Merge tag 'powerpc-5.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / sound / mips / hal2.c
blob9ac9b58d7c8cdd94e0929d03153dc71ae795b4d5
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for A2 audio system used in SGI machines
4 * Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
6 * Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
7 * was based on code from Ulf Carlsson
8 */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/platform_device.h>
14 #include <linux/io.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
18 #include <asm/sgi/hpc3.h>
19 #include <asm/sgi/ip22.h>
21 #include <sound/core.h>
22 #include <sound/control.h>
23 #include <sound/pcm.h>
24 #include <sound/pcm-indirect.h>
25 #include <sound/initval.h>
27 #include "hal2.h"
29 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
30 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
32 module_param(index, int, 0444);
33 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
34 module_param(id, charp, 0444);
35 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
36 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
37 MODULE_AUTHOR("Thomas Bogendoerfer");
38 MODULE_LICENSE("GPL");
41 #define H2_BLOCK_SIZE 1024
42 #define H2_BUF_SIZE 16384
44 struct hal2_pbus {
45 struct hpc3_pbus_dmacregs *pbus;
46 int pbusnr;
47 unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
50 struct hal2_desc {
51 struct hpc_dma_desc desc;
52 u32 pad; /* padding */
55 struct hal2_codec {
56 struct snd_pcm_indirect pcm_indirect;
57 struct snd_pcm_substream *substream;
59 unsigned char *buffer;
60 dma_addr_t buffer_dma;
61 struct hal2_desc *desc;
62 dma_addr_t desc_dma;
63 int desc_count;
64 struct hal2_pbus pbus;
65 int voices; /* mono/stereo */
66 unsigned int sample_rate;
67 unsigned int master; /* Master frequency */
68 unsigned short mod; /* MOD value */
69 unsigned short inc; /* INC value */
72 #define H2_MIX_OUTPUT_ATT 0
73 #define H2_MIX_INPUT_GAIN 1
75 struct snd_hal2 {
76 struct snd_card *card;
78 struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
79 struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
80 struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
81 struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
83 struct hal2_codec dac;
84 struct hal2_codec adc;
87 #define H2_INDIRECT_WAIT(regs) while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
89 #define H2_READ_ADDR(addr) (addr | (1<<7))
90 #define H2_WRITE_ADDR(addr) (addr)
92 static inline u32 hal2_read(u32 *reg)
94 return __raw_readl(reg);
97 static inline void hal2_write(u32 val, u32 *reg)
99 __raw_writel(val, reg);
103 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
105 u32 ret;
106 struct hal2_ctl_regs *regs = hal2->ctl_regs;
108 hal2_write(H2_READ_ADDR(addr), &regs->iar);
109 H2_INDIRECT_WAIT(regs);
110 ret = hal2_read(&regs->idr0) & 0xffff;
111 hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
112 H2_INDIRECT_WAIT(regs);
113 ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
114 return ret;
117 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
119 struct hal2_ctl_regs *regs = hal2->ctl_regs;
121 hal2_write(val, &regs->idr0);
122 hal2_write(0, &regs->idr1);
123 hal2_write(0, &regs->idr2);
124 hal2_write(0, &regs->idr3);
125 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
126 H2_INDIRECT_WAIT(regs);
129 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
131 struct hal2_ctl_regs *regs = hal2->ctl_regs;
133 hal2_write(val & 0xffff, &regs->idr0);
134 hal2_write(val >> 16, &regs->idr1);
135 hal2_write(0, &regs->idr2);
136 hal2_write(0, &regs->idr3);
137 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
138 H2_INDIRECT_WAIT(regs);
141 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
143 struct hal2_ctl_regs *regs = hal2->ctl_regs;
145 hal2_write(H2_READ_ADDR(addr), &regs->iar);
146 H2_INDIRECT_WAIT(regs);
147 hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
148 hal2_write(0, &regs->idr1);
149 hal2_write(0, &regs->idr2);
150 hal2_write(0, &regs->idr3);
151 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
152 H2_INDIRECT_WAIT(regs);
155 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
157 struct hal2_ctl_regs *regs = hal2->ctl_regs;
159 hal2_write(H2_READ_ADDR(addr), &regs->iar);
160 H2_INDIRECT_WAIT(regs);
161 hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
162 hal2_write(0, &regs->idr1);
163 hal2_write(0, &regs->idr2);
164 hal2_write(0, &regs->idr3);
165 hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
166 H2_INDIRECT_WAIT(regs);
169 static int hal2_gain_info(struct snd_kcontrol *kcontrol,
