, u64
*samples
)
320 struct task_cputime ct
;
322 thread_group_cputime(tsk
, &ct
);
323 store_samples(samples
, ct
.stime
, ct
.utime
, ct
.sum_exec_runtime
);
327 * Sample a process (thread group) clock for the given task clkid. If the
328 * group's cputime accounting is already enabled, read the atomic
329 * store. Otherwise a full update is required. clkid is already validated.
331 static u64
cpu_clock_sample_group(const clockid_t clkid
, struct task_struct
*p
,
334 struct thread_group_cputimer
*cputimer
= &p
->signal
->cputimer
;
335 struct posix_cputimers
*pct
= &p
->signal
->posix_cputimers
;
336 u64 samples
[CPUCLOCK_MAX
];
338 if (!READ_ONCE(pct
->timers_active
)) {
340 thread_group_start_cputime(p
, samples
);
342 __thread_group_cputime(p
, samples
);
344 proc_sample_cputime_atomic(&cputimer
->cputime_atomic
, samples
);
347 return samples
[clkid
];
350 static int posix_cpu_clock_get(const clockid_t clock
, struct timespec64
*tp
)
352 const clockid_t clkid
= CPUCLOCK_WHICH(clock
);
353 struct task_struct
*tsk
;
357 tsk
= pid_task(pid_for_clock(clock
, true), clock_pid_type(clock
));
363 if (CPUCLOCK_PERTHREAD(clock
))
364 t
= cpu_clock_sample(clkid
, tsk
);
366 t
= cpu_clock_sample_group(clkid
, tsk
, false);
369 *tp
= ns_to_timespec64(t
);
374 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
375 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
376 * new timer already all-zeros initialized.
378 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
380 static struct lock_class_key posix_cpu_timers_key
;
384 pid
= pid_for_clock(new_timer
->it_clock
, false);
391 * If posix timer expiry is handled in task work context then
392 * timer::it_lock can be taken without disabling interrupts as all
393 * other locking happens in task context. This requires a seperate
394 * lock class key otherwise regular posix timer expiry would record
395 * the lock class being taken in interrupt context and generate a
396 * false positive warning.
398 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK
))
399 lockdep_set_class(&new_timer
->it_lock
, &posix_cpu_timers_key
);
401 new_timer
->kclock
= &clock_posix_cpu
;
402 timerqueue_init(&new_timer
->it
.cpu
.node
);
403 new_timer
->it
.cpu
.pid
= get_pid(pid
);
409 * Clean up a CPU-clock timer that is about to be destroyed.
410 * This is called from timer deletion with the timer already locked.
411 * If we return TIMER_RETRY, it's necessary to release the timer's lock
412 * and try again. (This happens when the timer is in the middle of firing.)
414 static int posix_cpu_timer_del(struct k_itimer
*timer
)
416 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
417 struct sighand_struct
*sighand
;
418 struct task_struct
*p
;
423 p
= cpu_timer_task_rcu(timer
);
428 * Protect against sighand release/switch in exit/exec and process/
429 * thread timer list entry concurrent read/writes.
431 sighand
= lock_task_sighand(p
, &flags
);
432 if (unlikely(sighand
== NULL
)) {
434 * This raced with the reaping of the task. The exit cleanup
435 * should have removed this timer from the timer queue.
437 WARN_ON_ONCE(ctmr
->head
|| timerqueue_node_queued(&ctmr
->node
));
439 if (timer
->it
.cpu
.firing
)
442 cpu_timer_dequeue(ctmr
);
444 unlock_task_sighand(p
, &flags
);
455 static void cleanup_timerqueue(struct timerqueue_head
*head
)
457 struct timerqueue_node
*node
;
458 struct cpu_timer
*ctmr
;
460 while ((node
= timerqueue_getnext(head
))) {
461 timerqueue_del(head
, node
);
462 ctmr
= container_of(node
, struct cpu_timer
, node
);
468 * Clean out CPU timers which are still armed when a thread exits. The
469 * timers are only removed from the list. No other updates are done. The
470 * corresponding posix timers are still accessible, but cannot be rearmed.
472 * This must be called with the siglock held.
