JBD: round commit timer up to avoid uncommitted transaction
[linux/fpc-iii.git] / drivers / char / rio / rioboot.c
blobd956dd31600552a8eebf08e62c81ef557ad38e0c
1 /*
2 ** -----------------------------------------------------------------------------
3 **
4 ** Perle Specialix driver for Linux
5 ** Ported from existing RIO Driver for SCO sources.
7 * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 ** Module : rioboot.c
24 ** SID : 1.3
25 ** Last Modified : 11/6/98 10:33:36
26 ** Retrieved : 11/6/98 10:33:48
28 ** ident @(#)rioboot.c 1.3
30 ** -----------------------------------------------------------------------------
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/termios.h>
36 #include <linux/serial.h>
37 #include <linux/vmalloc.h>
38 #include <linux/generic_serial.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/delay.h>
42 #include <asm/io.h>
43 #include <asm/system.h>
44 #include <asm/string.h>
45 #include <asm/uaccess.h>
48 #include "linux_compat.h"
49 #include "rio_linux.h"
50 #include "pkt.h"
51 #include "daemon.h"
52 #include "rio.h"
53 #include "riospace.h"
54 #include "cmdpkt.h"
55 #include "map.h"
56 #include "rup.h"
57 #include "port.h"
58 #include "riodrvr.h"
59 #include "rioinfo.h"
60 #include "func.h"
61 #include "errors.h"
62 #include "pci.h"
64 #include "parmmap.h"
65 #include "unixrup.h"
66 #include "board.h"
67 #include "host.h"
68 #include "phb.h"
69 #include "link.h"
70 #include "cmdblk.h"
71 #include "route.h"
73 static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP);
75 static const unsigned char RIOAtVec2Ctrl[] = {
76 /* 0 */ INTERRUPT_DISABLE,
77 /* 1 */ INTERRUPT_DISABLE,
78 /* 2 */ INTERRUPT_DISABLE,
79 /* 3 */ INTERRUPT_DISABLE,
80 /* 4 */ INTERRUPT_DISABLE,
81 /* 5 */ INTERRUPT_DISABLE,
82 /* 6 */ INTERRUPT_DISABLE,
83 /* 7 */ INTERRUPT_DISABLE,
84 /* 8 */ INTERRUPT_DISABLE,
85 /* 9 */ IRQ_9 | INTERRUPT_ENABLE,
86 /* 10 */ INTERRUPT_DISABLE,
87 /* 11 */ IRQ_11 | INTERRUPT_ENABLE,
88 /* 12 */ IRQ_12 | INTERRUPT_ENABLE,
89 /* 13 */ INTERRUPT_DISABLE,
90 /* 14 */ INTERRUPT_DISABLE,
91 /* 15 */ IRQ_15 | INTERRUPT_ENABLE
94 /**
95 * RIOBootCodeRTA - Load RTA boot code
96 * @p: RIO to load
97 * @rbp: Download descriptor
99 * Called when the user process initiates booting of the card firmware.
100 * Lads the firmware
103 int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp)
105 int offset;
107 func_enter();
109 rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP);
112 ** Check that we have set asside enough memory for this
114 if (rbp->Count > SIXTY_FOUR_K) {
115 rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n");
116 p->RIOError.Error = HOST_FILE_TOO_LARGE;
117 func_exit();
118 return -ENOMEM;
121 if (p->RIOBooting) {
122 rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n");
123 p->RIOError.Error = BOOT_IN_PROGRESS;
124 func_exit();
125 return -EBUSY;
129 ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
130 ** so calculate how far we have to move the data up the buffer
131 ** to achieve this.
133 offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE;
136 ** Be clean, and clear the 'unused' portion of the boot buffer,
137 ** because it will (eventually) be part of the Rta run time environment
138 ** and so should be zeroed.
140 memset(p->RIOBootPackets, 0, offset);
143 ** Copy the data from user space into the array
146 if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) {
147 rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n");
148 p->RIOError.Error = COPYIN_FAILED;
149 func_exit();
150 return -EFAULT;
154 ** Make sure that our copy of the size includes that offset we discussed
155 ** earlier.
157 p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE;
158 p->RIOBootCount = rbp->Count;
160 func_exit();
161 return 0;
165 * rio_start_card_running - host card start
166 * @HostP: The RIO to kick off
168 * Start a RIO processor unit running. Encapsulates the knowledge
169 * of the card type.