170 struct snd_ctl_elem_info *uinfo)
172 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
173 uinfo->count = 2;
174 uinfo->value.integer.min = 0;
175 switch ((int)kcontrol->private_value) {
176 case H2_MIX_OUTPUT_ATT:
177 uinfo->value.integer.max = 31;
178 break;
179 case H2_MIX_INPUT_GAIN:
180 uinfo->value.integer.max = 15;
181 break;
183 return 0;
186 static int hal2_gain_get(struct snd_kcontrol *kcontrol,
187 struct snd_ctl_elem_value *ucontrol)
189 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
190 u32 tmp;
191 int l, r;
193 switch ((int)kcontrol->private_value) {
194 case H2_MIX_OUTPUT_ATT:
195 tmp = hal2_i_read32(hal2, H2I_DAC_C2);
196 if (tmp & H2I_C2_MUTE) {
197 l = 0;
198 r = 0;
199 } else {
200 l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
201 r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
203 break;
204 case H2_MIX_INPUT_GAIN:
205 tmp = hal2_i_read32(hal2, H2I_ADC_C2);
206 l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
207 r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
208 break;
209 default:
210 return -EINVAL;
212 ucontrol->value.integer.value[0] = l;
213 ucontrol->value.integer.value[1] = r;
215 return 0;
218 static int hal2_gain_put(struct snd_kcontrol *kcontrol,
219 struct snd_ctl_elem_value *ucontrol)
221 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
222 u32 old, new;
223 int l, r;
225 l = ucontrol->value.integer.value[0];
226 r = ucontrol->value.integer.value[1];
228 switch ((int)kcontrol->private_value) {
229 case H2_MIX_OUTPUT_ATT:
230 old = hal2_i_read32(hal2, H2I_DAC_C2);
231 new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
232 if (l | r) {
233 l = 31 - l;
234 r = 31 - r;
235 new |= (l << H2I_C2_L_ATT_SHIFT);
236 new |= (r << H2I_C2_R_ATT_SHIFT);
237 } else
238 new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
239 hal2_i_write32(hal2, H2I_DAC_C2, new);
240 break;
241 case H2_MIX_INPUT_GAIN:
242 old = hal2_i_read32(hal2, H2I_ADC_C2);
243 new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
244 new |= (l << H2I_C2_L_GAIN_SHIFT);
245 new |= (r << H2I_C2_R_GAIN_SHIFT);
246 hal2_i_write32(hal2, H2I_ADC_C2, new);
247 break;
248 default:
249 return -EINVAL;
251 return old != new;
254 static const struct snd_kcontrol_new hal2_ctrl_headphone = {
255 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
256 .name = "Headphone Playback Volume",
257 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
258 .private_value = H2_MIX_OUTPUT_ATT,
259 .info = hal2_gain_info,
260 .get = hal2_gain_get,
261 .put = hal2_gain_put,
264 static const struct snd_kcontrol_new hal2_ctrl_mic = {
265 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
266 .name = "Mic Capture Volume",
267 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
268 .private_value = H2_MIX_INPUT_GAIN,
269 .info = hal2_gain_info,
270 .get = hal2_gain_get,
271 .put = hal2_gain_put,
274 static int hal2_mixer_create(struct snd_hal2 *hal2)
276 int err;
278 /* mute DAC */
279 hal2_i_write32(hal2, H2I_DAC_C2,
280 H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
281 /* mute ADC */
282 hal2_i_write32(hal2, H2I_ADC_C2, 0);
284 err = snd_ctl_add(hal2->card,
285 snd_ctl_new1(&hal2_ctrl_headphone, hal2));
286 if (err < 0)
287 return err;
289 err = snd_ctl_add(hal2->card,
290 snd_ctl_new1(&hal2_ctrl_mic, hal2));
291 if (err < 0)
292 return err;
294 return 0;
297 static irqreturn_t hal2_interrupt(int irq, void *dev_id)
299 struct snd_hal2 *hal2 = dev_id;
300 irqreturn_t ret = IRQ_NONE;
302 /* decide what caused this interrupt */
303 if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
304 snd_pcm_period_elapsed(hal2->dac.substream);
305 ret = IRQ_HANDLED;
307 if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
308 snd_pcm_period_elapsed(hal2->adc.substream);
309 ret = IRQ_HANDLED;
311 return ret;
314 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
316 unsigned short mod;
318 if (44100 % rate < 48000 % rate) {
319 mod = 4 * 44100 / rate;
320 codec->master = 44100;
321 } else {
322 mod = 4 * 48000 / rate;
323 codec->master = 48000;
326 codec->inc = 4;
327 codec->mod = mod;
328 rate = 4 * codec->master / mod;
330 return rate;
333 static void hal2_set_dac_rate(struct snd_hal2 *hal2)
335 unsigned int master = hal2->dac.master;
336 int inc = hal2->dac.inc;
337 int mod = hal2->dac.mod;
339 hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
340 hal2_i_write32(hal2, H2I_BRES1_C2,
341 ((0xffff & (inc - mod - 1)) << 16) | inc);
344 static void hal2_set_adc_rate(struct snd_hal2 *hal2)
346 unsigned int master = hal2->adc.master;