474 static void cleanup_timers(struct posix_cputimers
*pct
)
476 cleanup_timerqueue(&pct
->bases
[CPUCLOCK_PROF
].tqhead
);
477 cleanup_timerqueue(&pct
->bases
[CPUCLOCK_VIRT
].tqhead
);
478 cleanup_timerqueue(&pct
->bases
[CPUCLOCK_SCHED
].tqhead
);
482 * These are both called with the siglock held, when the current thread
483 * is being reaped. When the final (leader) thread in the group is reaped,
484 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
486 void posix_cpu_timers_exit(struct task_struct
*tsk
)
488 cleanup_timers(&tsk
->posix_cputimers
);
490 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
492 cleanup_timers(&tsk
->signal
->posix_cputimers
);
496 * Insert the timer on the appropriate list before any timers that
497 * expire later. This must be called with the sighand lock held.
499 static void arm_timer(struct k_itimer
*timer
, struct task_struct
*p
)
501 int clkidx
= CPUCLOCK_WHICH(timer
->it_clock
);
502 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
503 u64 newexp
= cpu_timer_getexpires(ctmr
);
504 struct posix_cputimer_base
*base
;
506 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
507 base
= p
->posix_cputimers
.bases
+ clkidx
;
509 base
= p
->signal
->posix_cputimers
.bases
+ clkidx
;
511 if (!cpu_timer_enqueue(&base
->tqhead
, ctmr
))
515 * We are the new earliest-expiring POSIX 1.b timer, hence
516 * need to update expiration cache. Take into account that
517 * for process timers we share expiration cache with itimers
518 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
520 if (newexp
< base
->nextevt
)
521 base
->nextevt
= newexp
;
523 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
524 tick_dep_set_task(p
, TICK_DEP_BIT_POSIX_TIMER
);
526 tick_dep_set_signal(p
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
530 * The timer is locked, fire it and arrange for its reload.
532 static void cpu_timer_fire(struct k_itimer
*timer
)
534 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
536 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
538 * User don't want any signal.
540 cpu_timer_setexpires(ctmr
, 0);
541 } else if (unlikely(timer
->sigq
== NULL
)) {
543 * This a special case for clock_nanosleep,
544 * not a normal timer from sys_timer_create.
546 wake_up_process(timer
->it_process
);
547 cpu_timer_setexpires(ctmr
, 0);
548 } else if (!timer
->it_interval
) {
550 * One-shot timer. Clear it as soon as it's fired.
552 posix_timer_event(timer
, 0);
553 cpu_timer_setexpires(ctmr
, 0);
554 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
556 * The signal did not get queued because the signal
557 * was ignored, so we won't get any callback to
558 * reload the timer. But we need to keep it
559 * ticking in case the signal is deliverable next time.
561 posix_cpu_timer_rearm(timer
);
562 ++timer
->it_requeue_pending
;
567 * Guts of sys_timer_settime for CPU timers.
568 * This is called with the timer locked and interrupts disabled.
569 * If we return TIMER_RETRY, it's necessary to release the timer's lock
570 * and try again. (This happens when the timer is in the middle of firing.)
572 static int posix_cpu_timer_set(struct k_itimer
*timer
, int timer_flags
,
573 struct itimerspec64
*new, struct itimerspec64
*old
)
575 clockid_t clkid
= CPUCLOCK_WHICH(timer
->it_clock
);
576 u64 old_expires
, new_expires
, old_incr
, val
;
577 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
578 struct sighand_struct
*sighand
;
579 struct task_struct
*p
;
584 p
= cpu_timer_task_rcu(timer
);
587 * If p has just been reaped, we can no
588 * longer get any information about it at all.
595 * Use the to_ktime conversion because that clamps the maximum
596 * value to KTIME_MAX and avoid multiplication overflows.
598 new_expires
= ktime_to_ns(timespec64_to_ktime(new->it_value
));
601 * Protect against sighand release/switch in exit/exec and p->cpu_timers
602 * and p->signal->cpu_timers read/write in arm_timer()
604 sighand
= lock_task_sighand(p
, &flags
);
606 * If p has just been reaped, we can no
607 * longer get any information about it at all.
609 if (unlikely(sighand
== NULL
)) {
615 * Disarm any old timer after extracting its expiry time.
617 old_incr
= timer
->it_interval
;
618 old_expires
= cpu_timer_getexpires(ctmr
);
620 if (unlikely(timer
->it
.cpu
.firing
)) {
621 timer
->it
.cpu
.firing
= -1;
624 cpu_timer_dequeue(ctmr
);
628 * We need to sample the current value to convert the new
629 * value from to relative and absolute, and to convert the
630 * old value from absolute to relative. To set a process
631 * timer, we need a sample to balance the thread expiry
632 * times (in arm_timer). With an absolute time, we must
633 * check if it's already passed. In short, we need a sample.