172 void rio_start_card_running(struct Host *HostP)
174 switch (HostP->Type) {
175 case RIO_AT:
176 rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n");
177 writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control);
178 break;
179 case RIO_PCI:
181 ** PCI is much the same as MCA. Everything is once again memory
182 ** mapped, so we are writing to memory registers instead of io
183 ** ports.
185 rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n");
186 writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control);
187 break;
188 default:
189 rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type);
190 break;
192 return;
196 ** Load in the host boot code - load it directly onto all halted hosts
197 ** of the correct type.
199 ** Put your rubber pants on before messing with this code - even the magic
200 ** numbers have trouble understanding what they are doing here.
203 int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp)
205 struct Host *HostP;
206 u8 __iomem *Cad;
207 PARM_MAP __iomem *ParmMapP;
208 int RupN;
209 int PortN;
210 unsigned int host;
211 u8 __iomem *StartP;
212 u8 __iomem *DestP;
213 int wait_count;
214 u16 OldParmMap;
215 u16 offset; /* It is very important that this is a u16 */
216 u8 *DownCode = NULL;
217 unsigned long flags;
219 HostP = NULL; /* Assure the compiler we've initialized it */
222 /* Walk the hosts */
223 for (host = 0; host < p->RIONumHosts; host++) {
224 rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host);
225 HostP = &p->RIOHosts[host];
227 rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
229 /* Don't boot hosts already running */
230 if ((HostP->Flags & RUN_STATE) != RC_WAITING) {
231 rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host);
232 continue;
236 ** Grab a pointer to the card (ioremapped)
238 Cad = HostP->Caddr;
241 ** We are going to (try) and load in rbp->Count bytes.
242 ** The last byte will reside at p->RIOConf.HostLoadBase-1;
243 ** Therefore, we need to start copying at address
244 ** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
246 StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count];
248 rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad);
249 rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP);
250 rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
251 rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count);
253 /* Make sure it fits */
254 if (p->RIOConf.HostLoadBase < rbp->Count) {
255 rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n");
256 p->RIOError.Error = HOST_FILE_TOO_LARGE;
257 func_exit();
258 return -EFBIG;
261 ** Ensure that the host really is stopped.
262 ** Disable it's external bus & twang its reset line.
264 RIOHostReset(HostP->Type, HostP->CardP, HostP->Slot);
267 ** Copy the data directly from user space to the SRAM.
268 ** This ain't going to be none too clever if the download
269 ** code is bigger than this segment.
271 rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n");
273 /* Buffer to local memory as we want to use I/O space and
274 some cards only do 8 or 16 bit I/O */
276 DownCode = vmalloc(rbp->Count);
277 if (!DownCode) {
278 p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY;
279 func_exit();
280 return -ENOMEM;
282 if (copy_from_user(DownCode, rbp->DataP, rbp->Count)) {
283 kfree(DownCode);
284 p->RIOError.Error = COPYIN_FAILED;
285 func_exit();
286 return -EFAULT;
288 HostP->Copy(DownCode, StartP, rbp->Count);
289 vfree(DownCode);
291 rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n");
294 ** S T O P !
296 ** Upto this point the code has been fairly rational, and possibly
297 ** even straight forward. What follows is a pile of crud that will
298 ** magically turn into six bytes of transputer assembler. Normally
299 ** you would expect an array or something, but, being me, I have
300 ** chosen [been told] to use a technique whereby the startup code
301 ** will be correct if we change the loadbase for the code. Which
302 ** brings us onto another issue - the loadbase is the *end* of the
303 ** code, not the start.
305 ** If I were you I wouldn't start from here.
309 ** We now need to insert a short boot section into
310 ** the memory at the end of Sram2. This is normally (de)composed
311 ** of the last eight bytes of the download code. The
312 ** download has been assembled/compiled to expect to be
313 ** loaded from 0x7FFF downwards. We have loaded it
314 ** at some other address. The startup code goes into the small
315 ** ram window at Sram2, in the last 8 bytes, which are really
316 ** at addresses 0x7FF8-0x7FFF.
318 ** If the loadbase is, say, 0x7C00, then we need to branch to
319 ** address 0x7BFE to run the host.bin startup code. We assemble
320 ** this jump manually.
