Merge tag 'powerpc-5.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / sound / firewire / fireworks / fireworks_pcm.c
bloba0d5db1d8eb2371f211b6b506648a5eab4936575
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fireworks_pcm.c - a part of driver for Fireworks based devices
5 * Copyright (c) 2009-2010 Clemens Ladisch
6 * Copyright (c) 2013-2014 Takashi Sakamoto
7 */
8 #include "./fireworks.h"
11 * NOTE:
12 * Fireworks changes its AMDTP channels for PCM data according to its sampling
13 * rate. There are three modes. Here _XX is either _rx or _tx.
14 * 0: 32.0- 48.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels applied
15 * 1: 88.2- 96.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_2x applied
16 * 2: 176.4-192.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_4x applied
18 * The number of PCM channels for analog input and output are always fixed but
19 * the number of PCM channels for digital input and output are differed.
21 * Additionally, according to "AudioFire Owner's Manual Version 2.2", in some
22 * model, the number of PCM channels for digital input has more restriction
23 * depending on which digital interface is selected.
24 * - S/PDIF coaxial and optical : use input 1-2
25 * - ADAT optical at 32.0-48.0 kHz : use input 1-8
26 * - ADAT optical at 88.2-96.0 kHz : use input 1-4 (S/MUX format)
28 * The data in AMDTP channels for blank PCM channels are zero.
30 static const unsigned int freq_table[] = {
31 /* multiplier mode 0 */
32 [0] = 32000,
33 [1] = 44100,
34 [2] = 48000,
35 /* multiplier mode 1 */
36 [3] = 88200,
37 [4] = 96000,
38 /* multiplier mode 2 */
39 [5] = 176400,
40 [6] = 192000,
43 static inline unsigned int
44 get_multiplier_mode_with_index(unsigned int index)
46 return ((int)index - 1) / 2;
49 int snd_efw_get_multiplier_mode(unsigned int sampling_rate, unsigned int *mode)
51 unsigned int i;
53 for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
54 if (freq_table[i] == sampling_rate) {
55 *mode = get_multiplier_mode_with_index(i);
56 return 0;
60 return -EINVAL;
63 static int
64 hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
66 unsigned int *pcm_channels = rule->private;
67 struct snd_interval *r =
68 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
69 const struct snd_interval *c =
70 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS);
71 struct snd_interval t = {
72 .min = UINT_MAX, .max = 0, .integer = 1
74 unsigned int i, mode;
76 for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
77 mode = get_multiplier_mode_with_index(i);
78 if (!snd_interval_test(c, pcm_channels[mode]))
79 continue;
81 t.min = min(t.min, freq_table[i]);
82 t.max = max(t.max, freq_table[i]);
85 return snd_interval_refine(r, &t);
88 static int
89 hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
91 unsigned int *pcm_channels = rule->private;
92 struct snd_interval *c =
93 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
94 const struct snd_interval *r =
95 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
96 struct snd_interval t = {
97 .min = UINT_MAX, .max = 0, .integer = 1
99 unsigned int i, mode;
101 for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
102 mode = get_multiplier_mode_with_index(i);
103 if (!snd_interval_test(r, freq_table[i]))
104 continue;
106 t.min = min(t.min, pcm_channels[mode]);
107 t.max = max(t.max, pcm_channels[mode]);
110 return snd_interval_refine(c, &t);
113 static void
114 limit_channels(struct snd_pcm_hardware *hw, unsigned int *pcm_channels)
116 unsigned int i, mode;
118 hw->channels_min = UINT_MAX;
119 hw->channels_max = 0;
121 for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
122 mode = get_multiplier_mode_with_index(i);
123 if (pcm_channels[mode] == 0)