635 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
636 val
= cpu_clock_sample(clkid
, p
);
638 val
= cpu_clock_sample_group(clkid
, p
, true);
641 if (old_expires
== 0) {
642 old
->it_value
.tv_sec
= 0;
643 old
->it_value
.tv_nsec
= 0;
646 * Update the timer in case it has overrun already.
647 * If it has, we'll report it as having overrun and
648 * with the next reloaded timer already ticking,
649 * though we are swallowing that pending
650 * notification here to install the new setting.
652 u64 exp
= bump_cpu_timer(timer
, val
);
655 old_expires
= exp
- val
;
656 old
->it_value
= ns_to_timespec64(old_expires
);
658 old
->it_value
.tv_nsec
= 1;
659 old
->it_value
.tv_sec
= 0;
666 * We are colliding with the timer actually firing.
667 * Punt after filling in the timer's old value, and
668 * disable this firing since we are already reporting
669 * it as an overrun (thanks to bump_cpu_timer above).
671 unlock_task_sighand(p
, &flags
);
675 if (new_expires
!= 0 && !(timer_flags
& TIMER_ABSTIME
)) {
680 * Install the new expiry time (or zero).
681 * For a timer with no notification action, we don't actually
682 * arm the timer (we'll just fake it for timer_gettime).
684 cpu_timer_setexpires(ctmr
, new_expires
);
685 if (new_expires
!= 0 && val
< new_expires
) {
689 unlock_task_sighand(p
, &flags
);
691 * Install the new reload setting, and
692 * set up the signal and overrun bookkeeping.
694 timer
->it_interval
= timespec64_to_ktime(new->it_interval
);
697 * This acts as a modification timestamp for the timer,
698 * so any automatic reload attempt will punt on seeing
699 * that we have reset the timer manually.
701 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
703 timer
->it_overrun_last
= 0;
704 timer
->it_overrun
= -1;
706 if (new_expires
!= 0 && !(val
< new_expires
)) {
708 * The designated time already passed, so we notify
709 * immediately, even if the thread never runs to
710 * accumulate more time on this clock.
712 cpu_timer_fire(timer
);
719 old
->it_interval
= ns_to_timespec64(old_incr
);
724 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec64
*itp
)
726 clockid_t clkid
= CPUCLOCK_WHICH(timer
->it_clock
);
727 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
728 u64 now
, expires
= cpu_timer_getexpires(ctmr
);
729 struct task_struct
*p
;
732 p
= cpu_timer_task_rcu(timer
);
737 * Easy part: convert the reload time.
739 itp
->it_interval
= ktime_to_timespec64(timer
->it_interval
);
745 * Sample the clock to take the difference with the expiry time.
747 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
748 now
= cpu_clock_sample(clkid
, p
);
750 now
= cpu_clock_sample_group(clkid
, p
, false);
753 itp
->it_value
= ns_to_timespec64(expires
- now
);
756 * The timer should have expired already, but the firing
757 * hasn't taken place yet. Say it's just about to expire.
759 itp
->it_value
.tv_nsec
= 1;
760 itp
->it_value
.tv_sec
= 0;
766 #define MAX_COLLECTED 20
768 static u64
collect_timerqueue(struct timerqueue_head
*head
,
769 struct list_head
*firing
, u64 now
)
771 struct timerqueue_node
*next
;
774 while ((next
= timerqueue_getnext(head
))) {
775 struct cpu_timer
*ctmr
;
778 ctmr
= container_of(next
, struct cpu_timer
, node
);
779 expires
= cpu_timer_getexpires(ctmr
);
780 /* Limit the number of timers to expire at once */
781 if (++i
== MAX_COLLECTED
|| now
< expires
)
785 cpu_timer_dequeue(ctmr
);
786 list_add_tail(&ctmr
->elist
, firing
);
792 static void collect_posix_cputimers(struct posix_cputimers
*pct
, u64
*samples
,
793 struct list_head
*firing
)
795 struct posix_cputimer_base
*base
= pct
->bases
;
798 for (i
= 0; i
< CPUCLOCK_MAX
; i
++, base
++) {
799 base
->nextevt
= collect_timerqueue(&base
->tqhead
, firing
,
804 static inline void check_dl_overrun(struct task_struct
*tsk
)
806 if (tsk
->dl
.dl_overrun
) {
807 tsk
->dl
.dl_overrun
= 0;
808 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
812 static bool check_rlimit(u64 time
, u64 limit
, int signo
, bool rt
, bool hard
)
817 if (print_fatal_signals
) {
818 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
819 rt
? "RT" : "CPU", hard
? "hard" : "soft",
820 current
->comm
, task_pid_nr(current
));
822 __group_send_sig_info(signo
, SEND_SIG_PRIV
, current
);
827 * Check for any per-thread CPU timers that have fired and move them off
828 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
829 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
831 static void check_thread_timers(struct task_struct
*tsk
,
832 struct list_head
*firing
)
834 struct posix_cputimers
*pct
= &tsk
->posix_cputimers
;
835 u64 samples
[CPUCLOCK_MAX
];
839 check_dl_overrun(tsk
);
841 if (expiry_cache_is_inactive(pct
))
844 task_sample_cputime(tsk
, samples
);
845 collect_posix_cputimers(pct
, samples
, firing
);
848 * Check for the special case thread timers.
