JBD: round commit timer up to avoid uncommitted transaction
[linux/fpc-iii.git] / drivers / net / igb / igb_main.c
blob943186b78483f27d9f7fb6d761ea0f5f60158d07
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if_vlan.h>
41 #include <linux/pci.h>
42 #include <linux/pci-aspm.h>
43 #include <linux/delay.h>
44 #include <linux/interrupt.h>
45 #include <linux/if_ether.h>
46 #include <linux/aer.h>
47 #ifdef CONFIG_IGB_DCA
48 #include <linux/dca.h>
49 #endif
50 #include "igb.h"
52 #define DRV_VERSION "1.3.16-k2"
53 char igb_driver_name[] = "igb";
54 char igb_driver_version[] = DRV_VERSION;
55 static const char igb_driver_string[] =
56 "Intel(R) Gigabit Ethernet Network Driver";
57 static const char igb_copyright[] = "Copyright (c) 2007-2009 Intel Corporation.";
59 static const struct e1000_info *igb_info_tbl[] = {
60 [board_82575] = &e1000_82575_info,
63 static struct pci_device_id igb_pci_tbl[] = {
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
73 /* required last entry */
74 {0, }
77 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
79 void igb_reset(struct igb_adapter *);
80 static int igb_setup_all_tx_resources(struct igb_adapter *);
81 static int igb_setup_all_rx_resources(struct igb_adapter *);
82 static void igb_free_all_tx_resources(struct igb_adapter *);
83 static void igb_free_all_rx_resources(struct igb_adapter *);
84 void igb_update_stats(struct igb_adapter *);
85 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
86 static void __devexit igb_remove(struct pci_dev *pdev);
87 static int igb_sw_init(struct igb_adapter *);
88 static int igb_open(struct net_device *);
89 static int igb_close(struct net_device *);
90 static void igb_configure_tx(struct igb_adapter *);
91 static void igb_configure_rx(struct igb_adapter *);
92 static void igb_setup_rctl(struct igb_adapter *);
93 static void igb_clean_all_tx_rings(struct igb_adapter *);
94 static void igb_clean_all_rx_rings(struct igb_adapter *);
95 static void igb_clean_tx_ring(struct igb_ring *);
96 static void igb_clean_rx_ring(struct igb_ring *);
97 static void igb_set_rx_mode(struct net_device *);
98 static void igb_update_phy_info(unsigned long);
99 static void igb_watchdog(unsigned long);
100 static void igb_watchdog_task(struct work_struct *);
101 static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *,
102 struct net_device *,
103 struct igb_ring *);
104 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
105 struct net_device *);
106 static struct net_device_stats *igb_get_stats(struct net_device *);
107 static int igb_change_mtu(struct net_device *, int);
108 static int igb_set_mac(struct net_device *, void *);
109 static irqreturn_t igb_intr(int irq, void *);
110 static irqreturn_t igb_intr_msi(int irq, void *);
111 static irqreturn_t igb_msix_other(int irq, void *);
112 static irqreturn_t igb_msix_rx(int irq, void *);
113 static irqreturn_t igb_msix_tx(int irq, void *);
114 #ifdef CONFIG_IGB_DCA
115 static void igb_update_rx_dca(struct igb_ring *);
116 static void igb_update_tx_dca(struct igb_ring *);
117 static void igb_setup_dca(struct igb_adapter *);
118 #endif /* CONFIG_IGB_DCA */
119 static bool igb_clean_tx_irq(struct igb_ring *);
120 static int igb_poll(struct napi_struct *, int);
121 static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
122 static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
123 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
124 static void igb_tx_timeout(struct net_device *);
125 static void igb_reset_task(struct work_struct *);
126 static void igb_vlan_rx_register(struct net_device *, struct vlan_group *);
127 static void igb_vlan_rx_add_vid(struct net_device *, u16);
128 static void igb_vlan_rx_kill_vid(struct net_device *, u16);
129 static void igb_restore_vlan(struct igb_adapter *);
130 static void igb_ping_all_vfs(struct igb_adapter *);
131 static void igb_msg_task(struct igb_adapter *);
132 static int igb_rcv_msg_from_vf(struct igb_adapter *, u32);
133 static inline void igb_set_rah_pool(struct e1000_hw *, int , int);
134 static void igb_vmm_control(struct igb_adapter *);
135 static int igb_set_vf_mac(struct igb_adapter *adapter, int, unsigned char *);
136 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
138 static inline void igb_set_vmolr(struct e1000_hw *hw, int vfn)
140 u32 reg_data;
142 reg_data = rd32(E1000_VMOLR(vfn));
143 reg_data |= E1000_VMOLR_BAM | /* Accept broadcast */
144 E1000_VMOLR_ROPE | /* Accept packets matched in UTA */
145 E1000_VMOLR_ROMPE | /* Accept packets matched in MTA */
146 E1000_VMOLR_AUPE | /* Accept untagged packets */
147 E1000_VMOLR_STRVLAN; /* Strip vlan tags */
148 wr32(E1000_VMOLR(vfn), reg_data);
151 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
152 int vfn)
154 struct e1000_hw *hw = &adapter->hw;
155 u32 vmolr;
157 /* if it isn't the PF check to see if VFs are enabled and
158 * increase the size to support vlan tags */
159 if (vfn < adapter->vfs_allocated_count &&
160 adapter->vf_data[vfn].vlans_enabled)
161 size += VLAN_TAG_SIZE;
163 vmolr = rd32(E1000_VMOLR(vfn));
164 vmolr &= ~E1000_VMOLR_RLPML_MASK;
165 vmolr |= size | E1000_VMOLR_LPE;
166 wr32(E1000_VMOLR(vfn), vmolr);
168 return 0;
171 static inline void igb_set_rah_pool(struct e1000_hw *hw, int pool, int entry)
173 u32 reg_data;
175 reg_data = rd32(E1000_RAH(entry));
176 reg_data &= ~E1000_RAH_POOL_MASK;
177 reg_data |= E1000_RAH_POOL_1 << pool;;
178 wr32(E1000_RAH(entry), reg_data);
181 #ifdef CONFIG_PM
182 static int igb_suspend(struct pci_dev *, pm_message_t);
183 static int igb_resume(struct pci_dev *);
184 #endif
185 static void igb_shutdown(struct pci_dev *);
186 #ifdef CONFIG_IGB_DCA
187 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
188 static struct notifier_block dca_notifier = {
189 .notifier_call = igb_notify_dca,
190 .next = NULL,
191 .priority = 0
193 #endif
194 #ifdef CONFIG_NET_POLL_CONTROLLER
195 /* for netdump / net console */
196 static void igb_netpoll(struct net_device *);
197 #endif
198 #ifdef CONFIG_PCI_IOV
199 static unsigned int max_vfs = 0;
200 module_param(max_vfs, uint, 0);
201 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
202 "per physical function");
203 #endif /* CONFIG_PCI_IOV */
205 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
206 pci_channel_state_t);
207 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
208 static void igb_io_resume(struct pci_dev *);
210 static struct pci_error_handlers igb_err_handler = {
211 .error_detected = igb_io_error_detected,
212 .slot_reset = igb_io_slot_reset,
213 .resume = igb_io_resume,
217 static struct pci_driver igb_driver = {
218 .name = igb_driver_name,
219 .id_table = igb_pci_tbl,
220 .probe = igb_probe,
221 .remove = __devexit_p(igb_remove),
222 #ifdef CONFIG_PM
223 /* Power Managment Hooks */
224 .suspend = igb_suspend,
225 .resume = igb_resume,
226 #endif
227 .shutdown = igb_shutdown,
228 .err_handler = &igb_err_handler
231 static int global_quad_port_a; /* global quad port a indication */
233 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
234 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
235 MODULE_LICENSE("GPL");
236 MODULE_VERSION(DRV_VERSION);
239 * Scale the NIC clock cycle by a large factor so that
240 * relatively small clock corrections can be added or
241 * substracted at each clock tick. The drawbacks of a
242 * large factor are a) that the clock register overflows
243 * more quickly (not such a big deal) and b) that the
244 * increment per tick has to fit into 24 bits.
246 * Note that
247 * TIMINCA = IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS *
248 * IGB_TSYNC_SCALE
249 * TIMINCA += TIMINCA * adjustment [ppm] / 1e9
251 * The base scale factor is intentionally a power of two
252 * so that the division in %struct timecounter can be done with
253 * a shift.
255 #define IGB_TSYNC_SHIFT (19)
256 #define IGB_TSYNC_SCALE (1<<IGB_TSYNC_SHIFT)
259 * The duration of one clock cycle of the NIC.
261 * @todo This hard-coded value is part of the specification and might change
262 * in future hardware revisions. Add revision check.
264 #define IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS 16
266 #if (IGB_TSYNC_SCALE * IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS) >= (1<<24)
267 # error IGB_TSYNC_SCALE and/or IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS are too large to fit into TIMINCA
268 #endif
271 * igb_read_clock - read raw cycle counter (to be used by time counter)
273 static cycle_t igb_read_clock(const struct cyclecounter *tc)
275 struct igb_adapter *adapter =
276 container_of(tc, struct igb_adapter, cycles);
277 struct e1000_hw *hw = &adapter->hw;
278 u64 stamp;
280 stamp = rd32(E1000_SYSTIML);
281 stamp |= (u64)rd32(E1000_SYSTIMH) << 32ULL;
283 return stamp;
286 #ifdef DEBUG
288 * igb_get_hw_dev_name - return device name string
289 * used by hardware layer to print debugging information
291 char *igb_get_hw_dev_name(struct e1000_hw *hw)
293 struct igb_adapter *adapter = hw->back;
294 return adapter->netdev->name;
298 * igb_get_time_str - format current NIC and system time as string
300 static char *igb_get_time_str(struct igb_adapter *adapter,
301 char buffer[160])
303 cycle_t hw = adapter->cycles.read(&adapter->cycles);
304 struct timespec nic = ns_to_timespec(timecounter_read(&adapter->clock));
305 struct timespec sys;
306 struct timespec delta;
307 getnstimeofday(&sys);
309 delta = timespec_sub(nic, sys);
311 sprintf(buffer,
312 "HW %llu, NIC %ld.%09lus, SYS %ld.%09lus, NIC-SYS %lds + %09luns",
314 (long)nic.tv_sec, nic.tv_nsec,
315 (long)sys.tv_sec, sys.tv_nsec,
316 (long)delta.tv_sec, delta.tv_nsec);
318 return buffer;
320 #endif
323 * igb_desc_unused - calculate if we have unused descriptors
325 static int igb_desc_unused(struct igb_ring *ring)
327 if (ring->next_to_clean > ring->next_to_use)
328 return ring->next_to_clean - ring->next_to_use - 1;
330 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
334 * igb_init_module - Driver Registration Routine
336 * igb_init_module is the first routine called when the driver is
337 * loaded. All it does is register with the PCI subsystem.
339 static int __init igb_init_module(void)
341 int ret;
342 printk(KERN_INFO "%s - version %s\n",
343 igb_driver_string, igb_driver_version);
345 printk(KERN_INFO "%s\n", igb_copyright);
347 global_quad_port_a = 0;
349 #ifdef CONFIG_IGB_DCA
350 dca_register_notify(&dca_notifier);
351 #endif
353 ret = pci_register_driver(&igb_driver);
354 return ret;
357 module_init(igb_init_module);
360 * igb_exit_module - Driver Exit Cleanup Routine
362 * igb_exit_module is called just before the driver is removed
363 * from memory.
365 static void __exit igb_exit_module(void)
367 #ifdef CONFIG_IGB_DCA
368 dca_unregister_notify(&dca_notifier);
369 #endif
370 pci_unregister_driver(&igb_driver);
373 module_exit(igb_exit_module);
375 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
377 * igb_cache_ring_register - Descriptor ring to register mapping
378 * @adapter: board private structure to initialize
380 * Once we know the feature-set enabled for the device, we'll cache
381 * the register offset the descriptor ring is assigned to.
383 static void igb_cache_ring_register(struct igb_adapter *adapter)
385 int i;
386 unsigned int rbase_offset = adapter->vfs_allocated_count;
388 switch (adapter->hw.mac.type) {
389 case e1000_82576:
390 /* The queues are allocated for virtualization such that VF 0
391 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
392 * In order to avoid collision we start at the first free queue
393 * and continue consuming queues in the same sequence
395 for (i = 0; i < adapter->num_rx_queues; i++)
396 adapter->rx_ring[i].reg_idx = rbase_offset +
397 Q_IDX_82576(i);
398 for (i = 0; i < adapter->num_tx_queues; i++)
399 adapter->tx_ring[i].reg_idx = rbase_offset +
400 Q_IDX_82576(i);
401 break;
402 case e1000_82575:
403 default:
404 for (i = 0; i < adapter->num_rx_queues; i++)
405 adapter->rx_ring[i].reg_idx = i;
406 for (i = 0; i < adapter->num_tx_queues; i++)
407 adapter->tx_ring[i].reg_idx = i;
408 break;
413 * igb_alloc_queues - Allocate memory for all rings
414 * @adapter: board private structure to initialize
416 * We allocate one ring per queue at run-time since we don't know the
417 * number of queues at compile-time.
419 static int igb_alloc_queues(struct igb_adapter *adapter)
421 int i;
423 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
424 sizeof(struct igb_ring), GFP_KERNEL);
425 if (!adapter->tx_ring)
426 return -ENOMEM;
428 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
429 sizeof(struct igb_ring), GFP_KERNEL);
430 if (!adapter->rx_ring) {
431 kfree(adapter->tx_ring);
432 return -ENOMEM;
435 adapter->rx_ring->buddy = adapter->tx_ring;
437 for (i = 0; i < adapter->num_tx_queues; i++) {
438 struct igb_ring *ring = &(adapter->tx_ring[i]);
439 ring->count = adapter->tx_ring_count;
440 ring->adapter = adapter;
441 ring->queue_index = i;
443 for (i = 0; i < adapter->num_rx_queues; i++) {
444 struct igb_ring *ring = &(adapter->rx_ring[i]);
445 ring->count = adapter->rx_ring_count;
446 ring->adapter = adapter;
447 ring->queue_index = i;
448 ring->itr_register = E1000_ITR;
450 /* set a default napi handler for each rx_ring */
451 netif_napi_add(adapter->netdev, &ring->napi, igb_poll, 64);
454 igb_cache_ring_register(adapter);
455 return 0;
458 static void igb_free_queues(struct igb_adapter *adapter)
460 int i;
462 for (i = 0; i < adapter->num_rx_queues; i++)
463 netif_napi_del(&adapter->rx_ring[i].napi);
465 adapter->num_rx_queues = 0;
466 adapter->num_tx_queues = 0;
468 kfree(adapter->tx_ring);
469 kfree(adapter->rx_ring);
472 #define IGB_N0_QUEUE -1
473 static void igb_assign_vector(struct igb_adapter *adapter, int rx_queue,
474 int tx_queue, int msix_vector)
476 u32 msixbm = 0;
477 struct e1000_hw *hw = &adapter->hw;
478 u32 ivar, index;
480 switch (hw->mac.type) {
481 case e1000_82575:
482 /* The 82575 assigns vectors using a bitmask, which matches the
483 bitmask for the EICR/EIMS/EIMC registers. To assign one
484 or more queues to a vector, we write the appropriate bits
485 into the MSIXBM register for that vector. */
486 if (rx_queue > IGB_N0_QUEUE) {
487 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
488 adapter->rx_ring[rx_queue].eims_value = msixbm;
490 if (tx_queue > IGB_N0_QUEUE) {
491 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
492 adapter->tx_ring[tx_queue].eims_value =
493 E1000_EICR_TX_QUEUE0 << tx_queue;
495 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
496 break;
497 case e1000_82576:
498 /* 82576 uses a table-based method for assigning vectors.