124 continue;
126 hw->channels_min = min(hw->channels_min, pcm_channels[mode]);
127 hw->channels_max = max(hw->channels_max, pcm_channels[mode]);
131 static int
132 pcm_init_hw_params(struct snd_efw *efw,
133 struct snd_pcm_substream *substream)
135 struct snd_pcm_runtime *runtime = substream->runtime;
136 struct amdtp_stream *s;
137 unsigned int *pcm_channels;
138 int err;
140 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
141 runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS;
142 s = &efw->tx_stream;
143 pcm_channels = efw->pcm_capture_channels;
144 } else {
145 runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS;
146 s = &efw->rx_stream;
147 pcm_channels = efw->pcm_playback_channels;
150 /* limit rates */
151 runtime->hw.rates = efw->supported_sampling_rate;
152 snd_pcm_limit_hw_rates(runtime);
154 limit_channels(&runtime->hw, pcm_channels);
156 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
157 hw_rule_channels, pcm_channels,
158 SNDRV_PCM_HW_PARAM_RATE, -1);
159 if (err < 0)
160 goto end;
162 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
163 hw_rule_rate, pcm_channels,
164 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
165 if (err < 0)
166 goto end;
168 err = amdtp_am824_add_pcm_hw_constraints(s, runtime);
169 end:
170 return err;
173 static int pcm_open(struct snd_pcm_substream *substream)
175 struct snd_efw *efw = substream->private_data;
176 struct amdtp_domain *d = &efw->domain;
177 enum snd_efw_clock_source clock_source;
178 int err;
180 err = snd_efw_stream_lock_try(efw);
181 if (err < 0)
182 return err;
184 err = pcm_init_hw_params(efw, substream);
185 if (err < 0)
186 goto err_locked;
188 err = snd_efw_command_get_clock_source(efw, &clock_source);
189 if (err < 0)
190 goto err_locked;
192 mutex_lock(&efw->mutex);
194 // When source of clock is not internal or any stream is reserved for
195 // transmission of PCM frames, the available sampling rate is limited
196 // at current one.
197 if ((clock_source != SND_EFW_CLOCK_SOURCE_INTERNAL) ||
198 (efw->substreams_counter > 0 && d->events_per_period > 0)) {
199 unsigned int frames_per_period = d->events_per_period;
200 unsigned int frames_per_buffer = d->events_per_buffer;
201 unsigned int sampling_rate;
203 err = snd_efw_command_get_sampling_rate(efw, &sampling_rate);
204 if (err < 0) {
205 mutex_unlock(&efw->mutex);
206 goto err_locked;
208 substream->runtime->hw.rate_min = sampling_rate;
209 substream->runtime->hw.rate_max = sampling_rate;
211 if (frames_per_period > 0) {
212 err = snd_pcm_hw_constraint_minmax(substream->runtime,
213 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
214 frames_per_period, frames_per_period);
215 if (err < 0) {
216 mutex_unlock(&efw->mutex);
217 goto err_locked;
220 err = snd_pcm_hw_constraint_minmax(substream->runtime,
221 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
222 frames_per_buffer, frames_per_buffer);
223 if (err < 0) {
224 mutex_unlock(&efw->mutex);
225 goto err_locked;
230 mutex_unlock(&efw->mutex);
232 snd_pcm_set_sync(substream);
234 return 0;
235 err_locked:
236 snd_efw_stream_lock_release(efw);
237 return err;
240 static int pcm_close(struct snd_pcm_substream *substream)
242 struct snd_efw *efw = substream->private_data;
243 snd_efw_stream_lock_release(efw);
244 return 0;
247 static int pcm_hw_params(struct snd_pcm_substream *substream,
248 struct snd_pcm_hw_params *hw_params)
250 struct snd_efw *efw = substream->private_data;
251 int err = 0;
253 if (substream->runtime->status->state == SNDRV_PCM_STATE_OPEN) {
254 unsigned int rate = params_rate(hw_params);
255 unsigned int frames_per_period = params_period_size(hw_params);
256 unsigned int frames_per_buffer = params_buffer_size(hw_params);
