1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
39 static s32
igb_get_invariants_82575(struct e1000_hw
*);
40 static s32
igb_acquire_phy_82575(struct e1000_hw
*);
41 static void igb_release_phy_82575(struct e1000_hw
*);
42 static s32
igb_acquire_nvm_82575(struct e1000_hw
*);
43 static void igb_release_nvm_82575(struct e1000_hw
*);
44 static s32
igb_check_for_link_82575(struct e1000_hw
*);
45 static s32
igb_get_cfg_done_82575(struct e1000_hw
*);
46 static s32
igb_init_hw_82575(struct e1000_hw
*);
47 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*);
48 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
*);
49 static s32
igb_reset_hw_82575(struct e1000_hw
*);
50 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*, bool);
51 static s32
igb_setup_copper_link_82575(struct e1000_hw
*);
52 static s32
igb_setup_fiber_serdes_link_82575(struct e1000_hw
*);
53 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*, u32
, u16
);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*);
55 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*, u16
);
56 static void igb_configure_pcs_link_82575(struct e1000_hw
*);
57 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*, u16
*,
59 static s32
igb_get_phy_id_82575(struct e1000_hw
*);
60 static void igb_release_swfw_sync_82575(struct e1000_hw
*, u16
);
61 static bool igb_sgmii_active_82575(struct e1000_hw
*);
62 static s32
igb_reset_init_script_82575(struct e1000_hw
*);
63 static s32
igb_read_mac_addr_82575(struct e1000_hw
*);
64 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
);
66 static s32
igb_get_invariants_82575(struct e1000_hw
*hw
)
68 struct e1000_phy_info
*phy
= &hw
->phy
;
69 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
70 struct e1000_mac_info
*mac
= &hw
->mac
;
71 struct e1000_dev_spec_82575
* dev_spec
= &hw
->dev_spec
._82575
;
77 switch (hw
->device_id
) {
78 case E1000_DEV_ID_82575EB_COPPER
:
79 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
80 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
81 mac
->type
= e1000_82575
;
83 case E1000_DEV_ID_82576
:
84 case E1000_DEV_ID_82576_NS
:
85 case E1000_DEV_ID_82576_FIBER
:
86 case E1000_DEV_ID_82576_SERDES
:
87 case E1000_DEV_ID_82576_QUAD_COPPER
:
88 case E1000_DEV_ID_82576_SERDES_QUAD
:
89 mac
->type
= e1000_82576
;
92 return -E1000_ERR_MAC_INIT
;
98 * The 82575 uses bits 22:23 for link mode. The mode can be changed
99 * based on the EEPROM. We cannot rely upon device ID. There
100 * is no distinguishable difference between fiber and internal
101 * SerDes mode on the 82575. There can be an external PHY attached
102 * on the SGMII interface. For this, we'll set sgmii_active to true.
104 phy
->media_type
= e1000_media_type_copper
;
105 dev_spec
->sgmii_active
= false;
107 ctrl_ext
= rd32(E1000_CTRL_EXT
);
108 if ((ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_MASK
) ==
109 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES
) {
110 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
111 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
112 } else if (ctrl_ext
& E1000_CTRL_EXT_LINK_MODE_SGMII
) {
113 dev_spec
->sgmii_active
= true;
114 ctrl_ext
|= E1000_CTRL_I2C_ENA
;
116 ctrl_ext
&= ~E1000_CTRL_I2C_ENA
;
118 wr32(E1000_CTRL_EXT
, ctrl_ext
);
120 /* Set mta register count */
121 mac
->mta_reg_count
= 128;
122 /* Set rar entry count */
123 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82575
;
124 if (mac
->type
== e1000_82576
)
125 mac
->rar_entry_count
= E1000_RAR_ENTRIES_82576
;
126 /* Set if part includes ASF firmware */
127 mac
->asf_firmware_present
= true;
128 /* Set if manageability features are enabled. */
129 mac
->arc_subsystem_valid
=
130 (rd32(E1000_FWSM
) & E1000_FWSM_MODE_MASK
)
133 /* physical interface link setup */
134 mac
->ops
.setup_physical_interface
=
135 (hw
->phy
.media_type
== e1000_media_type_copper
)
136 ? igb_setup_copper_link_82575
137 : igb_setup_fiber_serdes_link_82575
;
139 /* NVM initialization */
140 eecd
= rd32(E1000_EECD
);
142 nvm
->opcode_bits
= 8;
144 switch (nvm
->override
) {
145 case e1000_nvm_override_spi_large
:
147 nvm
->address_bits
= 16;
149 case e1000_nvm_override_spi_small
:
151 nvm
->address_bits
= 8;
154 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
155 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
159 nvm
->type
= e1000_nvm_eeprom_spi
;
161 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
162 E1000_EECD_SIZE_EX_SHIFT
);
165 * Added to a constant, "size" becomes the left-shift value
166 * for setting word_size.