499 Each queue has a single entry in the table to which we write
500 a vector number along with a "valid" bit. Sadly, the layout
501 of the table is somewhat counterintuitive. */
502 if (rx_queue > IGB_N0_QUEUE) {
503 index = (rx_queue >> 1) + adapter->vfs_allocated_count;
504 ivar = array_rd32(E1000_IVAR0, index);
505 if (rx_queue & 0x1) {
506 /* vector goes into third byte of register */
507 ivar = ivar & 0xFF00FFFF;
508 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
509 } else {
510 /* vector goes into low byte of register */
511 ivar = ivar & 0xFFFFFF00;
512 ivar |= msix_vector | E1000_IVAR_VALID;
514 adapter->rx_ring[rx_queue].eims_value= 1 << msix_vector;
515 array_wr32(E1000_IVAR0, index, ivar);
517 if (tx_queue > IGB_N0_QUEUE) {
518 index = (tx_queue >> 1) + adapter->vfs_allocated_count;
519 ivar = array_rd32(E1000_IVAR0, index);
520 if (tx_queue & 0x1) {
521 /* vector goes into high byte of register */
522 ivar = ivar & 0x00FFFFFF;
523 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
524 } else {
525 /* vector goes into second byte of register */
526 ivar = ivar & 0xFFFF00FF;
527 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
529 adapter->tx_ring[tx_queue].eims_value= 1 << msix_vector;
530 array_wr32(E1000_IVAR0, index, ivar);
532 break;
533 default:
534 BUG();
535 break;
540 * igb_configure_msix - Configure MSI-X hardware
542 * igb_configure_msix sets up the hardware to properly
543 * generate MSI-X interrupts.
545 static void igb_configure_msix(struct igb_adapter *adapter)
547 u32 tmp;
548 int i, vector = 0;
549 struct e1000_hw *hw = &adapter->hw;
551 adapter->eims_enable_mask = 0;
552 if (hw->mac.type == e1000_82576)
553 /* Turn on MSI-X capability first, or our settings
554 * won't stick. And it will take days to debug. */
555 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
556 E1000_GPIE_PBA | E1000_GPIE_EIAME |
557 E1000_GPIE_NSICR);
559 for (i = 0; i < adapter->num_tx_queues; i++) {
560 struct igb_ring *tx_ring = &adapter->tx_ring[i];
561 igb_assign_vector(adapter, IGB_N0_QUEUE, i, vector++);
562 adapter->eims_enable_mask |= tx_ring->eims_value;
563 if (tx_ring->itr_val)
564 writel(tx_ring->itr_val,
565 hw->hw_addr + tx_ring->itr_register);
566 else
567 writel(1, hw->hw_addr + tx_ring->itr_register);
570 for (i = 0; i < adapter->num_rx_queues; i++) {
571 struct igb_ring *rx_ring = &adapter->rx_ring[i];
572 rx_ring->buddy = NULL;
573 igb_assign_vector(adapter, i, IGB_N0_QUEUE, vector++);
574 adapter->eims_enable_mask |= rx_ring->eims_value;
575 if (rx_ring->itr_val)
576 writel(rx_ring->itr_val,
577 hw->hw_addr + rx_ring->itr_register);
578 else
579 writel(1, hw->hw_addr + rx_ring->itr_register);
583 /* set vector for other causes, i.e. link changes */
584 switch (hw->mac.type) {
585 case e1000_82575:
586 array_wr32(E1000_MSIXBM(0), vector++,
587 E1000_EIMS_OTHER);
589 tmp = rd32(E1000_CTRL_EXT);
590 /* enable MSI-X PBA support*/
591 tmp |= E1000_CTRL_EXT_PBA_CLR;
593 /* Auto-Mask interrupts upon ICR read. */
594 tmp |= E1000_CTRL_EXT_EIAME;
595 tmp |= E1000_CTRL_EXT_IRCA;
597 wr32(E1000_CTRL_EXT, tmp);
598 adapter->eims_enable_mask |= E1000_EIMS_OTHER;
599 adapter->eims_other = E1000_EIMS_OTHER;
601 break;
603 case e1000_82576:
604 tmp = (vector++ | E1000_IVAR_VALID) << 8;
605 wr32(E1000_IVAR_MISC, tmp);
607 adapter->eims_enable_mask = (1 << (vector)) - 1;
608 adapter->eims_other = 1 << (vector - 1);
609 break;
610 default:
611 /* do nothing, since nothing else supports MSI-X */
612 break;
613 } /* switch (hw->mac.type) */
614 wrfl();
618 * igb_request_msix - Initialize MSI-X interrupts
620 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
621 * kernel.
623 static int igb_request_msix(struct igb_adapter *adapter)
625 struct net_device *netdev = adapter->netdev;
626 int i, err = 0, vector = 0;
628 vector = 0;
630 for (i = 0; i < adapter->num_tx_queues; i++) {
631 struct igb_ring *ring = &(adapter->tx_ring[i]);
632 sprintf(ring->name, "%s-tx-%d", netdev->name, i);
633 err = request_irq(adapter->msix_entries[vector].vector,
634 &igb_msix_tx, 0, ring->name,
635 &(adapter->tx_ring[i]));
636 if (err)
637 goto out;
638 ring->itr_register = E1000_EITR(0) + (vector << 2);
639 ring->itr_val = 976; /* ~4000 ints/sec */
640 vector++;
642 for (i = 0; i < adapter->num_rx_queues; i++) {
643 struct igb_ring *ring = &(adapter->rx_ring[i]);
644 if (strlen(netdev->name) < (IFNAMSIZ - 5))
645 sprintf(ring->name, "%s-rx-%d", netdev->name, i);
646 else
647 memcpy(ring->name, netdev->name, IFNAMSIZ);
648 err = request_irq(adapter->msix_entries[vector].vector,
649 &igb_msix_rx, 0, ring->name,
650 &(adapter->rx_ring[i]));
651 if (err)
652 goto out;
653 ring->itr_register = E1000_EITR(0) + (vector << 2);
654 ring->itr_val = adapter->itr;
655 vector++;
658 err = request_irq(adapter->msix_entries[vector].vector,
659 &igb_msix_other, 0, netdev->name, netdev);
660 if (err)
661 goto out;
663 igb_configure_msix(adapter);
664 return 0;
665 out:
666 return err;
669 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
671 if (adapter->msix_entries) {
672 pci_disable_msix(adapter->pdev);
673 kfree(adapter->msix_entries);
674 adapter->msix_entries = NULL;
675 } else if (adapter->flags & IGB_FLAG_HAS_MSI)
676 pci_disable_msi(adapter->pdev);
677 return;
682 * igb_set_interrupt_capability - set MSI or MSI-X if supported
684 * Attempt to configure interrupts using the best available
685 * capabilities of the hardware and kernel.
687 static void igb_set_interrupt_capability(struct igb_adapter *adapter)
689 int err;
690 int numvecs, i;
692 /* Number of supported queues. */
693 /* Having more queues than CPUs doesn't make sense. */
694 adapter->num_rx_queues = min_t(u32, IGB_MAX_RX_QUEUES, num_online_cpus());
695 adapter->num_tx_queues = min_t(u32, IGB_MAX_TX_QUEUES, num_online_cpus());
697 numvecs = adapter->num_tx_queues + adapter->num_rx_queues + 1;
698 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
699 GFP_KERNEL);
700 if (!adapter->msix_entries)
701 goto msi_only;
703 for (i = 0; i < numvecs; i++)
704 adapter->msix_entries[i].entry = i;
706 err = pci_enable_msix(adapter->pdev,
707 adapter->msix_entries,
708 numvecs);
709 if (err == 0)
710 goto out;
712 igb_reset_interrupt_capability(adapter);
714 /* If we can't do MSI-X, try MSI */
715 msi_only:
716 #ifdef CONFIG_PCI_IOV
717 /* disable SR-IOV for non MSI-X configurations */
718 if (adapter->vf_data) {
719 struct e1000_hw *hw = &adapter->hw;
720 /* disable iov and allow time for transactions to clear */
721 pci_disable_sriov(adapter->pdev);
722 msleep(500);
724 kfree(adapter->vf_data);
725 adapter->vf_data = NULL;
726 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
727 msleep(100);
728 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
730 #endif
731 adapter->num_rx_queues = 1;
732 adapter->num_tx_queues = 1;
733 if (!pci_enable_msi(adapter->pdev))
734 adapter->flags |= IGB_FLAG_HAS_MSI;
735 out:
736 /* Notify the stack of the (possibly) reduced Tx Queue count. */
737 adapter->netdev->real_num_tx_queues = adapter->num_tx_queues;
738 return;
742 * igb_request_irq - initialize interrupts
744 * Attempts to configure interrupts using the best available
745 * capabilities of the hardware and kernel.
747 static int igb_request_irq(struct igb_adapter *adapter)
749 struct net_device *netdev = adapter->netdev;
750 struct e1000_hw *hw = &adapter->hw;
751 int err = 0;
753 if (adapter->msix_entries) {
754 err = igb_request_msix(adapter);
755 if (!err)
756 goto request_done;
757 /* fall back to MSI */
758 igb_reset_interrupt_capability(adapter);
759 if (!pci_enable_msi(adapter->pdev))
760 adapter->flags |= IGB_FLAG_HAS_MSI;
761 igb_free_all_tx_resources(adapter);
762 igb_free_all_rx_resources(adapter);
763 adapter->num_rx_queues = 1;
764 igb_alloc_queues(adapter);
765 } else {
766 switch (hw->mac.type) {
767 case e1000_82575:
768 wr32(E1000_MSIXBM(0),
769 (E1000_EICR_RX_QUEUE0 | E1000_EIMS_OTHER));
770 break;
771 case e1000_82576:
772 wr32(E1000_IVAR0, E1000_IVAR_VALID);
773 break;
774 default:
775 break;
779 if (adapter->flags & IGB_FLAG_HAS_MSI) {
780 err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
781 netdev->name, netdev);
782 if (!err)
783 goto request_done;
784 /* fall back to legacy interrupts */
785 igb_reset_interrupt_capability(adapter);
786 adapter->flags &= ~IGB_FLAG_HAS_MSI;
789 err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
790 netdev->name, netdev);
792 if (err)
793 dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
794 err);
796 request_done:
797 return err;
800 static void igb_free_irq(struct igb_adapter *adapter)
802 struct net_device *netdev = adapter->netdev;
804 if (adapter->msix_entries) {
805 int vector = 0, i;
807 for (i = 0; i < adapter->num_tx_queues; i++)
808 free_irq(adapter->msix_entries[vector++].vector,
809 &(adapter->tx_ring[i]));
810 for (i = 0; i < adapter->num_rx_queues; i++)
811 free_irq(adapter->msix_entries[vector++].vector,
812 &(adapter->rx_ring[i]));
814 free_irq(adapter->msix_entries[vector++].vector, netdev);
815 return;
818 free_irq(adapter->pdev->irq, netdev);
822 * igb_irq_disable - Mask off interrupt generation on the NIC
823 * @adapter: board private structure
825 static void igb_irq_disable(struct igb_adapter *adapter)
827 struct e1000_hw *hw = &adapter->hw;
829 if (adapter->msix_entries) {
830 u32 regval = rd32(E1000_EIAM);
831 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
832 wr32(E1000_EIMC, adapter->eims_enable_mask);
833 regval = rd32(E1000_EIAC);
834 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
837 wr32(E1000_IAM, 0);
838 wr32(E1000_IMC, ~0);
839 wrfl();
840 synchronize_irq(adapter->pdev->irq);
844 * igb_irq_enable - Enable default interrupt generation settings
845 * @adapter: board private structure
847 static void igb_irq_enable(struct igb_adapter *adapter)
849 struct e1000_hw *hw = &adapter->hw;
851 if (adapter->msix_entries) {
852 u32 regval = rd32(E1000_EIAC);
853 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
854 regval = rd32(E1000_EIAM);
855 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
856 wr32(E1000_EIMS, adapter->eims_enable_mask);
857 if (adapter->vfs_allocated_count)
858 wr32(E1000_MBVFIMR, 0xFF);
859 wr32(E1000_IMS, (E1000_IMS_LSC | E1000_IMS_VMMB |
860 E1000_IMS_DOUTSYNC));
861 } else {
862 wr32(E1000_IMS, IMS_ENABLE_MASK);
863 wr32(E1000_IAM, IMS_ENABLE_MASK);
867 static void igb_update_mng_vlan(struct igb_adapter *adapter)
869 struct net_device *netdev = adapter->netdev;
870 u16 vid = adapter->hw.mng_cookie.vlan_id;
871 u16 old_vid = adapter->mng_vlan_id;
872 if (adapter->vlgrp) {
873 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
874 if (adapter->hw.mng_cookie.status &
875 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
876 igb_vlan_rx_add_vid(netdev, vid);
877 adapter->mng_vlan_id = vid;
878 } else
879 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
881 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
882 (vid != old_vid) &&
883 !vlan_group_get_device(adapter->vlgrp, old_vid))
884 igb_vlan_rx_kill_vid(netdev, old_vid);
885 } else
886 adapter->mng_vlan_id = vid;
891 * igb_release_hw_control - release control of the h/w to f/w
892 * @adapter: address of board private structure
894 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
895 * For ASF and Pass Through versions of f/w this means that the
896 * driver is no longer loaded.
899 static void igb_release_hw_control(struct igb_adapter *adapter)
901 struct e1000_hw *hw = &adapter->hw;
902 u32 ctrl_ext;
904 /* Let firmware take over control of h/w */
905 ctrl_ext = rd32(E1000_CTRL_EXT);
906 wr32(E1000_CTRL_EXT,
907 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
912 * igb_get_hw_control - get control of the h/w from f/w
913 * @adapter: address of board private structure
915 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
916 * For ASF and Pass Through versions of f/w this means that
917 * the driver is loaded.
920 static void igb_get_hw_control(struct igb_adapter *adapter)
922 struct e1000_hw *hw = &adapter->hw;
923 u32 ctrl_ext;
925 /* Let firmware know the driver has taken over */
926 ctrl_ext = rd32(E1000_CTRL_EXT);
927 wr32(E1000_CTRL_EXT,
928 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
932 * igb_configure - configure the hardware for RX and TX
933 * @adapter: private board structure
935 static void igb_configure(struct igb_adapter *adapter)
937 struct net_device *netdev = adapter->netdev;
938 int i;
940 igb_get_hw_control(adapter);
941 igb_set_rx_mode(netdev);
943 igb_restore_vlan(adapter);
945 igb_configure_tx(adapter);
946 igb_setup_rctl(adapter);
947 igb_configure_rx(adapter);
949 igb_rx_fifo_flush_82575(&adapter->hw);
951 /* call igb_desc_unused which always leaves
952 * at least 1 descriptor unused to make sure
953 * next_to_use != next_to_clean */
954 for (i = 0; i < adapter->num_rx_queues; i++) {
955 struct igb_ring *ring = &adapter->rx_ring[i];
956 igb_alloc_rx_buffers_adv(ring, igb_desc_unused(ring));
960 adapter->tx_queue_len = netdev->tx_queue_len;
965 * igb_up - Open the interface and prepare it to handle traffic
966 * @adapter: board private structure
969 int igb_up(struct igb_adapter *adapter)
971 struct e1000_hw *hw = &adapter->hw;
972 int i;
974 /* hardware has been reset, we need to reload some things */
975 igb_configure(adapter);
977 clear_bit(__IGB_DOWN, &adapter->state);
979 for (i = 0; i < adapter->num_rx_queues; i++)
980 napi_enable(&adapter->rx_ring[i].napi);
981 if (adapter->msix_entries)
982 igb_configure_msix(adapter);
984 igb_vmm_control(adapter);
985 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
986 igb_set_vmolr(hw, adapter->vfs_allocated_count);
988 /* Clear any pending interrupts. */
989 rd32(E1000_ICR);
990 igb_irq_enable(adapter);
992 netif_tx_start_all_queues(adapter->netdev);
994 /* Fire a link change interrupt to start the watchdog. */
995 wr32(E1000_ICS, E1000_ICS_LSC);
996 return 0;
999 void igb_down(struct igb_adapter *adapter)
1001 struct e1000_hw *hw = &adapter->hw;
1002 struct net_device *netdev = adapter->netdev;
1003 u32 tctl, rctl;
1004 int i;
1006 /* signal that we're down so the interrupt handler does not
1007 * reschedule our watchdog timer */
1008 set_bit(__IGB_DOWN, &adapter->state);
1010 /* disable receives in the hardware */
1011 rctl = rd32(E1000_RCTL);
1012 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1013 /* flush and sleep below */
1015 netif_tx_stop_all_queues(netdev);
1017 /* disable transmits in the hardware */
1018 tctl = rd32(E1000_TCTL);
1019 tctl &= ~E1000_TCTL_EN;
1020 wr32(E1000_TCTL, tctl);
1021 /* flush both disables and wait for them to finish */
1022 wrfl();
1023 msleep(10);
1025 for (i = 0; i < adapter->num_rx_queues; i++)
1026 napi_disable(&adapter->rx_ring[i].napi);
1028 igb_irq_disable(adapter);
1030 del_timer_sync(&adapter->watchdog_timer);
1031 del_timer_sync(&adapter->phy_info_timer);
1033 netdev->tx_queue_len = adapter->tx_queue_len;
1034 netif_carrier_off(netdev);
1036 /* record the stats before reset*/
1037 igb_update_stats(adapter);
1039 adapter->link_speed = 0;
1040 adapter->link_duplex = 0;
1042 if (!pci_channel_offline(adapter->pdev))
1043 igb_reset(adapter);
1044 igb_clean_all_tx_rings(adapter);
1045 igb_clean_all_rx_rings(adapter);
1046 #ifdef CONFIG_IGB_DCA
1048 /* since we reset the hardware DCA settings were cleared */
1049 igb_setup_dca(adapter);
1050 #endif
1053 void igb_reinit_locked(struct igb_adapter *adapter)
1055 WARN_ON(in_interrupt());
1056 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1057 msleep(1);
1058 igb_down(adapter);
1059 igb_up(adapter);
1060 clear_bit(__IGB_RESETTING, &adapter->state);
1063 void igb_reset(struct igb_adapter *adapter)
1065 struct e1000_hw *hw = &adapter->hw;
1066 struct e1000_mac_info *mac = &hw->mac;
1067 struct e1000_fc_info *fc = &hw->fc;
1068 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1069 u16 hwm;
1071 /* Repartition Pba for greater than 9k mtu
1072 * To take effect CTRL.RST is required.