850 soft
= task_rlimit(tsk
, RLIMIT_RTTIME
);
851 if (soft
!= RLIM_INFINITY
) {
852 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
853 unsigned long rttime
= tsk
->rt
.timeout
* (USEC_PER_SEC
/ HZ
);
854 unsigned long hard
= task_rlimit_max(tsk
, RLIMIT_RTTIME
);
856 /* At the hard limit, send SIGKILL. No further action. */
857 if (hard
!= RLIM_INFINITY
&&
858 check_rlimit(rttime
, hard
, SIGKILL
, true, true))
861 /* At the soft limit, send a SIGXCPU every second */
862 if (check_rlimit(rttime
, soft
, SIGXCPU
, true, false)) {
863 soft
+= USEC_PER_SEC
;
864 tsk
->signal
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
868 if (expiry_cache_is_inactive(pct
))
869 tick_dep_clear_task(tsk
, TICK_DEP_BIT_POSIX_TIMER
);
872 static inline void stop_process_timers(struct signal_struct
*sig
)
874 struct posix_cputimers
*pct
= &sig
->posix_cputimers
;
876 /* Turn off the active flag. This is done without locking. */
877 WRITE_ONCE(pct
->timers_active
, false);
878 tick_dep_clear_signal(sig
, TICK_DEP_BIT_POSIX_TIMER
);
881 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
882 u64
*expires
, u64 cur_time
, int signo
)
887 if (cur_time
>= it
->expires
) {
889 it
->expires
+= it
->incr
;
893 trace_itimer_expire(signo
== SIGPROF
?
894 ITIMER_PROF
: ITIMER_VIRTUAL
,
895 task_tgid(tsk
), cur_time
);
896 __group_send_sig_info(signo
, SEND_SIG_PRIV
, tsk
);
899 if (it
->expires
&& it
->expires
< *expires
)
900 *expires
= it
->expires
;
904 * Check for any per-thread CPU timers that have fired and move them
905 * off the tsk->*_timers list onto the firing list. Per-thread timers
906 * have already been taken off.
908 static void check_process_timers(struct task_struct
*tsk
,
909 struct list_head
*firing
)
911 struct signal_struct
*const sig
= tsk
->signal
;
912 struct posix_cputimers
*pct
= &sig
->posix_cputimers
;
913 u64 samples
[CPUCLOCK_MAX
];
917 * If there are no active process wide timers (POSIX 1.b, itimers,
918 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
919 * processing when there is already another task handling them.
921 if (!READ_ONCE(pct
->timers_active
) || pct
->expiry_active
)
925 * Signify that a thread is checking for process timers.
926 * Write access to this field is protected by the sighand lock.
928 pct
->expiry_active
= true;
931 * Collect the current process totals. Group accounting is active
932 * so the sample can be taken directly.
934 proc_sample_cputime_atomic(&sig
->cputimer
.cputime_atomic
, samples
);
935 collect_posix_cputimers(pct
, samples
, firing
);
938 * Check for the special case process timers.