168 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
170 /* EEPROM access above 16k is unsupported */
173 nvm
->word_size
= 1 << size
;
175 /* if 82576 then initialize mailbox parameters */
176 if (mac
->type
== e1000_82576
)
177 igb_init_mbx_params_pf(hw
);
179 /* setup PHY parameters */
180 if (phy
->media_type
!= e1000_media_type_copper
) {
181 phy
->type
= e1000_phy_none
;
185 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
186 phy
->reset_delay_us
= 100;
188 /* PHY function pointers */
189 if (igb_sgmii_active_82575(hw
)) {
190 phy
->ops
.reset
= igb_phy_hw_reset_sgmii_82575
;
191 phy
->ops
.read_reg
= igb_read_phy_reg_sgmii_82575
;
192 phy
->ops
.write_reg
= igb_write_phy_reg_sgmii_82575
;
194 phy
->ops
.reset
= igb_phy_hw_reset
;
195 phy
->ops
.read_reg
= igb_read_phy_reg_igp
;
196 phy
->ops
.write_reg
= igb_write_phy_reg_igp
;
200 hw
->bus
.func
= (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) >>
201 E1000_STATUS_FUNC_SHIFT
;
203 /* Set phy->phy_addr and phy->id. */
204 ret_val
= igb_get_phy_id_82575(hw
);
208 /* Verify phy id and set remaining function pointers */
210 case M88E1111_I_PHY_ID
:
211 phy
->type
= e1000_phy_m88
;
212 phy
->ops
.get_phy_info
= igb_get_phy_info_m88
;
213 phy
->ops
.get_cable_length
= igb_get_cable_length_m88
;
214 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_m88
;
216 case IGP03E1000_E_PHY_ID
:
217 phy
->type
= e1000_phy_igp_3
;
218 phy
->ops
.get_phy_info
= igb_get_phy_info_igp
;
219 phy
->ops
.get_cable_length
= igb_get_cable_length_igp_2
;
220 phy
->ops
.force_speed_duplex
= igb_phy_force_speed_duplex_igp
;
221 phy
->ops
.set_d0_lplu_state
= igb_set_d0_lplu_state_82575
;
222 phy
->ops
.set_d3_lplu_state
= igb_set_d3_lplu_state
;
225 return -E1000_ERR_PHY
;
232 * igb_acquire_phy_82575 - Acquire rights to access PHY
233 * @hw: pointer to the HW structure
235 * Acquire access rights to the correct PHY. This is a
236 * function pointer entry point called by the api module.
238 static s32
igb_acquire_phy_82575(struct e1000_hw
*hw
)
242 mask
= hw
->bus
.func
? E1000_SWFW_PHY1_SM
: E1000_SWFW_PHY0_SM
;
244 return igb_acquire_swfw_sync_82575(hw
, mask
);
248 * igb_release_phy_82575 - Release rights to access PHY
249 * @hw: pointer to the HW structure
251 * A wrapper to release access rights to the correct PHY. This is a
252 * function pointer entry point called by the api module.
254 static void igb_release_phy_82575(struct e1000_hw
*hw
)
258 mask
= hw
->bus
.func
? E1000_SWFW_PHY1_SM
: E1000_SWFW_PHY0_SM
;
259 igb_release_swfw_sync_82575(hw
, mask
);
263 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
264 * @hw: pointer to the HW structure
265 * @offset: register offset to be read
266 * @data: pointer to the read data
268 * Reads the PHY register at offset using the serial gigabit media independent
269 * interface and stores the retrieved information in data.
271 static s32
igb_read_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
274 struct e1000_phy_info
*phy
= &hw
->phy
;
277 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
278 hw_dbg("PHY Address %u is out of range\n", offset
);
279 return -E1000_ERR_PARAM
;
283 * Set up Op-code, Phy Address, and register address in the I2CCMD
284 * register. The MAC will take care of interfacing with the
285 * PHY to retrieve the desired data.
287 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
288 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
289 (E1000_I2CCMD_OPCODE_READ
));
291 wr32(E1000_I2CCMD
, i2ccmd
);
293 /* Poll the ready bit to see if the I2C read completed */
294 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
296 i2ccmd
= rd32(E1000_I2CCMD
);
297 if (i2ccmd
& E1000_I2CCMD_READY
)
300 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
301 hw_dbg("I2CCMD Read did not complete\n");
302 return -E1000_ERR_PHY
;
304 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
305 hw_dbg("I2CCMD Error bit set\n");
306 return -E1000_ERR_PHY
;
309 /* Need to byte-swap the 16-bit value. */
310 *data
= ((i2ccmd
>> 8) & 0x00FF) | ((i2ccmd
<< 8) & 0xFF00);
316 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
317 * @hw: pointer to the HW structure
318 * @offset: register offset to write to
319 * @data: data to write at register offset
321 * Writes the data to PHY register at the offset using the serial gigabit
322 * media independent interface.
324 static s32
igb_write_phy_reg_sgmii_82575(struct e1000_hw
*hw
, u32 offset
,
327 struct e1000_phy_info
*phy
= &hw
->phy
;
329 u16 phy_data_swapped
;
331 if (offset
> E1000_MAX_SGMII_PHY_REG_ADDR
) {
332 hw_dbg("PHY Address %d is out of range\n", offset
);
333 return -E1000_ERR_PARAM
;
336 /* Swap the data bytes for the I2C interface */
337 phy_data_swapped
= ((data
>> 8) & 0x00FF) | ((data
<< 8) & 0xFF00);
340 * Set up Op-code, Phy Address, and register address in the I2CCMD
341 * register. The MAC will take care of interfacing with the
342 * PHY to retrieve the desired data.