1074 switch (mac->type) {
1075 case e1000_82576:
1076 pba = E1000_PBA_64K;
1077 break;
1078 case e1000_82575:
1079 default:
1080 pba = E1000_PBA_34K;
1081 break;
1084 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1085 (mac->type < e1000_82576)) {
1086 /* adjust PBA for jumbo frames */
1087 wr32(E1000_PBA, pba);
1089 /* To maintain wire speed transmits, the Tx FIFO should be
1090 * large enough to accommodate two full transmit packets,
1091 * rounded up to the next 1KB and expressed in KB. Likewise,
1092 * the Rx FIFO should be large enough to accommodate at least
1093 * one full receive packet and is similarly rounded up and
1094 * expressed in KB. */
1095 pba = rd32(E1000_PBA);
1096 /* upper 16 bits has Tx packet buffer allocation size in KB */
1097 tx_space = pba >> 16;
1098 /* lower 16 bits has Rx packet buffer allocation size in KB */
1099 pba &= 0xffff;
1100 /* the tx fifo also stores 16 bytes of information about the tx
1101 * but don't include ethernet FCS because hardware appends it */
1102 min_tx_space = (adapter->max_frame_size +
1103 sizeof(union e1000_adv_tx_desc) -
1104 ETH_FCS_LEN) * 2;
1105 min_tx_space = ALIGN(min_tx_space, 1024);
1106 min_tx_space >>= 10;
1107 /* software strips receive CRC, so leave room for it */
1108 min_rx_space = adapter->max_frame_size;
1109 min_rx_space = ALIGN(min_rx_space, 1024);
1110 min_rx_space >>= 10;
1112 /* If current Tx allocation is less than the min Tx FIFO size,
1113 * and the min Tx FIFO size is less than the current Rx FIFO
1114 * allocation, take space away from current Rx allocation */
1115 if (tx_space < min_tx_space &&
1116 ((min_tx_space - tx_space) < pba)) {
1117 pba = pba - (min_tx_space - tx_space);
1119 /* if short on rx space, rx wins and must trump tx
1120 * adjustment */
1121 if (pba < min_rx_space)
1122 pba = min_rx_space;
1124 wr32(E1000_PBA, pba);
1127 /* flow control settings */
1128 /* The high water mark must be low enough to fit one full frame
1129 * (or the size used for early receive) above it in the Rx FIFO.
1130 * Set it to the lower of:
1131 * - 90% of the Rx FIFO size, or
1132 * - the full Rx FIFO size minus one full frame */
1133 hwm = min(((pba << 10) * 9 / 10),
1134 ((pba << 10) - 2 * adapter->max_frame_size));
1136 if (mac->type < e1000_82576) {
1137 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1138 fc->low_water = fc->high_water - 8;
1139 } else {
1140 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1141 fc->low_water = fc->high_water - 16;
1143 fc->pause_time = 0xFFFF;
1144 fc->send_xon = 1;
1145 fc->current_mode = fc->requested_mode;
1147 /* disable receive for all VFs and wait one second */
1148 if (adapter->vfs_allocated_count) {
1149 int i;
1150 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1151 adapter->vf_data[i].clear_to_send = false;
1153 /* ping all the active vfs to let them know we are going down */
1154 igb_ping_all_vfs(adapter);
1156 /* disable transmits and receives */
1157 wr32(E1000_VFRE, 0);
1158 wr32(E1000_VFTE, 0);
1161 /* Allow time for pending master requests to run */
1162 adapter->hw.mac.ops.reset_hw(&adapter->hw);
1163 wr32(E1000_WUC, 0);
1165 if (adapter->hw.mac.ops.init_hw(&adapter->hw))
1166 dev_err(&adapter->pdev->dev, "Hardware Error\n");
1168 igb_update_mng_vlan(adapter);
1170 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1171 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1173 igb_reset_adaptive(&adapter->hw);
1174 igb_get_phy_info(&adapter->hw);
1177 static const struct net_device_ops igb_netdev_ops = {
1178 .ndo_open = igb_open,
1179 .ndo_stop = igb_close,
1180 .ndo_start_xmit = igb_xmit_frame_adv,
1181 .ndo_get_stats = igb_get_stats,
1182 .ndo_set_rx_mode = igb_set_rx_mode,
1183 .ndo_set_multicast_list = igb_set_rx_mode,
1184 .ndo_set_mac_address = igb_set_mac,
1185 .ndo_change_mtu = igb_change_mtu,
1186 .ndo_do_ioctl = igb_ioctl,
1187 .ndo_tx_timeout = igb_tx_timeout,
1188 .ndo_validate_addr = eth_validate_addr,
1189 .ndo_vlan_rx_register = igb_vlan_rx_register,
1190 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1191 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1192 #ifdef CONFIG_NET_POLL_CONTROLLER
1193 .ndo_poll_controller = igb_netpoll,
1194 #endif
1198 * igb_probe - Device Initialization Routine
1199 * @pdev: PCI device information struct
1200 * @ent: entry in igb_pci_tbl
1202 * Returns 0 on success, negative on failure
1204 * igb_probe initializes an adapter identified by a pci_dev structure.
1205 * The OS initialization, configuring of the adapter private structure,
1206 * and a hardware reset occur.
1208 static int __devinit igb_probe(struct pci_dev *pdev,
1209 const struct pci_device_id *ent)
1211 struct net_device *netdev;
1212 struct igb_adapter *adapter;
1213 struct e1000_hw *hw;
1214 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1215 unsigned long mmio_start, mmio_len;
1216 int err, pci_using_dac;
1217 u16 eeprom_data = 0;
1218 u16 eeprom_apme_mask = IGB_EEPROM_APME;
1219 u32 part_num;
1221 err = pci_enable_device_mem(pdev);
1222 if (err)
1223 return err;
1225 pci_using_dac = 0;
1226 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1227 if (!err) {
1228 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1229 if (!err)
1230 pci_using_dac = 1;
1231 } else {
1232 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1233 if (err) {
1234 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1235 if (err) {
1236 dev_err(&pdev->dev, "No usable DMA "
1237 "configuration, aborting\n");
1238 goto err_dma;
1243 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
1244 IORESOURCE_MEM),
1245 igb_driver_name);
1246 if (err)
1247 goto err_pci_reg;
1249 err = pci_enable_pcie_error_reporting(pdev);
1250 if (err) {
1251 dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed "
1252 "0x%x\n", err);
1253 /* non-fatal, continue */
1256 pci_set_master(pdev);
1257 pci_save_state(pdev);
1259 err = -ENOMEM;
1260 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1261 IGB_ABS_MAX_TX_QUEUES);
1262 if (!netdev)
1263 goto err_alloc_etherdev;
1265 SET_NETDEV_DEV(netdev, &pdev->dev);
1267 pci_set_drvdata(pdev, netdev);
1268 adapter = netdev_priv(netdev);
1269 adapter->netdev = netdev;
1270 adapter->pdev = pdev;
1271 hw = &adapter->hw;
1272 hw->back = adapter;
1273 adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE;
1275 mmio_start = pci_resource_start(pdev, 0);
1276 mmio_len = pci_resource_len(pdev, 0);
1278 err = -EIO;
1279 hw->hw_addr = ioremap(mmio_start, mmio_len);
1280 if (!hw->hw_addr)
1281 goto err_ioremap;
1283 netdev->netdev_ops = &igb_netdev_ops;
1284 igb_set_ethtool_ops(netdev);
1285 netdev->watchdog_timeo = 5 * HZ;
1287 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1289 netdev->mem_start = mmio_start;
1290 netdev->mem_end = mmio_start + mmio_len;
1292 /* PCI config space info */
1293 hw->vendor_id = pdev->vendor;
1294 hw->device_id = pdev->device;
1295 hw->revision_id = pdev->revision;
1296 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1297 hw->subsystem_device_id = pdev->subsystem_device;
1299 /* setup the private structure */
1300 hw->back = adapter;
1301 /* Copy the default MAC, PHY and NVM function pointers */
1302 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1303 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1304 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1305 /* Initialize skew-specific constants */
1306 err = ei->get_invariants(hw);
1307 if (err)
1308 goto err_sw_init;
1310 #ifdef CONFIG_PCI_IOV
1311 /* since iov functionality isn't critical to base device function we
1312 * can accept failure. If it fails we don't allow iov to be enabled */
1313 if (hw->mac.type == e1000_82576) {
1314 /* 82576 supports a maximum of 7 VFs in addition to the PF */
1315 unsigned int num_vfs = (max_vfs > 7) ? 7 : max_vfs;
1316 int i;
1317 unsigned char mac_addr[ETH_ALEN];
1319 if (num_vfs) {
1320 adapter->vf_data = kcalloc(num_vfs,
1321 sizeof(struct vf_data_storage),
1322 GFP_KERNEL);
1323 if (!adapter->vf_data) {
1324 dev_err(&pdev->dev,
1325 "Could not allocate VF private data - "
1326 "IOV enable failed\n");
1327 } else {
1328 err = pci_enable_sriov(pdev, num_vfs);
1329 if (!err) {
1330 adapter->vfs_allocated_count = num_vfs;
1331 dev_info(&pdev->dev,
1332 "%d vfs allocated\n",
1333 num_vfs);
1334 for (i = 0;
1335 i < adapter->vfs_allocated_count;
1336 i++) {
1337 random_ether_addr(mac_addr);
1338 igb_set_vf_mac(adapter, i,
1339 mac_addr);
1341 } else {
1342 kfree(adapter->vf_data);
1343 adapter->vf_data = NULL;
1349 #endif
1350 /* setup the private structure */
1351 err = igb_sw_init(adapter);
1352 if (err)
1353 goto err_sw_init;
1355 igb_get_bus_info_pcie(hw);
1357 /* set flags */
1358 switch (hw->mac.type) {
1359 case e1000_82575:
1360 adapter->flags |= IGB_FLAG_NEED_CTX_IDX;
1361 break;
1362 case e1000_82576:
1363 default:
1364 break;
1367 hw->phy.autoneg_wait_to_complete = false;
1368 hw->mac.adaptive_ifs = true;
1370 /* Copper options */
1371 if (hw->phy.media_type == e1000_media_type_copper) {
1372 hw->phy.mdix = AUTO_ALL_MODES;
1373 hw->phy.disable_polarity_correction = false;
1374 hw->phy.ms_type = e1000_ms_hw_default;
1377 if (igb_check_reset_block(hw))
1378 dev_info(&pdev->dev,
1379 "PHY reset is blocked due to SOL/IDER session.\n");
1381 netdev->features = NETIF_F_SG |
1382 NETIF_F_IP_CSUM |
1383 NETIF_F_HW_VLAN_TX |
1384 NETIF_F_HW_VLAN_RX |
1385 NETIF_F_HW_VLAN_FILTER;
1387 netdev->features |= NETIF_F_IPV6_CSUM;
1388 netdev->features |= NETIF_F_TSO;
1389 netdev->features |= NETIF_F_TSO6;
1391 netdev->features |= NETIF_F_GRO;
1393 netdev->vlan_features |= NETIF_F_TSO;
1394 netdev->vlan_features |= NETIF_F_TSO6;
1395 netdev->vlan_features |= NETIF_F_IP_CSUM;
1396 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
1397 netdev->vlan_features |= NETIF_F_SG;
1399 if (pci_using_dac)
1400 netdev->features |= NETIF_F_HIGHDMA;
1402 if (adapter->hw.mac.type == e1000_82576)
1403 netdev->features |= NETIF_F_SCTP_CSUM;
1405 adapter->en_mng_pt = igb_enable_mng_pass_thru(&adapter->hw);
1407 /* before reading the NVM, reset the controller to put the device in a
1408 * known good starting state */
1409 hw->mac.ops.reset_hw(hw);
1411 /* make sure the NVM is good */
1412 if (igb_validate_nvm_checksum(hw) < 0) {
1413 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
1414 err = -EIO;
1415 goto err_eeprom;
1418 /* copy the MAC address out of the NVM */
1419 if (hw->mac.ops.read_mac_addr(hw))
1420 dev_err(&pdev->dev, "NVM Read Error\n");
1422 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
1423 memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
1425 if (!is_valid_ether_addr(netdev->perm_addr)) {
1426 dev_err(&pdev->dev, "Invalid MAC Address\n");
1427 err = -EIO;
1428 goto err_eeprom;
1431 setup_timer(&adapter->watchdog_timer, &igb_watchdog,
1432 (unsigned long) adapter);
1433 setup_timer(&adapter->phy_info_timer, &igb_update_phy_info,
1434 (unsigned long) adapter);
1436 INIT_WORK(&adapter->reset_task, igb_reset_task);
1437 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
1439 /* Initialize link properties that are user-changeable */
1440 adapter->fc_autoneg = true;
1441 hw->mac.autoneg = true;
1442 hw->phy.autoneg_advertised = 0x2f;
1444 hw->fc.requested_mode = e1000_fc_default;
1445 hw->fc.current_mode = e1000_fc_default;
1447 adapter->itr_setting = IGB_DEFAULT_ITR;
1448 adapter->itr = IGB_START_ITR;
1450 igb_validate_mdi_setting(hw);
1452 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1453 * enable the ACPI Magic Packet filter
1456 if (hw->bus.func == 0)
1457 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1458 else if (hw->bus.func == 1)
1459 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1461 if (eeprom_data & eeprom_apme_mask)
1462 adapter->eeprom_wol |= E1000_WUFC_MAG;
1464 /* now that we have the eeprom settings, apply the special cases where
1465 * the eeprom may be wrong or the board simply won't support wake on
1466 * lan on a particular port */
1467 switch (pdev->device) {
1468 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1469 adapter->eeprom_wol = 0;
1470 break;
1471 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1472 case E1000_DEV_ID_82576_FIBER:
1473 case E1000_DEV_ID_82576_SERDES:
1474 /* Wake events only supported on port A for dual fiber
1475 * regardless of eeprom setting */
1476 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
1477 adapter->eeprom_wol = 0;
1478 break;
1479 case E1000_DEV_ID_82576_QUAD_COPPER:
1480 /* if quad port adapter, disable WoL on all but port A */
1481 if (global_quad_port_a != 0)
1482 adapter->eeprom_wol = 0;
1483 else
1484 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
1485 /* Reset for multiple quad port adapters */
1486 if (++global_quad_port_a == 4)
1487 global_quad_port_a = 0;
1488 break;
1491 /* initialize the wol settings based on the eeprom settings */
1492 adapter->wol = adapter->eeprom_wol;
1493 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1495 /* reset the hardware with the new settings */
1496 igb_reset(adapter);
1498 /* let the f/w know that the h/w is now under the control of the
1499 * driver. */
1500 igb_get_hw_control(adapter);
1502 strcpy(netdev->name, "eth%d");
1503 err = register_netdev(netdev);
1504 if (err)
1505 goto err_register;
1507 /* carrier off reporting is important to ethtool even BEFORE open */
1508 netif_carrier_off(netdev);
1510 #ifdef CONFIG_IGB_DCA
1511 if (dca_add_requester(&pdev->dev) == 0) {
1512 adapter->flags |= IGB_FLAG_DCA_ENABLED;
1513 dev_info(&pdev->dev, "DCA enabled\n");
1514 igb_setup_dca(adapter);
1516 #endif
1519 * Initialize hardware timer: we keep it running just in case
1520 * that some program needs it later on.