940 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
],
941 &pct
->bases
[CPUCLOCK_PROF
].nextevt
,
942 samples
[CPUCLOCK_PROF
], SIGPROF
);
943 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
],
944 &pct
->bases
[CPUCLOCK_VIRT
].nextevt
,
945 samples
[CPUCLOCK_VIRT
], SIGVTALRM
);
947 soft
= task_rlimit(tsk
, RLIMIT_CPU
);
948 if (soft
!= RLIM_INFINITY
) {
949 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
950 unsigned long hard
= task_rlimit_max(tsk
, RLIMIT_CPU
);
951 u64 ptime
= samples
[CPUCLOCK_PROF
];
952 u64 softns
= (u64
)soft
* NSEC_PER_SEC
;
953 u64 hardns
= (u64
)hard
* NSEC_PER_SEC
;
955 /* At the hard limit, send SIGKILL. No further action. */
956 if (hard
!= RLIM_INFINITY
&&
957 check_rlimit(ptime
, hardns
, SIGKILL
, false, true))
960 /* At the soft limit, send a SIGXCPU every second */
961 if (check_rlimit(ptime
, softns
, SIGXCPU
, false, false)) {
962 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
+ 1;
963 softns
+= NSEC_PER_SEC
;
966 /* Update the expiry cache */
967 if (softns
< pct
->bases
[CPUCLOCK_PROF
].nextevt
)
968 pct
->bases
[CPUCLOCK_PROF
].nextevt
= softns
;
971 if (expiry_cache_is_inactive(pct
))
972 stop_process_timers(sig
);
974 pct
->expiry_active
= false;
978 * This is called from the signal code (via posixtimer_rearm)
979 * when the last timer signal was delivered and we have to reload the timer.
981 static void posix_cpu_timer_rearm(struct k_itimer
*timer
)
983 clockid_t clkid
= CPUCLOCK_WHICH(timer
->it_clock
);
984 struct task_struct
*p
;
985 struct sighand_struct
*sighand
;
990 p
= cpu_timer_task_rcu(timer
);
995 * Fetch the current sample and update the timer's expiry time.
997 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
998 now
= cpu_clock_sample(clkid
, p
);
1000 now
= cpu_clock_sample_group(clkid
, p
, true);
1002 bump_cpu_timer(timer
, now
);
1004 /* Protect timer list r/w in arm_timer() */
1005 sighand
= lock_task_sighand(p
, &flags
);
1006 if (unlikely(sighand
== NULL
))
1010 * Now re-arm for the new expiry time.
1012 arm_timer(timer
, p
);
1013 unlock_task_sighand(p
, &flags
);
1019 * task_cputimers_expired - Check whether posix CPU timers are expired
1021 * @samples: Array of current samples for the CPUCLOCK clocks
1022 * @pct: Pointer to a posix_cputimers container
1024 * Returns true if any member of @samples is greater than the corresponding
1025 * member of @pct->bases[CLK].nextevt. False otherwise
1028 task_cputimers_expired(const u64
*samples
, struct posix_cputimers
*pct
)
1032 for (i
= 0; i
< CPUCLOCK_MAX
; i
++) {
1033 if (samples
[i
] >= pct
->bases
[i
].nextevt
)
1040 * fastpath_timer_check - POSIX CPU timers fast path.
1042 * @tsk: The task (thread) being checked.
1044 * Check the task and thread group timers. If both are zero (there are no
1045 * timers set) return false. Otherwise snapshot the task and thread group
1046 * timers and compare them with the corresponding expiration times. Return
1047 * true if a timer has expired, else return false.
1049 static inline bool fastpath_timer_check(struct task_struct
*tsk
)
1051 struct posix_cputimers
*pct
= &tsk
->posix_cputimers
;
1052 struct signal_struct
*sig
;
1054 if (!expiry_cache_is_inactive(pct
)) {
1055 u64 samples
[CPUCLOCK_MAX
];
1057 task_sample_cputime(tsk
, samples
);
1058 if (task_cputimers_expired(samples
, pct
))
1063 pct
= &sig
->posix_cputimers
;
1065 * Check if thread group timers expired when timers are active and
1066 * no other thread in the group is already handling expiry for
1067 * thread group cputimers. These fields are read without the
1068 * sighand lock. However, this is fine because this is meant to be
1069 * a fastpath heuristic to determine whether we should try to
1070 * acquire the sighand lock to handle timer expiry.
1072 * In the worst case scenario, if concurrently timers_active is set
1073 * or expiry_active is cleared, but the current thread doesn't see
1074 * the change yet, the timer checks are delayed until the next
1075 * thread in the group gets a scheduler interrupt to handle the
1076 * timer. This isn't an issue in practice because these types of
1077 * delays with signals actually getting sent are expected.
1079 if (READ_ONCE(pct
->timers_active
) && !READ_ONCE(pct
->expiry_active
)) {
1080 u64 samples
[CPUCLOCK_MAX
];
1082 proc_sample_cputime_atomic(&sig
->cputimer
.cputime_atomic
,
1085 if (task_cputimers_expired(samples
, pct
))
1089 if (dl_task(tsk
) && tsk
->dl
.dl_overrun
)
1095 static void handle_posix_cpu_timers(struct task_struct
*tsk
);
1097 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1098 static void posix_cpu_timers_work(struct callback_head
*work
)
1100 handle_posix_cpu_timers(current
);
1104 * Initialize posix CPU timers task work in init task. Out of line to
1105 * keep the callback static and to avoid header recursion hell.
