Merge tag 'powerpc-5.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / sound / pci / ctxfi / cthw20k2.c
blobfc1bc18caee989ca3cf1ef15d7d915f187a427f3
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
5 * @File cthw20k2.c
7 * @Brief
8 * This file contains the implementation of hardware access method for 20k2.
10 * @Author Liu Chun
11 * @Date May 14 2008
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/pci.h>
17 #include <linux/io.h>
18 #include <linux/string.h>
19 #include <linux/kernel.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include "cthw20k2.h"
23 #include "ct20k2reg.h"
25 struct hw20k2 {
26 struct hw hw;
27 /* for i2c */
28 unsigned char dev_id;
29 unsigned char addr_size;
30 unsigned char data_size;
32 int mic_source;
35 static u32 hw_read_20kx(struct hw *hw, u32 reg);
36 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
39 * Type definition block.
40 * The layout of control structures can be directly applied on 20k2 chip.
44 * SRC control block definitions.
47 /* SRC resource control block */
48 #define SRCCTL_STATE 0x00000007
49 #define SRCCTL_BM 0x00000008
50 #define SRCCTL_RSR 0x00000030
51 #define SRCCTL_SF 0x000001C0
52 #define SRCCTL_WR 0x00000200
53 #define SRCCTL_PM 0x00000400
54 #define SRCCTL_ROM 0x00001800
55 #define SRCCTL_VO 0x00002000
56 #define SRCCTL_ST 0x00004000
57 #define SRCCTL_IE 0x00008000
58 #define SRCCTL_ILSZ 0x000F0000
59 #define SRCCTL_BP 0x00100000
61 #define SRCCCR_CISZ 0x000007FF
62 #define SRCCCR_CWA 0x001FF800
63 #define SRCCCR_D 0x00200000
64 #define SRCCCR_RS 0x01C00000
65 #define SRCCCR_NAL 0x3E000000
66 #define SRCCCR_RA 0xC0000000
68 #define SRCCA_CA 0x0FFFFFFF
69 #define SRCCA_RS 0xE0000000
71 #define SRCSA_SA 0x0FFFFFFF
73 #define SRCLA_LA 0x0FFFFFFF
75 /* Mixer Parameter Ring ram Low and Hight register.
76 * Fixed-point value in 8.24 format for parameter channel */
77 #define MPRLH_PITCH 0xFFFFFFFF
79 /* SRC resource register dirty flags */
80 union src_dirty {
81 struct {
82 u16 ctl:1;
83 u16 ccr:1;
84 u16 sa:1;
85 u16 la:1;
86 u16 ca:1;
87 u16 mpr:1;
88 u16 czbfs:1; /* Clear Z-Buffers */
89 u16 rsv:9;
90 } bf;
91 u16 data;
94 struct src_rsc_ctrl_blk {
95 unsigned int ctl;
96 unsigned int ccr;
97 unsigned int ca;
98 unsigned int sa;
99 unsigned int la;
100 unsigned int mpr;
101 union src_dirty dirty;
104 /* SRC manager control block */
105 union src_mgr_dirty {
106 struct {
107 u16 enb0:1;
108 u16 enb1:1;
109 u16 enb2:1;
110 u16 enb3:1;
111 u16 enb4:1;
112 u16 enb5:1;
113 u16 enb6:1;
114 u16 enb7:1;
115 u16 enbsa:1;
116 u16 rsv:7;
117 } bf;
118 u16 data;
121 struct src_mgr_ctrl_blk {
122 unsigned int enbsa;
123 unsigned int enb[8];
124 union src_mgr_dirty dirty;
127 /* SRCIMP manager control block */
128 #define SRCAIM_ARC 0x00000FFF
129 #define SRCAIM_NXT 0x00FF0000
130 #define SRCAIM_SRC 0xFF000000
132 struct srcimap {
133 unsigned int srcaim;
134 unsigned int idx;
137 /* SRCIMP manager register dirty flags */
138 union srcimp_mgr_dirty {
139 struct {
140 u16 srcimap:1;
141 u16 rsv:15;
142 } bf;
143 u16 data;
146 struct srcimp_mgr_ctrl_blk {
147 struct srcimap srcimap;
148 union srcimp_mgr_dirty dirty;
152 * Function implementation block.
155 static int src_get_rsc_ctrl_blk(void **rblk)
157 struct src_rsc_ctrl_blk *blk;
159 *rblk = NULL;
160 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
161 if (!blk)
162 return -ENOMEM;
164 *rblk = blk;
166 return 0;
169 static int src_put_rsc_ctrl_blk(void *blk)
171 kfree(blk);
173 return 0;
176 static int src_set_state(void *blk, unsigned int state)
178 struct src_rsc_ctrl_blk *ctl = blk;
180 set_field(&ctl->ctl, SRCCTL_STATE, state);
181 ctl->dirty.bf.ctl = 1;
182 return 0;
185 static int src_set_bm(void *blk, unsigned int bm)
187 struct src_rsc_ctrl_blk *ctl = blk;
189 set_field(&ctl->ctl, SRCCTL_BM, bm);
190 ctl->dirty.bf.ctl = 1;
191 return 0;
194 static int src_set_rsr(void *blk, unsigned int rsr)
196 struct src_rsc_ctrl_blk *ctl = blk;
198 set_field(&ctl->ctl, SRCCTL_RSR, rsr);
199 ctl->dirty.bf.ctl = 1;
200 return 0;
203 static int src_set_sf(void *blk, unsigned int sf)
205 struct src_rsc_ctrl_blk *ctl = blk;
207 set_field(&ctl->ctl, SRCCTL_SF, sf);
208 ctl->dirty.bf.ctl = 1;
209 return 0;
212 static int src_set_wr(void *blk, unsigned int wr)
214 struct src_rsc_ctrl_blk *ctl = blk;
216 set_field(&ctl->ctl, SRCCTL_WR, wr);
217 ctl->dirty.bf.ctl = 1;
218 return 0;
221 static int src_set_pm(void *blk, unsigned int pm)
223 struct src_rsc_ctrl_blk *ctl = blk;
225 set_field(&ctl->ctl, SRCCTL_PM, pm);
226 ctl->dirty.bf.ctl = 1;
227 return 0;
230 static int src_set_rom(void *blk, unsigned int rom)
232 struct src_rsc_ctrl_blk *ctl = blk;
234 set_field(&ctl->ctl, SRCCTL_ROM, rom);
235 ctl->dirty.bf.ctl = 1;
236 return 0;
239 static int src_set_vo(void *blk, unsigned int vo)
241 struct src_rsc_ctrl_blk *ctl = blk;
243 set_field(&ctl->ctl, SRCCTL_VO, vo);
244 ctl->dirty.bf.ctl = 1;
245 return 0;
248 static int src_set_st(void *blk, unsigned int st)
250 struct src_rsc_ctrl_blk *ctl = blk;
252 set_field(&ctl->ctl, SRCCTL_ST, st);
253 ctl->dirty.bf.ctl = 1;
254 return 0;
257 static int src_set_ie(void *blk, unsigned int ie)
259 struct src_rsc_ctrl_blk *ctl = blk;
261 set_field(&ctl->ctl, SRCCTL_IE, ie);
262 ctl->dirty.bf.ctl = 1;
263 return 0;
266 static int src_set_ilsz(void *blk, unsigned int ilsz)
268 struct src_rsc_ctrl_blk *ctl = blk;
270 set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
271 ctl->dirty.bf.ctl = 1;
272 return 0;
275 static int src_set_bp(void *blk, unsigned int bp)
277 struct src_rsc_ctrl_blk *ctl = blk;
279 set_field(&ctl->ctl, SRCCTL_BP, bp);
280 ctl->dirty.bf.ctl = 1;
281 return 0;
284 static int src_set_cisz(void *blk, unsigned int cisz)
286 struct src_rsc_ctrl_blk *ctl = blk;
288 set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
289 ctl->dirty.bf.ccr = 1;
290 return 0;
293 static int src_set_ca(void *blk, unsigned int ca)
295 struct src_rsc_ctrl_blk *ctl = blk;
297 set_field(&ctl->ca, SRCCA_CA, ca);
298 ctl->dirty.bf.ca = 1;
299 return 0;
302 static int src_set_sa(void *blk, unsigned int sa)
304 struct src_rsc_ctrl_blk *ctl = blk;
306 set_field(&ctl->sa, SRCSA_SA, sa);
307 ctl->dirty.bf.sa = 1;
308 return 0;
311 static int src_set_la(void *blk, unsigned int la)
313 struct src_rsc_ctrl_blk *ctl = blk;
315 set_field(&ctl->la, SRCLA_LA, la);
316 ctl->dirty.bf.la = 1;
317 return 0;
320 static int src_set_pitch(void *blk, unsigned int pitch)
322 struct src_rsc_ctrl_blk *ctl = blk;
324 set_field(&ctl->mpr, MPRLH_PITCH, pitch);
325 ctl->dirty.bf.mpr = 1;
326 return 0;
329 static int src_set_clear_zbufs(void *blk, unsigned int clear)
331 ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
332 return 0;
335 static int src_set_dirty(void *blk, unsigned int flags)
337 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
338 return 0;
341 static int src_set_dirty_all(void *blk)
343 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
344 return 0;
347 #define AR_SLOT_SIZE 4096
348 #define AR_SLOT_BLOCK_SIZE 16
349 #define AR_PTS_PITCH 6
350 #define AR_PARAM_SRC_OFFSET 0x60
352 static unsigned int src_param_pitch_mixer(unsigned int src_idx)
354 return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
355 - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
359 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
361 struct src_rsc_ctrl_blk *ctl = blk;
362 int i;
364 if (ctl->dirty.bf.czbfs) {
365 /* Clear Z-Buffer registers */
366 for (i = 0; i < 8; i++)
367 hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0);
369 for (i = 0; i < 4; i++)
370 hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0);
372 for (i = 0; i < 8; i++)