347 int inc = hal2->adc.inc;
348 int mod = hal2->adc.mod;
350 hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
351 hal2_i_write32(hal2, H2I_BRES2_C2,
352 ((0xffff & (inc - mod - 1)) << 16) | inc);
355 static void hal2_setup_dac(struct snd_hal2 *hal2)
357 unsigned int fifobeg, fifoend, highwater, sample_size;
358 struct hal2_pbus *pbus = &hal2->dac.pbus;
360 /* Now we set up some PBUS information. The PBUS needs information about
361 * what portion of the fifo it will use. If it's receiving or
362 * transmitting, and finally whether the stream is little endian or big
363 * endian. The information is written later, on the start call.
365 sample_size = 2 * hal2->dac.voices;
366 /* Fifo should be set to hold exactly four samples. Highwater mark
367 * should be set to two samples. */
368 highwater = (sample_size * 2) >> 1; /* halfwords */
369 fifobeg = 0; /* playback is first */
370 fifoend = (sample_size * 4) >> 3; /* doublewords */
371 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
372 (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
373 /* We disable everything before we do anything at all */
374 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
375 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
376 /* Setup the HAL2 for playback */
377 hal2_set_dac_rate(hal2);
378 /* Set endianess */
379 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
380 /* Set DMA bus */
381 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
382 /* We are using 1st Bresenham clock generator for playback */
383 hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
384 | (1 << H2I_C1_CLKID_SHIFT)
385 | (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
388 static void hal2_setup_adc(struct snd_hal2 *hal2)
390 unsigned int fifobeg, fifoend, highwater, sample_size;
391 struct hal2_pbus *pbus = &hal2->adc.pbus;
393 sample_size = 2 * hal2->adc.voices;
394 highwater = (sample_size * 2) >> 1; /* halfwords */
395 fifobeg = (4 * 4) >> 3; /* record is second */
396 fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
397 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
398 (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
399 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
400 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
401 /* Setup the HAL2 for record */
402 hal2_set_adc_rate(hal2);
403 /* Set endianess */
404 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
405 /* Set DMA bus */
406 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
407 /* We are using 2nd Bresenham clock generator for record */
408 hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
409 | (2 << H2I_C1_CLKID_SHIFT)
410 | (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
413 static void hal2_start_dac(struct snd_hal2 *hal2)
415 struct hal2_pbus *pbus = &hal2->dac.pbus;
417 pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
418 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
419 /* enable DAC */
420 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
423 static void hal2_start_adc(struct snd_hal2 *hal2)
425 struct hal2_pbus *pbus = &hal2->adc.pbus;
427 pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
428 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
429 /* enable ADC */
430 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
433 static inline void hal2_stop_dac(struct snd_hal2 *hal2)
435 hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
436 /* The HAL2 itself may remain enabled safely */
439 static inline void hal2_stop_adc(struct snd_hal2 *hal2)
441 hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
444 static int hal2_alloc_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec,
445 enum dma_data_direction buffer_dir)
447 struct device *dev = hal2->card->dev;
448 struct hal2_desc *desc;
449 dma_addr_t desc_dma, buffer_dma;
450 int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
451 int i;
453 codec->buffer = dma_alloc_noncoherent(dev, H2_BUF_SIZE, &buffer_dma,
454 buffer_dir, GFP_KERNEL);
455 if (!codec->buffer)
456 return -ENOMEM;
457 desc = dma_alloc_noncoherent(dev, count * sizeof(struct hal2_desc),
458 &desc_dma, DMA_BIDIRECTIONAL, GFP_KERNEL);
459 if (!desc) {
460 dma_free_noncoherent(dev, H2_BUF_SIZE, codec->buffer, buffer_dma,
461 buffer_dir);
462 return -ENOMEM;
464 codec->buffer_dma = buffer_dma;
465 codec->desc_dma = desc_dma;
466 codec->desc = desc;
467 for (i = 0; i < count; i++) {
468 desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
469 desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
470 desc->desc.pnext = (i == count - 1) ?