1107 void __init
posix_cputimers_init_work(void)
1109 init_task_work(¤t
->posix_cputimers_work
.work
,
1110 posix_cpu_timers_work
);
1114 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1115 * in hard interrupt context or in task context with interrupts
1116 * disabled. Aside of that the writer/reader interaction is always in the
1117 * context of the current task, which means they are strict per CPU.
1119 static inline bool posix_cpu_timers_work_scheduled(struct task_struct
*tsk
)
1121 return tsk
->posix_cputimers_work
.scheduled
;
1124 static inline void __run_posix_cpu_timers(struct task_struct
*tsk
)
1126 if (WARN_ON_ONCE(tsk
->posix_cputimers_work
.scheduled
))
1129 /* Schedule task work to actually expire the timers */
1130 tsk
->posix_cputimers_work
.scheduled
= true;
1131 task_work_add(tsk
, &tsk
->posix_cputimers_work
.work
, TWA_RESUME
);
1134 static inline bool posix_cpu_timers_enable_work(struct task_struct
*tsk
,
1135 unsigned long start
)
1140 * On !RT kernels interrupts are disabled while collecting expired
1141 * timers, so no tick can happen and the fast path check can be
1142 * reenabled without further checks.
1144 if (!IS_ENABLED(CONFIG_PREEMPT_RT
)) {
1145 tsk
->posix_cputimers_work
.scheduled
= false;
1150 * On RT enabled kernels ticks can happen while the expired timers
1151 * are collected under sighand lock. But any tick which observes
1152 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1153 * checks. So reenabling the tick work has do be done carefully:
1155 * Disable interrupts and run the fast path check if jiffies have
1156 * advanced since the collecting of expired timers started. If
1157 * jiffies have not advanced or the fast path check did not find
1158 * newly expired timers, reenable the fast path check in the timer
1159 * interrupt. If there are newly expired timers, return false and
1160 * let the collection loop repeat.
1162 local_irq_disable();
1163 if (start
!= jiffies
&& fastpath_timer_check(tsk
))
1166 tsk
->posix_cputimers_work
.scheduled
= false;
1171 #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1172 static inline void __run_posix_cpu_timers(struct task_struct
*tsk
)
1174 lockdep_posixtimer_enter();
1175 handle_posix_cpu_timers(tsk
);
1176 lockdep_posixtimer_exit();
1179 static inline bool posix_cpu_timers_work_scheduled(struct task_struct
*tsk
)
1184 static inline bool posix_cpu_timers_enable_work(struct task_struct
*tsk
,
1185 unsigned long start
)
1189 #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1191 static void handle_posix_cpu_timers(struct task_struct
*tsk
)
1193 struct k_itimer
*timer
, *next
;
1194 unsigned long flags
, start
;
1197 if (!lock_task_sighand(tsk
, &flags
))
1202 * On RT locking sighand lock does not disable interrupts,
1203 * so this needs to be careful vs. ticks. Store the current
1206 start
= READ_ONCE(jiffies
);
1210 * Here we take off tsk->signal->cpu_timers[N] and
1211 * tsk->cpu_timers[N] all the timers that are firing, and
1212 * put them on the firing list.
1214 check_thread_timers(tsk
, &firing
);
1216 check_process_timers(tsk
, &firing
);
1219 * The above timer checks have updated the exipry cache and
1220 * because nothing can have queued or modified timers after
1221 * sighand lock was taken above it is guaranteed to be
1222 * consistent. So the next timer interrupt fastpath check
1223 * will find valid data.
1225 * If timer expiry runs in the timer interrupt context then
1226 * the loop is not relevant as timers will be directly
1227 * expired in interrupt context. The stub function below
1228 * returns always true which allows the compiler to
1229 * optimize the loop out.
1231 * If timer expiry is deferred to task work context then
1232 * the following rules apply:
1234 * - On !RT kernels no tick can have happened on this CPU
1235 * after sighand lock was acquired because interrupts are
1236 * disabled. So reenabling task work before dropping
1237 * sighand lock and reenabling interrupts is race free.