373 hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0);
375 ctl->dirty.bf.czbfs = 0;
377 if (ctl->dirty.bf.mpr) {
378 /* Take the parameter mixer resource in the same group as that
379 * the idx src is in for simplicity. Unlike src, all conjugate
380 * parameter mixer resources must be programmed for
381 * corresponding conjugate src resources. */
382 unsigned int pm_idx = src_param_pitch_mixer(idx);
383 hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr);
384 hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3);
385 hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0);
386 ctl->dirty.bf.mpr = 0;
388 if (ctl->dirty.bf.sa) {
389 hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa);
390 ctl->dirty.bf.sa = 0;
392 if (ctl->dirty.bf.la) {
393 hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la);
394 ctl->dirty.bf.la = 0;
396 if (ctl->dirty.bf.ca) {
397 hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca);
398 ctl->dirty.bf.ca = 0;
401 /* Write srccf register */
402 hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0);
404 if (ctl->dirty.bf.ccr) {
405 hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr);
406 ctl->dirty.bf.ccr = 0;
408 if (ctl->dirty.bf.ctl) {
409 hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl);
410 ctl->dirty.bf.ctl = 0;
413 return 0;
416 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
418 struct src_rsc_ctrl_blk *ctl = blk;
420 ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100);
421 ctl->dirty.bf.ca = 0;
423 return get_field(ctl->ca, SRCCA_CA);
426 static unsigned int src_get_dirty(void *blk)
428 return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
431 static unsigned int src_dirty_conj_mask(void)
433 return 0x20;
436 static int src_mgr_enbs_src(void *blk, unsigned int idx)
438 ((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4));
439 ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
440 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
441 return 0;
444 static int src_mgr_enb_src(void *blk, unsigned int idx)
446 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
447 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
448 return 0;
451 static int src_mgr_dsb_src(void *blk, unsigned int idx)
453 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
454 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
455 return 0;
458 static int src_mgr_commit_write(struct hw *hw, void *blk)
460 struct src_mgr_ctrl_blk *ctl = blk;
461 int i;
462 unsigned int ret;
464 if (ctl->dirty.bf.enbsa) {
465 do {
466 ret = hw_read_20kx(hw, SRC_ENBSTAT);
467 } while (ret & 0x1);
468 hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa);
469 ctl->dirty.bf.enbsa = 0;
471 for (i = 0; i < 8; i++) {
472 if ((ctl->dirty.data & (0x1 << i))) {
473 hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]);
474 ctl->dirty.data &= ~(0x1 << i);
478 return 0;
481 static int src_mgr_get_ctrl_blk(void **rblk)
483 struct src_mgr_ctrl_blk *blk;
485 *rblk = NULL;
486 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
487 if (!blk)
488 return -ENOMEM;
490 *rblk = blk;
492 return 0;
495 static int src_mgr_put_ctrl_blk(void *blk)
497 kfree(blk);
499 return 0;
502 static int srcimp_mgr_get_ctrl_blk(void **rblk)
504 struct srcimp_mgr_ctrl_blk *blk;
506 *rblk = NULL;
507 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
508 if (!blk)
509 return -ENOMEM;
511 *rblk = blk;
513 return 0;
516 static int srcimp_mgr_put_ctrl_blk(void *blk)
518 kfree(blk);
520 return 0;
523 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
525 struct srcimp_mgr_ctrl_blk *ctl = blk;
527 set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
528 ctl->dirty.bf.srcimap = 1;
529 return 0;
532 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
534 struct srcimp_mgr_ctrl_blk *ctl = blk;
536 set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
537 ctl->dirty.bf.srcimap = 1;
538 return 0;
541 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
543 struct srcimp_mgr_ctrl_blk *ctl = blk;
545 set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
546 ctl->dirty.bf.srcimap = 1;
547 return 0;
550 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
552 ((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr;
553 ((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1;
554 return 0;
557 static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
559 struct srcimp_mgr_ctrl_blk *ctl = blk;
561 if (ctl->dirty.bf.srcimap) {
562 hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100,
563 ctl->srcimap.srcaim);
564 ctl->dirty.bf.srcimap = 0;
567 return 0;
571 * AMIXER control block definitions.
574 #define AMOPLO_M 0x00000003
575 #define AMOPLO_IV 0x00000004
576 #define AMOPLO_X 0x0003FFF0
577 #define AMOPLO_Y 0xFFFC0000
579 #define AMOPHI_SADR 0x000000FF
580 #define AMOPHI_SE 0x80000000
582 /* AMIXER resource register dirty flags */
583 union amixer_dirty {
584 struct {
585 u16 amoplo:1;
586 u16 amophi:1;
587 u16 rsv:14;
588 } bf;
589 u16 data;
592 /* AMIXER resource control block */
593 struct amixer_rsc_ctrl_blk {
594 unsigned int amoplo;
595 unsigned int amophi;
596 union amixer_dirty dirty;
599 static int amixer_set_mode(void *blk, unsigned int mode)
601 struct amixer_rsc_ctrl_blk *ctl = blk;
603 set_field(&ctl->amoplo, AMOPLO_M, mode);
604 ctl->dirty.bf.amoplo = 1;
605 return 0;
608 static int amixer_set_iv(void *blk, unsigned int iv)
610 struct amixer_rsc_ctrl_blk *ctl = blk;
612 set_field(&ctl->amoplo, AMOPLO_IV, iv);
613 ctl->dirty.bf.amoplo = 1;
614 return 0;
617 static int amixer_set_x(void *blk, unsigned int x)
619 struct amixer_rsc_ctrl_blk *ctl = blk;
621 set_field(&ctl->amoplo, AMOPLO_X, x);
622 ctl->dirty.bf.amoplo = 1;
623 return 0;
626 static int amixer_set_y(void *blk, unsigned int y)
628 struct amixer_rsc_ctrl_blk *ctl = blk;
630 set_field(&ctl->amoplo, AMOPLO_Y, y);
631 ctl->dirty.bf.amoplo = 1;
632 return 0;
635 static int amixer_set_sadr(void *blk, unsigned int sadr)
637 struct amixer_rsc_ctrl_blk *ctl = blk;
639 set_field(&ctl->amophi, AMOPHI_SADR, sadr);
640 ctl->dirty.bf.amophi = 1;
641 return 0;
644 static int amixer_set_se(void *blk, unsigned int se)
646 struct amixer_rsc_ctrl_blk *ctl = blk;
648 set_field(&ctl->amophi, AMOPHI_SE, se);
649 ctl->dirty.bf.amophi = 1;
650 return 0;
653 static int amixer_set_dirty(void *blk, unsigned int flags)
655 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
656 return 0;
659 static int amixer_set_dirty_all(void *blk)
661 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
662 return 0;
665 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
667 struct amixer_rsc_ctrl_blk *ctl = blk;
669 if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
670 hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo);
671 ctl->dirty.bf.amoplo = 0;
672 hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi);
673 ctl->dirty.bf.amophi = 0;
676 return 0;
679 static int amixer_get_y(void *blk)
681 struct amixer_rsc_ctrl_blk *ctl = blk;
683 return get_field(ctl->amoplo, AMOPLO_Y);
686 static unsigned int amixer_get_dirty(void *blk)
688 return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
691 static int amixer_rsc_get_ctrl_blk(void **rblk)
693 struct amixer_rsc_ctrl_blk *blk;
695 *rblk = NULL;
696 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
697 if (!blk)
698 return -ENOMEM;
700 *rblk = blk;
702 return 0;
705 static int amixer_rsc_put_ctrl_blk(void *blk)
707 kfree(blk);
709 return 0;
712 static int amixer_mgr_get_ctrl_blk(void **rblk)
714 *rblk = NULL;
716 return 0;
719 static int amixer_mgr_put_ctrl_blk(void *blk)
721 return 0;
725 * DAIO control block definitions.
