USB: serial: siemens_mpi.c: use module_usb_serial_driver
[linux/fpc-iii.git] / drivers / spi / spi-bitbang.c
blobaef59b1a15f7f13881cd82f21864eb5ec59712b3
1 /*
2 * polling/bitbanging SPI master controller driver utilities
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/init.h>
20 #include <linux/spinlock.h>
21 #include <linux/workqueue.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi_bitbang.h>
33 /*----------------------------------------------------------------------*/
36 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
37 * Use this for GPIO or shift-register level hardware APIs.
39 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
40 * to glue code. These bitbang setup() and cleanup() routines are always
41 * used, though maybe they're called from controller-aware code.
43 * chipselect() and friends may use use spi_device->controller_data and
44 * controller registers as appropriate.
47 * NOTE: SPI controller pins can often be used as GPIO pins instead,
48 * which means you could use a bitbang driver either to get hardware
49 * working quickly, or testing for differences that aren't speed related.
52 struct spi_bitbang_cs {
53 unsigned nsecs; /* (clock cycle time)/2 */
54 u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
55 u32 word, u8 bits);
56 unsigned (*txrx_bufs)(struct spi_device *,
57 u32 (*txrx_word)(
58 struct spi_device *spi,
59 unsigned nsecs,
60 u32 word, u8 bits),
61 unsigned, struct spi_transfer *);
64 static unsigned bitbang_txrx_8(
65 struct spi_device *spi,
66 u32 (*txrx_word)(struct spi_device *spi,
67 unsigned nsecs,
68 u32 word, u8 bits),
69 unsigned ns,
70 struct spi_transfer *t
71 ) {
72 unsigned bits = t->bits_per_word ? : spi->bits_per_word;
73 unsigned count = t->len;
74 const u8 *tx = t->tx_buf;
75 u8 *rx = t->rx_buf;
77 while (likely(count > 0)) {
78 u8 word = 0;
80 if (tx)
81 word = *tx++;
82 word = txrx_word(spi, ns, word, bits);
83 if (rx)
84 *rx++ = word;
85 count -= 1;
87 return t->len - count;
90 static unsigned bitbang_txrx_16(
91 struct spi_device *spi,
92 u32 (*txrx_word)(struct spi_device *spi,
93 unsigned nsecs,
94 u32 word, u8 bits),
95 unsigned ns,
96 struct spi_transfer *t
97 ) {
98 unsigned bits = t->bits_per_word ? : spi->bits_per_word;
99 unsigned count = t->len;
100 const u16 *tx = t->tx_buf;
101 u16 *rx = t->rx_buf;
103 while (likely(count > 1)) {
104 u16 word = 0;
106 if (tx)
107 word = *tx++;
108 word = txrx_word(spi, ns, word, bits);
109 if (rx)
110 *rx++ = word;
111 count -= 2;
113 return t->len - count;
116 static unsigned bitbang_txrx_32(
117 struct spi_device *spi,
118 u32 (*txrx_word)(struct spi_device *spi,
119 unsigned nsecs,
120 u32 word, u8 bits),
121 unsigned ns,
122 struct spi_transfer *t
124 unsigned bits = t->bits_per_word ? : spi->bits_per_word;
125 unsigned count = t->len;
126 const u32 *tx = t->tx_buf;
127 u32 *rx = t->rx_buf;
129 while (likely(count > 3)) {
130 u32 word = 0;
132 if (tx)
133 word = *tx++;
134 word = txrx_word(spi, ns, word, bits);
135 if (rx)
136 *rx++ = word;
137 count -= 4;
139 return t->len - count;
142 int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
144 struct spi_bitbang_cs *cs = spi->controller_state;
145 u8 bits_per_word;
146 u32 hz;
148 if (t) {
149 bits_per_word = t->bits_per_word;
150 hz = t->speed_hz;
151 } else {
152 bits_per_word = 0;
153 hz = 0;
156 /* spi_transfer level calls that work per-word */
157 if (!bits_per_word)
158 bits_per_word = spi->bits_per_word;
159 if (bits_per_word <= 8)
160 cs->txrx_bufs = bitbang_txrx_8;
161 else if (bits_per_word <= 16)
162 cs->txrx_bufs = bitbang_txrx_16;
163 else if (bits_per_word <= 32)
164 cs->txrx_bufs = bitbang_txrx_32;
165 else
166 return -EINVAL;
168 /* nsecs = (clock period)/2 */
169 if (!hz)
170 hz = spi->max_speed_hz;
171 if (hz) {
172 cs->nsecs = (1000000000/2) / hz;
173 if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
174 return -EINVAL;
177 return 0;
179 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
182 * spi_bitbang_setup - default setup for per-word I/O loops
184 int spi_bitbang_setup(struct spi_device *spi)
186 struct spi_bitbang_cs *cs = spi->controller_state;
187 struct spi_bitbang *bitbang;
188 int retval;
189 unsigned long flags;
191 bitbang = spi_master_get_devdata(spi->master);
193 if (!cs) {
194 cs = kzalloc(sizeof *cs, GFP_KERNEL);
195 if (!cs)
196 return -ENOMEM;
197 spi->controller_state = cs;
200 /* per-word shift register access, in hardware or bitbanging */
201 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
202 if (!cs->txrx_word)
203 return -EINVAL;
205 retval = bitbang->setup_transfer(spi, NULL);
206 if (retval < 0)
207 return retval;
209 dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
211 /* NOTE we _need_ to call chipselect() early, ideally with adapter
212 * setup, unless the hardware defaults cooperate to avoid confusion
213 * between normal (active low) and inverted chipselects.