1239 * - On RT kernels ticks might have happened but the tick
1240 * work ignored posix CPU timer handling because the
1241 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1242 * must be done very carefully including a check whether
1243 * ticks have happened since the start of the timer
1244 * expiry checks. posix_cpu_timers_enable_work() takes
1245 * care of that and eventually lets the expiry checks
1248 } while (!posix_cpu_timers_enable_work(tsk
, start
));
1251 * We must release sighand lock before taking any timer's lock.
1252 * There is a potential race with timer deletion here, as the
1253 * siglock now protects our private firing list. We have set
1254 * the firing flag in each timer, so that a deletion attempt
1255 * that gets the timer lock before we do will give it up and
1256 * spin until we've taken care of that timer below.
1258 unlock_task_sighand(tsk
, &flags
);
1261 * Now that all the timers on our list have the firing flag,
1262 * no one will touch their list entries but us. We'll take
1263 * each timer's lock before clearing its firing flag, so no
1264 * timer call will interfere.
1266 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.elist
) {
1270 * spin_lock() is sufficient here even independent of the
1271 * expiry context. If expiry happens in hard interrupt
1272 * context it's obvious. For task work context it's safe
1273 * because all other operations on timer::it_lock happen in
1274 * task context (syscall or exit).
1276 spin_lock(&timer
->it_lock
);
1277 list_del_init(&timer
->it
.cpu
.elist
);
1278 cpu_firing
= timer
->it
.cpu
.firing
;
1279 timer
->it
.cpu
.firing
= 0;
1281 * The firing flag is -1 if we collided with a reset
1282 * of the timer, which already reported this
1283 * almost-firing as an overrun. So don't generate an event.
1285 if (likely(cpu_firing
>= 0))
1286 cpu_timer_fire(timer
);
1287 spin_unlock(&timer
->it_lock
);
1292 * This is called from the timer interrupt handler. The irq handler has
1293 * already updated our counts. We need to check if any timers fire now.
1294 * Interrupts are disabled.
1296 void run_posix_cpu_timers(void)
1298 struct task_struct
*tsk
= current
;
1300 lockdep_assert_irqs_disabled();
1303 * If the actual expiry is deferred to task work context and the
1304 * work is already scheduled there is no point to do anything here.
1306 if (posix_cpu_timers_work_scheduled(tsk
))
1310 * The fast path checks that there are no expired thread or thread
1311 * group timers. If that's so, just return.
1313 if (!fastpath_timer_check(tsk
))
1316 __run_posix_cpu_timers(tsk
);
1320 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1321 * The tsk->sighand->siglock must be held by the caller.
1323 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clkid
,
1324 u64
*newval
, u64
*oldval
)
1328 if (WARN_ON_ONCE(clkid
>= CPUCLOCK_SCHED
))
1331 nextevt
= &tsk
->signal
->posix_cputimers
.bases
[clkid
].nextevt
;
1332 now
= cpu_clock_sample_group(clkid
, tsk
, true);
1336 * We are setting itimer. The *oldval is absolute and we update
1337 * it to be relative, *newval argument is relative and we update
1338 * it to be absolute.
1341 if (*oldval
<= now
) {
1342 /* Just about to fire. */
1343 *oldval
= TICK_NSEC
;
1355 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1356 * expiry cache is also used by RLIMIT_CPU!.
1358 if (*newval
< *nextevt
)
1361 tick_dep_set_signal(tsk
->signal
, TICK_DEP_BIT_POSIX_TIMER
);
1364 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1365 const struct timespec64
*rqtp
)
1367 struct itimerspec64 it
;
1368 struct k_itimer timer
;
1373 * Set up a temporary timer and then wait for it to go off.
1375 memset(&timer
, 0, sizeof timer
);
1376 spin_lock_init(&timer
.it_lock
);
1377 timer
.it_clock
= which_clock
;
1378 timer
.it_overrun
= -1;
1379 error
= posix_cpu_timer_create(&timer
);
1380 timer
.it_process
= current
;
1383 static struct itimerspec64 zero_it
;
1384 struct restart_block
*restart
;
1386 memset(&it
, 0, sizeof(it
));
1387 it
.it_value
= *rqtp
;
1389 spin_lock_irq(&timer
.it_lock
);
1390 error
= posix_cpu_timer_set(&timer
, flags
, &it
, NULL
);
1392 spin_unlock_irq(&timer
.it_lock
);
1396 while (!signal_pending(current
)) {
1397 if (!cpu_timer_getexpires(&timer
.it
.cpu
)) {
1399 * Our timer fired and was reset, below
1400 * deletion can not fail.