728 /* Receiver Sample Rate Tracker Control register */
729 #define SRTCTL_SRCO 0x000000FF
730 #define SRTCTL_SRCM 0x0000FF00
731 #define SRTCTL_RSR 0x00030000
732 #define SRTCTL_DRAT 0x00300000
733 #define SRTCTL_EC 0x01000000
734 #define SRTCTL_ET 0x10000000
736 /* DAIO Receiver register dirty flags */
737 union dai_dirty {
738 struct {
739 u16 srt:1;
740 u16 rsv:15;
741 } bf;
742 u16 data;
745 /* DAIO Receiver control block */
746 struct dai_ctrl_blk {
747 unsigned int srt;
748 union dai_dirty dirty;
751 /* Audio Input Mapper RAM */
752 #define AIM_ARC 0x00000FFF
753 #define AIM_NXT 0x007F0000
755 struct daoimap {
756 unsigned int aim;
757 unsigned int idx;
760 /* Audio Transmitter Control and Status register */
761 #define ATXCTL_EN 0x00000001
762 #define ATXCTL_MODE 0x00000010
763 #define ATXCTL_CD 0x00000020
764 #define ATXCTL_RAW 0x00000100
765 #define ATXCTL_MT 0x00000200
766 #define ATXCTL_NUC 0x00003000
767 #define ATXCTL_BEN 0x00010000
768 #define ATXCTL_BMUX 0x00700000
769 #define ATXCTL_B24 0x01000000
770 #define ATXCTL_CPF 0x02000000
771 #define ATXCTL_RIV 0x10000000
772 #define ATXCTL_LIV 0x20000000
773 #define ATXCTL_RSAT 0x40000000
774 #define ATXCTL_LSAT 0x80000000
776 /* XDIF Transmitter register dirty flags */
777 union dao_dirty {
778 struct {
779 u16 atxcsl:1;
780 u16 rsv:15;
781 } bf;
782 u16 data;
785 /* XDIF Transmitter control block */
786 struct dao_ctrl_blk {
787 /* XDIF Transmitter Channel Status Low Register */
788 unsigned int atxcsl;
789 union dao_dirty dirty;
792 /* Audio Receiver Control register */
793 #define ARXCTL_EN 0x00000001
795 /* DAIO manager register dirty flags */
796 union daio_mgr_dirty {
797 struct {
798 u32 atxctl:8;
799 u32 arxctl:8;
800 u32 daoimap:1;
801 u32 rsv:15;
802 } bf;
803 u32 data;
806 /* DAIO manager control block */
807 struct daio_mgr_ctrl_blk {
808 struct daoimap daoimap;
809 unsigned int txctl[8];
810 unsigned int rxctl[8];
811 union daio_mgr_dirty dirty;
814 static int dai_srt_set_srco(void *blk, unsigned int src)
816 struct dai_ctrl_blk *ctl = blk;
818 set_field(&ctl->srt, SRTCTL_SRCO, src);
819 ctl->dirty.bf.srt = 1;
820 return 0;
823 static int dai_srt_set_srcm(void *blk, unsigned int src)
825 struct dai_ctrl_blk *ctl = blk;
827 set_field(&ctl->srt, SRTCTL_SRCM, src);
828 ctl->dirty.bf.srt = 1;
829 return 0;
832 static int dai_srt_set_rsr(void *blk, unsigned int rsr)
834 struct dai_ctrl_blk *ctl = blk;
836 set_field(&ctl->srt, SRTCTL_RSR, rsr);
837 ctl->dirty.bf.srt = 1;
838 return 0;
841 static int dai_srt_set_drat(void *blk, unsigned int drat)
843 struct dai_ctrl_blk *ctl = blk;
845 set_field(&ctl->srt, SRTCTL_DRAT, drat);
846 ctl->dirty.bf.srt = 1;
847 return 0;
850 static int dai_srt_set_ec(void *blk, unsigned int ec)
852 struct dai_ctrl_blk *ctl = blk;
854 set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0);
855 ctl->dirty.bf.srt = 1;
856 return 0;
859 static int dai_srt_set_et(void *blk, unsigned int et)
861 struct dai_ctrl_blk *ctl = blk;
863 set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0);
864 ctl->dirty.bf.srt = 1;
865 return 0;
868 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
870 struct dai_ctrl_blk *ctl = blk;
872 if (ctl->dirty.bf.srt) {
873 hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt);
874 ctl->dirty.bf.srt = 0;
877 return 0;
880 static int dai_get_ctrl_blk(void **rblk)
882 struct dai_ctrl_blk *blk;
884 *rblk = NULL;
885 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
886 if (!blk)
887 return -ENOMEM;
889 *rblk = blk;
891 return 0;
894 static int dai_put_ctrl_blk(void *blk)
896 kfree(blk);
898 return 0;
901 static int dao_set_spos(void *blk, unsigned int spos)
903 ((struct dao_ctrl_blk *)blk)->atxcsl = spos;
904 ((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1;
905 return 0;
908 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
910 struct dao_ctrl_blk *ctl = blk;
912 if (ctl->dirty.bf.atxcsl) {
913 if (idx < 4) {
914 /* S/PDIF SPOSx */
915 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx,
916 ctl->atxcsl);
918 ctl->dirty.bf.atxcsl = 0;
921 return 0;
924 static int dao_get_spos(void *blk, unsigned int *spos)
926 *spos = ((struct dao_ctrl_blk *)blk)->atxcsl;
927 return 0;
930 static int dao_get_ctrl_blk(void **rblk)
932 struct dao_ctrl_blk *blk;
934 *rblk = NULL;
935 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
936 if (!blk)
937 return -ENOMEM;
939 *rblk = blk;
941 return 0;
944 static int dao_put_ctrl_blk(void *blk)
946 kfree(blk);
948 return 0;
951 static int daio_mgr_enb_dai(void *blk, unsigned int idx)
953 struct daio_mgr_ctrl_blk *ctl = blk;
955 set_field(&ctl->rxctl[idx], ARXCTL_EN, 1);
956 ctl->dirty.bf.arxctl |= (0x1 << idx);
957 return 0;
960 static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
962 struct daio_mgr_ctrl_blk *ctl = blk;
964 set_field(&ctl->rxctl[idx], ARXCTL_EN, 0);
966 ctl->dirty.bf.arxctl |= (0x1 << idx);
967 return 0;
970 static int daio_mgr_enb_dao(void *blk, unsigned int idx)
972 struct daio_mgr_ctrl_blk *ctl = blk;
974 set_field(&ctl->txctl[idx], ATXCTL_EN, 1);
975 ctl->dirty.bf.atxctl |= (0x1 << idx);
976 return 0;
979 static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
981 struct daio_mgr_ctrl_blk *ctl = blk;
983 set_field(&ctl->txctl[idx], ATXCTL_EN, 0);
984 ctl->dirty.bf.atxctl |= (0x1 << idx);
985 return 0;
988 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
990 struct daio_mgr_ctrl_blk *ctl = blk;
992 if (idx < 4) {
993 /* S/PDIF output */
994 switch ((conf & 0x7)) {
995 case 1:
996 set_field(&ctl->txctl[idx], ATXCTL_NUC, 0);
997 break;
998 case 2:
999 set_field(&ctl->txctl[idx], ATXCTL_NUC, 1);
1000 break;
1001 case 4:
1002 set_field(&ctl->txctl[idx], ATXCTL_NUC, 2);
1003 break;
1004 case 8:
1005 set_field(&ctl->txctl[idx], ATXCTL_NUC, 3);
1006 break;
1007 default:
1008 break;
1010 /* CDIF */
1011 set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7)));
1012 /* Non-audio */
1013 set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1);
1014 /* Non-audio */
1015 set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1);
1016 set_field(&ctl->txctl[idx], ATXCTL_RAW,
1017 ((conf >> 3) & 0x1) ? 0 : 0);
1018 ctl->dirty.bf.atxctl |= (0x1 << idx);
1019 } else {
1020 /* I2S output */
1021 /*idx %= 4; */
1023 return 0;
1026 static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1028 struct daio_mgr_ctrl_blk *ctl = blk;
1030 set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1031 ctl->dirty.bf.daoimap = 1;
1032 return 0;
1035 static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1037 struct daio_mgr_ctrl_blk *ctl = blk;
1039 set_field(&ctl->daoimap.aim, AIM_NXT, next);
1040 ctl->dirty.bf.daoimap = 1;
1041 return 0;
1044 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1046 ((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr;
1047 ((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1;
1048 return 0;
1051 static int daio_mgr_commit_write(struct hw *hw, void *blk)