322 ** The two byte sequence 60 08 is loaded into memory at address
323 ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
324 ** which adds '0' to the .O register, complements .O, and then shifts
325 ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
326 ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
327 ** location. Now, the branch starts from the value of .PC (or .IP or
328 ** whatever the bloody register is called on this chip), and the .PC
329 ** will be pointing to the location AFTER the branch, in this case
330 ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
332 ** A long branch is coded at 0x7FF8. This consists of loading a four
333 ** byte offset into .O using nfix (as above) and pfix operators. The
334 ** pfix operates in exactly the same way as the nfix operator, but
335 ** without the complement operation. The offset, of course, must be
336 ** relative to the address of the byte AFTER the branch instruction,
337 ** which will be (urm) 0x7FFC, so, our final destination of the branch
338 ** (loadbase-2), has to be reached from here. Imagine that the loadbase
339 ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
340 ** is the first byte of the initial two byte short local branch of the
341 ** download code).
343 ** To code a jump from 0x7FFC (which is where the branch will start
344 ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
345 ** 0x7BFE.
346 ** This will be coded as four bytes:
347 ** 60 2C 20 02
348 ** being nfix .O+0
349 ** pfix .O+C
350 ** pfix .O+0
351 ** jump .O+2
353 ** The nfix operator is used, so that the startup code will be
354 ** compatible with the whole Tp family. (lies, damn lies, it'll never
355 ** work in a month of Sundays).
357 ** The nfix nyble is the 1s complement of the nyble value you
358 ** want to load - in this case we wanted 'F' so we nfix loaded '0'.
363 ** Dest points to the top 8 bytes of Sram2. The Tp jumps
364 ** to 0x7FFE at reset time, and starts executing. This is
365 ** a short branch to 0x7FF8, where a long branch is coded.
368 DestP = &Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */
370 #define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */
371 #define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */
372 #define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */
375 ** 0x7FFC is the address of the location following the last byte of
376 ** the four byte jump instruction.
377 ** READ THE ABOVE COMMENTS
379 ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
380 ** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
381 ** cos I don't understand 2's complement).
383 offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC;
385 writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP);
386 writeb(PFIX((offset >> 8) & 0xF), DestP + 1);
387 writeb(PFIX((offset >> 4) & 0xF), DestP + 2);
388 writeb(JUMP(offset & 0xF), DestP + 3);
390 writeb(NFIX(0), DestP + 6);
391 writeb(JUMP(8), DestP + 7);
393 rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase);
394 rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset);
397 ** Flag what is going on
399 HostP->Flags &= ~RUN_STATE;
400 HostP->Flags |= RC_STARTUP;
403 ** Grab a copy of the current ParmMap pointer, so we
404 ** can tell when it has changed.
406 OldParmMap = readw(&HostP->__ParmMapR);
408 rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap);
411 ** And start it running (I hope).
412 ** As there is nothing dodgy or obscure about the
413 ** above code, this is guaranteed to work every time.
415 rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec);
417 rio_start_card_running(HostP);
419 rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n");
422 ** Now, wait for upto five seconds for the Tp to setup the parmmap
423 ** pointer:
425 for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) {
426 rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR));
427 mdelay(100);
432 ** If the parmmap pointer is unchanged, then the host code
433 ** has crashed & burned in a really spectacular way
435 if (readw(&HostP->__ParmMapR) == OldParmMap) {
436 rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR));
437 rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n");
438 HostP->Flags &= ~RUN_STATE;
439 HostP->Flags |= RC_STUFFED;
440 RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
441 continue;
444 rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR));
447 ** Well, the board thought it was OK, and setup its parmmap
448 ** pointer. For the time being, we will pretend that this
449 ** board is running, and check out what the error flag says.
453 ** Grab a 32 bit pointer to the parmmap structure
455 ParmMapP = (PARM_MAP __iomem *) RIO_PTR(Cad, readw(&HostP->__ParmMapR));
456 rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
457 ParmMapP = (PARM_MAP __iomem *)(Cad + readw(&HostP->__ParmMapR));
458 rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP);
461 ** The links entry should be 0xFFFF; we set it up
462 ** with a mask to say how many PHBs to use, and
463 ** which links to use.
465 if (readw(&ParmMapP->links) != 0xFFFF) {
466 rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
467 rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links));
468 HostP->Flags &= ~RUN_STATE;
469 HostP->Flags |= RC_STUFFED;
470 RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
471 continue;
474 writew(RIO_LINK_ENABLE, &ParmMapP->links);
477 ** now wait for the card to set all the parmmap->XXX stuff
478 ** this is a wait of upto two seconds....