1402 posix_cpu_timer_del(&timer
);
1403 spin_unlock_irq(&timer
.it_lock
);
1408 * Block until cpu_timer_fire (or a signal) wakes us.
1410 __set_current_state(TASK_INTERRUPTIBLE
);
1411 spin_unlock_irq(&timer
.it_lock
);
1413 spin_lock_irq(&timer
.it_lock
);
1417 * We were interrupted by a signal.
1419 expires
= cpu_timer_getexpires(&timer
.it
.cpu
);
1420 error
= posix_cpu_timer_set(&timer
, 0, &zero_it
, &it
);
1423 * Timer is now unarmed, deletion can not fail.
1425 posix_cpu_timer_del(&timer
);
1427 spin_unlock_irq(&timer
.it_lock
);
1429 while (error
== TIMER_RETRY
) {
1431 * We need to handle case when timer was or is in the
1432 * middle of firing. In other cases we already freed
1435 spin_lock_irq(&timer
.it_lock
);
1436 error
= posix_cpu_timer_del(&timer
);
1437 spin_unlock_irq(&timer
.it_lock
);
1440 if ((it
.it_value
.tv_sec
| it
.it_value
.tv_nsec
) == 0) {
1442 * It actually did fire already.
1447 error
= -ERESTART_RESTARTBLOCK
;
1449 * Report back to the user the time still remaining.
1451 restart
= ¤t
->restart_block
;
1452 restart
->nanosleep
.expires
= expires
;
1453 if (restart
->nanosleep
.type
!= TT_NONE
)
1454 error
= nanosleep_copyout(restart
, &it
.it_value
);
1460 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1462 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1463 const struct timespec64
*rqtp
)
1465 struct restart_block
*restart_block
= ¤t
->restart_block
;
1469 * Diagnose required errors first.
1471 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1472 (CPUCLOCK_PID(which_clock
) == 0 ||
1473 CPUCLOCK_PID(which_clock
) == task_pid_vnr(current
)))
1476 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
);
1478 if (error
== -ERESTART_RESTARTBLOCK
) {
1480 if (flags
& TIMER_ABSTIME
)
1481 return -ERESTARTNOHAND
;
1483 restart_block
->fn
= posix_cpu_nsleep_restart
;
1484 restart_block
->nanosleep
.clockid
= which_clock
;
1489 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1491 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1492 struct timespec64 t
;
1494 t
= ns_to_timespec64(restart_block
->nanosleep
.expires
);
1496 return do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
);
1499 #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1500 #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1502 static int process_cpu_clock_getres(const clockid_t which_clock
,
1503 struct timespec64
*tp
)
1505 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1507 static int process_cpu_clock_get(const clockid_t which_clock
,
1508 struct timespec64
*tp
)
1510 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1512 static int process_cpu_timer_create(struct k_itimer
*timer
)
1514 timer
->it_clock
= PROCESS_CLOCK
;
1515 return posix_cpu_timer_create(timer
);
1517 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1518 const struct timespec64
*rqtp
)
1520 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
);
1522 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1523 struct timespec64
*tp
)
1525 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1527 static int thread_cpu_clock_get(const clockid_t which_clock
,
1528 struct timespec64
*tp
)
1530 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1532 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1534 timer
->it_clock
= THREAD_CLOCK
;
1535 return posix_cpu_timer_create(timer
);
1538 const struct k_clock clock_posix_cpu
= {
1539 .clock_getres
= posix_cpu_clock_getres
,
1540 .clock_set
= posix_cpu_clock_set
,
1541 .clock_get_timespec
= posix_cpu_clock_get
,
1542 .timer_create
= posix_cpu_timer_create
,
1543 .nsleep
= posix_cpu_nsleep
,
1544 .timer_set
= posix_cpu_timer_set
,
1545 .timer_del
= posix_cpu_timer_del
,
1546 .timer_get
= posix_cpu_timer_get
,
1547 .timer_rearm
= posix_cpu_timer_rearm
,
1550 const struct k_clock clock_process
= {
1551 .clock_getres
= process_cpu_clock_getres
,
1552 .clock_get_timespec
= process_cpu_clock_get
,
1553 .timer_create
= process_cpu_timer_create
,
1554 .nsleep
= process_cpu_nsleep
,
1557 const struct k_clock clock_thread
= {
1558 .clock_getres
= thread_cpu_clock_getres
,
1559 .clock_get_timespec
= thread_cpu_clock_get
,
1560 .timer_create
= thread_cpu_timer_create
,