216 /* deselect chip (low or high) */
217 spin_lock_irqsave(&bitbang->lock, flags);
218 if (!bitbang->busy) {
219 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
220 ndelay(cs->nsecs);
222 spin_unlock_irqrestore(&bitbang->lock, flags);
224 return 0;
226 EXPORT_SYMBOL_GPL(spi_bitbang_setup);
229 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
231 void spi_bitbang_cleanup(struct spi_device *spi)
233 kfree(spi->controller_state);
235 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
237 static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
239 struct spi_bitbang_cs *cs = spi->controller_state;
240 unsigned nsecs = cs->nsecs;
242 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
245 /*----------------------------------------------------------------------*/
248 * SECOND PART ... simple transfer queue runner.
250 * This costs a task context per controller, running the queue by
251 * performing each transfer in sequence. Smarter hardware can queue
252 * several DMA transfers at once, and process several controller queues
253 * in parallel; this driver doesn't match such hardware very well.
255 * Drivers can provide word-at-a-time i/o primitives, or provide
256 * transfer-at-a-time ones to leverage dma or fifo hardware.
258 static void bitbang_work(struct work_struct *work)
260 struct spi_bitbang *bitbang =
261 container_of(work, struct spi_bitbang, work);
262 unsigned long flags;
264 spin_lock_irqsave(&bitbang->lock, flags);
265 bitbang->busy = 1;
266 while (!list_empty(&bitbang->queue)) {
267 struct spi_message *m;
268 struct spi_device *spi;
269 unsigned nsecs;
270 struct spi_transfer *t = NULL;
271 unsigned tmp;
272 unsigned cs_change;
273 int status;
274 int do_setup = -1;
276 m = container_of(bitbang->queue.next, struct spi_message,
277 queue);
278 list_del_init(&m->queue);
279 spin_unlock_irqrestore(&bitbang->lock, flags);
281 /* FIXME this is made-up ... the correct value is known to
282 * word-at-a-time bitbang code, and presumably chipselect()
283 * should enforce these requirements too?
285 nsecs = 100;
287 spi = m->spi;
288 tmp = 0;
289 cs_change = 1;
290 status = 0;
292 list_for_each_entry (t, &m->transfers, transfer_list) {
294 /* override speed or wordsize? */
295 if (t->speed_hz || t->bits_per_word)
296 do_setup = 1;
298 /* init (-1) or override (1) transfer params */
299 if (do_setup != 0) {
300 status = bitbang->setup_transfer(spi, t);
301 if (status < 0)
302 break;
303 if (do_setup == -1)
304 do_setup = 0;
307 /* set up default clock polarity, and activate chip;
308 * this implicitly updates clock and spi modes as
309 * previously recorded for this device via setup().
310 * (and also deselects any other chip that might be
311 * selected ...)
313 if (cs_change) {
314 bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
315 ndelay(nsecs);
317 cs_change = t->cs_change;
318 if (!t->tx_buf && !t->rx_buf && t->len) {
319 status = -EINVAL;
320 break;
323 /* transfer data. the lower level code handles any
324 * new dma mappings it needs. our caller always gave
325 * us dma-safe buffers.
327 if (t->len) {
328 /* REVISIT dma API still needs a designated
329 * DMA_ADDR_INVALID; ~0 might be better.