471 desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
472 desc++;
474 dma_sync_single_for_device(dev, codec->desc_dma,
475 count * sizeof(struct hal2_desc),
476 DMA_BIDIRECTIONAL);
477 codec->desc_count = count;
478 return 0;
481 static void hal2_free_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec,
482 enum dma_data_direction buffer_dir)
484 struct device *dev = hal2->card->dev;
486 dma_free_noncoherent(dev, codec->desc_count * sizeof(struct hal2_desc),
487 codec->desc, codec->desc_dma, DMA_BIDIRECTIONAL);
488 dma_free_noncoherent(dev, H2_BUF_SIZE, codec->buffer, codec->buffer_dma,
489 buffer_dir);
492 static const struct snd_pcm_hardware hal2_pcm_hw = {
493 .info = (SNDRV_PCM_INFO_MMAP |
494 SNDRV_PCM_INFO_MMAP_VALID |
495 SNDRV_PCM_INFO_INTERLEAVED |
496 SNDRV_PCM_INFO_BLOCK_TRANSFER |
497 SNDRV_PCM_INFO_SYNC_APPLPTR),
498 .formats = SNDRV_PCM_FMTBIT_S16_BE,
499 .rates = SNDRV_PCM_RATE_8000_48000,
500 .rate_min = 8000,
501 .rate_max = 48000,
502 .channels_min = 2,
503 .channels_max = 2,
504 .buffer_bytes_max = 65536,
505 .period_bytes_min = 1024,
506 .period_bytes_max = 65536,
507 .periods_min = 2,
508 .periods_max = 1024,
511 static int hal2_playback_open(struct snd_pcm_substream *substream)
513 struct snd_pcm_runtime *runtime = substream->runtime;
514 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
516 runtime->hw = hal2_pcm_hw;
517 return hal2_alloc_dmabuf(hal2, &hal2->dac, DMA_TO_DEVICE);
520 static int hal2_playback_close(struct snd_pcm_substream *substream)
522 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
524 hal2_free_dmabuf(hal2, &hal2->dac, DMA_TO_DEVICE);
525 return 0;
528 static int hal2_playback_prepare(struct snd_pcm_substream *substream)
530 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
531 struct snd_pcm_runtime *runtime = substream->runtime;
532 struct hal2_codec *dac = &hal2->dac;
534 dac->voices = runtime->channels;
535 dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
536 memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
537 dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
538 dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
539 dac->pcm_indirect.hw_io = dac->buffer_dma;
540 dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
541 dac->substream = substream;
542 hal2_setup_dac(hal2);
543 return 0;
546 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
548 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
550 switch (cmd) {
551 case SNDRV_PCM_TRIGGER_START:
552 hal2_start_dac(hal2);
553 break;
554 case SNDRV_PCM_TRIGGER_STOP:
555 hal2_stop_dac(hal2);
556 break;
557 default:
558 return -EINVAL;
560 return 0;
563 static snd_pcm_uframes_t
564 hal2_playback_pointer(struct snd_pcm_substream *substream)
566 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
567 struct hal2_codec *dac = &hal2->dac;
569 return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
570 dac->pbus.pbus->pbdma_bptr);
573 static void hal2_playback_transfer(struct snd_pcm_substream *substream,
574 struct snd_pcm_indirect *rec, size_t bytes)
576 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
577 unsigned char *buf = hal2->dac.buffer + rec->hw_data;
579 memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
580 dma_sync_single_for_device(hal2->card->dev,
581 hal2->dac.buffer_dma + rec->hw_data, bytes,
582 DMA_TO_DEVICE);
586 static int hal2_playback_ack(struct snd_pcm_substream *substream)
588 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
589 struct hal2_codec *dac = &hal2->dac;
591 return snd_pcm_indirect_playback_transfer(substream,
592 &dac->pcm_indirect,
593 hal2_playback_transfer);
596 static int hal2_capture_open(struct snd_pcm_substream *substream)
598 struct snd_pcm_runtime *runtime = substream->runtime;
599 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