480 rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime);
481 HostP->timeout_id = 0;
482 for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) {
483 rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n");
484 mdelay(100);
486 rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n");
488 if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) {
489 rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name);
490 rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n");
491 HostP->Flags &= ~RUN_STATE;
492 HostP->Flags |= RC_STUFFED;
493 RIOHostReset( HostP->Type, HostP->CardP, HostP->Slot );
494 continue;
497 rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n");
500 ** It runs! It runs!
502 rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum);
505 ** set the time period between interrupts.
507 writew(p->RIOConf.Timer, &ParmMapP->timer);
510 ** Translate all the 16 bit pointers in the __ParmMapR into
511 ** 32 bit pointers for the driver in ioremap space.
513 HostP->ParmMapP = ParmMapP;
514 HostP->PhbP = (struct PHB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr));
515 HostP->RupP = (struct RUP __iomem *) RIO_PTR(Cad, readw(&ParmMapP->rups));
516 HostP->PhbNumP = (unsigned short __iomem *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr));
517 HostP->LinkStrP = (struct LPB __iomem *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr));
520 ** point the UnixRups at the real Rups
522 for (RupN = 0; RupN < MAX_RUP; RupN++) {
523 HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN];
524 HostP->UnixRups[RupN].Id = RupN + 1;
525 HostP->UnixRups[RupN].BaseSysPort = NO_PORT;
526 spin_lock_init(&HostP->UnixRups[RupN].RupLock);
529 for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) {
530 HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup;
531 HostP->UnixRups[RupN + MAX_RUP].Id = 0;
532 HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT;
533 spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock);
537 ** point the PortP->Phbs at the real Phbs
539 for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) {
540 if (p->RIOPortp[PortN]->HostP == HostP) {
541 struct Port *PortP = p->RIOPortp[PortN];
542 struct PHB __iomem *PhbP;
543 /* int oldspl; */
545 if (!PortP->Mapped)
546 continue;
548 PhbP = &HostP->PhbP[PortP->HostPort];
549 rio_spin_lock_irqsave(&PortP->portSem, flags);
551 PortP->PhbP = PhbP;
553 PortP->TxAdd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_add));
554 PortP->TxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_start));
555 PortP->TxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->tx_end));
556 PortP->RxRemove = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_remove));
557 PortP->RxStart = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_start));
558 PortP->RxEnd = (u16 __iomem *) RIO_PTR(Cad, readw(&PhbP->rx_end));
560 rio_spin_unlock_irqrestore(&PortP->portSem, flags);
562 ** point the UnixRup at the base SysPort
564 if (!(PortN % PORTS_PER_RTA))
565 HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN;
569 rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n");
571 ** last thing - show the world that everything is in place
573 HostP->Flags &= ~RUN_STATE;
574 HostP->Flags |= RC_RUNNING;
577 ** MPX always uses a poller. This is actually patched into the system
578 ** configuration and called directly from each clock tick.
581 p->RIOPolling = 1;
583 p->RIOSystemUp++;
585 rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec);
586 func_exit();
587 return 0;
593 * RIOBootRup - Boot an RTA
594 * @p: rio we are working with
595 * @Rup: Rup number
596 * @HostP: host object
597 * @PacketP: packet to use
599 * If we have successfully processed this boot, then
600 * return 1. If we havent, then return 0.
603 int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT __iomem *PacketP)
605 struct PktCmd __iomem *PktCmdP = (struct PktCmd __iomem *) PacketP->data;
606 struct PktCmd_M *PktReplyP;
607 struct CmdBlk *CmdBlkP;
608 unsigned int sequence;
611 ** If we haven't been told what to boot, we can't boot it.
613 if (p->RIONumBootPkts == 0) {
614 rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n");
615 return 0;
619 ** Special case of boot completed - if we get one of these then we
620 ** don't need a command block. For all other cases we do, so handle
621 ** this first and then get a command block, then handle every other
622 ** case, relinquishing the command block if disaster strikes!
624 if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED))
625 return RIOBootComplete(p, HostP, Rup, PktCmdP);
628 ** Try to allocate a command block. This is in kernel space
630 if (!(CmdBlkP = RIOGetCmdBlk())) {
631 rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n");
632 return 0;
636 ** Fill in the default info on the command block
638 CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0;
639 CmdBlkP->Packet.dest_port = BOOT_RUP;
640 CmdBlkP->Packet.src_unit = 0;
641 CmdBlkP->Packet.src_port = BOOT_RUP;
643 CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL;
644 PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data;
647 ** process COMMANDS on the boot rup!