344 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
345 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
346 E1000_I2CCMD_OPCODE_WRITE
|
349 wr32(E1000_I2CCMD
, i2ccmd
);
351 /* Poll the ready bit to see if the I2C read completed */
352 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
354 i2ccmd
= rd32(E1000_I2CCMD
);
355 if (i2ccmd
& E1000_I2CCMD_READY
)
358 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
359 hw_dbg("I2CCMD Write did not complete\n");
360 return -E1000_ERR_PHY
;
362 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
363 hw_dbg("I2CCMD Error bit set\n");
364 return -E1000_ERR_PHY
;
371 * igb_get_phy_id_82575 - Retrieve PHY addr and id
372 * @hw: pointer to the HW structure
374 * Retrieves the PHY address and ID for both PHY's which do and do not use
377 static s32
igb_get_phy_id_82575(struct e1000_hw
*hw
)
379 struct e1000_phy_info
*phy
= &hw
->phy
;
384 * For SGMII PHYs, we try the list of possible addresses until
385 * we find one that works. For non-SGMII PHYs
386 * (e.g. integrated copper PHYs), an address of 1 should
387 * work. The result of this function should mean phy->phy_addr
388 * and phy->id are set correctly.
390 if (!(igb_sgmii_active_82575(hw
))) {
392 ret_val
= igb_get_phy_id(hw
);
397 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
398 * Therefore, we need to test 1-7
400 for (phy
->addr
= 1; phy
->addr
< 8; phy
->addr
++) {
401 ret_val
= igb_read_phy_reg_sgmii_82575(hw
, PHY_ID1
, &phy_id
);
403 hw_dbg("Vendor ID 0x%08X read at address %u\n",
406 * At the time of this writing, The M88 part is
407 * the only supported SGMII PHY product.
409 if (phy_id
== M88_VENDOR
)
412 hw_dbg("PHY address %u was unreadable\n", phy
->addr
);
416 /* A valid PHY type couldn't be found. */
417 if (phy
->addr
== 8) {
419 ret_val
= -E1000_ERR_PHY
;
423 ret_val
= igb_get_phy_id(hw
);
430 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
431 * @hw: pointer to the HW structure
433 * Resets the PHY using the serial gigabit media independent interface.
435 static s32
igb_phy_hw_reset_sgmii_82575(struct e1000_hw
*hw
)
440 * This isn't a true "hard" reset, but is the only reset
441 * available to us at this time.
444 hw_dbg("Soft resetting SGMII attached PHY...\n");
447 * SFP documentation requires the following to configure the SPF module
448 * to work on SGMII. No further documentation is given.
450 ret_val
= hw
->phy
.ops
.write_reg(hw
, 0x1B, 0x8084);
454 ret_val
= igb_phy_sw_reset(hw
);
461 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
462 * @hw: pointer to the HW structure
463 * @active: true to enable LPLU, false to disable
465 * Sets the LPLU D0 state according to the active flag. When
466 * activating LPLU this function also disables smart speed
467 * and vice versa. LPLU will not be activated unless the
468 * device autonegotiation advertisement meets standards of
469 * either 10 or 10/100 or 10/100/1000 at all duplexes.
470 * This is a function pointer entry point only called by
471 * PHY setup routines.
473 static s32
igb_set_d0_lplu_state_82575(struct e1000_hw
*hw
, bool active
)
475 struct e1000_phy_info
*phy
= &hw
->phy
;
479 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
484 data
|= IGP02E1000_PM_D0_LPLU
;
485 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
490 /* When LPLU is enabled, we should disable SmartSpeed */
491 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
493 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
494 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
499 data
&= ~IGP02E1000_PM_D0_LPLU
;
500 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
503 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
504 * during Dx states where the power conservation is most
505 * important. During driver activity we should enable
506 * SmartSpeed, so performance is maintained.
508 if (phy
->smart_speed
== e1000_smart_speed_on
) {
509 ret_val
= phy
->ops
.read_reg(hw
,
510 IGP01E1000_PHY_PORT_CONFIG
, &data
);
514 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
515 ret_val
= phy
->ops
.write_reg(hw
,
516 IGP01E1000_PHY_PORT_CONFIG
, data
);
519 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
520 ret_val
= phy
->ops
.read_reg(hw
,
521 IGP01E1000_PHY_PORT_CONFIG
, &data
);
525 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
526 ret_val
= phy
->ops
.write_reg(hw
,
527 IGP01E1000_PHY_PORT_CONFIG
, data
);
538 * igb_acquire_nvm_82575 - Request for access to EEPROM
539 * @hw: pointer to the HW structure
541 * Acquire the necessary semaphores for exclusive access to the EEPROM.
542 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
543 * Return successful if access grant bit set, else clear the request for
544 * EEPROM access and return -E1000_ERR_NVM (-1).
546 static s32
igb_acquire_nvm_82575(struct e1000_hw
*hw
)
550 ret_val
= igb_acquire_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
554 ret_val
= igb_acquire_nvm(hw
);
557 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
564 * igb_release_nvm_82575 - Release exclusive access to EEPROM
565 * @hw: pointer to the HW structure
567 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
568 * then release the semaphores acquired.
570 static void igb_release_nvm_82575(struct e1000_hw
*hw
)
573 igb_release_swfw_sync_82575(hw
, E1000_SWFW_EEP_SM
);
577 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
578 * @hw: pointer to the HW structure
579 * @mask: specifies which semaphore to acquire
581 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
582 * will also specify which port we're acquiring the lock for.