1522 memset(&adapter->cycles, 0, sizeof(adapter->cycles));
1523 adapter->cycles.read = igb_read_clock;
1524 adapter->cycles.mask = CLOCKSOURCE_MASK(64);
1525 adapter->cycles.mult = 1;
1526 adapter->cycles.shift = IGB_TSYNC_SHIFT;
1527 wr32(E1000_TIMINCA,
1528 (1<<24) |
1529 IGB_TSYNC_CYCLE_TIME_IN_NANOSECONDS * IGB_TSYNC_SCALE);
1530 #if 0
1532 * Avoid rollover while we initialize by resetting the time counter.
1534 wr32(E1000_SYSTIML, 0x00000000);
1535 wr32(E1000_SYSTIMH, 0x00000000);
1536 #else
1538 * Set registers so that rollover occurs soon to test this.
1540 wr32(E1000_SYSTIML, 0x00000000);
1541 wr32(E1000_SYSTIMH, 0xFF800000);
1542 #endif
1543 wrfl();
1544 timecounter_init(&adapter->clock,
1545 &adapter->cycles,
1546 ktime_to_ns(ktime_get_real()));
1549 * Synchronize our NIC clock against system wall clock. NIC
1550 * time stamp reading requires ~3us per sample, each sample
1551 * was pretty stable even under load => only require 10
1552 * samples for each offset comparison.
1554 memset(&adapter->compare, 0, sizeof(adapter->compare));
1555 adapter->compare.source = &adapter->clock;
1556 adapter->compare.target = ktime_get_real;
1557 adapter->compare.num_samples = 10;
1558 timecompare_update(&adapter->compare, 0);
1560 #ifdef DEBUG
1562 char buffer[160];
1563 printk(KERN_DEBUG
1564 "igb: %s: hw %p initialized timer\n",
1565 igb_get_time_str(adapter, buffer),
1566 &adapter->hw);
1568 #endif
1570 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
1571 /* print bus type/speed/width info */
1572 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
1573 netdev->name,
1574 ((hw->bus.speed == e1000_bus_speed_2500)
1575 ? "2.5Gb/s" : "unknown"),
1576 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
1577 (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
1578 (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
1579 "unknown"),
1580 netdev->dev_addr);
1582 igb_read_part_num(hw, &part_num);
1583 dev_info(&pdev->dev, "%s: PBA No: %06x-%03x\n", netdev->name,
1584 (part_num >> 8), (part_num & 0xff));
1586 dev_info(&pdev->dev,
1587 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1588 adapter->msix_entries ? "MSI-X" :
1589 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
1590 adapter->num_rx_queues, adapter->num_tx_queues);
1592 return 0;
1594 err_register:
1595 igb_release_hw_control(adapter);
1596 err_eeprom:
1597 if (!igb_check_reset_block(hw))
1598 igb_reset_phy(hw);
1600 if (hw->flash_address)
1601 iounmap(hw->flash_address);
1603 igb_free_queues(adapter);
1604 err_sw_init:
1605 iounmap(hw->hw_addr);
1606 err_ioremap:
1607 free_netdev(netdev);
1608 err_alloc_etherdev:
1609 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1610 IORESOURCE_MEM));
1611 err_pci_reg:
1612 err_dma:
1613 pci_disable_device(pdev);
1614 return err;
1618 * igb_remove - Device Removal Routine
1619 * @pdev: PCI device information struct
1621 * igb_remove is called by the PCI subsystem to alert the driver
1622 * that it should release a PCI device. The could be caused by a
1623 * Hot-Plug event, or because the driver is going to be removed from
1624 * memory.
1626 static void __devexit igb_remove(struct pci_dev *pdev)
1628 struct net_device *netdev = pci_get_drvdata(pdev);
1629 struct igb_adapter *adapter = netdev_priv(netdev);
1630 struct e1000_hw *hw = &adapter->hw;
1631 int err;
1633 /* flush_scheduled work may reschedule our watchdog task, so
1634 * explicitly disable watchdog tasks from being rescheduled */
1635 set_bit(__IGB_DOWN, &adapter->state);
1636 del_timer_sync(&adapter->watchdog_timer);
1637 del_timer_sync(&adapter->phy_info_timer);
1639 flush_scheduled_work();
1641 #ifdef CONFIG_IGB_DCA
1642 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
1643 dev_info(&pdev->dev, "DCA disabled\n");
1644 dca_remove_requester(&pdev->dev);
1645 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
1646 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
1648 #endif
1650 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1651 * would have already happened in close and is redundant. */
1652 igb_release_hw_control(adapter);
1654 unregister_netdev(netdev);
1656 if (!igb_check_reset_block(&adapter->hw))
1657 igb_reset_phy(&adapter->hw);
1659 igb_reset_interrupt_capability(adapter);
1661 igb_free_queues(adapter);
1663 #ifdef CONFIG_PCI_IOV
1664 /* reclaim resources allocated to VFs */
1665 if (adapter->vf_data) {
1666 /* disable iov and allow time for transactions to clear */
1667 pci_disable_sriov(pdev);
1668 msleep(500);
1670 kfree(adapter->vf_data);
1671 adapter->vf_data = NULL;
1672 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1673 msleep(100);
1674 dev_info(&pdev->dev, "IOV Disabled\n");
1676 #endif
1677 iounmap(hw->hw_addr);
1678 if (hw->flash_address)
1679 iounmap(hw->flash_address);
1680 pci_release_selected_regions(pdev, pci_select_bars(pdev,
1681 IORESOURCE_MEM));
1683 free_netdev(netdev);
1685 err = pci_disable_pcie_error_reporting(pdev);
1686 if (err)
1687 dev_err(&pdev->dev,
1688 "pci_disable_pcie_error_reporting failed 0x%x\n", err);
1690 pci_disable_device(pdev);
1694 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1695 * @adapter: board private structure to initialize
1697 * igb_sw_init initializes the Adapter private data structure.
1698 * Fields are initialized based on PCI device information and
1699 * OS network device settings (MTU size).
1701 static int __devinit igb_sw_init(struct igb_adapter *adapter)
1703 struct e1000_hw *hw = &adapter->hw;
1704 struct net_device *netdev = adapter->netdev;
1705 struct pci_dev *pdev = adapter->pdev;
1707 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
1709 adapter->tx_ring_count = IGB_DEFAULT_TXD;
1710 adapter->rx_ring_count = IGB_DEFAULT_RXD;
1711 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1712 adapter->rx_ps_hdr_size = 0; /* disable packet split */
1713 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1714 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1716 /* This call may decrease the number of queues depending on
1717 * interrupt mode. */
1718 igb_set_interrupt_capability(adapter);
1720 if (igb_alloc_queues(adapter)) {
1721 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1722 return -ENOMEM;
1725 /* Explicitly disable IRQ since the NIC can be in any state. */
1726 igb_irq_disable(adapter);
1728 set_bit(__IGB_DOWN, &adapter->state);
1729 return 0;
1733 * igb_open - Called when a network interface is made active
1734 * @netdev: network interface device structure
1736 * Returns 0 on success, negative value on failure
1738 * The open entry point is called when a network interface is made
1739 * active by the system (IFF_UP). At this point all resources needed
1740 * for transmit and receive operations are allocated, the interrupt
1741 * handler is registered with the OS, the watchdog timer is started,
1742 * and the stack is notified that the interface is ready.
1744 static int igb_open(struct net_device *netdev)
1746 struct igb_adapter *adapter = netdev_priv(netdev);
1747 struct e1000_hw *hw = &adapter->hw;
1748 int err;
1749 int i;
1751 /* disallow open during test */
1752 if (test_bit(__IGB_TESTING, &adapter->state))
1753 return -EBUSY;
1755 netif_carrier_off(netdev);
1757 /* allocate transmit descriptors */
1758 err = igb_setup_all_tx_resources(adapter);
1759 if (err)
1760 goto err_setup_tx;
1762 /* allocate receive descriptors */
1763 err = igb_setup_all_rx_resources(adapter);
1764 if (err)
1765 goto err_setup_rx;
1767 /* e1000_power_up_phy(adapter); */
1769 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1770 if ((adapter->hw.mng_cookie.status &
1771 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
1772 igb_update_mng_vlan(adapter);
1774 /* before we allocate an interrupt, we must be ready to handle it.
1775 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1776 * as soon as we call pci_request_irq, so we have to setup our
1777 * clean_rx handler before we do so. */
1778 igb_configure(adapter);
1780 igb_vmm_control(adapter);
1781 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
1782 igb_set_vmolr(hw, adapter->vfs_allocated_count);
1784 err = igb_request_irq(adapter);
1785 if (err)
1786 goto err_req_irq;
1788 /* From here on the code is the same as igb_up() */
1789 clear_bit(__IGB_DOWN, &adapter->state);
1791 for (i = 0; i < adapter->num_rx_queues; i++)
1792 napi_enable(&adapter->rx_ring[i].napi);
1794 /* Clear any pending interrupts. */
1795 rd32(E1000_ICR);
1797 igb_irq_enable(adapter);
1799 netif_tx_start_all_queues(netdev);
1801 /* Fire a link status change interrupt to start the watchdog. */
1802 wr32(E1000_ICS, E1000_ICS_LSC);
1804 return 0;
1806 err_req_irq:
1807 igb_release_hw_control(adapter);
1808 /* e1000_power_down_phy(adapter); */
1809 igb_free_all_rx_resources(adapter);
1810 err_setup_rx:
1811 igb_free_all_tx_resources(adapter);
1812 err_setup_tx:
1813 igb_reset(adapter);
1815 return err;
1819 * igb_close - Disables a network interface
1820 * @netdev: network interface device structure
1822 * Returns 0, this is not allowed to fail
1824 * The close entry point is called when an interface is de-activated
1825 * by the OS. The hardware is still under the driver's control, but
1826 * needs to be disabled. A global MAC reset is issued to stop the
1827 * hardware, and all transmit and receive resources are freed.
1829 static int igb_close(struct net_device *netdev)
1831 struct igb_adapter *adapter = netdev_priv(netdev);
1833 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
1834 igb_down(adapter);
1836 igb_free_irq(adapter);
1838 igb_free_all_tx_resources(adapter);
1839 igb_free_all_rx_resources(adapter);
1841 /* kill manageability vlan ID if supported, but not if a vlan with
1842 * the same ID is registered on the host OS (let 8021q kill it) */
1843 if ((adapter->hw.mng_cookie.status &
1844 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
1845 !(adapter->vlgrp &&
1846 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
1847 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1849 return 0;
1853 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1854 * @adapter: board private structure
1855 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1857 * Return 0 on success, negative on failure
1859 int igb_setup_tx_resources(struct igb_adapter *adapter,
1860 struct igb_ring *tx_ring)
1862 struct pci_dev *pdev = adapter->pdev;
1863 int size;
1865 size = sizeof(struct igb_buffer) * tx_ring->count;
1866 tx_ring->buffer_info = vmalloc(size);
1867 if (!tx_ring->buffer_info)
1868 goto err;
1869 memset(tx_ring->buffer_info, 0, size);
1871 /* round up to nearest 4K */
1872 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
1873 tx_ring->size = ALIGN(tx_ring->size, 4096);
1875 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
1876 &tx_ring->dma);
1878 if (!tx_ring->desc)
1879 goto err;
1881 tx_ring->adapter = adapter;
1882 tx_ring->next_to_use = 0;
1883 tx_ring->next_to_clean = 0;
1884 return 0;
1886 err:
1887 vfree(tx_ring->buffer_info);
1888 dev_err(&adapter->pdev->dev,
1889 "Unable to allocate memory for the transmit descriptor ring\n");
1890 return -ENOMEM;
1894 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1895 * (Descriptors) for all queues
1896 * @adapter: board private structure
1898 * Return 0 on success, negative on failure
1900 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
1902 int i, err = 0;
1903 int r_idx;
1905 for (i = 0; i < adapter->num_tx_queues; i++) {
1906 err = igb_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1907 if (err) {
1908 dev_err(&adapter->pdev->dev,
1909 "Allocation for Tx Queue %u failed\n", i);
1910 for (i--; i >= 0; i--)
1911 igb_free_tx_resources(&adapter->tx_ring[i]);
1912 break;
1916 for (i = 0; i < IGB_MAX_TX_QUEUES; i++) {
1917 r_idx = i % adapter->num_tx_queues;
1918 adapter->multi_tx_table[i] = &adapter->tx_ring[r_idx];
1920 return err;
1924 * igb_configure_tx - Configure transmit Unit after Reset
1925 * @adapter: board private structure
1927 * Configure the Tx unit of the MAC after a reset.
1929 static void igb_configure_tx(struct igb_adapter *adapter)
1931 u64 tdba;
1932 struct e1000_hw *hw = &adapter->hw;
1933 u32 tctl;
1934 u32 txdctl, txctrl;
1935 int i, j;
1937 for (i = 0; i < adapter->num_tx_queues; i++) {
1938 struct igb_ring *ring = &adapter->tx_ring[i];
1939 j = ring->reg_idx;
1940 wr32(E1000_TDLEN(j),
1941 ring->count * sizeof(union e1000_adv_tx_desc));
1942 tdba = ring->dma;
1943 wr32(E1000_TDBAL(j),
1944 tdba & 0x00000000ffffffffULL);
1945 wr32(E1000_TDBAH(j), tdba >> 32);
1947 ring->head = E1000_TDH(j);
1948 ring->tail = E1000_TDT(j);
1949 writel(0, hw->hw_addr + ring->tail);
1950 writel(0, hw->hw_addr + ring->head);
1951 txdctl = rd32(E1000_TXDCTL(j));
1952 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1953 wr32(E1000_TXDCTL(j), txdctl);
1955 /* Turn off Relaxed Ordering on head write-backs. The
1956 * writebacks MUST be delivered in order or it will
1957 * completely screw up our bookeeping.
1959 txctrl = rd32(E1000_DCA_TXCTRL(j));
1960 txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1961 wr32(E1000_DCA_TXCTRL(j), txctrl);
1964 /* disable queue 0 to prevent tail bump w/o re-configuration */
1965 if (adapter->vfs_allocated_count)
1966 wr32(E1000_TXDCTL(0), 0);
1968 /* Program the Transmit Control Register */
1969 tctl = rd32(E1000_TCTL);
1970 tctl &= ~E1000_TCTL_CT;
1971 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1972 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1974 igb_config_collision_dist(hw);
1976 /* Setup Transmit Descriptor Settings for eop descriptor */
1977 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS;
1979 /* Enable transmits */
1980 tctl |= E1000_TCTL_EN;
1982 wr32(E1000_TCTL, tctl);
1986 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1987 * @adapter: board private structure
1988 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1990 * Returns 0 on success, negative on failure
1992 int igb_setup_rx_resources(struct igb_adapter *adapter,
1993 struct igb_ring *rx_ring)
1995 struct pci_dev *pdev = adapter->pdev;
1996 int size, desc_len;
1998 size = sizeof(struct igb_buffer) * rx_ring->count;
1999 rx_ring->buffer_info = vmalloc(size);
2000 if (!rx_ring->buffer_info)
2001 goto err;
2002 memset(rx_ring->buffer_info, 0, size);
2004 desc_len = sizeof(union e1000_adv_rx_desc);
2006 /* Round up to nearest 4K */
2007 rx_ring->size = rx_ring->count * desc_len;
2008 rx_ring->size = ALIGN(rx_ring->size, 4096);
2010 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
2011 &rx_ring->dma);
2013 if (!rx_ring->desc)
2014 goto err;
2016 rx_ring->next_to_clean = 0;
2017 rx_ring->next_to_use = 0;
2019 rx_ring->adapter = adapter;
2021 return 0;
2023 err:
2024 vfree(rx_ring->buffer_info);
2025 dev_err(&adapter->pdev->dev, "Unable to allocate memory for "
2026 "the receive descriptor ring\n");
2027 return -ENOMEM;
2031 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
2032 * (Descriptors) for all queues
2033 * @adapter: board private structure
2035 * Return 0 on success, negative on failure
2037 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2039 int i, err = 0;
2041 for (i = 0; i < adapter->num_rx_queues; i++) {
2042 err = igb_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2043 if (err) {
2044 dev_err(&adapter->pdev->dev,
2045 "Allocation for Rx Queue %u failed\n", i);
2046 for (i--; i >= 0; i--)
2047 igb_free_rx_resources(&adapter->rx_ring[i]);
2048 break;
2052 return err;
2056 * igb_setup_rctl - configure the receive control registers
2057 * @adapter: Board private structure
2059 static void igb_setup_rctl(struct igb_adapter *adapter)
2061 struct e1000_hw *hw = &adapter->hw;
2062 u32 rctl;
2063 u32 srrctl = 0;
2064 int i;
2066 rctl = rd32(E1000_RCTL);
2068 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2069 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
2071 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
2072 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2075 * enable stripping of CRC. It's unlikely this will break BMC
2076 * redirection as it did with e1000. Newer features require
2077 * that the HW strips the CRC.