258 mutex_lock(&efw->mutex);
259 err = snd_efw_stream_reserve_duplex(efw, rate,
260 frames_per_period, frames_per_buffer);
261 if (err >= 0)
262 ++efw->substreams_counter;
263 mutex_unlock(&efw->mutex);
266 return err;
269 static int pcm_hw_free(struct snd_pcm_substream *substream)
271 struct snd_efw *efw = substream->private_data;
273 mutex_lock(&efw->mutex);
275 if (substream->runtime->status->state != SNDRV_PCM_STATE_OPEN)
276 --efw->substreams_counter;
278 snd_efw_stream_stop_duplex(efw);
280 mutex_unlock(&efw->mutex);
282 return 0;
285 static int pcm_capture_prepare(struct snd_pcm_substream *substream)
287 struct snd_efw *efw = substream->private_data;
288 int err;
290 err = snd_efw_stream_start_duplex(efw);
291 if (err >= 0)
292 amdtp_stream_pcm_prepare(&efw->tx_stream);
294 return err;
296 static int pcm_playback_prepare(struct snd_pcm_substream *substream)
298 struct snd_efw *efw = substream->private_data;
299 int err;
301 err = snd_efw_stream_start_duplex(efw);
302 if (err >= 0)
303 amdtp_stream_pcm_prepare(&efw->rx_stream);
305 return err;
308 static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd)
310 struct snd_efw *efw = substream->private_data;
312 switch (cmd) {
313 case SNDRV_PCM_TRIGGER_START:
314 amdtp_stream_pcm_trigger(&efw->tx_stream, substream);
315 break;
316 case SNDRV_PCM_TRIGGER_STOP:
317 amdtp_stream_pcm_trigger(&efw->tx_stream, NULL);
318 break;
319 default:
320 return -EINVAL;
323 return 0;
325 static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd)
327 struct snd_efw *efw = substream->private_data;
329 switch (cmd) {
330 case SNDRV_PCM_TRIGGER_START:
331 amdtp_stream_pcm_trigger(&efw->rx_stream, substream);
332 break;
333 case SNDRV_PCM_TRIGGER_STOP:
334 amdtp_stream_pcm_trigger(&efw->rx_stream, NULL);
335 break;
336 default:
337 return -EINVAL;
340 return 0;
343 static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm)
345 struct snd_efw *efw = sbstrm->private_data;
347 return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->tx_stream);
349 static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm)
351 struct snd_efw *efw = sbstrm->private_data;
353 return amdtp_domain_stream_pcm_pointer(&efw->domain, &efw->rx_stream);
356 static int pcm_capture_ack(struct snd_pcm_substream *substream)
358 struct snd_efw *efw = substream->private_data;
360 return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->tx_stream);
363 static int pcm_playback_ack(struct snd_pcm_substream *substream)
365 struct snd_efw *efw = substream->private_data;
367 return amdtp_domain_stream_pcm_ack(&efw->domain, &efw->rx_stream);
370 int snd_efw_create_pcm_devices(struct snd_efw *efw)
372 static const struct snd_pcm_ops capture_ops = {
373 .open = pcm_open,
374 .close = pcm_close,
375 .hw_params = pcm_hw_params,
376 .hw_free = pcm_hw_free,
377 .prepare = pcm_capture_prepare,
378 .trigger = pcm_capture_trigger,
379 .pointer = pcm_capture_pointer,
380 .ack = pcm_capture_ack,
382 static const struct snd_pcm_ops playback_ops = {
383 .open = pcm_open,
384 .close = pcm_close,
385 .hw_params = pcm_hw_params,
386 .hw_free = pcm_hw_free,
387 .prepare = pcm_playback_prepare,
388 .trigger = pcm_playback_trigger,
389 .pointer = pcm_playback_pointer,
390 .ack = pcm_playback_ack,
392 struct snd_pcm *pcm;
393 int err;
395 err = snd_pcm_new(efw->card, efw->card->driver, 0, 1, 1, &pcm);
396 if (err < 0)
397 goto end;
399 pcm->private_data = efw;
400 snprintf(pcm->name, sizeof(pcm->name), "%s PCM", efw->card->shortname);
401 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops);
402 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops);
403 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_VMALLOC, NULL, 0, 0);
404 end:
405 return err;