584 static s32
igb_acquire_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
588 u32 fwmask
= mask
<< 16;
590 s32 i
= 0, timeout
= 200; /* FIXME: find real value to use here */
592 while (i
< timeout
) {
593 if (igb_get_hw_semaphore(hw
)) {
594 ret_val
= -E1000_ERR_SWFW_SYNC
;
598 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
599 if (!(swfw_sync
& (fwmask
| swmask
)))
603 * Firmware currently using resource (fwmask)
604 * or other software thread using resource (swmask)
606 igb_put_hw_semaphore(hw
);
612 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
613 ret_val
= -E1000_ERR_SWFW_SYNC
;
618 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
620 igb_put_hw_semaphore(hw
);
627 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
628 * @hw: pointer to the HW structure
629 * @mask: specifies which semaphore to acquire
631 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
632 * will also specify which port we're releasing the lock for.
634 static void igb_release_swfw_sync_82575(struct e1000_hw
*hw
, u16 mask
)
638 while (igb_get_hw_semaphore(hw
) != 0);
641 swfw_sync
= rd32(E1000_SW_FW_SYNC
);
643 wr32(E1000_SW_FW_SYNC
, swfw_sync
);
645 igb_put_hw_semaphore(hw
);
649 * igb_get_cfg_done_82575 - Read config done bit
650 * @hw: pointer to the HW structure
652 * Read the management control register for the config done bit for
653 * completion status. NOTE: silicon which is EEPROM-less will fail trying
654 * to read the config done bit, so an error is *ONLY* logged and returns
655 * 0. If we were to return with error, EEPROM-less silicon
656 * would not be able to be reset or change link.
658 static s32
igb_get_cfg_done_82575(struct e1000_hw
*hw
)
660 s32 timeout
= PHY_CFG_TIMEOUT
;
662 u32 mask
= E1000_NVM_CFG_DONE_PORT_0
;
664 if (hw
->bus
.func
== 1)
665 mask
= E1000_NVM_CFG_DONE_PORT_1
;
668 if (rd32(E1000_EEMNGCTL
) & mask
)
674 hw_dbg("MNG configuration cycle has not completed.\n");
676 /* If EEPROM is not marked present, init the PHY manually */
677 if (((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0) &&
678 (hw
->phy
.type
== e1000_phy_igp_3
))
679 igb_phy_init_script_igp3(hw
);
685 * igb_check_for_link_82575 - Check for link
686 * @hw: pointer to the HW structure
688 * If sgmii is enabled, then use the pcs register to determine link, otherwise
689 * use the generic interface for determining link.
691 static s32
igb_check_for_link_82575(struct e1000_hw
*hw
)
696 /* SGMII link check is done through the PCS register. */
697 if ((hw
->phy
.media_type
!= e1000_media_type_copper
) ||
698 (igb_sgmii_active_82575(hw
))) {
699 ret_val
= igb_get_pcs_speed_and_duplex_82575(hw
, &speed
,
702 * Use this flag to determine if link needs to be checked or
703 * not. If we have link clear the flag so that we do not
704 * continue to check for link.
706 hw
->mac
.get_link_status
= !hw
->mac
.serdes_has_link
;
708 ret_val
= igb_check_for_copper_link(hw
);
714 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
715 * @hw: pointer to the HW structure
716 * @speed: stores the current speed
717 * @duplex: stores the current duplex
719 * Using the physical coding sub-layer (PCS), retrieve the current speed and
720 * duplex, then store the values in the pointers provided.
722 static s32
igb_get_pcs_speed_and_duplex_82575(struct e1000_hw
*hw
, u16
*speed
,
725 struct e1000_mac_info
*mac
= &hw
->mac
;
728 /* Set up defaults for the return values of this function */
729 mac
->serdes_has_link
= false;
734 * Read the PCS Status register for link state. For non-copper mode,
735 * the status register is not accurate. The PCS status register is
738 pcs
= rd32(E1000_PCS_LSTAT
);
741 * The link up bit determines when link is up on autoneg. The sync ok
742 * gets set once both sides sync up and agree upon link. Stable link
743 * can be determined by checking for both link up and link sync ok
745 if ((pcs
& E1000_PCS_LSTS_LINK_OK
) && (pcs
& E1000_PCS_LSTS_SYNK_OK
)) {
746 mac
->serdes_has_link
= true;
748 /* Detect and store PCS speed */
749 if (pcs
& E1000_PCS_LSTS_SPEED_1000
) {
751 } else if (pcs
& E1000_PCS_LSTS_SPEED_100
) {
757 /* Detect and store PCS duplex */
758 if (pcs
& E1000_PCS_LSTS_DUPLEX_FULL
) {
759 *duplex
= FULL_DUPLEX
;
761 *duplex
= HALF_DUPLEX
;
769 * igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
770 * @hw: pointer to the HW structure
772 * In the case of fiber serdes, shut down optics and PCS on driver unload
773 * when management pass thru is not enabled.
775 void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw
*hw
)
779 if (hw
->phy
.media_type
!= e1000_media_type_internal_serdes
)
782 /* if the management interface is not enabled, then power down */
783 if (!igb_enable_mng_pass_thru(hw
)) {
784 /* Disable PCS to turn off link */
785 reg
= rd32(E1000_PCS_CFG0
);
786 reg
&= ~E1000_PCS_CFG_PCS_EN
;
787 wr32(E1000_PCS_CFG0
, reg
);
789 /* shutdown the laser */
790 reg
= rd32(E1000_CTRL_EXT
);
791 reg
|= E1000_CTRL_EXT_SDP7_DATA
;
792 wr32(E1000_CTRL_EXT
, reg
);
794 /* flush the write to verify completion */
803 * igb_reset_hw_82575 - Reset hardware
804 * @hw: pointer to the HW structure
806 * This resets the hardware into a known state. This is a
807 * function pointer entry point called by the api module.