2079 rctl |= E1000_RCTL_SECRC;
2082 * disable store bad packets and clear size bits.
2084 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2086 /* enable LPE when to prevent packets larger than max_frame_size */
2087 rctl |= E1000_RCTL_LPE;
2089 /* Setup buffer sizes */
2090 switch (adapter->rx_buffer_len) {
2091 case IGB_RXBUFFER_256:
2092 rctl |= E1000_RCTL_SZ_256;
2093 break;
2094 case IGB_RXBUFFER_512:
2095 rctl |= E1000_RCTL_SZ_512;
2096 break;
2097 default:
2098 srrctl = ALIGN(adapter->rx_buffer_len, 1024)
2099 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2100 break;
2103 /* 82575 and greater support packet-split where the protocol
2104 * header is placed in skb->data and the packet data is
2105 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2106 * In the case of a non-split, skb->data is linearly filled,
2107 * followed by the page buffers. Therefore, skb->data is
2108 * sized to hold the largest protocol header.
2110 /* allocations using alloc_page take too long for regular MTU
2111 * so only enable packet split for jumbo frames */
2112 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2113 adapter->rx_ps_hdr_size = IGB_RXBUFFER_128;
2114 srrctl |= adapter->rx_ps_hdr_size <<
2115 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2116 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2117 } else {
2118 adapter->rx_ps_hdr_size = 0;
2119 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2122 /* Attention!!! For SR-IOV PF driver operations you must enable
2123 * queue drop for all VF and PF queues to prevent head of line blocking
2124 * if an un-trusted VF does not provide descriptors to hardware.
2126 if (adapter->vfs_allocated_count) {
2127 u32 vmolr;
2129 /* set all queue drop enable bits */
2130 wr32(E1000_QDE, ALL_QUEUES);
2131 srrctl |= E1000_SRRCTL_DROP_EN;
2133 /* disable queue 0 to prevent tail write w/o re-config */
2134 wr32(E1000_RXDCTL(0), 0);
2136 vmolr = rd32(E1000_VMOLR(adapter->vfs_allocated_count));
2137 if (rctl & E1000_RCTL_LPE)
2138 vmolr |= E1000_VMOLR_LPE;
2139 if (adapter->num_rx_queues > 1)
2140 vmolr |= E1000_VMOLR_RSSE;
2141 wr32(E1000_VMOLR(adapter->vfs_allocated_count), vmolr);
2144 for (i = 0; i < adapter->num_rx_queues; i++) {
2145 int j = adapter->rx_ring[i].reg_idx;
2146 wr32(E1000_SRRCTL(j), srrctl);
2149 wr32(E1000_RCTL, rctl);
2153 * igb_rlpml_set - set maximum receive packet size
2154 * @adapter: board private structure
2156 * Configure maximum receivable packet size.
2158 static void igb_rlpml_set(struct igb_adapter *adapter)
2160 u32 max_frame_size = adapter->max_frame_size;
2161 struct e1000_hw *hw = &adapter->hw;
2162 u16 pf_id = adapter->vfs_allocated_count;
2164 if (adapter->vlgrp)
2165 max_frame_size += VLAN_TAG_SIZE;
2167 /* if vfs are enabled we set RLPML to the largest possible request
2168 * size and set the VMOLR RLPML to the size we need */
2169 if (pf_id) {
2170 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
2171 max_frame_size = MAX_STD_JUMBO_FRAME_SIZE + VLAN_TAG_SIZE;
2174 wr32(E1000_RLPML, max_frame_size);
2178 * igb_configure_vt_default_pool - Configure VT default pool
2179 * @adapter: board private structure
2181 * Configure the default pool
2183 static void igb_configure_vt_default_pool(struct igb_adapter *adapter)
2185 struct e1000_hw *hw = &adapter->hw;
2186 u16 pf_id = adapter->vfs_allocated_count;
2187 u32 vtctl;
2189 /* not in sr-iov mode - do nothing */
2190 if (!pf_id)
2191 return;
2193 vtctl = rd32(E1000_VT_CTL);
2194 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2195 E1000_VT_CTL_DISABLE_DEF_POOL);
2196 vtctl |= pf_id << E1000_VT_CTL_DEFAULT_POOL_SHIFT;
2197 wr32(E1000_VT_CTL, vtctl);
2201 * igb_configure_rx - Configure receive Unit after Reset
2202 * @adapter: board private structure
2204 * Configure the Rx unit of the MAC after a reset.
2206 static void igb_configure_rx(struct igb_adapter *adapter)
2208 u64 rdba;
2209 struct e1000_hw *hw = &adapter->hw;
2210 u32 rctl, rxcsum;
2211 u32 rxdctl;
2212 int i;
2214 /* disable receives while setting up the descriptors */
2215 rctl = rd32(E1000_RCTL);
2216 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2217 wrfl();
2218 mdelay(10);
2220 if (adapter->itr_setting > 3)
2221 wr32(E1000_ITR, adapter->itr);
2223 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2224 * the Base and Length of the Rx Descriptor Ring */
2225 for (i = 0; i < adapter->num_rx_queues; i++) {
2226 struct igb_ring *ring = &adapter->rx_ring[i];
2227 int j = ring->reg_idx;
2228 rdba = ring->dma;
2229 wr32(E1000_RDBAL(j),
2230 rdba & 0x00000000ffffffffULL);
2231 wr32(E1000_RDBAH(j), rdba >> 32);
2232 wr32(E1000_RDLEN(j),
2233 ring->count * sizeof(union e1000_adv_rx_desc));
2235 ring->head = E1000_RDH(j);
2236 ring->tail = E1000_RDT(j);
2237 writel(0, hw->hw_addr + ring->tail);
2238 writel(0, hw->hw_addr + ring->head);
2240 rxdctl = rd32(E1000_RXDCTL(j));
2241 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2242 rxdctl &= 0xFFF00000;
2243 rxdctl |= IGB_RX_PTHRESH;
2244 rxdctl |= IGB_RX_HTHRESH << 8;
2245 rxdctl |= IGB_RX_WTHRESH << 16;
2246 wr32(E1000_RXDCTL(j), rxdctl);
2249 if (adapter->num_rx_queues > 1) {
2250 u32 random[10];
2251 u32 mrqc;
2252 u32 j, shift;
2253 union e1000_reta {
2254 u32 dword;
2255 u8 bytes[4];
2256 } reta;
2258 get_random_bytes(&random[0], 40);
2260 if (hw->mac.type >= e1000_82576)
2261 shift = 0;
2262 else
2263 shift = 6;
2264 for (j = 0; j < (32 * 4); j++) {
2265 reta.bytes[j & 3] =
2266 adapter->rx_ring[(j % adapter->num_rx_queues)].reg_idx << shift;
2267 if ((j & 3) == 3)
2268 writel(reta.dword,
2269 hw->hw_addr + E1000_RETA(0) + (j & ~3));
2271 if (adapter->vfs_allocated_count)
2272 mrqc = E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
2273 else
2274 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2276 /* Fill out hash function seeds */
2277 for (j = 0; j < 10; j++)
2278 array_wr32(E1000_RSSRK(0), j, random[j]);
2280 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2281 E1000_MRQC_RSS_FIELD_IPV4_TCP);
2282 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2283 E1000_MRQC_RSS_FIELD_IPV6_TCP);
2284 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4_UDP |
2285 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2286 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2287 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2289 wr32(E1000_MRQC, mrqc);
2290 } else if (adapter->vfs_allocated_count) {
2291 /* Enable multi-queue for sr-iov */
2292 wr32(E1000_MRQC, E1000_MRQC_ENABLE_VMDQ);
2295 /* Enable Receive Checksum Offload for TCP and UDP */
2296 rxcsum = rd32(E1000_RXCSUM);
2297 /* Disable raw packet checksumming */
2298 rxcsum |= E1000_RXCSUM_PCSD;
2300 if (adapter->hw.mac.type == e1000_82576)
2301 /* Enable Receive Checksum Offload for SCTP */
2302 rxcsum |= E1000_RXCSUM_CRCOFL;
2304 /* Don't need to set TUOFL or IPOFL, they default to 1 */
2305 wr32(E1000_RXCSUM, rxcsum);
2307 /* Set the default pool for the PF's first queue */
2308 igb_configure_vt_default_pool(adapter);
2310 igb_rlpml_set(adapter);
2312 /* Enable Receives */
2313 wr32(E1000_RCTL, rctl);
2317 * igb_free_tx_resources - Free Tx Resources per Queue
2318 * @tx_ring: Tx descriptor ring for a specific queue
2320 * Free all transmit software resources
2322 void igb_free_tx_resources(struct igb_ring *tx_ring)
2324 struct pci_dev *pdev = tx_ring->adapter->pdev;
2326 igb_clean_tx_ring(tx_ring);
2328 vfree(tx_ring->buffer_info);
2329 tx_ring->buffer_info = NULL;
2331 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2333 tx_ring->desc = NULL;
2337 * igb_free_all_tx_resources - Free Tx Resources for All Queues
2338 * @adapter: board private structure
2340 * Free all transmit software resources
2342 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
2344 int i;
2346 for (i = 0; i < adapter->num_tx_queues; i++)
2347 igb_free_tx_resources(&adapter->tx_ring[i]);
2350 static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
2351 struct igb_buffer *buffer_info)
2353 buffer_info->dma = 0;
2354 if (buffer_info->skb) {
2355 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
2356 DMA_TO_DEVICE);
2357 dev_kfree_skb_any(buffer_info->skb);
2358 buffer_info->skb = NULL;
2360 buffer_info->time_stamp = 0;
2361 /* buffer_info must be completely set up in the transmit path */
2365 * igb_clean_tx_ring - Free Tx Buffers
2366 * @tx_ring: ring to be cleaned
2368 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
2370 struct igb_adapter *adapter = tx_ring->adapter;
2371 struct igb_buffer *buffer_info;
2372 unsigned long size;
2373 unsigned int i;
2375 if (!tx_ring->buffer_info)
2376 return;
2377 /* Free all the Tx ring sk_buffs */
2379 for (i = 0; i < tx_ring->count; i++) {
2380 buffer_info = &tx_ring->buffer_info[i];
2381 igb_unmap_and_free_tx_resource(adapter, buffer_info);
2384 size = sizeof(struct igb_buffer) * tx_ring->count;
2385 memset(tx_ring->buffer_info, 0, size);
2387 /* Zero out the descriptor ring */
2389 memset(tx_ring->desc, 0, tx_ring->size);
2391 tx_ring->next_to_use = 0;
2392 tx_ring->next_to_clean = 0;
2394 writel(0, adapter->hw.hw_addr + tx_ring->head);
2395 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2399 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2400 * @adapter: board private structure
2402 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
2404 int i;
2406 for (i = 0; i < adapter->num_tx_queues; i++)
2407 igb_clean_tx_ring(&adapter->tx_ring[i]);
2411 * igb_free_rx_resources - Free Rx Resources
2412 * @rx_ring: ring to clean the resources from
2414 * Free all receive software resources
2416 void igb_free_rx_resources(struct igb_ring *rx_ring)
2418 struct pci_dev *pdev = rx_ring->adapter->pdev;
2420 igb_clean_rx_ring(rx_ring);
2422 vfree(rx_ring->buffer_info);
2423 rx_ring->buffer_info = NULL;
2425 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2427 rx_ring->desc = NULL;
2431 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2432 * @adapter: board private structure
2434 * Free all receive software resources
2436 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
2438 int i;
2440 for (i = 0; i < adapter->num_rx_queues; i++)
2441 igb_free_rx_resources(&adapter->rx_ring[i]);
2445 * igb_clean_rx_ring - Free Rx Buffers per Queue
2446 * @rx_ring: ring to free buffers from
2448 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
2450 struct igb_adapter *adapter = rx_ring->adapter;
2451 struct igb_buffer *buffer_info;
2452 struct pci_dev *pdev = adapter->pdev;
2453 unsigned long size;
2454 unsigned int i;
2456 if (!rx_ring->buffer_info)
2457 return;
2458 /* Free all the Rx ring sk_buffs */
2459 for (i = 0; i < rx_ring->count; i++) {
2460 buffer_info = &rx_ring->buffer_info[i];
2461 if (buffer_info->dma) {
2462 if (adapter->rx_ps_hdr_size)
2463 pci_unmap_single(pdev, buffer_info->dma,
2464 adapter->rx_ps_hdr_size,
2465 PCI_DMA_FROMDEVICE);
2466 else
2467 pci_unmap_single(pdev, buffer_info->dma,
2468 adapter->rx_buffer_len,
2469 PCI_DMA_FROMDEVICE);
2470 buffer_info->dma = 0;
2473 if (buffer_info->skb) {
2474 dev_kfree_skb(buffer_info->skb);
2475 buffer_info->skb = NULL;
2477 if (buffer_info->page) {
2478 if (buffer_info->page_dma)
2479 pci_unmap_page(pdev, buffer_info->page_dma,
2480 PAGE_SIZE / 2,
2481 PCI_DMA_FROMDEVICE);
2482 put_page(buffer_info->page);
2483 buffer_info->page = NULL;
2484 buffer_info->page_dma = 0;
2485 buffer_info->page_offset = 0;
2489 size = sizeof(struct igb_buffer) * rx_ring->count;
2490 memset(rx_ring->buffer_info, 0, size);
2492 /* Zero out the descriptor ring */
2493 memset(rx_ring->desc, 0, rx_ring->size);
2495 rx_ring->next_to_clean = 0;
2496 rx_ring->next_to_use = 0;
2498 writel(0, adapter->hw.hw_addr + rx_ring->head);
2499 writel(0, adapter->hw.hw_addr + rx_ring->tail);
2503 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2504 * @adapter: board private structure
2506 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
2508 int i;
2510 for (i = 0; i < adapter->num_rx_queues; i++)
2511 igb_clean_rx_ring(&adapter->rx_ring[i]);
2515 * igb_set_mac - Change the Ethernet Address of the NIC
2516 * @netdev: network interface device structure
2517 * @p: pointer to an address structure
2519 * Returns 0 on success, negative on failure
2521 static int igb_set_mac(struct net_device *netdev, void *p)
2523 struct igb_adapter *adapter = netdev_priv(netdev);
2524 struct e1000_hw *hw = &adapter->hw;
2525 struct sockaddr *addr = p;
2527 if (!is_valid_ether_addr(addr->sa_data))
2528 return -EADDRNOTAVAIL;
2530 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2531 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
2533 igb_rar_set(hw, hw->mac.addr, 0);
2534 igb_set_rah_pool(hw, adapter->vfs_allocated_count, 0);
2536 return 0;
2540 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2541 * @netdev: network interface device structure
2543 * The set_rx_mode entry point is called whenever the unicast or multicast
2544 * address lists or the network interface flags are updated. This routine is
2545 * responsible for configuring the hardware for proper unicast, multicast,
2546 * promiscuous mode, and all-multi behavior.