1053 struct daio_mgr_ctrl_blk *ctl = blk;
1054 unsigned int data;
1055 int i;
1057 for (i = 0; i < 8; i++) {
1058 if ((ctl->dirty.bf.atxctl & (0x1 << i))) {
1059 data = ctl->txctl[i];
1060 hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1061 ctl->dirty.bf.atxctl &= ~(0x1 << i);
1062 mdelay(1);
1064 if ((ctl->dirty.bf.arxctl & (0x1 << i))) {
1065 data = ctl->rxctl[i];
1066 hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1067 ctl->dirty.bf.arxctl &= ~(0x1 << i);
1068 mdelay(1);
1071 if (ctl->dirty.bf.daoimap) {
1072 hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4,
1073 ctl->daoimap.aim);
1074 ctl->dirty.bf.daoimap = 0;
1077 return 0;
1080 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1082 struct daio_mgr_ctrl_blk *blk;
1083 int i;
1085 *rblk = NULL;
1086 blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1087 if (!blk)
1088 return -ENOMEM;
1090 for (i = 0; i < 8; i++) {
1091 blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i));
1092 blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i));
1095 *rblk = blk;
1097 return 0;
1100 static int daio_mgr_put_ctrl_blk(void *blk)
1102 kfree(blk);
1104 return 0;
1107 /* Timer interrupt */
1108 static int set_timer_irq(struct hw *hw, int enable)
1110 hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1111 return 0;
1114 static int set_timer_tick(struct hw *hw, unsigned int ticks)
1116 if (ticks)
1117 ticks |= TIMR_IE | TIMR_IP;
1118 hw_write_20kx(hw, TIMR, ticks);
1119 return 0;
1122 static unsigned int get_wc(struct hw *hw)
1124 return hw_read_20kx(hw, WC);
1127 /* Card hardware initialization block */
1128 struct dac_conf {
1129 unsigned int msr; /* master sample rate in rsrs */
1132 struct adc_conf {
1133 unsigned int msr; /* master sample rate in rsrs */
1134 unsigned char input; /* the input source of ADC */
1135 unsigned char mic20db; /* boost mic by 20db if input is microphone */
1138 struct daio_conf {
1139 unsigned int msr; /* master sample rate in rsrs */
1142 struct trn_conf {
1143 unsigned long vm_pgt_phys;
1146 static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1148 u32 data;
1149 int i;
1151 /* Program I2S with proper sample rate and enable the correct I2S
1152 * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */
1153 if (1 == info->msr) {
1154 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101);
1155 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101);
1156 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1157 } else if (2 == info->msr) {
1158 if (hw->model != CTSB1270) {
1159 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111);
1160 } else {
1161 /* PCM4220 on Titanium HD is different. */
1162 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111);
1164 /* Specify all playing 96khz
1165 * EA [0] - Enabled
1166 * RTA [4:5] - 96kHz
1167 * EB [8] - Enabled
1168 * RTB [12:13] - 96kHz
1169 * EC [16] - Enabled
1170 * RTC [20:21] - 96kHz
1171 * ED [24] - Enabled
1172 * RTD [28:29] - 96kHz */
1173 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111);
1174 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1175 } else if ((4 == info->msr) && (hw->model == CTSB1270)) {
1176 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111);
1177 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121);
1178 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1179 } else {
1180 dev_alert(hw->card->dev,
1181 "ERROR!!! Invalid sampling rate!!!\n");
1182 return -EINVAL;
1185 for (i = 0; i < 8; i++) {
1186 if (i <= 3) {
1187 /* This comment looks wrong since loop is over 4 */
1188 /* channels and emu20k2 supports 4 spdif IOs. */
1189 /* 1st 3 channels are SPDIFs (SB0960) */
1190 if (i == 3)
1191 data = 0x1001001;
1192 else
1193 data = 0x1000001;
1195 hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1196 hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1198 /* Initialize the SPDIF Out Channel status registers.
1199 * The value specified here is based on the typical
1200 * values provided in the specification, namely: Clock
1201 * Accuracy of 1000ppm, Sample Rate of 48KHz,
1202 * unspecified source number, Generation status = 1,
1203 * Category code = 0x12 (Digital Signal Mixer),
1204 * Mode = 0, Emph = 0, Copy Permitted, AN = 0
1205 * (indicating that we're transmitting digital audio,
1206 * and the Professional Use bit is 0. */
1208 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i),
1209 0x02109204); /* Default to 48kHz */
1211 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B);
1212 } else {
1213 /* Again, loop is over 4 channels not 5. */
1214 /* Next 5 channels are I2S (SB0960) */
1215 data = 0x11;
1216 hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data);
1217 if (2 == info->msr) {
1218 /* Four channels per sample period */
1219 data |= 0x1000;
1220 } else if (4 == info->msr) {
1221 /* FIXME: check this against the chip spec */
1222 data |= 0x2000;
1224 hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data);
1228 return 0;
1231 /* TRANSPORT operations */
1232 static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1234 u32 vmctl, data;
1235 u32 ptp_phys_low, ptp_phys_high;
1236 int i;
1238 /* Set up device page table */
1239 if ((~0UL) == info->vm_pgt_phys) {
1240 dev_alert(hw->card->dev,
1241 "Wrong device page table page address!!!\n");
1242 return -1;
1245 vmctl = 0x80000C0F; /* 32-bit, 4k-size page */
1246 ptp_phys_low = (u32)info->vm_pgt_phys;
1247 ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1248 if (sizeof(void *) == 8) /* 64bit address */
1249 vmctl |= (3 << 8);
1250 /* Write page table physical address to all PTPAL registers */
1251 for (i = 0; i < 64; i++) {
1252 hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low);
1253 hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high);
1255 /* Enable virtual memory transfer */
1256 hw_write_20kx(hw, VMEM_CTL, vmctl);
1257 /* Enable transport bus master and queueing of request */
1258 hw_write_20kx(hw, TRANSPORT_CTL, 0x03);
1259 hw_write_20kx(hw, TRANSPORT_INT, 0x200c01);
1260 /* Enable transport ring */
1261 data = hw_read_20kx(hw, TRANSPORT_ENB);
1262 hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03));
1264 return 0;
1267 /* Card initialization */
1268 #define GCTL_AIE 0x00000001
1269 #define GCTL_UAA 0x00000002
1270 #define GCTL_DPC 0x00000004
1271 #define GCTL_DBP 0x00000008
1272 #define GCTL_ABP 0x00000010
1273 #define GCTL_TBP 0x00000020
1274 #define GCTL_SBP 0x00000040
1275 #define GCTL_FBP 0x00000080
1276 #define GCTL_ME 0x00000100
1277 #define GCTL_AID 0x00001000
1279 #define PLLCTL_SRC 0x00000007
1280 #define PLLCTL_SPE 0x00000008
1281 #define PLLCTL_RD 0x000000F0
1282 #define PLLCTL_FD 0x0001FF00
1283 #define PLLCTL_OD 0x00060000
1284 #define PLLCTL_B 0x00080000
1285 #define PLLCTL_AS 0x00100000
1286 #define PLLCTL_LF 0x03E00000
1287 #define PLLCTL_SPS 0x1C000000
1288 #define PLLCTL_AD 0x60000000
1290 #define PLLSTAT_CCS 0x00000007
1291 #define PLLSTAT_SPL 0x00000008