809 static s32
igb_reset_hw_82575(struct e1000_hw
*hw
)
815 * Prevent the PCI-E bus from sticking if there is no TLP connection
816 * on the last TLP read/write transaction when MAC is reset.
818 ret_val
= igb_disable_pcie_master(hw
);
820 hw_dbg("PCI-E Master disable polling has failed.\n");
822 /* set the completion timeout for interface */
823 ret_val
= igb_set_pcie_completion_timeout(hw
);
825 hw_dbg("PCI-E Set completion timeout has failed.\n");
828 hw_dbg("Masking off all interrupts\n");
829 wr32(E1000_IMC
, 0xffffffff);
832 wr32(E1000_TCTL
, E1000_TCTL_PSP
);
837 ctrl
= rd32(E1000_CTRL
);
839 hw_dbg("Issuing a global reset to MAC\n");
840 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_RST
);
842 ret_val
= igb_get_auto_rd_done(hw
);
845 * When auto config read does not complete, do not
846 * return with an error. This can happen in situations
847 * where there is no eeprom and prevents getting link.
849 hw_dbg("Auto Read Done did not complete\n");
852 /* If EEPROM is not present, run manual init scripts */
853 if ((rd32(E1000_EECD
) & E1000_EECD_PRES
) == 0)
854 igb_reset_init_script_82575(hw
);
856 /* Clear any pending interrupt events. */
857 wr32(E1000_IMC
, 0xffffffff);
858 icr
= rd32(E1000_ICR
);
860 /* Install any alternate MAC address into RAR0 */
861 ret_val
= igb_check_alt_mac_addr(hw
);
867 * igb_init_hw_82575 - Initialize hardware
868 * @hw: pointer to the HW structure
870 * This inits the hardware readying it for operation.
872 static s32
igb_init_hw_82575(struct e1000_hw
*hw
)
874 struct e1000_mac_info
*mac
= &hw
->mac
;
876 u16 i
, rar_count
= mac
->rar_entry_count
;
878 /* Initialize identification LED */
879 ret_val
= igb_id_led_init(hw
);
881 hw_dbg("Error initializing identification LED\n");
882 /* This is not fatal and we should not stop init due to this */
885 /* Disabling VLAN filtering */
886 hw_dbg("Initializing the IEEE VLAN\n");
889 /* Setup the receive address */
890 igb_init_rx_addrs(hw
, rar_count
);
892 /* Zero out the Multicast HASH table */
893 hw_dbg("Zeroing the MTA\n");
894 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
895 array_wr32(E1000_MTA
, i
, 0);
897 /* Setup link and flow control */
898 ret_val
= igb_setup_link(hw
);
901 * Clear all of the statistics registers (clear on read). It is
902 * important that we do this after we have tried to establish link
903 * because the symbol error count will increment wildly if there
906 igb_clear_hw_cntrs_82575(hw
);
912 * igb_setup_copper_link_82575 - Configure copper link settings
913 * @hw: pointer to the HW structure
915 * Configures the link for auto-neg or forced speed and duplex. Then we check
916 * for link, once link is established calls to configure collision distance
917 * and flow control are called.
919 static s32
igb_setup_copper_link_82575(struct e1000_hw
*hw
)
925 ctrl
= rd32(E1000_CTRL
);
926 ctrl
|= E1000_CTRL_SLU
;
927 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
928 wr32(E1000_CTRL
, ctrl
);
930 switch (hw
->phy
.type
) {
932 ret_val
= igb_copper_link_setup_m88(hw
);
934 case e1000_phy_igp_3
:
935 ret_val
= igb_copper_link_setup_igp(hw
);
938 ret_val
= -E1000_ERR_PHY
;
945 if (hw
->mac
.autoneg
) {
947 * Setup autoneg and flow control advertisement
948 * and perform autonegotiation.
950 ret_val
= igb_copper_link_autoneg(hw
);
955 * PHY will be set to 10H, 10F, 100H or 100F
956 * depending on user settings.
958 hw_dbg("Forcing Speed and Duplex\n");
959 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
961 hw_dbg("Error Forcing Speed and Duplex\n");
966 igb_configure_pcs_link_82575(hw
);
969 * Check link status. Wait up to 100 microseconds for link to become
972 ret_val
= igb_phy_has_link(hw
, COPPER_LINK_UP_LIMIT
, 10, &link
);
977 hw_dbg("Valid link established!!!\n");
978 /* Config the MAC and PHY after link is up */
979 igb_config_collision_dist(hw
);
980 ret_val
= igb_config_fc_after_link_up(hw
);
982 hw_dbg("Unable to establish link!!!\n");
990 * igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
991 * @hw: pointer to the HW structure
993 * Configures speed and duplex for fiber and serdes links.
995 static s32
igb_setup_fiber_serdes_link_82575(struct e1000_hw
*hw
)
1000 * On the 82575, SerDes loopback mode persists until it is
1001 * explicitly turned off or a power cycle is performed. A read to
1002 * the register does not indicate its status. Therefore, we ensure
1003 * loopback mode is disabled during initialization.