2548 static void igb_set_rx_mode(struct net_device *netdev)
2550 struct igb_adapter *adapter = netdev_priv(netdev);
2551 struct e1000_hw *hw = &adapter->hw;
2552 unsigned int rar_entries = hw->mac.rar_entry_count -
2553 (adapter->vfs_allocated_count + 1);
2554 struct dev_mc_list *mc_ptr = netdev->mc_list;
2555 u8 *mta_list = NULL;
2556 u32 rctl;
2557 int i;
2559 /* Check for Promiscuous and All Multicast modes */
2560 rctl = rd32(E1000_RCTL);
2562 if (netdev->flags & IFF_PROMISC) {
2563 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2564 rctl &= ~E1000_RCTL_VFE;
2565 } else {
2566 if (netdev->flags & IFF_ALLMULTI)
2567 rctl |= E1000_RCTL_MPE;
2568 else
2569 rctl &= ~E1000_RCTL_MPE;
2571 if (netdev->uc.count > rar_entries)
2572 rctl |= E1000_RCTL_UPE;
2573 else
2574 rctl &= ~E1000_RCTL_UPE;
2575 rctl |= E1000_RCTL_VFE;
2577 wr32(E1000_RCTL, rctl);
2579 if (netdev->uc.count && rar_entries) {
2580 struct netdev_hw_addr *ha;
2581 list_for_each_entry(ha, &netdev->uc.list, list) {
2582 if (!rar_entries)
2583 break;
2584 igb_rar_set(hw, ha->addr, rar_entries);
2585 igb_set_rah_pool(hw, adapter->vfs_allocated_count,
2586 rar_entries);
2587 rar_entries--;
2590 /* write the addresses in reverse order to avoid write combining */
2591 for (; rar_entries > 0 ; rar_entries--) {
2592 wr32(E1000_RAH(rar_entries), 0);
2593 wr32(E1000_RAL(rar_entries), 0);
2595 wrfl();
2597 if (!netdev->mc_count) {
2598 /* nothing to program, so clear mc list */
2599 igb_update_mc_addr_list(hw, NULL, 0);
2600 igb_restore_vf_multicasts(adapter);
2601 return;
2604 mta_list = kzalloc(netdev->mc_count * 6, GFP_ATOMIC);
2605 if (!mta_list) {
2606 dev_err(&adapter->pdev->dev,
2607 "failed to allocate multicast filter list\n");
2608 return;
2611 /* The shared function expects a packed array of only addresses. */
2612 for (i = 0; i < netdev->mc_count; i++) {
2613 if (!mc_ptr)
2614 break;
2615 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, ETH_ALEN);
2616 mc_ptr = mc_ptr->next;
2618 igb_update_mc_addr_list(hw, mta_list, i);
2619 kfree(mta_list);
2620 igb_restore_vf_multicasts(adapter);
2623 /* Need to wait a few seconds after link up to get diagnostic information from
2624 * the phy */
2625 static void igb_update_phy_info(unsigned long data)
2627 struct igb_adapter *adapter = (struct igb_adapter *) data;
2628 igb_get_phy_info(&adapter->hw);
2632 * igb_has_link - check shared code for link and determine up/down
2633 * @adapter: pointer to driver private info
2635 static bool igb_has_link(struct igb_adapter *adapter)
2637 struct e1000_hw *hw = &adapter->hw;
2638 bool link_active = false;
2639 s32 ret_val = 0;
2641 /* get_link_status is set on LSC (link status) interrupt or
2642 * rx sequence error interrupt. get_link_status will stay
2643 * false until the e1000_check_for_link establishes link
2644 * for copper adapters ONLY
2646 switch (hw->phy.media_type) {
2647 case e1000_media_type_copper:
2648 if (hw->mac.get_link_status) {
2649 ret_val = hw->mac.ops.check_for_link(hw);
2650 link_active = !hw->mac.get_link_status;
2651 } else {
2652 link_active = true;
2654 break;
2655 case e1000_media_type_internal_serdes:
2656 ret_val = hw->mac.ops.check_for_link(hw);
2657 link_active = hw->mac.serdes_has_link;
2658 break;
2659 default:
2660 case e1000_media_type_unknown:
2661 break;
2664 return link_active;
2668 * igb_watchdog - Timer Call-back
2669 * @data: pointer to adapter cast into an unsigned long
2671 static void igb_watchdog(unsigned long data)
2673 struct igb_adapter *adapter = (struct igb_adapter *)data;
2674 /* Do the rest outside of interrupt context */
2675 schedule_work(&adapter->watchdog_task);
2678 static void igb_watchdog_task(struct work_struct *work)
2680 struct igb_adapter *adapter = container_of(work,
2681 struct igb_adapter, watchdog_task);
2682 struct e1000_hw *hw = &adapter->hw;
2683 struct net_device *netdev = adapter->netdev;
2684 struct igb_ring *tx_ring = adapter->tx_ring;
2685 u32 link;
2686 u32 eics = 0;
2687 int i;
2689 link = igb_has_link(adapter);
2690 if ((netif_carrier_ok(netdev)) && link)
2691 goto link_up;
2693 if (link) {
2694 if (!netif_carrier_ok(netdev)) {
2695 u32 ctrl;
2696 hw->mac.ops.get_speed_and_duplex(&adapter->hw,
2697 &adapter->link_speed,
2698 &adapter->link_duplex);
2700 ctrl = rd32(E1000_CTRL);
2701 /* Links status message must follow this format */
2702 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s, "
2703 "Flow Control: %s\n",
2704 netdev->name,
2705 adapter->link_speed,
2706 adapter->link_duplex == FULL_DUPLEX ?
2707 "Full Duplex" : "Half Duplex",
2708 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2709 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2710 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2711 E1000_CTRL_TFCE) ? "TX" : "None")));
2713 /* tweak tx_queue_len according to speed/duplex and
2714 * adjust the timeout factor */
2715 netdev->tx_queue_len = adapter->tx_queue_len;
2716 adapter->tx_timeout_factor = 1;
2717 switch (adapter->link_speed) {
2718 case SPEED_10:
2719 netdev->tx_queue_len = 10;
2720 adapter->tx_timeout_factor = 14;
2721 break;
2722 case SPEED_100:
2723 netdev->tx_queue_len = 100;
2724 /* maybe add some timeout factor ? */
2725 break;
2728 netif_carrier_on(netdev);
2730 igb_ping_all_vfs(adapter);
2732 /* link state has changed, schedule phy info update */
2733 if (!test_bit(__IGB_DOWN, &adapter->state))
2734 mod_timer(&adapter->phy_info_timer,
2735 round_jiffies(jiffies + 2 * HZ));
2737 } else {
2738 if (netif_carrier_ok(netdev)) {
2739 adapter->link_speed = 0;
2740 adapter->link_duplex = 0;
2741 /* Links status message must follow this format */
2742 printk(KERN_INFO "igb: %s NIC Link is Down\n",
2743 netdev->name);
2744 netif_carrier_off(netdev);
2746 igb_ping_all_vfs(adapter);
2748 /* link state has changed, schedule phy info update */
2749 if (!test_bit(__IGB_DOWN, &adapter->state))
2750 mod_timer(&adapter->phy_info_timer,
2751 round_jiffies(jiffies + 2 * HZ));
2755 link_up:
2756 igb_update_stats(adapter);
2758 hw->mac.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2759 adapter->tpt_old = adapter->stats.tpt;
2760 hw->mac.collision_delta = adapter->stats.colc - adapter->colc_old;
2761 adapter->colc_old = adapter->stats.colc;
2763 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
2764 adapter->gorc_old = adapter->stats.gorc;
2765 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
2766 adapter->gotc_old = adapter->stats.gotc;
2768 igb_update_adaptive(&adapter->hw);
2770 if (!netif_carrier_ok(netdev)) {
2771 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
2772 /* We've lost link, so the controller stops DMA,
2773 * but we've got queued Tx work that's never going
2774 * to get done, so reset controller to flush Tx.
2775 * (Do the reset outside of interrupt context). */
2776 adapter->tx_timeout_count++;
2777 schedule_work(&adapter->reset_task);
2778 /* return immediately since reset is imminent */
2779 return;
2783 /* Cause software interrupt to ensure rx ring is cleaned */
2784 if (adapter->msix_entries) {
2785 for (i = 0; i < adapter->num_rx_queues; i++)
2786 eics |= adapter->rx_ring[i].eims_value;
2787 wr32(E1000_EICS, eics);
2788 } else {
2789 wr32(E1000_ICS, E1000_ICS_RXDMT0);
2792 /* Force detection of hung controller every watchdog period */
2793 tx_ring->detect_tx_hung = true;
2795 /* Reset the timer */
2796 if (!test_bit(__IGB_DOWN, &adapter->state))
2797 mod_timer(&adapter->watchdog_timer,
2798 round_jiffies(jiffies + 2 * HZ));
2801 enum latency_range {
2802 lowest_latency = 0,
2803 low_latency = 1,
2804 bulk_latency = 2,
2805 latency_invalid = 255
2810 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2812 * Stores a new ITR value based on strictly on packet size. This
2813 * algorithm is less sophisticated than that used in igb_update_itr,
2814 * due to the difficulty of synchronizing statistics across multiple
2815 * receive rings. The divisors and thresholds used by this fuction
2816 * were determined based on theoretical maximum wire speed and testing
2817 * data, in order to minimize response time while increasing bulk
2818 * throughput.
2819 * This functionality is controlled by the InterruptThrottleRate module
2820 * parameter (see igb_param.c)
2821 * NOTE: This function is called only when operating in a multiqueue
2822 * receive environment.
2823 * @rx_ring: pointer to ring
2825 static void igb_update_ring_itr(struct igb_ring *rx_ring)
2827 int new_val = rx_ring->itr_val;
2828 int avg_wire_size = 0;
2829 struct igb_adapter *adapter = rx_ring->adapter;
2831 if (!rx_ring->total_packets)
2832 goto clear_counts; /* no packets, so don't do anything */
2834 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2835 * ints/sec - ITR timer value of 120 ticks.
2837 if (adapter->link_speed != SPEED_1000) {
2838 new_val = 120;
2839 goto set_itr_val;
2841 avg_wire_size = rx_ring->total_bytes / rx_ring->total_packets;
2843 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2844 avg_wire_size += 24;
2846 /* Don't starve jumbo frames */
2847 avg_wire_size = min(avg_wire_size, 3000);
2849 /* Give a little boost to mid-size frames */
2850 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
2851 new_val = avg_wire_size / 3;
2852 else
2853 new_val = avg_wire_size / 2;
2855 set_itr_val:
2856 if (new_val != rx_ring->itr_val) {
2857 rx_ring->itr_val = new_val;
2858 rx_ring->set_itr = 1;
2860 clear_counts:
2861 rx_ring->total_bytes = 0;
2862 rx_ring->total_packets = 0;
2866 * igb_update_itr - update the dynamic ITR value based on statistics
2867 * Stores a new ITR value based on packets and byte
2868 * counts during the last interrupt. The advantage of per interrupt
2869 * computation is faster updates and more accurate ITR for the current
2870 * traffic pattern. Constants in this function were computed
2871 * based on theoretical maximum wire speed and thresholds were set based
2872 * on testing data as well as attempting to minimize response time
2873 * while increasing bulk throughput.
2874 * this functionality is controlled by the InterruptThrottleRate module
2875 * parameter (see igb_param.c)
2876 * NOTE: These calculations are only valid when operating in a single-
2877 * queue environment.
2878 * @adapter: pointer to adapter
2879 * @itr_setting: current adapter->itr
2880 * @packets: the number of packets during this measurement interval
2881 * @bytes: the number of bytes during this measurement interval
2883 static unsigned int igb_update_itr(struct igb_adapter *adapter, u16 itr_setting,
2884 int packets, int bytes)
2886 unsigned int retval = itr_setting;
2888 if (packets == 0)
2889 goto update_itr_done;
2891 switch (itr_setting) {
2892 case lowest_latency:
2893 /* handle TSO and jumbo frames */
2894 if (bytes/packets > 8000)
2895 retval = bulk_latency;
2896 else if ((packets < 5) && (bytes > 512))
2897 retval = low_latency;
2898 break;
2899 case low_latency: /* 50 usec aka 20000 ints/s */
2900 if (bytes > 10000) {
2901 /* this if handles the TSO accounting */
2902 if (bytes/packets > 8000) {
2903 retval = bulk_latency;
2904 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2905 retval = bulk_latency;
2906 } else if ((packets > 35)) {
2907 retval = lowest_latency;
2909 } else if (bytes/packets > 2000) {
2910 retval = bulk_latency;
2911 } else if (packets <= 2 && bytes < 512) {
2912 retval = lowest_latency;
2914 break;
2915 case bulk_latency: /* 250 usec aka 4000 ints/s */
2916 if (bytes > 25000) {
2917 if (packets > 35)
2918 retval = low_latency;
2919 } else if (bytes < 1500) {
2920 retval = low_latency;
2922 break;
2925 update_itr_done:
2926 return retval;
2929 static void igb_set_itr(struct igb_adapter *adapter)
2931 u16 current_itr;
2932 u32 new_itr = adapter->itr;
2934 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2935 if (adapter->link_speed != SPEED_1000) {
2936 current_itr = 0;
2937 new_itr = 4000;
2938 goto set_itr_now;
2941 adapter->rx_itr = igb_update_itr(adapter,
2942 adapter->rx_itr,
2943 adapter->rx_ring->total_packets,
2944 adapter->rx_ring->total_bytes);
2946 if (adapter->rx_ring->buddy) {
2947 adapter->tx_itr = igb_update_itr(adapter,
2948 adapter->tx_itr,
2949 adapter->tx_ring->total_packets,
2950 adapter->tx_ring->total_bytes);
2951 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2952 } else {
2953 current_itr = adapter->rx_itr;
2956 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2957 if (adapter->itr_setting == 3 && current_itr == lowest_latency)
2958 current_itr = low_latency;
2960 switch (current_itr) {
2961 /* counts and packets in update_itr are dependent on these numbers */
2962 case lowest_latency:
2963 new_itr = 56; /* aka 70,000 ints/sec */
2964 break;
2965 case low_latency:
2966 new_itr = 196; /* aka 20,000 ints/sec */
2967 break;
2968 case bulk_latency:
2969 new_itr = 980; /* aka 4,000 ints/sec */
2970 break;
2971 default:
2972 break;
2975 set_itr_now:
2976 adapter->rx_ring->total_bytes = 0;
2977 adapter->rx_ring->total_packets = 0;
2978 if (adapter->rx_ring->buddy) {
2979 adapter->rx_ring->buddy->total_bytes = 0;
2980 adapter->rx_ring->buddy->total_packets = 0;
2983 if (new_itr != adapter->itr) {
2984 /* this attempts to bias the interrupt rate towards Bulk
2985 * by adding intermediate steps when interrupt rate is
2986 * increasing */
2987 new_itr = new_itr > adapter->itr ?
2988 max((new_itr * adapter->itr) /
2989 (new_itr + (adapter->itr >> 2)), new_itr) :
2990 new_itr;
2991 /* Don't write the value here; it resets the adapter's
2992 * internal timer, and causes us to delay far longer than
2993 * we should between interrupts. Instead, we write the ITR
2994 * value at the beginning of the next interrupt so the timing
2995 * ends up being correct.