1292 #define PLLSTAT_CRD 0x000000F0
1293 #define PLLSTAT_CFD 0x0001FF00
1294 #define PLLSTAT_SL 0x00020000
1295 #define PLLSTAT_FAS 0x00040000
1296 #define PLLSTAT_B 0x00080000
1297 #define PLLSTAT_PD 0x00100000
1298 #define PLLSTAT_OCA 0x00200000
1299 #define PLLSTAT_NCA 0x00400000
1301 static int hw_pll_init(struct hw *hw, unsigned int rsr)
1303 unsigned int pllenb;
1304 unsigned int pllctl;
1305 unsigned int pllstat;
1306 int i;
1308 pllenb = 0xB;
1309 hw_write_20kx(hw, PLL_ENB, pllenb);
1310 pllctl = 0x20C00000;
1311 set_field(&pllctl, PLLCTL_B, 0);
1312 set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4);
1313 set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1);
1314 hw_write_20kx(hw, PLL_CTL, pllctl);
1315 msleep(40);
1317 pllctl = hw_read_20kx(hw, PLL_CTL);
1318 set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2);
1319 hw_write_20kx(hw, PLL_CTL, pllctl);
1320 msleep(40);
1322 for (i = 0; i < 1000; i++) {
1323 pllstat = hw_read_20kx(hw, PLL_STAT);
1324 if (get_field(pllstat, PLLSTAT_PD))
1325 continue;
1327 if (get_field(pllstat, PLLSTAT_B) !=
1328 get_field(pllctl, PLLCTL_B))
1329 continue;
1331 if (get_field(pllstat, PLLSTAT_CCS) !=
1332 get_field(pllctl, PLLCTL_SRC))
1333 continue;
1335 if (get_field(pllstat, PLLSTAT_CRD) !=
1336 get_field(pllctl, PLLCTL_RD))
1337 continue;
1339 if (get_field(pllstat, PLLSTAT_CFD) !=
1340 get_field(pllctl, PLLCTL_FD))
1341 continue;
1343 break;
1345 if (i >= 1000) {
1346 dev_alert(hw->card->dev,
1347 "PLL initialization failed!!!\n");
1348 return -EBUSY;
1351 return 0;
1354 static int hw_auto_init(struct hw *hw)
1356 unsigned int gctl;
1357 int i;
1359 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1360 set_field(&gctl, GCTL_AIE, 0);
1361 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1362 set_field(&gctl, GCTL_AIE, 1);
1363 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1364 mdelay(10);
1365 for (i = 0; i < 400000; i++) {
1366 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1367 if (get_field(gctl, GCTL_AID))
1368 break;
1370 if (!get_field(gctl, GCTL_AID)) {
1371 dev_alert(hw->card->dev, "Card Auto-init failed!!!\n");
1372 return -EBUSY;
1375 return 0;
1378 /* DAC operations */
1380 #define CS4382_MC1 0x1
1381 #define CS4382_MC2 0x2
1382 #define CS4382_MC3 0x3
1383 #define CS4382_FC 0x4
1384 #define CS4382_IC 0x5
1385 #define CS4382_XC1 0x6
1386 #define CS4382_VCA1 0x7
1387 #define CS4382_VCB1 0x8
1388 #define CS4382_XC2 0x9
1389 #define CS4382_VCA2 0xA
1390 #define CS4382_VCB2 0xB
1391 #define CS4382_XC3 0xC
1392 #define CS4382_VCA3 0xD
1393 #define CS4382_VCB3 0xE
1394 #define CS4382_XC4 0xF
1395 #define CS4382_VCA4 0x10
1396 #define CS4382_VCB4 0x11
1397 #define CS4382_CREV 0x12
1399 /* I2C status */
1400 #define STATE_LOCKED 0x00
1401 #define STATE_UNLOCKED 0xAA
1402 #define DATA_READY 0x800000 /* Used with I2C_IF_STATUS */
1403 #define DATA_ABORT 0x10000 /* Used with I2C_IF_STATUS */
1405 #define I2C_STATUS_DCM 0x00000001
1406 #define I2C_STATUS_BC 0x00000006
1407 #define I2C_STATUS_APD 0x00000008
1408 #define I2C_STATUS_AB 0x00010000
1409 #define I2C_STATUS_DR 0x00800000
1411 #define I2C_ADDRESS_PTAD 0x0000FFFF
1412 #define I2C_ADDRESS_SLAD 0x007F0000
1414 struct regs_cs4382 {
1415 u32 mode_control_1;
1416 u32 mode_control_2;
1417 u32 mode_control_3;
1419 u32 filter_control;
1420 u32 invert_control;
1422 u32 mix_control_P1;
1423 u32 vol_control_A1;
1424 u32 vol_control_B1;
1426 u32 mix_control_P2;
1427 u32 vol_control_A2;
1428 u32 vol_control_B2;
1430 u32 mix_control_P3;
1431 u32 vol_control_A3;
1432 u32 vol_control_B3;
1434 u32 mix_control_P4;
1435 u32 vol_control_A4;
1436 u32 vol_control_B4;
1439 static int hw20k2_i2c_unlock_full_access(struct hw *hw)
1441 u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] = {0xB3, 0xD4};
1443 /* Send keys for forced BIOS mode */
1444 hw_write_20kx(hw, I2C_IF_WLOCK,
1445 UnlockKeySequence_FLASH_FULLACCESS_MODE[0]);
1446 hw_write_20kx(hw, I2C_IF_WLOCK,
1447 UnlockKeySequence_FLASH_FULLACCESS_MODE[1]);
1448 /* Check whether the chip is unlocked */
1449 if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED)
1450 return 0;
1452 return -1;
1455 static int hw20k2_i2c_lock_chip(struct hw *hw)
1457 /* Write twice */
1458 hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1459 hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1460 if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED)
1461 return 0;
1463 return -1;
1466 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size)
1468 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1469 int err;
1470 unsigned int i2c_status;
1471 unsigned int i2c_addr;
1473 err = hw20k2_i2c_unlock_full_access(hw);
1474 if (err < 0)
1475 return err;
1477 hw20k2->addr_size = addr_size;
1478 hw20k2->data_size = data_size;
1479 hw20k2->dev_id = dev_id;
1481 i2c_addr = 0;
1482 set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id);
1484 hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1486 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1488 set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */
1490 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1492 return 0;
1495 static int hw20k2_i2c_uninit(struct hw *hw)
1497 unsigned int i2c_status;
1498 unsigned int i2c_addr;
1500 i2c_addr = 0;
1501 set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */
1503 hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1505 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1507 set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */
1509 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1511 return hw20k2_i2c_lock_chip(hw);
1514 static int hw20k2_i2c_wait_data_ready(struct hw *hw)
1516 int i = 0x400000;
1517 unsigned int ret;
1519 do {
1520 ret = hw_read_20kx(hw, I2C_IF_STATUS);
1521 } while ((!(ret & DATA_READY)) && --i);
1523 return i;
1526 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap)
1528 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1529 unsigned int i2c_status;
1531 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1532 set_field(&i2c_status, I2C_STATUS_BC,
1533 (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size);
1534 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1535 if (!hw20k2_i2c_wait_data_ready(hw))
1536 return -1;
1538 hw_write_20kx(hw, I2C_IF_WDATA, addr);
1539 if (!hw20k2_i2c_wait_data_ready(hw))
1540 return -1;
1542 /* Force a read operation */
1543 hw_write_20kx(hw, I2C_IF_RDATA, 0);
1544 if (!hw20k2_i2c_wait_data_ready(hw))
1545 return -1;
1547 *datap = hw_read_20kx(hw, I2C_IF_RDATA);
1549 return 0;
1552 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data)
1554 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1555 unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr;
1556 unsigned int i2c_status;
1558 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1560 set_field(&i2c_status, I2C_STATUS_BC,
1561 (4 == (hw20k2->addr_size + hw20k2->data_size)) ?