1005 wr32(E1000_SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1007 /* Force link up, set 1gb, set both sw defined pins */
1008 reg
= rd32(E1000_CTRL
);
1009 reg
|= E1000_CTRL_SLU
|
1010 E1000_CTRL_SPD_1000
|
1012 E1000_CTRL_SWDPIN0
|
1014 wr32(E1000_CTRL
, reg
);
1016 /* Power on phy for 82576 fiber adapters */
1017 if (hw
->mac
.type
== e1000_82576
) {
1018 reg
= rd32(E1000_CTRL_EXT
);
1019 reg
&= ~E1000_CTRL_EXT_SDP7_DATA
;
1020 wr32(E1000_CTRL_EXT
, reg
);
1023 /* Set switch control to serdes energy detect */
1024 reg
= rd32(E1000_CONNSW
);
1025 reg
|= E1000_CONNSW_ENRGSRC
;
1026 wr32(E1000_CONNSW
, reg
);
1029 * New SerDes mode allows for forcing speed or autonegotiating speed
1030 * at 1gb. Autoneg should be default set by most drivers. This is the
1031 * mode that will be compatible with older link partners and switches.
1032 * However, both are supported by the hardware and some drivers/tools.
1034 reg
= rd32(E1000_PCS_LCTL
);
1036 reg
&= ~(E1000_PCS_LCTL_AN_ENABLE
| E1000_PCS_LCTL_FLV_LINK_UP
|
1037 E1000_PCS_LCTL_FSD
| E1000_PCS_LCTL_FORCE_LINK
);
1039 if (hw
->mac
.autoneg
) {
1040 /* Set PCS register for autoneg */
1041 reg
|= E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1042 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1043 E1000_PCS_LCTL_AN_ENABLE
| /* Enable Autoneg */
1044 E1000_PCS_LCTL_AN_RESTART
; /* Restart autoneg */
1045 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg
);
1047 /* Set PCS register for forced speed */
1048 reg
|= E1000_PCS_LCTL_FLV_LINK_UP
| /* Force link up */
1049 E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1050 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1051 E1000_PCS_LCTL_FSD
| /* Force Speed */
1052 E1000_PCS_LCTL_FORCE_LINK
; /* Force Link */
1053 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg
);
1056 if (hw
->mac
.type
== e1000_82576
) {
1057 reg
|= E1000_PCS_LCTL_FORCE_FCTRL
;
1058 igb_force_mac_fc(hw
);
1061 wr32(E1000_PCS_LCTL
, reg
);
1067 * igb_configure_pcs_link_82575 - Configure PCS link
1068 * @hw: pointer to the HW structure
1070 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1071 * only used on copper connections where the serialized gigabit media
1072 * independent interface (sgmii) is being used. Configures the link
1073 * for auto-negotiation or forces speed/duplex.
1075 static void igb_configure_pcs_link_82575(struct e1000_hw
*hw
)
1077 struct e1000_mac_info
*mac
= &hw
->mac
;
1080 if (hw
->phy
.media_type
!= e1000_media_type_copper
||
1081 !(igb_sgmii_active_82575(hw
)))
1084 /* For SGMII, we need to issue a PCS autoneg restart */
1085 reg
= rd32(E1000_PCS_LCTL
);
1087 /* AN time out should be disabled for SGMII mode */
1088 reg
&= ~(E1000_PCS_LCTL_AN_TIMEOUT
);
1091 /* Make sure forced speed and force link are not set */
1092 reg
&= ~(E1000_PCS_LCTL_FSD
| E1000_PCS_LCTL_FORCE_LINK
);
1095 * The PHY should be setup prior to calling this function.
1096 * All we need to do is restart autoneg and enable autoneg.
1098 reg
|= E1000_PCS_LCTL_AN_RESTART
| E1000_PCS_LCTL_AN_ENABLE
;
1100 /* Set PCS register for forced speed */
1102 /* Turn off bits for full duplex, speed, and autoneg */
1103 reg
&= ~(E1000_PCS_LCTL_FSV_1000
|
1104 E1000_PCS_LCTL_FSV_100
|
1105 E1000_PCS_LCTL_FDV_FULL
|
1106 E1000_PCS_LCTL_AN_ENABLE
);
1108 /* Check for duplex first */
1109 if (mac
->forced_speed_duplex
& E1000_ALL_FULL_DUPLEX
)
1110 reg
|= E1000_PCS_LCTL_FDV_FULL
;
1113 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
)
1114 reg
|= E1000_PCS_LCTL_FSV_100
;
1116 /* Force speed and force link */
1117 reg
|= E1000_PCS_LCTL_FSD
|
1118 E1000_PCS_LCTL_FORCE_LINK
|
1119 E1000_PCS_LCTL_FLV_LINK_UP
;
1121 hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1124 wr32(E1000_PCS_LCTL
, reg
);
1128 * igb_sgmii_active_82575 - Return sgmii state
1129 * @hw: pointer to the HW structure
1131 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1132 * which can be enabled for use in the embedded applications. Simply
1133 * return the current state of the sgmii interface.
1135 static bool igb_sgmii_active_82575(struct e1000_hw
*hw
)
1137 struct e1000_dev_spec_82575
*dev_spec
= &hw
->dev_spec
._82575
;
1138 return dev_spec
->sgmii_active
;
1142 * igb_reset_init_script_82575 - Inits HW defaults after reset
1143 * @hw: pointer to the HW structure
1145 * Inits recommended HW defaults after a reset when there is no EEPROM
1146 * detected. This is only for the 82575.