649 if (readb(&PacketP->len) & PKT_CMD_BIT) {
651 ** We only expect one type of command - a BOOT_REQUEST!
653 if (readb(&PktCmdP->Command) != BOOT_REQUEST) {
654 rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts);
655 RIOFreeCmdBlk(CmdBlkP);
656 return 1;
660 ** Build a Boot Sequence command block
662 ** We no longer need to use "Boot Mode", we'll always allow
663 ** boot requests - the boot will not complete if the device
664 ** appears in the bindings table.
666 ** We'll just (always) set the command field in packet reply
667 ** to allow an attempted boot sequence :
669 PktReplyP->Command = BOOT_SEQUENCE;
671 PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts;
672 PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase;
673 PktReplyP->BootSequence.CodeSize = p->RIOBootCount;
675 CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT;
677 memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4);
679 rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase);
682 ** If this host is in slave mode, send the RTA an invalid boot
683 ** sequence command block to force it to kill the boot. We wait
684 ** for half a second before sending this packet to prevent the RTA
685 ** attempting to boot too often. The master host should then grab
686 ** the RTA and make it its own.
688 p->RIOBooting++;
689 RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
690 return 1;
694 ** It is a request for boot data.
696 sequence = readw(&PktCmdP->Sequence);
698 rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup);
700 if (sequence >= p->RIONumBootPkts) {
701 rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts);
704 PktReplyP->Sequence = sequence;
705 memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE);
706 CmdBlkP->Packet.len = PKT_MAX_DATA_LEN;
707 RIOQueueCmdBlk(HostP, Rup, CmdBlkP);
708 return 1;
712 * RIOBootComplete - RTA boot is done
713 * @p: RIO we are working with
714 * @HostP: Host structure
715 * @Rup: RUP being used
716 * @PktCmdP: Packet command that was used
718 * This function is called when an RTA been booted.
719 * If booted by a host, HostP->HostUniqueNum is the booting host.
720 * If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
721 * RtaUniq is the booted RTA.
724 static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd __iomem *PktCmdP)
726 struct Map *MapP = NULL;
727 struct Map *MapP2 = NULL;
728 int Flag;
729 int found;
730 int host, rta;
731 int EmptySlot = -1;
732 int entry, entry2;
733 char *MyType, *MyName;
734 unsigned int MyLink;
735 unsigned short RtaType;
736 u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24);
738 p->RIOBooting = 0;
740 rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting);
743 ** Determine type of unit (16/8 port RTA).
746 RtaType = GetUnitType(RtaUniq);
747 if (Rup >= (unsigned short) MAX_RUP)
748 rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
749 else
750 rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A');
752 rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq);
754 if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) {
755 rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n");
756 return 1;
760 ** If this RTA has just booted an RTA which doesn't belong to this
761 ** system, or the system is in slave mode, do not attempt to create
762 ** a new table entry for it.
765 if (!RIOBootOk(p, HostP, RtaUniq)) {
766 MyLink = readb(&PktCmdP->LinkNum);
767 if (Rup < (unsigned short) MAX_RUP) {
769 ** RtaUniq was clone booted (by this RTA). Instruct this RTA
770 ** to hold off further attempts to boot on this link for 30
771 ** seconds.
773 if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) {
774 rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink);
776 } else
778 ** RtaUniq was booted by this host. Set the booting link
779 ** to hold off for 30 seconds to give another unit a
780 ** chance to boot it.
782 writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot);
783 rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum);
784 return 1;
788 ** Check for a SLOT_IN_USE entry for this RTA attached to the
789 ** current host card in the driver table.
791 ** If it exists, make a note that we have booted it. Other parts of
792 ** the driver are interested in this information at a later date,
793 ** in particular when the booting RTA asks for an ID for this unit,
794 ** we must have set the BOOTED flag, and the NEWBOOT flag is used
795 ** to force an open on any ports that where previously open on this
796 ** unit.