2997 adapter->itr = new_itr;
2998 adapter->rx_ring->itr_val = new_itr;
2999 adapter->rx_ring->set_itr = 1;
3002 return;
3006 #define IGB_TX_FLAGS_CSUM 0x00000001
3007 #define IGB_TX_FLAGS_VLAN 0x00000002
3008 #define IGB_TX_FLAGS_TSO 0x00000004
3009 #define IGB_TX_FLAGS_IPV4 0x00000008
3010 #define IGB_TX_FLAGS_TSTAMP 0x00000010
3011 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
3012 #define IGB_TX_FLAGS_VLAN_SHIFT 16
3014 static inline int igb_tso_adv(struct igb_adapter *adapter,
3015 struct igb_ring *tx_ring,
3016 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
3018 struct e1000_adv_tx_context_desc *context_desc;
3019 unsigned int i;
3020 int err;
3021 struct igb_buffer *buffer_info;
3022 u32 info = 0, tu_cmd = 0;
3023 u32 mss_l4len_idx, l4len;
3024 *hdr_len = 0;
3026 if (skb_header_cloned(skb)) {
3027 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3028 if (err)
3029 return err;
3032 l4len = tcp_hdrlen(skb);
3033 *hdr_len += l4len;
3035 if (skb->protocol == htons(ETH_P_IP)) {
3036 struct iphdr *iph = ip_hdr(skb);
3037 iph->tot_len = 0;
3038 iph->check = 0;
3039 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3040 iph->daddr, 0,
3041 IPPROTO_TCP,
3043 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3044 ipv6_hdr(skb)->payload_len = 0;
3045 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3046 &ipv6_hdr(skb)->daddr,
3047 0, IPPROTO_TCP, 0);
3050 i = tx_ring->next_to_use;
3052 buffer_info = &tx_ring->buffer_info[i];
3053 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3054 /* VLAN MACLEN IPLEN */
3055 if (tx_flags & IGB_TX_FLAGS_VLAN)
3056 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3057 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3058 *hdr_len += skb_network_offset(skb);
3059 info |= skb_network_header_len(skb);
3060 *hdr_len += skb_network_header_len(skb);
3061 context_desc->vlan_macip_lens = cpu_to_le32(info);
3063 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3064 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3066 if (skb->protocol == htons(ETH_P_IP))
3067 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3068 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3070 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3072 /* MSS L4LEN IDX */
3073 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
3074 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
3076 /* For 82575, context index must be unique per ring. */
3077 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3078 mss_l4len_idx |= tx_ring->queue_index << 4;
3080 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
3081 context_desc->seqnum_seed = 0;
3083 buffer_info->time_stamp = jiffies;
3084 buffer_info->next_to_watch = i;
3085 buffer_info->dma = 0;
3086 i++;
3087 if (i == tx_ring->count)
3088 i = 0;
3090 tx_ring->next_to_use = i;
3092 return true;
3095 static inline bool igb_tx_csum_adv(struct igb_adapter *adapter,
3096 struct igb_ring *tx_ring,
3097 struct sk_buff *skb, u32 tx_flags)
3099 struct e1000_adv_tx_context_desc *context_desc;
3100 unsigned int i;
3101 struct igb_buffer *buffer_info;
3102 u32 info = 0, tu_cmd = 0;
3104 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
3105 (tx_flags & IGB_TX_FLAGS_VLAN)) {
3106 i = tx_ring->next_to_use;
3107 buffer_info = &tx_ring->buffer_info[i];
3108 context_desc = E1000_TX_CTXTDESC_ADV(*tx_ring, i);
3110 if (tx_flags & IGB_TX_FLAGS_VLAN)
3111 info |= (tx_flags & IGB_TX_FLAGS_VLAN_MASK);
3112 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
3113 if (skb->ip_summed == CHECKSUM_PARTIAL)
3114 info |= skb_network_header_len(skb);
3116 context_desc->vlan_macip_lens = cpu_to_le32(info);
3118 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
3120 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3121 __be16 protocol;
3123 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3124 const struct vlan_ethhdr *vhdr =
3125 (const struct vlan_ethhdr*)skb->data;
3127 protocol = vhdr->h_vlan_encapsulated_proto;
3128 } else {
3129 protocol = skb->protocol;
3132 switch (protocol) {
3133 case cpu_to_be16(ETH_P_IP):
3134 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
3135 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3136 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3137 else if (ip_hdr(skb)->protocol == IPPROTO_SCTP)
3138 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3139 break;
3140 case cpu_to_be16(ETH_P_IPV6):
3141 /* XXX what about other V6 headers?? */
3142 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3143 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
3144 else if (ipv6_hdr(skb)->nexthdr == IPPROTO_SCTP)
3145 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
3146 break;
3147 default:
3148 if (unlikely(net_ratelimit()))
3149 dev_warn(&adapter->pdev->dev,
3150 "partial checksum but proto=%x!\n",
3151 skb->protocol);
3152 break;
3156 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
3157 context_desc->seqnum_seed = 0;
3158 if (adapter->flags & IGB_FLAG_NEED_CTX_IDX)
3159 context_desc->mss_l4len_idx =
3160 cpu_to_le32(tx_ring->queue_index << 4);
3161 else
3162 context_desc->mss_l4len_idx = 0;
3164 buffer_info->time_stamp = jiffies;
3165 buffer_info->next_to_watch = i;
3166 buffer_info->dma = 0;
3168 i++;
3169 if (i == tx_ring->count)
3170 i = 0;
3171 tx_ring->next_to_use = i;
3173 return true;
3175 return false;
3178 #define IGB_MAX_TXD_PWR 16
3179 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
3181 static inline int igb_tx_map_adv(struct igb_adapter *adapter,
3182 struct igb_ring *tx_ring, struct sk_buff *skb,
3183 unsigned int first)
3185 struct igb_buffer *buffer_info;
3186 unsigned int len = skb_headlen(skb);
3187 unsigned int count = 0, i;
3188 unsigned int f;
3189 dma_addr_t *map;
3191 i = tx_ring->next_to_use;
3193 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
3194 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3195 return 0;
3198 map = skb_shinfo(skb)->dma_maps;
3200 buffer_info = &tx_ring->buffer_info[i];
3201 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3202 buffer_info->length = len;
3203 /* set time_stamp *before* dma to help avoid a possible race */
3204 buffer_info->time_stamp = jiffies;
3205 buffer_info->next_to_watch = i;
3206 buffer_info->dma = skb_shinfo(skb)->dma_head;
3208 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
3209 struct skb_frag_struct *frag;
3211 i++;
3212 if (i == tx_ring->count)
3213 i = 0;
3215 frag = &skb_shinfo(skb)->frags[f];
3216 len = frag->size;
3218 buffer_info = &tx_ring->buffer_info[i];
3219 BUG_ON(len >= IGB_MAX_DATA_PER_TXD);
3220 buffer_info->length = len;
3221 buffer_info->time_stamp = jiffies;
3222 buffer_info->next_to_watch = i;
3223 buffer_info->dma = map[count];
3224 count++;
3227 tx_ring->buffer_info[i].skb = skb;
3228 tx_ring->buffer_info[first].next_to_watch = i;
3230 return count + 1;
3233 static inline void igb_tx_queue_adv(struct igb_adapter *adapter,
3234 struct igb_ring *tx_ring,
3235 int tx_flags, int count, u32 paylen,
3236 u8 hdr_len)
3238 union e1000_adv_tx_desc *tx_desc = NULL;
3239 struct igb_buffer *buffer_info;
3240 u32 olinfo_status = 0, cmd_type_len;
3241 unsigned int i;
3243 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
3244 E1000_ADVTXD_DCMD_DEXT);
3246 if (tx_flags & IGB_TX_FLAGS_VLAN)
3247 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3249 if (tx_flags & IGB_TX_FLAGS_TSTAMP)
3250 cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
3252 if (tx_flags & IGB_TX_FLAGS_TSO) {
3253 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3255 /* insert tcp checksum */
3256 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3258 /* insert ip checksum */
3259 if (tx_flags & IGB_TX_FLAGS_IPV4)
3260 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3262 } else if (tx_flags & IGB_TX_FLAGS_CSUM) {
3263 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3266 if ((adapter->flags & IGB_FLAG_NEED_CTX_IDX) &&
3267 (tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_TSO |
3268 IGB_TX_FLAGS_VLAN)))
3269 olinfo_status |= tx_ring->queue_index << 4;
3271 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
3273 i = tx_ring->next_to_use;
3274 while (count--) {
3275 buffer_info = &tx_ring->buffer_info[i];
3276 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
3277 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
3278 tx_desc->read.cmd_type_len =
3279 cpu_to_le32(cmd_type_len | buffer_info->length);
3280 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3281 i++;
3282 if (i == tx_ring->count)
3283 i = 0;
3286 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
3287 /* Force memory writes to complete before letting h/w
3288 * know there are new descriptors to fetch. (Only
3289 * applicable for weak-ordered memory model archs,
3290 * such as IA-64). */
3291 wmb();
3293 tx_ring->next_to_use = i;
3294 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3295 /* we need this if more than one processor can write to our tail
3296 * at a time, it syncronizes IO on IA64/Altix systems */
3297 mmiowb();
3300 static int __igb_maybe_stop_tx(struct net_device *netdev,
3301 struct igb_ring *tx_ring, int size)
3303 struct igb_adapter *adapter = netdev_priv(netdev);
3305 netif_stop_subqueue(netdev, tx_ring->queue_index);
3307 /* Herbert's original patch had:
3308 * smp_mb__after_netif_stop_queue();
3309 * but since that doesn't exist yet, just open code it. */
3310 smp_mb();
3312 /* We need to check again in a case another CPU has just
3313 * made room available. */
3314 if (igb_desc_unused(tx_ring) < size)
3315 return -EBUSY;
3317 /* A reprieve! */
3318 netif_wake_subqueue(netdev, tx_ring->queue_index);
3319 ++adapter->restart_queue;
3320 return 0;
3323 static int igb_maybe_stop_tx(struct net_device *netdev,
3324 struct igb_ring *tx_ring, int size)
3326 if (igb_desc_unused(tx_ring) >= size)
3327 return 0;
3328 return __igb_maybe_stop_tx(netdev, tx_ring, size);
3331 static netdev_tx_t igb_xmit_frame_ring_adv(struct sk_buff *skb,
3332 struct net_device *netdev,
3333 struct igb_ring *tx_ring)
3335 struct igb_adapter *adapter = netdev_priv(netdev);
3336 unsigned int first;
3337 unsigned int tx_flags = 0;
3338 u8 hdr_len = 0;
3339 int count = 0;
3340 int tso = 0;
3341 union skb_shared_tx *shtx;
3343 if (test_bit(__IGB_DOWN, &adapter->state)) {
3344 dev_kfree_skb_any(skb);
3345 return NETDEV_TX_OK;
3348 if (skb->len <= 0) {
3349 dev_kfree_skb_any(skb);
3350 return NETDEV_TX_OK;
3353 /* need: 1 descriptor per page,
3354 * + 2 desc gap to keep tail from touching head,
3355 * + 1 desc for skb->data,
3356 * + 1 desc for context descriptor,
3357 * otherwise try next time */
3358 if (igb_maybe_stop_tx(netdev, tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
3359 /* this is a hard error */
3360 return NETDEV_TX_BUSY;
3364 * TODO: check that there currently is no other packet with
3365 * time stamping in the queue
3367 * When doing time stamping, keep the connection to the socket
3368 * a while longer: it is still needed by skb_hwtstamp_tx(),
3369 * called either in igb_tx_hwtstamp() or by our caller when
3370 * doing software time stamping.
3372 shtx = skb_tx(skb);
3373 if (unlikely(shtx->hardware)) {
3374 shtx->in_progress = 1;
3375 tx_flags |= IGB_TX_FLAGS_TSTAMP;
3378 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3379 tx_flags |= IGB_TX_FLAGS_VLAN;
3380 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
3383 if (skb->protocol == htons(ETH_P_IP))
3384 tx_flags |= IGB_TX_FLAGS_IPV4;
3386 first = tx_ring->next_to_use;
3387 tso = skb_is_gso(skb) ? igb_tso_adv(adapter, tx_ring, skb, tx_flags,
3388 &hdr_len) : 0;
3390 if (tso < 0) {
3391 dev_kfree_skb_any(skb);
3392 return NETDEV_TX_OK;
3395 if (tso)
3396 tx_flags |= IGB_TX_FLAGS_TSO;
3397 else if (igb_tx_csum_adv(adapter, tx_ring, skb, tx_flags) &&
3398 (skb->ip_summed == CHECKSUM_PARTIAL))
3399 tx_flags |= IGB_TX_FLAGS_CSUM;
3402 * count reflects descriptors mapped, if 0 then mapping error
3403 * has occured and we need to rewind the descriptor queue
3405 count = igb_tx_map_adv(adapter, tx_ring, skb, first);
3407 if (count) {
3408 igb_tx_queue_adv(adapter, tx_ring, tx_flags, count,
3409 skb->len, hdr_len);
3410 /* Make sure there is space in the ring for the next send. */
3411 igb_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 4);
3412 } else {
3413 dev_kfree_skb_any(skb);
3414 tx_ring->buffer_info[first].time_stamp = 0;
3415 tx_ring->next_to_use = first;
3418 return NETDEV_TX_OK;
3421 static netdev_tx_t igb_xmit_frame_adv(struct sk_buff *skb,
3422 struct net_device *netdev)
3424 struct igb_adapter *adapter = netdev_priv(netdev);
3425 struct igb_ring *tx_ring;
3427 int r_idx = 0;
3428 r_idx = skb->queue_mapping & (IGB_ABS_MAX_TX_QUEUES - 1);
3429 tx_ring = adapter->multi_tx_table[r_idx];
3431 /* This goes back to the question of how to logically map a tx queue
3432 * to a flow. Right now, performance is impacted slightly negatively
3433 * if using multiple tx queues. If the stack breaks away from a
3434 * single qdisc implementation, we can look at this again. */
3435 return igb_xmit_frame_ring_adv(skb, netdev, tx_ring);
3439 * igb_tx_timeout - Respond to a Tx Hang
3440 * @netdev: network interface device structure
3442 static void igb_tx_timeout(struct net_device *netdev)
3444 struct igb_adapter *adapter = netdev_priv(netdev);
3445 struct e1000_hw *hw = &adapter->hw;
3447 /* Do the reset outside of interrupt context */
3448 adapter->tx_timeout_count++;
3449 schedule_work(&adapter->reset_task);
3450 wr32(E1000_EICS,
3451 (adapter->eims_enable_mask & ~adapter->eims_other));
3454 static void igb_reset_task(struct work_struct *work)
3456 struct igb_adapter *adapter;
3457 adapter = container_of(work, struct igb_adapter, reset_task);
3459 igb_reinit_locked(adapter);
3463 * igb_get_stats - Get System Network Statistics
3464 * @netdev: network interface device structure
3466 * Returns the address of the device statistics structure.
3467 * The statistics are actually updated from the timer callback.
3469 static struct net_device_stats *igb_get_stats(struct net_device *netdev)
3471 struct igb_adapter *adapter = netdev_priv(netdev);
3473 /* only return the current stats */
3474 return &adapter->net_stats;
3478 * igb_change_mtu - Change the Maximum Transfer Unit
3479 * @netdev: network interface device structure
3480 * @new_mtu: new value for maximum frame size
3482 * Returns 0 on success, negative on failure
3484 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
3486 struct igb_adapter *adapter = netdev_priv(netdev);
3487 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3489 if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
3490 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3491 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
3492 return -EINVAL;
3495 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3496 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
3497 return -EINVAL;
3500 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
3501 msleep(1);
3503 /* igb_down has a dependency on max_frame_size */
3504 adapter->max_frame_size = max_frame;
3505 if (netif_running(netdev))
3506 igb_down(adapter);
3508 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3509 * means we reserve 2 more, this pushes us to allocate from the next
3510 * larger slab size.
3511 * i.e. RXBUFFER_2048 --> size-4096 slab
3514 if (max_frame <= IGB_RXBUFFER_256)
3515 adapter->rx_buffer_len = IGB_RXBUFFER_256;
3516 else if (max_frame <= IGB_RXBUFFER_512)
3517 adapter->rx_buffer_len = IGB_RXBUFFER_512;
3518 else if (max_frame <= IGB_RXBUFFER_1024)
3519 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3520 else if (max_frame <= IGB_RXBUFFER_2048)
3521 adapter->rx_buffer_len = IGB_RXBUFFER_2048;
3522 else
3523 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3524 adapter->rx_buffer_len = IGB_RXBUFFER_16384;
3525 #else
3526 adapter->rx_buffer_len = PAGE_SIZE / 2;
3527 #endif
3529 /* if sr-iov is enabled we need to force buffer size to 1K or larger */
3530 if (adapter->vfs_allocated_count &&
3531 (adapter->rx_buffer_len < IGB_RXBUFFER_1024))
3532 adapter->rx_buffer_len = IGB_RXBUFFER_1024;
3534 /* adjust allocation if LPE protects us, and we aren't using SBP */
3535 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
3536 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))
3537 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3539 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
3540 netdev->mtu, new_mtu);
3541 netdev->mtu = new_mtu;
3543 if (netif_running(netdev))
3544 igb_up(adapter);
3545 else
3546 igb_reset(adapter);
3548 clear_bit(__IGB_RESETTING, &adapter->state);
3550 return 0;
3554 * igb_update_stats - Update the board statistics counters
3555 * @adapter: board private structure
3558 void igb_update_stats(struct igb_adapter *adapter)
3560 struct e1000_hw *hw = &adapter->hw;
3561 struct pci_dev *pdev = adapter->pdev;
3562 u16 phy_tmp;
3564 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3567 * Prevent stats update while adapter is being reset, or if the pci
3568 * connection is down.