1148 static s32
igb_reset_init_script_82575(struct e1000_hw
*hw
)
1150 if (hw
->mac
.type
== e1000_82575
) {
1151 hw_dbg("Running reset init script for 82575\n");
1152 /* SerDes configuration via SERDESCTRL */
1153 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x00, 0x0C);
1154 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x01, 0x78);
1155 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x1B, 0x23);
1156 igb_write_8bit_ctrl_reg(hw
, E1000_SCTL
, 0x23, 0x15);
1158 /* CCM configuration via CCMCTL register */
1159 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x14, 0x00);
1160 igb_write_8bit_ctrl_reg(hw
, E1000_CCMCTL
, 0x10, 0x00);
1162 /* PCIe lanes configuration */
1163 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x00, 0xEC);
1164 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x61, 0xDF);
1165 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x34, 0x05);
1166 igb_write_8bit_ctrl_reg(hw
, E1000_GIOCTL
, 0x2F, 0x81);
1168 /* PCIe PLL Configuration */
1169 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x02, 0x47);
1170 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x14, 0x00);
1171 igb_write_8bit_ctrl_reg(hw
, E1000_SCCTL
, 0x10, 0x00);
1178 * igb_read_mac_addr_82575 - Read device MAC address
1179 * @hw: pointer to the HW structure
1181 static s32
igb_read_mac_addr_82575(struct e1000_hw
*hw
)
1185 if (igb_check_alt_mac_addr(hw
))
1186 ret_val
= igb_read_mac_addr(hw
);
1192 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1193 * @hw: pointer to the HW structure
1195 * Clears the hardware counters by reading the counter registers.
1197 static void igb_clear_hw_cntrs_82575(struct e1000_hw
*hw
)
1201 igb_clear_hw_cntrs_base(hw
);
1203 temp
= rd32(E1000_PRC64
);
1204 temp
= rd32(E1000_PRC127
);
1205 temp
= rd32(E1000_PRC255
);
1206 temp
= rd32(E1000_PRC511
);
1207 temp
= rd32(E1000_PRC1023
);
1208 temp
= rd32(E1000_PRC1522
);
1209 temp
= rd32(E1000_PTC64
);
1210 temp
= rd32(E1000_PTC127
);
1211 temp
= rd32(E1000_PTC255
);
1212 temp
= rd32(E1000_PTC511
);
1213 temp
= rd32(E1000_PTC1023
);
1214 temp
= rd32(E1000_PTC1522
);
1216 temp
= rd32(E1000_ALGNERRC
);
1217 temp
= rd32(E1000_RXERRC
);
1218 temp
= rd32(E1000_TNCRS
);
1219 temp
= rd32(E1000_CEXTERR
);
1220 temp
= rd32(E1000_TSCTC
);
1221 temp
= rd32(E1000_TSCTFC
);
1223 temp
= rd32(E1000_MGTPRC
);
1224 temp
= rd32(E1000_MGTPDC
);
1225 temp
= rd32(E1000_MGTPTC
);
1227 temp
= rd32(E1000_IAC
);
1228 temp
= rd32(E1000_ICRXOC
);
1230 temp
= rd32(E1000_ICRXPTC
);
1231 temp
= rd32(E1000_ICRXATC
);
1232 temp
= rd32(E1000_ICTXPTC
);
1233 temp
= rd32(E1000_ICTXATC
);
1234 temp
= rd32(E1000_ICTXQEC
);
1235 temp
= rd32(E1000_ICTXQMTC
);
1236 temp
= rd32(E1000_ICRXDMTC
);
1238 temp
= rd32(E1000_CBTMPC
);
1239 temp
= rd32(E1000_HTDPMC
);
1240 temp
= rd32(E1000_CBRMPC
);
1241 temp
= rd32(E1000_RPTHC
);
1242 temp
= rd32(E1000_HGPTC
);
1243 temp
= rd32(E1000_HTCBDPC
);
1244 temp
= rd32(E1000_HGORCL
);
1245 temp
= rd32(E1000_HGORCH
);
1246 temp
= rd32(E1000_HGOTCL
);
1247 temp
= rd32(E1000_HGOTCH
);
1248 temp
= rd32(E1000_LENERRS
);
1250 /* This register should not be read in copper configurations */
1251 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1252 temp
= rd32(E1000_SCVPC
);
1256 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1257 * @hw: pointer to the HW structure
1259 * After rx enable if managability is enabled then there is likely some
1260 * bad data at the start of the fifo and possibly in the DMA fifo. This
1261 * function clears the fifos and flushes any packets that came in as rx was
1264 void igb_rx_fifo_flush_82575(struct e1000_hw
*hw
)
1266 u32 rctl
, rlpml
, rxdctl
[4], rfctl
, temp_rctl
, rx_enabled
;
1269 if (hw
->mac
.type
!= e1000_82575
||
1270 !(rd32(E1000_MANC
) & E1000_MANC_RCV_TCO_EN
))
1273 /* Disable all RX queues */
1274 for (i
= 0; i
< 4; i
++) {
1275 rxdctl
[i
] = rd32(E1000_RXDCTL(i
));
1276 wr32(E1000_RXDCTL(i
),
1277 rxdctl
[i
] & ~E1000_RXDCTL_QUEUE_ENABLE
);
1279 /* Poll all queues to verify they have shut down */
1280 for (ms_wait
= 0; ms_wait
< 10; ms_wait
++) {
1283 for (i
= 0; i
< 4; i
++)
1284 rx_enabled
|= rd32(E1000_RXDCTL(i
));