1562 0 : (hw20k2->addr_size + hw20k2->data_size));
1564 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1565 hw20k2_i2c_wait_data_ready(hw);
1566 /* Dummy write to trigger the write operation */
1567 hw_write_20kx(hw, I2C_IF_WDATA, 0);
1568 hw20k2_i2c_wait_data_ready(hw);
1570 /* This is the real data */
1571 hw_write_20kx(hw, I2C_IF_WDATA, i2c_data);
1572 hw20k2_i2c_wait_data_ready(hw);
1574 return 0;
1577 static void hw_dac_stop(struct hw *hw)
1579 u32 data;
1580 data = hw_read_20kx(hw, GPIO_DATA);
1581 data &= 0xFFFFFFFD;
1582 hw_write_20kx(hw, GPIO_DATA, data);
1583 usleep_range(10000, 11000);
1586 static void hw_dac_start(struct hw *hw)
1588 u32 data;
1589 data = hw_read_20kx(hw, GPIO_DATA);
1590 data |= 0x2;
1591 hw_write_20kx(hw, GPIO_DATA, data);
1592 msleep(50);
1595 static void hw_dac_reset(struct hw *hw)
1597 hw_dac_stop(hw);
1598 hw_dac_start(hw);
1601 static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1603 int err;
1604 u32 data;
1605 int i;
1606 struct regs_cs4382 cs_read = {0};
1607 struct regs_cs4382 cs_def = {
1608 .mode_control_1 = 0x00000001, /* Mode Control 1 */
1609 .mode_control_2 = 0x00000000, /* Mode Control 2 */
1610 .mode_control_3 = 0x00000084, /* Mode Control 3 */
1611 .filter_control = 0x00000000, /* Filter Control */
1612 .invert_control = 0x00000000, /* Invert Control */
1613 .mix_control_P1 = 0x00000024, /* Mixing Control Pair 1 */
1614 .vol_control_A1 = 0x00000000, /* Vol Control A1 */
1615 .vol_control_B1 = 0x00000000, /* Vol Control B1 */
1616 .mix_control_P2 = 0x00000024, /* Mixing Control Pair 2 */
1617 .vol_control_A2 = 0x00000000, /* Vol Control A2 */
1618 .vol_control_B2 = 0x00000000, /* Vol Control B2 */
1619 .mix_control_P3 = 0x00000024, /* Mixing Control Pair 3 */
1620 .vol_control_A3 = 0x00000000, /* Vol Control A3 */
1621 .vol_control_B3 = 0x00000000, /* Vol Control B3 */
1622 .mix_control_P4 = 0x00000024, /* Mixing Control Pair 4 */
1623 .vol_control_A4 = 0x00000000, /* Vol Control A4 */
1624 .vol_control_B4 = 0x00000000 /* Vol Control B4 */
1627 if (hw->model == CTSB1270) {
1628 hw_dac_stop(hw);
1629 data = hw_read_20kx(hw, GPIO_DATA);
1630 data &= ~0x0600;
1631 if (1 == info->msr)
1632 data |= 0x0000; /* Single Speed Mode 0-50kHz */
1633 else if (2 == info->msr)
1634 data |= 0x0200; /* Double Speed Mode 50-100kHz */
1635 else
1636 data |= 0x0600; /* Quad Speed Mode 100-200kHz */
1637 hw_write_20kx(hw, GPIO_DATA, data);
1638 hw_dac_start(hw);
1639 return 0;
1642 /* Set DAC reset bit as output */
1643 data = hw_read_20kx(hw, GPIO_CTRL);
1644 data |= 0x02;
1645 hw_write_20kx(hw, GPIO_CTRL, data);
1647 err = hw20k2_i2c_init(hw, 0x18, 1, 1);
1648 if (err < 0)
1649 goto End;
1651 for (i = 0; i < 2; i++) {
1652 /* Reset DAC twice just in-case the chip
1653 * didn't initialized properly */
1654 hw_dac_reset(hw);
1655 hw_dac_reset(hw);
1657 if (hw20k2_i2c_read(hw, CS4382_MC1, &cs_read.mode_control_1))
1658 continue;
1660 if (hw20k2_i2c_read(hw, CS4382_MC2, &cs_read.mode_control_2))
1661 continue;
1663 if (hw20k2_i2c_read(hw, CS4382_MC3, &cs_read.mode_control_3))
1664 continue;
1666 if (hw20k2_i2c_read(hw, CS4382_FC, &cs_read.filter_control))
1667 continue;
1669 if (hw20k2_i2c_read(hw, CS4382_IC, &cs_read.invert_control))
1670 continue;
1672 if (hw20k2_i2c_read(hw, CS4382_XC1, &cs_read.mix_control_P1))
1673 continue;
1675 if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1))
1676 continue;
1678 if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1))
1679 continue;
1681 if (hw20k2_i2c_read(hw, CS4382_XC2, &cs_read.mix_control_P2))
1682 continue;
1684 if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2))
1685 continue;
1687 if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2))
1688 continue;
1690 if (hw20k2_i2c_read(hw, CS4382_XC3, &cs_read.mix_control_P3))
1691 continue;
1693 if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3))
1694 continue;
1696 if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3))
1697 continue;
1699 if (hw20k2_i2c_read(hw, CS4382_XC4, &cs_read.mix_control_P4))
1700 continue;
1702 if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4))
1703 continue;
1705 if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4))
1706 continue;
1708 if (memcmp(&cs_read, &cs_def, sizeof(cs_read)))
1709 continue;
1710 else
1711 break;
1714 if (i >= 2)
1715 goto End;
1717 /* Note: Every I2C write must have some delay.
1718 * This is not a requirement but the delay works here... */
1719 hw20k2_i2c_write(hw, CS4382_MC1, 0x80);
1720 hw20k2_i2c_write(hw, CS4382_MC2, 0x10);
1721 if (1 == info->msr) {
1722 hw20k2_i2c_write(hw, CS4382_XC1, 0x24);
1723 hw20k2_i2c_write(hw, CS4382_XC2, 0x24);
1724 hw20k2_i2c_write(hw, CS4382_XC3, 0x24);
1725 hw20k2_i2c_write(hw, CS4382_XC4, 0x24);
1726 } else if (2 == info->msr) {
1727 hw20k2_i2c_write(hw, CS4382_XC1, 0x25);
1728 hw20k2_i2c_write(hw, CS4382_XC2, 0x25);
1729 hw20k2_i2c_write(hw, CS4382_XC3, 0x25);
1730 hw20k2_i2c_write(hw, CS4382_XC4, 0x25);
1731 } else {
1732 hw20k2_i2c_write(hw, CS4382_XC1, 0x26);
1733 hw20k2_i2c_write(hw, CS4382_XC2, 0x26);
1734 hw20k2_i2c_write(hw, CS4382_XC3, 0x26);
1735 hw20k2_i2c_write(hw, CS4382_XC4, 0x26);
1738 return 0;
1739 End:
1741 hw20k2_i2c_uninit(hw);
1742 return -1;
1745 /* ADC operations */
1746 #define MAKE_WM8775_ADDR(addr, data) (u32)(((addr<<1)&0xFE)|((data>>8)&0x1))
1747 #define MAKE_WM8775_DATA(data) (u32)(data&0xFF)
1749 #define WM8775_IC 0x0B
1750 #define WM8775_MMC 0x0C
1751 #define WM8775_AADCL 0x0E
1752 #define WM8775_AADCR 0x0F
1753 #define WM8775_ADCMC 0x15
1754 #define WM8775_RESET 0x17
1756 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1758 u32 data;
1759 if (hw->model == CTSB1270) {
1760 /* Titanium HD has two ADC chips, one for line in and one */
1761 /* for MIC. We don't need to switch the ADC input. */
1762 return 1;
1764 data = hw_read_20kx(hw, GPIO_DATA);
1765 switch (type) {
1766 case ADC_MICIN:
1767 data = (data & (0x1 << 14)) ? 1 : 0;
1768 break;
1769 case ADC_LINEIN:
1770 data = (data & (0x1 << 14)) ? 0 : 1;
1771 break;
1772 default:
1773 data = 0;
1775 return data;
1778 #define MIC_BOOST_0DB 0xCF
1779 #define MIC_BOOST_STEPS_PER_DB 2
1781 static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db)
1783 u32 adcmc, gain;
1785 if (input > 3)
1786 input = 3;
1788 adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */
1790 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc),
1791 MAKE_WM8775_DATA(adcmc));
1793 if (gain_in_db < -103)
1794 gain_in_db = -103;
1795 if (gain_in_db > 24)
1796 gain_in_db = 24;
1798 gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB;
1800 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain),
1801 MAKE_WM8775_DATA(gain));
1802 /* ...so there should be no need for the following. */
1803 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain),
1804 MAKE_WM8775_DATA(gain));
1807 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1809 u32 data;
1810 data = hw_read_20kx(hw, GPIO_DATA);
1811 switch (type) {
1812 case ADC_MICIN:
1813 data |= (0x1 << 14);
1814 hw_write_20kx(hw, GPIO_DATA, data);
1815 hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */
1816 break;
1817 case ADC_LINEIN:
1818 data &= ~(0x1 << 14);
1819 hw_write_20kx(hw, GPIO_DATA, data);
1820 hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */
1821 break;
1822 default:
1823 break;
1826 return 0;
1829 static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1831 int err;
1832 u32 data, ctl;
1834 /* Set ADC reset bit as output */
1835 data = hw_read_20kx(hw, GPIO_CTRL);
1836 data |= (0x1 << 15);
1837 hw_write_20kx(hw, GPIO_CTRL, data);
1839 /* Initialize I2C */
1840 err = hw20k2_i2c_init(hw, 0x1A, 1, 1);
1841 if (err < 0) {
1842 dev_alert(hw->card->dev, "Failure to acquire I2C!!!\n");
1843 goto error;
1846 /* Reset the ADC (reset is active low). */
1847 data = hw_read_20kx(hw, GPIO_DATA);
1848 data &= ~(0x1 << 15);
1849 hw_write_20kx(hw, GPIO_DATA, data);
1851 if (hw->model == CTSB1270) {
1852 /* Set up the PCM4220 ADC on Titanium HD */
1853 data &= ~0x0C;
1854 if (1 == info->msr)
1855 data |= 0x00; /* Single Speed Mode 32-50kHz */
1856 else if (2 == info->msr)
1857 data |= 0x08; /* Double Speed Mode 50-108kHz */
1858 else
1859 data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */
1860 hw_write_20kx(hw, GPIO_DATA, data);
1863 usleep_range(10000, 11000);
1864 /* Return the ADC to normal operation. */
1865 data |= (0x1 << 15);
1866 hw_write_20kx(hw, GPIO_DATA, data);
1867 msleep(50);
1869 /* I2C write to register offset 0x0B to set ADC LRCLK polarity */
1870 /* invert bit, interface format to I2S, word length to 24-bit, */
1871 /* enable ADC high pass filter. Fixes bug 5323? */
1872 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26),
1873 MAKE_WM8775_DATA(0x26));
1875 /* Set the master mode (256fs) */
1876 if (1 == info->msr) {
1877 /* slave mode, 128x oversampling 256fs */
1878 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02),
1879 MAKE_WM8775_DATA(0x02));
1880 } else if ((2 == info->msr) || (4 == info->msr)) {
1881 /* slave mode, 64x oversampling, 256fs */
1882 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A),
1883 MAKE_WM8775_DATA(0x0A));
1884 } else {
1885 dev_alert(hw->card->dev,
1886 "Invalid master sampling rate (msr %d)!!!\n",
1887 info->msr);
1888 err = -EINVAL;
1889 goto error;
1892 if (hw->model != CTSB1270) {
1893 /* Configure GPIO bit 14 change to line-in/mic-in */
1894 ctl = hw_read_20kx(hw, GPIO_CTRL);
1895 ctl |= 0x1 << 14;
1896 hw_write_20kx(hw, GPIO_CTRL, ctl);
1897 hw_adc_input_select(hw, ADC_LINEIN);
1898 } else {
1899 hw_wm8775_input_select(hw, 0, 0);
1902 return 0;
1903 error:
1904 hw20k2_i2c_uninit(hw);
1905 return err;
1908 static struct capabilities hw_capabilities(struct hw *hw)
1910 struct capabilities cap;
1912 cap.digit_io_switch = 0;
1913 cap.dedicated_mic = hw->model == CTSB1270;
1914 cap.output_switch = hw->model == CTSB1270;
1915 cap.mic_source_switch = hw->model == CTSB1270;
1917 return cap;
1920 static int hw_output_switch_get(struct hw *hw)
1922 u32 data = hw_read_20kx(hw, GPIO_EXT_DATA);
1924 switch (data & 0x30) {
1925 case 0x00:
1926 return 0;
1927 case 0x10:
1928 return 1;
1929 case 0x20:
1930 return 2;
1931 default:
1932 return 3;
1936 static int hw_output_switch_put(struct hw *hw, int position)
1938 u32 data;
1940 if (position == hw_output_switch_get(hw))
1941 return 0;
1943 /* Mute line and headphones (intended for anti-pop). */
1944 data = hw_read_20kx(hw, GPIO_DATA);
1945 data |= (0x03 << 11);
1946 hw_write_20kx(hw, GPIO_DATA, data);
1948 data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30;
1949 switch (position) {
1950 case 0:
1951 break;
1952 case 1:
1953 data |= 0x10;
1954 break;
1955 default:
1956 data |= 0x20;
1958 hw_write_20kx(hw, GPIO_EXT_DATA, data);
1960 /* Unmute line and headphones. */
1961 data = hw_read_20kx(hw, GPIO_DATA);
1962 data &= ~(0x03 << 11);
1963 hw_write_20kx(hw, GPIO_DATA, data);
1965 return 1;
1968 static int hw_mic_source_switch_get(struct hw *hw)
1970 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1972 return hw20k2->mic_source;
1975 static int hw_mic_source_switch_put(struct hw *hw, int position)
1977 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1979 if (position == hw20k2->mic_source)
1980 return 0;
1982 switch (position) {
1983 case 0:
1984 hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */
1985 break;
1986 case 1:
1987 hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */
1988 break;
1989 case 2:
1990 hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */
1991 break;
1992 default:
1993 return 0;
1996 hw20k2->mic_source = position;
1998 return 1;
2001 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id)
2003 struct hw *hw = dev_id;
2004 unsigned int status;
2006 status = hw_read_20kx(hw, GIP);
2007 if (!status)
2008 return IRQ_NONE;
2010 if (hw->irq_callback)
2011 hw->irq_callback(hw->irq_callback_data, status);
2013 hw_write_20kx(hw, GIP, status);
2014 return IRQ_HANDLED;
2017 static int hw_card_start(struct hw *hw)
2019 int err = 0;
2020 struct pci_dev *pci = hw->pci;
2021 unsigned int gctl;
2022 const unsigned int dma_bits = BITS_PER_LONG;
2024 err = pci_enable_device(pci);
2025 if (err < 0)
2026 return err;
2028 /* Set DMA transfer mask */
2029 if (!dma_set_mask(&pci->dev, DMA_BIT_MASK(dma_bits))) {
2030 dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(dma_bits));
2031 } else {
2032 dma_set_mask(&pci->dev, DMA_BIT_MASK(32));
2033 dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(32));
2036 if (!hw->io_base) {
2037 err = pci_request_regions(pci, "XFi");
2038 if (err < 0)
2039 goto error1;
2041 hw->io_base = pci_resource_start(hw->pci, 2);
2042 hw->mem_base = ioremap(hw->io_base,
2043 pci_resource_len(hw->pci, 2));
2044 if (!hw->mem_base) {
2045 err = -ENOENT;
2046 goto error2;
2050 /* Switch to 20k2 mode from UAA mode. */
2051 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2052 set_field(&gctl, GCTL_UAA, 0);
2053 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2055 if (hw->irq < 0) {
2056 err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED,
2057 KBUILD_MODNAME, hw);
2058 if (err < 0) {
2059 dev_err(hw->card->dev,
2060 "XFi: Cannot get irq %d\n", pci->irq);
2061 goto error2;
2063 hw->irq = pci->irq;
2064 hw->card->sync_irq = hw->irq;
2067 pci_set_master(pci);
2069 return 0;
2071 /*error3:
2072 iounmap((void *)hw->mem_base);
2073 hw->mem_base = (unsigned long)NULL;*/
2074 error2:
2075 pci_release_regions(pci);
2076 hw->io_base = 0;
2077 error1:
2078 pci_disable_device(pci);
2079 return err;
2082 static int hw_card_stop(struct hw *hw)
2084 unsigned int data;
2086 /* disable transport bus master and queueing of request */
2087 hw_write_20kx(hw, TRANSPORT_CTL, 0x00);
2089 /* disable pll */
2090 data = hw_read_20kx(hw, PLL_ENB);
2091 hw_write_20kx(hw, PLL_ENB, (data & (~0x07)));
2093 /* TODO: Disable interrupt and so on... */
2094 return 0;
2097 static int hw_card_shutdown(struct hw *hw)
2099 if (hw->irq >= 0)
2100 free_irq(hw->irq, hw);
2102 hw->irq = -1;
2103 iounmap(hw->mem_base);
2104 hw->mem_base = NULL;
2106 if (hw->io_base)
2107 pci_release_regions(hw->pci);
2109 hw->io_base = 0;
2111 pci_disable_device(hw->pci);
2113 return 0;
2116 static int hw_card_init(struct hw *hw, struct card_conf *info)
2118 int err;
2119 unsigned int gctl;