601 runtime->hw = hal2_pcm_hw;
602 return hal2_alloc_dmabuf(hal2, &hal2->adc, DMA_FROM_DEVICE);
605 static int hal2_capture_close(struct snd_pcm_substream *substream)
607 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
609 hal2_free_dmabuf(hal2, &hal2->adc, DMA_FROM_DEVICE);
610 return 0;
613 static int hal2_capture_prepare(struct snd_pcm_substream *substream)
615 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
616 struct snd_pcm_runtime *runtime = substream->runtime;
617 struct hal2_codec *adc = &hal2->adc;
619 adc->voices = runtime->channels;
620 adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
621 memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
622 adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
623 adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
624 adc->pcm_indirect.hw_io = adc->buffer_dma;
625 adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
626 adc->substream = substream;
627 hal2_setup_adc(hal2);
628 return 0;
631 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
633 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
635 switch (cmd) {
636 case SNDRV_PCM_TRIGGER_START:
637 hal2_start_adc(hal2);
638 break;
639 case SNDRV_PCM_TRIGGER_STOP:
640 hal2_stop_adc(hal2);
641 break;
642 default:
643 return -EINVAL;
645 return 0;
648 static snd_pcm_uframes_t
649 hal2_capture_pointer(struct snd_pcm_substream *substream)
651 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
652 struct hal2_codec *adc = &hal2->adc;
654 return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
655 adc->pbus.pbus->pbdma_bptr);
658 static void hal2_capture_transfer(struct snd_pcm_substream *substream,
659 struct snd_pcm_indirect *rec, size_t bytes)
661 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
662 unsigned char *buf = hal2->adc.buffer + rec->hw_data;
664 dma_sync_single_for_cpu(hal2->card->dev,
665 hal2->adc.buffer_dma + rec->hw_data, bytes,
666 DMA_FROM_DEVICE);
667 memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
670 static int hal2_capture_ack(struct snd_pcm_substream *substream)
672 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
673 struct hal2_codec *adc = &hal2->adc;
675 return snd_pcm_indirect_capture_transfer(substream,
676 &adc->pcm_indirect,
677 hal2_capture_transfer);
680 static const struct snd_pcm_ops hal2_playback_ops = {
681 .open = hal2_playback_open,
682 .close = hal2_playback_close,
683 .prepare = hal2_playback_prepare,
684 .trigger = hal2_playback_trigger,
685 .pointer = hal2_playback_pointer,
686 .ack = hal2_playback_ack,
689 static const struct snd_pcm_ops hal2_capture_ops = {
690 .open = hal2_capture_open,
691 .close = hal2_capture_close,
692 .prepare = hal2_capture_prepare,
693 .trigger = hal2_capture_trigger,
694 .pointer = hal2_capture_pointer,
695 .ack = hal2_capture_ack,
698 static int hal2_pcm_create(struct snd_hal2 *hal2)
700 struct snd_pcm *pcm;
701 int err;
703 /* create first pcm device with one outputs and one input */
704 err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
705 if (err < 0)
706 return err;
708 pcm->private_data = hal2;
709 strcpy(pcm->name, "SGI HAL2");
711 /* set operators */
712 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
713 &hal2_playback_ops);
714 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
715 &hal2_capture_ops);
716 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
717 NULL, 0, 1024 * 1024);
719 return 0;
722 static int hal2_dev_free(struct snd_device *device)
724 struct snd_hal2 *hal2 = device->device_data;
726 free_irq(SGI_HPCDMA_IRQ, hal2);
727 kfree(hal2);
728 return 0;
731 static const struct snd_device_ops hal2_ops = {
732 .dev_free = hal2_dev_free,
735 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
736 int index)
738 codec->pbus.pbusnr = index;
739 codec->pbus.pbus = &hpc3->pbdma[index];