798 for (entry = 0; entry < MAX_RUP; entry++) {
799 unsigned int sysport;
801 if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
802 HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT;
803 if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) {
804 if (sysport < p->RIOFirstPortsBooted)
805 p->RIOFirstPortsBooted = sysport;
806 if (sysport > p->RIOLastPortsBooted)
807 p->RIOLastPortsBooted = sysport;
809 ** For a 16 port RTA, check the second bank of 8 ports
811 if (RtaType == TYPE_RTA16) {
812 entry2 = HostP->Mapping[entry].ID2 - 1;
813 HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT;
814 sysport = HostP->Mapping[entry2].SysPort;
815 if (sysport < p->RIOFirstPortsBooted)
816 p->RIOFirstPortsBooted = sysport;
817 if (sysport > p->RIOLastPortsBooted)
818 p->RIOLastPortsBooted = sysport;
821 if (RtaType == TYPE_RTA16)
822 rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1);
823 else
824 rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1);
825 return 1;
829 rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n");
831 if (Rup >= (unsigned short) MAX_RUP) {
833 ** It was a host that did the booting
835 MyType = "Host";
836 MyName = HostP->Name;
837 } else {
839 ** It was an RTA that did the booting
841 MyType = "RTA";
842 MyName = HostP->Mapping[Rup].Name;
844 MyLink = readb(&PktCmdP->LinkNum);
847 ** There is no SLOT_IN_USE entry for this RTA attached to the current
848 ** host card in the driver table.
850 ** Check for a SLOT_TENTATIVE entry for this RTA attached to the
851 ** current host card in the driver table.
853 ** If we find one, then we re-use that slot.
855 for (entry = 0; entry < MAX_RUP; entry++) {
856 if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) {
857 if (RtaType == TYPE_RTA16) {
858 entry2 = HostP->Mapping[entry].ID2 - 1;
859 if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq))
860 rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2);
861 else
862 continue;
863 } else
864 rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry);
865 if (!p->RIONoMessage)
866 printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
867 return 1;
872 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
873 ** attached to the current host card in the driver table.
875 ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
876 ** host for this RTA in the driver table.
878 ** For a SLOT_IN_USE entry on another host, we need to delete the RTA
879 ** entry from the other host and add it to this host (using some of
880 ** the functions from table.c which do this).
881 ** For a SLOT_TENTATIVE entry on another host, we must cope with the
882 ** following scenario:
884 ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
885 ** in table)
886 ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
887 ** entries)
888 ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
889 ** + Unplug RTA and plug back into host A.
890 ** + Configure RTA on host A. We now have the same RTA configured
891 ** with different ports on two different hosts.
893 rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq);
894 found = 0;
895 Flag = 0; /* Convince the compiler this variable is initialized */
896 for (host = 0; !found && (host < p->RIONumHosts); host++) {
897 for (rta = 0; rta < MAX_RUP; rta++) {
898 if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) {
899 Flag = p->RIOHosts[host].Mapping[rta].Flags;
900 MapP = &p->RIOHosts[host].Mapping[rta];
901 if (RtaType == TYPE_RTA16) {
902 MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1];
903 rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name);
904 } else
905 rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name);
906 found = 1;
907 break;
913 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
914 ** attached to the current host card in the driver table.
916 ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
917 ** another host for this RTA in the driver table...
919 ** Check for a SLOT_IN_USE entry for this RTA in the config table.
921 if (!MapP) {
922 rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq);
923 for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) {
924 rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum);
926 if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) {
927 MapP = &p->RIOSavedTable[rta];
928 Flag = p->RIOSavedTable[rta].Flags;
929 if (RtaType == TYPE_RTA16) {
930 for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) {
931 if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq)
932 break;
934 MapP2 = &p->RIOSavedTable[entry2];
935 rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2);
936 } else
937 rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta);
938 break;
944 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
945 ** attached to the current host card in the driver table.
947 ** We may have found a SLOT_IN_USE entry on another host for this
948 ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
949 ** on another host for this RTA in the driver table.
951 ** Check the driver table for room to fit this newly discovered RTA.
952 ** RIOFindFreeID() first looks for free slots and if it does not
953 ** find any free slots it will then attempt to oust any
954 ** tentative entry in the table.
956 EmptySlot = 1;
957 if (RtaType == TYPE_RTA16) {
958 if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) {
959 RIODefaultName(p, HostP, entry);
960 rio_fill_host_slot(entry, entry2, RtaUniq, HostP);
961 EmptySlot = 0;
963 } else {
964 if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) {
965 RIODefaultName(p, HostP, entry);
966 rio_fill_host_slot(entry, 0, RtaUniq, HostP);
967 EmptySlot = 0;
972 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
973 ** attached to the current host card in the driver table.