2120 u32 data = 0;
2121 struct dac_conf dac_info = {0};
2122 struct adc_conf adc_info = {0};
2123 struct daio_conf daio_info = {0};
2124 struct trn_conf trn_info = {0};
2126 /* Get PCI io port/memory base address and
2127 * do 20kx core switch if needed. */
2128 err = hw_card_start(hw);
2129 if (err)
2130 return err;
2132 /* PLL init */
2133 err = hw_pll_init(hw, info->rsr);
2134 if (err < 0)
2135 return err;
2137 /* kick off auto-init */
2138 err = hw_auto_init(hw);
2139 if (err < 0)
2140 return err;
2142 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2143 set_field(&gctl, GCTL_DBP, 1);
2144 set_field(&gctl, GCTL_TBP, 1);
2145 set_field(&gctl, GCTL_FBP, 1);
2146 set_field(&gctl, GCTL_DPC, 0);
2147 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2149 /* Reset all global pending interrupts */
2150 hw_write_20kx(hw, GIE, 0);
2151 /* Reset all SRC pending interrupts */
2152 hw_write_20kx(hw, SRC_IP, 0);
2154 if (hw->model != CTSB1270) {
2155 /* TODO: detect the card ID and configure GPIO accordingly. */
2156 /* Configures GPIO (0xD802 0x98028) */
2157 /*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/
2158 /* Configures GPIO (SB0880) */
2159 /*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/
2160 hw_write_20kx(hw, GPIO_CTRL, 0xD802);
2161 } else {
2162 hw_write_20kx(hw, GPIO_CTRL, 0x9E5F);
2164 /* Enable audio ring */
2165 hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01);
2167 trn_info.vm_pgt_phys = info->vm_pgt_phys;
2168 err = hw_trn_init(hw, &trn_info);
2169 if (err < 0)
2170 return err;
2172 daio_info.msr = info->msr;
2173 err = hw_daio_init(hw, &daio_info);
2174 if (err < 0)
2175 return err;
2177 dac_info.msr = info->msr;
2178 err = hw_dac_init(hw, &dac_info);
2179 if (err < 0)
2180 return err;
2182 adc_info.msr = info->msr;
2183 adc_info.input = ADC_LINEIN;
2184 adc_info.mic20db = 0;
2185 err = hw_adc_init(hw, &adc_info);
2186 if (err < 0)
2187 return err;
2189 data = hw_read_20kx(hw, SRC_MCTL);
2190 data |= 0x1; /* Enables input from the audio ring */
2191 hw_write_20kx(hw, SRC_MCTL, data);
2193 return 0;
2196 #ifdef CONFIG_PM_SLEEP
2197 static int hw_suspend(struct hw *hw)
2199 hw_card_stop(hw);
2200 return 0;
2203 static int hw_resume(struct hw *hw, struct card_conf *info)
2205 /* Re-initialize card hardware. */
2206 return hw_card_init(hw, info);
2208 #endif
2210 static u32 hw_read_20kx(struct hw *hw, u32 reg)
2212 return readl(hw->mem_base + reg);
2215 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2217 writel(data, hw->mem_base + reg);
2220 static const struct hw ct20k2_preset = {
2221 .irq = -1,
2223 .card_init = hw_card_init,
2224 .card_stop = hw_card_stop,
2225 .pll_init = hw_pll_init,
2226 .is_adc_source_selected = hw_is_adc_input_selected,
2227 .select_adc_source = hw_adc_input_select,
2228 .capabilities = hw_capabilities,
2229 .output_switch_get = hw_output_switch_get,
2230 .output_switch_put = hw_output_switch_put,
2231 .mic_source_switch_get = hw_mic_source_switch_get,
2232 .mic_source_switch_put = hw_mic_source_switch_put,
2233 #ifdef CONFIG_PM_SLEEP
2234 .suspend = hw_suspend,
2235 .resume = hw_resume,
2236 #endif
2238 .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2239 .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2240 .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2241 .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2242 .src_set_state = src_set_state,
2243 .src_set_bm = src_set_bm,
2244 .src_set_rsr = src_set_rsr,
2245 .src_set_sf = src_set_sf,
2246 .src_set_wr = src_set_wr,
2247 .src_set_pm = src_set_pm,
2248 .src_set_rom = src_set_rom,
2249 .src_set_vo = src_set_vo,
2250 .src_set_st = src_set_st,
2251 .src_set_ie = src_set_ie,
2252 .src_set_ilsz = src_set_ilsz,
2253 .src_set_bp = src_set_bp,
2254 .src_set_cisz = src_set_cisz,
2255 .src_set_ca = src_set_ca,
2256 .src_set_sa = src_set_sa,
2257 .src_set_la = src_set_la,
2258 .src_set_pitch = src_set_pitch,
2259 .src_set_dirty = src_set_dirty,
2260 .src_set_clear_zbufs = src_set_clear_zbufs,
2261 .src_set_dirty_all = src_set_dirty_all,
2262 .src_commit_write = src_commit_write,
2263 .src_get_ca = src_get_ca,
2264 .src_get_dirty = src_get_dirty,
2265 .src_dirty_conj_mask = src_dirty_conj_mask,
2266 .src_mgr_enbs_src = src_mgr_enbs_src,
2267 .src_mgr_enb_src = src_mgr_enb_src,
2268 .src_mgr_dsb_src = src_mgr_dsb_src,
2269 .src_mgr_commit_write = src_mgr_commit_write,
2271 .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2272 .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2273 .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2274 .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2275 .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2276 .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2277 .srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2279 .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2280 .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2281 .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2282 .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2283 .amixer_set_mode = amixer_set_mode,
2284 .amixer_set_iv = amixer_set_iv,
2285 .amixer_set_x = amixer_set_x,
2286 .amixer_set_y = amixer_set_y,
2287 .amixer_set_sadr = amixer_set_sadr,
2288 .amixer_set_se = amixer_set_se,
2289 .amixer_set_dirty = amixer_set_dirty,
2290 .amixer_set_dirty_all = amixer_set_dirty_all,
2291 .amixer_commit_write = amixer_commit_write,
2292 .amixer_get_y = amixer_get_y,
2293 .amixer_get_dirty = amixer_get_dirty,
2295 .dai_get_ctrl_blk = dai_get_ctrl_blk,
2296 .dai_put_ctrl_blk = dai_put_ctrl_blk,
2297 .dai_srt_set_srco = dai_srt_set_srco,
2298 .dai_srt_set_srcm = dai_srt_set_srcm,
2299 .dai_srt_set_rsr = dai_srt_set_rsr,
2300 .dai_srt_set_drat = dai_srt_set_drat,
2301 .dai_srt_set_ec = dai_srt_set_ec,
2302 .dai_srt_set_et = dai_srt_set_et,
2303 .dai_commit_write = dai_commit_write,
2305 .dao_get_ctrl_blk = dao_get_ctrl_blk,
2306 .dao_put_ctrl_blk = dao_put_ctrl_blk,
2307 .dao_set_spos = dao_set_spos,
2308 .dao_commit_write = dao_commit_write,
2309 .dao_get_spos = dao_get_spos,
2311 .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2312 .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2313 .daio_mgr_enb_dai = daio_mgr_enb_dai,
2314 .daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2315 .daio_mgr_enb_dao = daio_mgr_enb_dao,
2316 .daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2317 .daio_mgr_dao_init = daio_mgr_dao_init,
2318 .daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2319 .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2320 .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2321 .daio_mgr_commit_write = daio_mgr_commit_write,
2323 .set_timer_irq = set_timer_irq,
2324 .set_timer_tick = set_timer_tick,
2325 .get_wc = get_wc,
2328 int create_20k2_hw_obj(struct hw **rhw)
2330 struct hw20k2 *hw20k2;
2332 *rhw = NULL;
2333 hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL);
2334 if (!hw20k2)
2335 return -ENOMEM;
2337 hw20k2->hw = ct20k2_preset;
2338 *rhw = &hw20k2->hw;
2340 return 0;
2343 int destroy_20k2_hw_obj(struct hw *hw)
2345 if (hw->io_base)
2346 hw_card_shutdown(hw);
2348 kfree(hw);
2349 return 0;