1285 if (!(rx_enabled
& E1000_RXDCTL_QUEUE_ENABLE
))
1290 hw_dbg("Queue disable timed out after 10ms\n");
1292 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1293 * incoming packets are rejected. Set enable and wait 2ms so that
1294 * any packet that was coming in as RCTL.EN was set is flushed
1296 rfctl
= rd32(E1000_RFCTL
);
1297 wr32(E1000_RFCTL
, rfctl
& ~E1000_RFCTL_LEF
);
1299 rlpml
= rd32(E1000_RLPML
);
1300 wr32(E1000_RLPML
, 0);
1302 rctl
= rd32(E1000_RCTL
);
1303 temp_rctl
= rctl
& ~(E1000_RCTL_EN
| E1000_RCTL_SBP
);
1304 temp_rctl
|= E1000_RCTL_LPE
;
1306 wr32(E1000_RCTL
, temp_rctl
);
1307 wr32(E1000_RCTL
, temp_rctl
| E1000_RCTL_EN
);
1311 /* Enable RX queues that were previously enabled and restore our
1314 for (i
= 0; i
< 4; i
++)
1315 wr32(E1000_RXDCTL(i
), rxdctl
[i
]);
1316 wr32(E1000_RCTL
, rctl
);
1319 wr32(E1000_RLPML
, rlpml
);
1320 wr32(E1000_RFCTL
, rfctl
);
1322 /* Flush receive errors generated by workaround */
1329 * igb_set_pcie_completion_timeout - set pci-e completion timeout
1330 * @hw: pointer to the HW structure
1332 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1333 * however the hardware default for these parts is 500us to 1ms which is less
1334 * than the 10ms recommended by the pci-e spec. To address this we need to
1335 * increase the value to either 10ms to 200ms for capability version 1 config,
1336 * or 16ms to 55ms for version 2.
1338 static s32
igb_set_pcie_completion_timeout(struct e1000_hw
*hw
)
1340 u32 gcr
= rd32(E1000_GCR
);
1344 /* only take action if timeout value is defaulted to 0 */
1345 if (gcr
& E1000_GCR_CMPL_TMOUT_MASK
)
1349 * if capababilities version is type 1 we can write the
1350 * timeout of 10ms to 200ms through the GCR register
1352 if (!(gcr
& E1000_GCR_CAP_VER2
)) {
1353 gcr
|= E1000_GCR_CMPL_TMOUT_10ms
;
1358 * for version 2 capabilities we need to write the config space
1359 * directly in order to set the completion timeout value for
1362 ret_val
= igb_read_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1367 pcie_devctl2
|= PCIE_DEVICE_CONTROL2_16ms
;
1369 ret_val
= igb_write_pcie_cap_reg(hw
, PCIE_DEVICE_CONTROL2
,
1372 /* disable completion timeout resend */
1373 gcr
&= ~E1000_GCR_CMPL_TMOUT_RESEND
;
1375 wr32(E1000_GCR
, gcr
);
1380 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1381 * @hw: pointer to the hardware struct
1382 * @enable: state to enter, either enabled or disabled
1384 * enables/disables L2 switch loopback functionality.
1386 void igb_vmdq_set_loopback_pf(struct e1000_hw
*hw
, bool enable
)
1388 u32 dtxswc
= rd32(E1000_DTXSWC
);
1391 dtxswc
|= E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1393 dtxswc
&= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN
;
1395 wr32(E1000_DTXSWC
, dtxswc
);
1399 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1400 * @hw: pointer to the hardware struct
1401 * @enable: state to enter, either enabled or disabled
1403 * enables/disables replication of packets across multiple pools.
1405 void igb_vmdq_set_replication_pf(struct e1000_hw
*hw
, bool enable
)
1407 u32 vt_ctl
= rd32(E1000_VT_CTL
);
1410 vt_ctl
|= E1000_VT_CTL_VM_REPL_EN
;
1412 vt_ctl
&= ~E1000_VT_CTL_VM_REPL_EN
;
1414 wr32(E1000_VT_CTL
, vt_ctl
);
1417 static struct e1000_mac_operations e1000_mac_ops_82575
= {
1418 .reset_hw
= igb_reset_hw_82575
,
1419 .init_hw
= igb_init_hw_82575
,
1420 .check_for_link
= igb_check_for_link_82575
,
1421 .rar_set
= igb_rar_set
,
1422 .read_mac_addr
= igb_read_mac_addr_82575
,
1423 .get_speed_and_duplex
= igb_get_speed_and_duplex_copper
,
1426 static struct e1000_phy_operations e1000_phy_ops_82575
= {
1427 .acquire
= igb_acquire_phy_82575
,
1428 .get_cfg_done
= igb_get_cfg_done_82575
,
1429 .release
= igb_release_phy_82575
,
1432 static struct e1000_nvm_operations e1000_nvm_ops_82575
= {
1433 .acquire
= igb_acquire_nvm_82575
,
1434 .read
= igb_read_nvm_eerd
,
1435 .release
= igb_release_nvm_82575
,
1436 .write
= igb_write_nvm_spi
,
1439 const struct e1000_info e1000_82575_info
= {
1440 .get_invariants
= igb_get_invariants_82575
,
1441 .mac_ops
= &e1000_mac_ops_82575
,
1442 .phy_ops
= &e1000_phy_ops_82575
,
1443 .nvm_ops
= &e1000_nvm_ops_82575
,