975 ** If we found a SLOT_IN_USE entry on another host for this
976 ** RTA in the config or driver table, and there are enough free
977 ** slots in the driver table, then we need to move it over and
978 ** delete it from the other host.
979 ** If we found a SLOT_TENTATIVE entry on another host for this
980 ** RTA in the driver table, just delete the other host entry.
982 if (EmptySlot == 0) {
983 if (MapP) {
984 if (Flag & SLOT_IN_USE) {
985 rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n");
986 HostP->Mapping[entry].SysPort = MapP->SysPort;
987 memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN);
988 HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT;
989 RIOReMapPorts(p, HostP, &HostP->Mapping[entry]);
990 if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted)
991 p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort;
992 if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted)
993 p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort;
994 rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name);
995 } else {
996 rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n");
997 HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT;
999 if (RtaType == TYPE_RTA16) {
1000 if (Flag & SLOT_IN_USE) {
1001 HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1002 HostP->Mapping[entry2].SysPort = MapP2->SysPort;
1004 ** Map second block of ttys for 16 port RTA
1006 RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]);
1007 if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted)
1008 p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort;
1009 if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted)
1010 p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort;
1011 rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name);
1012 } else
1013 HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT;
1014 memset(MapP2, 0, sizeof(struct Map));
1016 memset(MapP, 0, sizeof(struct Map));
1017 if (!p->RIONoMessage)
1018 printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A');
1019 } else if (!p->RIONoMessage)
1020 printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A');
1021 RIOSetChange(p);
1022 return 1;
1026 ** There is no room in the driver table to make an entry for the
1027 ** booted RTA. Keep a note of its Uniq Num in the overflow table,
1028 ** so we can ignore it's ID requests.
1030 if (!p->RIONoMessage)
1031 printk("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A');
1032 for (entry = 0; entry < HostP->NumExtraBooted; entry++) {
1033 if (HostP->ExtraUnits[entry] == RtaUniq) {
1035 ** already got it!
1037 return 1;
1041 ** If there is room, add the unit to the list of extras
1043 if (HostP->NumExtraBooted < MAX_EXTRA_UNITS)
1044 HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq;
1045 return 1;
1050 ** If the RTA or its host appears in the RIOBindTab[] structure then
1051 ** we mustn't boot the RTA and should return 0.
1052 ** This operation is slightly different from the other drivers for RIO
1053 ** in that this is designed to work with the new utilities
1054 ** not config.rio and is FAR SIMPLER.
1055 ** We no longer support the RIOBootMode variable. It is all done from the
1056 ** "boot/noboot" field in the rio.cf file.
1058 int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq)
1060 int Entry;
1061 unsigned int HostUniq = HostP->UniqueNum;
1064 ** Search bindings table for RTA or its parent.
1065 ** If it exists, return 0, else 1.
1067 for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) {
1068 if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq))
1069 return 0;
1071 return 1;
1075 ** Make an empty slot tentative. If this is a 16 port RTA, make both
1076 ** slots tentative, and the second one RTA_SECOND_SLOT as well.
1079 void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host)
1081 int link;
1083 rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq);
1085 host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE);
1086 host->Mapping[entry].SysPort = NO_PORT;
1087 host->Mapping[entry].RtaUniqueNum = rta_uniq;
1088 host->Mapping[entry].HostUniqueNum = host->UniqueNum;
1089 host->Mapping[entry].ID = entry + 1;
1090 host->Mapping[entry].ID2 = 0;
1091 if (entry2) {
1092 host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT);
1093 host->Mapping[entry2].SysPort = NO_PORT;
1094 host->Mapping[entry2].RtaUniqueNum = rta_uniq;
1095 host->Mapping[entry2].HostUniqueNum = host->UniqueNum;
1096 host->Mapping[entry2].Name[0] = '\0';
1097 host->Mapping[entry2].ID = entry2 + 1;
1098 host->Mapping[entry2].ID2 = entry + 1;
1099 host->Mapping[entry].ID2 = entry2 + 1;
1102 ** Must set these up, so that utilities show
1103 ** topology of 16 port RTAs correctly
1105 for (link = 0; link < LINKS_PER_UNIT; link++) {
1106 host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT;
1107 host->Mapping[entry].Topology[link].Link = NO_LINK;
1108 if (entry2) {
1109 host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT;
1110 host->Mapping[entry2].Topology[link].Link = NO_LINK;