331 if (!m->is_dma_mapped)
332 t->rx_dma = t->tx_dma = 0;
333 status = bitbang->txrx_bufs(spi, t);
335 if (status > 0)
336 m->actual_length += status;
337 if (status != t->len) {
338 /* always report some kind of error */
339 if (status >= 0)
340 status = -EREMOTEIO;
341 break;
343 status = 0;
345 /* protocol tweaks before next transfer */
346 if (t->delay_usecs)
347 udelay(t->delay_usecs);
349 if (!cs_change)
350 continue;
351 if (t->transfer_list.next == &m->transfers)
352 break;
354 /* sometimes a short mid-message deselect of the chip
355 * may be needed to terminate a mode or command
357 ndelay(nsecs);
358 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
359 ndelay(nsecs);
362 m->status = status;
363 m->complete(m->context);
365 /* normally deactivate chipselect ... unless no error and
366 * cs_change has hinted that the next message will probably
367 * be for this chip too.
369 if (!(status == 0 && cs_change)) {
370 ndelay(nsecs);
371 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
372 ndelay(nsecs);
375 spin_lock_irqsave(&bitbang->lock, flags);
377 bitbang->busy = 0;
378 spin_unlock_irqrestore(&bitbang->lock, flags);
382 * spi_bitbang_transfer - default submit to transfer queue
384 int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
386 struct spi_bitbang *bitbang;
387 unsigned long flags;
388 int status = 0;
390 m->actual_length = 0;
391 m->status = -EINPROGRESS;
393 bitbang = spi_master_get_devdata(spi->master);
395 spin_lock_irqsave(&bitbang->lock, flags);
396 if (!spi->max_speed_hz)
397 status = -ENETDOWN;
398 else {
399 list_add_tail(&m->queue, &bitbang->queue);
400 queue_work(bitbang->workqueue, &bitbang->work);
402 spin_unlock_irqrestore(&bitbang->lock, flags);
404 return status;
406 EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
408 /*----------------------------------------------------------------------*/
411 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
412 * @bitbang: driver handle
414 * Caller should have zero-initialized all parts of the structure, and then
415 * provided callbacks for chip selection and I/O loops. If the master has
416 * a transfer method, its final step should call spi_bitbang_transfer; or,
417 * that's the default if the transfer routine is not initialized. It should
418 * also set up the bus number and number of chipselects.
420 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
421 * hardware that basically exposes a shift register) or per-spi_transfer
422 * (which takes better advantage of hardware like fifos or DMA engines).
424 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
425 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
426 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
427 * routine isn't initialized.
429 * This routine registers the spi_master, which will process requests in a
430 * dedicated task, keeping IRQs unblocked most of the time. To stop
431 * processing those requests, call spi_bitbang_stop().
433 int spi_bitbang_start(struct spi_bitbang *bitbang)
435 int status;
437 if (!bitbang->master || !bitbang->chipselect)
438 return -EINVAL;
440 INIT_WORK(&bitbang->work, bitbang_work);
441 spin_lock_init(&bitbang->lock);
442 INIT_LIST_HEAD(&bitbang->queue);
444 if (!bitbang->master->mode_bits)
445 bitbang->master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
447 if (!bitbang->master->transfer)
448 bitbang->master->transfer = spi_bitbang_transfer;
449 if (!bitbang->txrx_bufs) {
450 bitbang->use_dma = 0;
451 bitbang->txrx_bufs = spi_bitbang_bufs;
452 if (!bitbang->master->setup) {
453 if (!bitbang->setup_transfer)
454 bitbang->setup_transfer =
455 spi_bitbang_setup_transfer;
456 bitbang->master->setup = spi_bitbang_setup;
457 bitbang->master->cleanup = spi_bitbang_cleanup;
459 } else if (!bitbang->master->setup)
460 return -EINVAL;
461 if (bitbang->master->transfer == spi_bitbang_transfer &&
462 !bitbang->setup_transfer)
463 return -EINVAL;
465 /* this task is the only thing to touch the SPI bits */
466 bitbang->busy = 0;
467 bitbang->workqueue = create_singlethread_workqueue(
468 dev_name(bitbang->master->dev.parent));
469 if (bitbang->workqueue == NULL) {
470 status = -EBUSY;
471 goto err1;
474 /* driver may get busy before register() returns, especially
475 * if someone registered boardinfo for devices
477 status = spi_register_master(bitbang->master);
478 if (status < 0)
479 goto err2;
481 return status;
483 err2:
484 destroy_workqueue(bitbang->workqueue);
485 err1:
486 return status;
488 EXPORT_SYMBOL_GPL(spi_bitbang_start);
491 * spi_bitbang_stop - stops the task providing spi communication
493 int spi_bitbang_stop(struct spi_bitbang *bitbang)
495 spi_unregister_master(bitbang->master);
497 WARN_ON(!list_empty(&bitbang->queue));
499 destroy_workqueue(bitbang->workqueue);
501 return 0;
503 EXPORT_SYMBOL_GPL(spi_bitbang_stop);
505 MODULE_LICENSE("GPL");