742 static int hal2_detect(struct snd_hal2 *hal2)
744 unsigned short board, major, minor;
745 unsigned short rev;
747 /* reset HAL2 */
748 hal2_write(0, &hal2->ctl_regs->isr);
750 /* release reset */
751 hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
752 &hal2->ctl_regs->isr);
755 hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
756 rev = hal2_read(&hal2->ctl_regs->rev);
757 if (rev & H2_REV_AUDIO_PRESENT)
758 return -ENODEV;
760 board = (rev & H2_REV_BOARD_M) >> 12;
761 major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
762 minor = (rev & H2_REV_MINOR_CHIP_M);
764 printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
765 board, major, minor);
767 return 0;
770 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
772 struct snd_hal2 *hal2;
773 struct hpc3_regs *hpc3 = hpc3c0;
774 int err;
776 hal2 = kzalloc(sizeof(*hal2), GFP_KERNEL);
777 if (!hal2)
778 return -ENOMEM;
780 hal2->card = card;
782 if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
783 "SGI HAL2", hal2)) {
784 printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
785 kfree(hal2);
786 return -EAGAIN;
789 hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
790 hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
791 hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
792 hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
794 if (hal2_detect(hal2) < 0) {
795 kfree(hal2);
796 return -ENODEV;
799 hal2_init_codec(&hal2->dac, hpc3, 0);
800 hal2_init_codec(&hal2->adc, hpc3, 1);
803 * All DMA channel interfaces in HAL2 are designed to operate with
804 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
805 * in D5. HAL2 is a 16-bit device which can accept both big and little
806 * endian format. It assumes that even address bytes are on high
807 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
808 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
810 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
811 (2 << HPC3_DMACFG_D4R_SHIFT) | \
812 (2 << HPC3_DMACFG_D5R_SHIFT) | \
813 (0 << HPC3_DMACFG_D3W_SHIFT) | \
814 (2 << HPC3_DMACFG_D4W_SHIFT) | \
815 (2 << HPC3_DMACFG_D5W_SHIFT) | \
816 HPC3_DMACFG_DS16 | \
817 HPC3_DMACFG_EVENHI | \
818 HPC3_DMACFG_RTIME | \
819 (8 << HPC3_DMACFG_BURST_SHIFT) | \
820 HPC3_DMACFG_DRQLIVE)
822 * Ignore what's mentioned in the specification and write value which
823 * works in The Real World (TM)
825 hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
826 hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
828 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
829 if (err < 0) {
830 free_irq(SGI_HPCDMA_IRQ, hal2);
831 kfree(hal2);
832 return err;
834 *rchip = hal2;
835 return 0;
838 static int hal2_probe(struct platform_device *pdev)
840 struct snd_card *card;
841 struct snd_hal2 *chip;
842 int err;
844 err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
845 if (err < 0)
846 return err;
848 err = hal2_create(card, &chip);
849 if (err < 0) {
850 snd_card_free(card);
851 return err;
854 err = hal2_pcm_create(chip);
855 if (err < 0) {
856 snd_card_free(card);
857 return err;
859 err = hal2_mixer_create(chip);
860 if (err < 0) {
861 snd_card_free(card);
862 return err;
865 strcpy(card->driver, "SGI HAL2 Audio");
866 strcpy(card->shortname, "SGI HAL2 Audio");
867 sprintf(card->longname, "%s irq %i",
868 card->shortname,
869 SGI_HPCDMA_IRQ);
871 err = snd_card_register(card);
872 if (err < 0) {
873 snd_card_free(card);
874 return err;
876 platform_set_drvdata(pdev, card);
877 return 0;
880 static int hal2_remove(struct platform_device *pdev)
882 struct snd_card *card = platform_get_drvdata(pdev);
884 snd_card_free(card);
885 return 0;
888 static struct platform_driver hal2_driver = {
889 .probe = hal2_probe,
890 .remove = hal2_remove,
891 .driver = {
892 .name = "sgihal2",
896 module_platform_driver(hal2_driver);