3570 if (adapter->link_speed == 0)
3571 return;
3572 if (pci_channel_offline(pdev))
3573 return;
3575 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
3576 adapter->stats.gprc += rd32(E1000_GPRC);
3577 adapter->stats.gorc += rd32(E1000_GORCL);
3578 rd32(E1000_GORCH); /* clear GORCL */
3579 adapter->stats.bprc += rd32(E1000_BPRC);
3580 adapter->stats.mprc += rd32(E1000_MPRC);
3581 adapter->stats.roc += rd32(E1000_ROC);
3583 adapter->stats.prc64 += rd32(E1000_PRC64);
3584 adapter->stats.prc127 += rd32(E1000_PRC127);
3585 adapter->stats.prc255 += rd32(E1000_PRC255);
3586 adapter->stats.prc511 += rd32(E1000_PRC511);
3587 adapter->stats.prc1023 += rd32(E1000_PRC1023);
3588 adapter->stats.prc1522 += rd32(E1000_PRC1522);
3589 adapter->stats.symerrs += rd32(E1000_SYMERRS);
3590 adapter->stats.sec += rd32(E1000_SEC);
3592 adapter->stats.mpc += rd32(E1000_MPC);
3593 adapter->stats.scc += rd32(E1000_SCC);
3594 adapter->stats.ecol += rd32(E1000_ECOL);
3595 adapter->stats.mcc += rd32(E1000_MCC);
3596 adapter->stats.latecol += rd32(E1000_LATECOL);
3597 adapter->stats.dc += rd32(E1000_DC);
3598 adapter->stats.rlec += rd32(E1000_RLEC);
3599 adapter->stats.xonrxc += rd32(E1000_XONRXC);
3600 adapter->stats.xontxc += rd32(E1000_XONTXC);
3601 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
3602 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
3603 adapter->stats.fcruc += rd32(E1000_FCRUC);
3604 adapter->stats.gptc += rd32(E1000_GPTC);
3605 adapter->stats.gotc += rd32(E1000_GOTCL);
3606 rd32(E1000_GOTCH); /* clear GOTCL */
3607 adapter->stats.rnbc += rd32(E1000_RNBC);
3608 adapter->stats.ruc += rd32(E1000_RUC);
3609 adapter->stats.rfc += rd32(E1000_RFC);
3610 adapter->stats.rjc += rd32(E1000_RJC);
3611 adapter->stats.tor += rd32(E1000_TORH);
3612 adapter->stats.tot += rd32(E1000_TOTH);
3613 adapter->stats.tpr += rd32(E1000_TPR);
3615 adapter->stats.ptc64 += rd32(E1000_PTC64);
3616 adapter->stats.ptc127 += rd32(E1000_PTC127);
3617 adapter->stats.ptc255 += rd32(E1000_PTC255);
3618 adapter->stats.ptc511 += rd32(E1000_PTC511);
3619 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
3620 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
3622 adapter->stats.mptc += rd32(E1000_MPTC);
3623 adapter->stats.bptc += rd32(E1000_BPTC);
3625 /* used for adaptive IFS */
3627 hw->mac.tx_packet_delta = rd32(E1000_TPT);
3628 adapter->stats.tpt += hw->mac.tx_packet_delta;
3629 hw->mac.collision_delta = rd32(E1000_COLC);
3630 adapter->stats.colc += hw->mac.collision_delta;
3632 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
3633 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3634 adapter->stats.tncrs += rd32(E1000_TNCRS);
3635 adapter->stats.tsctc += rd32(E1000_TSCTC);
3636 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
3638 adapter->stats.iac += rd32(E1000_IAC);
3639 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
3640 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
3641 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
3642 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
3643 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
3644 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
3645 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
3646 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
3648 /* Fill out the OS statistics structure */
3649 adapter->net_stats.multicast = adapter->stats.mprc;
3650 adapter->net_stats.collisions = adapter->stats.colc;
3652 /* Rx Errors */
3654 if (hw->mac.type != e1000_82575) {
3655 u32 rqdpc_tmp;
3656 u64 rqdpc_total = 0;
3657 int i;
3658 /* Read out drops stats per RX queue. Notice RQDPC (Receive
3659 * Queue Drop Packet Count) stats only gets incremented, if
3660 * the DROP_EN but it set (in the SRRCTL register for that
3661 * queue). If DROP_EN bit is NOT set, then the some what
3662 * equivalent count is stored in RNBC (not per queue basis).
3663 * Also note the drop count is due to lack of available
3664 * descriptors.
3666 for (i = 0; i < adapter->num_rx_queues; i++) {
3667 rqdpc_tmp = rd32(E1000_RQDPC(i)) & 0xFFF;
3668 adapter->rx_ring[i].rx_stats.drops += rqdpc_tmp;
3669 rqdpc_total += adapter->rx_ring[i].rx_stats.drops;
3671 adapter->net_stats.rx_fifo_errors = rqdpc_total;
3674 /* Note RNBC (Receive No Buffers Count) is an not an exact
3675 * drop count as the hardware FIFO might save the day. Thats
3676 * one of the reason for saving it in rx_fifo_errors, as its
3677 * potentially not a true drop.
3679 adapter->net_stats.rx_fifo_errors += adapter->stats.rnbc;
3681 /* RLEC on some newer hardware can be incorrect so build
3682 * our own version based on RUC and ROC */
3683 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3684 adapter->stats.crcerrs + adapter->stats.algnerrc +
3685 adapter->stats.ruc + adapter->stats.roc +
3686 adapter->stats.cexterr;
3687 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3688 adapter->stats.roc;
3689 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3690 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3691 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3693 /* Tx Errors */
3694 adapter->net_stats.tx_errors = adapter->stats.ecol +
3695 adapter->stats.latecol;
3696 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3697 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3698 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3700 /* Tx Dropped needs to be maintained elsewhere */
3702 /* Phy Stats */
3703 if (hw->phy.media_type == e1000_media_type_copper) {
3704 if ((adapter->link_speed == SPEED_1000) &&
3705 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3706 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3707 adapter->phy_stats.idle_errors += phy_tmp;
3711 /* Management Stats */
3712 adapter->stats.mgptc += rd32(E1000_MGTPTC);
3713 adapter->stats.mgprc += rd32(E1000_MGTPRC);
3714 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
3717 static irqreturn_t igb_msix_other(int irq, void *data)
3719 struct net_device *netdev = data;
3720 struct igb_adapter *adapter = netdev_priv(netdev);
3721 struct e1000_hw *hw = &adapter->hw;
3722 u32 icr = rd32(E1000_ICR);
3724 /* reading ICR causes bit 31 of EICR to be cleared */
3726 if(icr & E1000_ICR_DOUTSYNC) {
3727 /* HW is reporting DMA is out of sync */
3728 adapter->stats.doosync++;
3731 /* Check for a mailbox event */
3732 if (icr & E1000_ICR_VMMB)
3733 igb_msg_task(adapter);
3735 if (icr & E1000_ICR_LSC) {
3736 hw->mac.get_link_status = 1;
3737 /* guard against interrupt when we're going down */
3738 if (!test_bit(__IGB_DOWN, &adapter->state))
3739 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3742 wr32(E1000_IMS, E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_VMMB);
3743 wr32(E1000_EIMS, adapter->eims_other);
3745 return IRQ_HANDLED;
3748 static irqreturn_t igb_msix_tx(int irq, void *data)
3750 struct igb_ring *tx_ring = data;
3751 struct igb_adapter *adapter = tx_ring->adapter;
3752 struct e1000_hw *hw = &adapter->hw;
3754 #ifdef CONFIG_IGB_DCA
3755 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3756 igb_update_tx_dca(tx_ring);
3757 #endif
3759 tx_ring->total_bytes = 0;
3760 tx_ring->total_packets = 0;
3762 /* auto mask will automatically reenable the interrupt when we write
3763 * EICS */
3764 if (!igb_clean_tx_irq(tx_ring))
3765 /* Ring was not completely cleaned, so fire another interrupt */
3766 wr32(E1000_EICS, tx_ring->eims_value);
3767 else
3768 wr32(E1000_EIMS, tx_ring->eims_value);
3770 return IRQ_HANDLED;
3773 static void igb_write_itr(struct igb_ring *ring)
3775 struct e1000_hw *hw = &ring->adapter->hw;
3776 if ((ring->adapter->itr_setting & 3) && ring->set_itr) {
3777 switch (hw->mac.type) {
3778 case e1000_82576:
3779 wr32(ring->itr_register, ring->itr_val |
3780 0x80000000);
3781 break;
3782 default:
3783 wr32(ring->itr_register, ring->itr_val |
3784 (ring->itr_val << 16));
3785 break;
3787 ring->set_itr = 0;
3791 static irqreturn_t igb_msix_rx(int irq, void *data)
3793 struct igb_ring *rx_ring = data;
3795 /* Write the ITR value calculated at the end of the
3796 * previous interrupt.
3799 igb_write_itr(rx_ring);
3801 if (napi_schedule_prep(&rx_ring->napi))
3802 __napi_schedule(&rx_ring->napi);
3804 #ifdef CONFIG_IGB_DCA
3805 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
3806 igb_update_rx_dca(rx_ring);
3807 #endif
3808 return IRQ_HANDLED;
3811 #ifdef CONFIG_IGB_DCA
3812 static void igb_update_rx_dca(struct igb_ring *rx_ring)
3814 u32 dca_rxctrl;
3815 struct igb_adapter *adapter = rx_ring->adapter;
3816 struct e1000_hw *hw = &adapter->hw;
3817 int cpu = get_cpu();
3818 int q = rx_ring->reg_idx;
3820 if (rx_ring->cpu != cpu) {
3821 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
3822 if (hw->mac.type == e1000_82576) {
3823 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
3824 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3825 E1000_DCA_RXCTRL_CPUID_SHIFT;
3826 } else {
3827 dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
3828 dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3830 dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
3831 dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
3832 dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
3833 wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
3834 rx_ring->cpu = cpu;
3836 put_cpu();
3839 static void igb_update_tx_dca(struct igb_ring *tx_ring)
3841 u32 dca_txctrl;
3842 struct igb_adapter *adapter = tx_ring->adapter;
3843 struct e1000_hw *hw = &adapter->hw;
3844 int cpu = get_cpu();
3845 int q = tx_ring->reg_idx;
3847 if (tx_ring->cpu != cpu) {
3848 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
3849 if (hw->mac.type == e1000_82576) {
3850 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
3851 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
3852 E1000_DCA_TXCTRL_CPUID_SHIFT;
3853 } else {
3854 dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
3855 dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
3857 dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
3858 wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
3859 tx_ring->cpu = cpu;
3861 put_cpu();
3864 static void igb_setup_dca(struct igb_adapter *adapter)
3866 struct e1000_hw *hw = &adapter->hw;
3867 int i;
3869 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
3870 return;
3872 /* Always use CB2 mode, difference is masked in the CB driver. */
3873 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3875 for (i = 0; i < adapter->num_tx_queues; i++) {
3876 adapter->tx_ring[i].cpu = -1;
3877 igb_update_tx_dca(&adapter->tx_ring[i]);
3879 for (i = 0; i < adapter->num_rx_queues; i++) {
3880 adapter->rx_ring[i].cpu = -1;
3881 igb_update_rx_dca(&adapter->rx_ring[i]);
3885 static int __igb_notify_dca(struct device *dev, void *data)
3887 struct net_device *netdev = dev_get_drvdata(dev);
3888 struct igb_adapter *adapter = netdev_priv(netdev);
3889 struct e1000_hw *hw = &adapter->hw;
3890 unsigned long event = *(unsigned long *)data;
3892 switch (event) {
3893 case DCA_PROVIDER_ADD:
3894 /* if already enabled, don't do it again */
3895 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
3896 break;
3897 /* Always use CB2 mode, difference is masked
3898 * in the CB driver. */
3899 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
3900 if (dca_add_requester(dev) == 0) {
3901 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3902 dev_info(&adapter->pdev->dev, "DCA enabled\n");
3903 igb_setup_dca(adapter);
3904 break;
3906 /* Fall Through since DCA is disabled. */
3907 case DCA_PROVIDER_REMOVE:
3908 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3909 /* without this a class_device is left
3910 * hanging around in the sysfs model */
3911 dca_remove_requester(dev);
3912 dev_info(&adapter->pdev->dev, "DCA disabled\n");
3913 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3914 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3916 break;
3919 return 0;
3922 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
3923 void *p)
3925 int ret_val;
3927 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
3928 __igb_notify_dca);
3930 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
3932 #endif /* CONFIG_IGB_DCA */
3934 static void igb_ping_all_vfs(struct igb_adapter *adapter)
3936 struct e1000_hw *hw = &adapter->hw;
3937 u32 ping;
3938 int i;
3940 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
3941 ping = E1000_PF_CONTROL_MSG;
3942 if (adapter->vf_data[i].clear_to_send)
3943 ping |= E1000_VT_MSGTYPE_CTS;
3944 igb_write_mbx(hw, &ping, 1, i);
3948 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
3949 u32 *msgbuf, u32 vf)
3951 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
3952 u16 *hash_list = (u16 *)&msgbuf[1];
3953 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
3954 int i;
3956 /* only up to 30 hash values supported */
3957 if (n > 30)
3958 n = 30;
3960 /* salt away the number of multi cast addresses assigned
3961 * to this VF for later use to restore when the PF multi cast
3962 * list changes
3964 vf_data->num_vf_mc_hashes = n;
3966 /* VFs are limited to using the MTA hash table for their multicast
3967 * addresses */
3968 for (i = 0; i < n; i++)
3969 vf_data->vf_mc_hashes[i] = hash_list[i];;
3971 /* Flush and reset the mta with the new values */
3972 igb_set_rx_mode(adapter->netdev);
3974 return 0;
3977 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
3979 struct e1000_hw *hw = &adapter->hw;
3980 struct vf_data_storage *vf_data;
3981 int i, j;
3983 for (i = 0; i < adapter->vfs_allocated_count; i++) {
3984 vf_data = &adapter->vf_data[i];
3985 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
3986 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
3990 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
3992 struct e1000_hw *hw = &adapter->hw;
3993 u32 pool_mask, reg, vid;
3994 int i;
3996 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
3998 /* Find the vlan filter for this id */
3999 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4000 reg = rd32(E1000_VLVF(i));
4002 /* remove the vf from the pool */
4003 reg &= ~pool_mask;
4005 /* if pool is empty then remove entry from vfta */
4006 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
4007 (reg & E1000_VLVF_VLANID_ENABLE)) {
4008 reg = 0;
4009 vid = reg & E1000_VLVF_VLANID_MASK;
4010 igb_vfta_set(hw, vid, false);
4013 wr32(E1000_VLVF(i), reg);
4016 adapter->vf_data[vf].vlans_enabled = 0;
4019 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
4021 struct e1000_hw *hw = &adapter->hw;
4022 u32 reg, i;
4024 /* It is an error to call this function when VFs are not enabled */
4025 if (!adapter->vfs_allocated_count)
4026 return -1;
4028 /* Find the vlan filter for this id */
4029 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4030 reg = rd32(E1000_VLVF(i));
4031 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
4032 vid == (reg & E1000_VLVF_VLANID_MASK))
4033 break;
4036 if (add) {
4037 if (i == E1000_VLVF_ARRAY_SIZE) {
4038 /* Did not find a matching VLAN ID entry that was
4039 * enabled. Search for a free filter entry, i.e.
4040 * one without the enable bit set
4042 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
4043 reg = rd32(E1000_VLVF(i));
4044 if (!(reg & E1000_VLVF_VLANID_ENABLE))
4045 break;
4048 if (i < E1000_VLVF_ARRAY_SIZE) {
4049 /* Found an enabled/available entry */
4050 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
4052 /* if !enabled we need to set this up in vfta */
4053 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
4054 /* add VID to filter table, if bit already set
4055 * PF must have added it outside of table */
4056 if (igb_vfta_set(hw, vid, true))
4057 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT +
4058 adapter->vfs_allocated_count);
4059 reg |= E1000_VLVF_VLANID_ENABLE;
4061 reg &= ~E1000_VLVF_VLANID_MASK;
4062 reg |= vid;
4064 wr32(E1000_VLVF(i), reg);
4066 /* do not modify RLPML for PF devices */
4067 if (vf >= adapter->vfs_allocated_count)
4068 return 0;
4070 if (!adapter->vf_data[vf].vlans_enabled) {
4071 u32 size;
4072 reg = rd32(E1000_VMOLR(vf));
4073 size = reg & E1000_VMOLR_RLPML_MASK;
4074 size += 4;
4075 reg &= ~E1000_VMOLR_RLPML_MASK;
4076 reg |= size;
4077 wr32(E1000_VMOLR(vf), reg);
4079 adapter->vf_data[vf].vlans_enabled++;
4081 return 0;
4083 } else {
4084 if (i < E1000_VLVF_ARRAY_SIZE) {
4085 /* remove vf from the pool */
4086 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
4087 /* if pool is empty then remove entry from vfta */
4088 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
4089 reg = 0;
4090 igb_vfta_set(hw, vid, false);
4092 wr32(E1000_VLVF(i), reg);
4094 /* do not modify RLPML for PF devices */
4095 if (vf >= adapter->vfs_allocated_count)
4096 return 0;
4098 adapter->vf_data[vf].vlans_enabled--;
4099 if (!adapter->vf_data[vf].vlans_enabled) {
4100 u32 size;
4101 reg = rd32(E1000_VMOLR(vf));
4102 size = reg & E1000_VMOLR_RLPML_MASK;
4103 size -= 4;
4104 reg &= ~E1000_VMOLR_RLPML_MASK;
4105 reg |= size;
4106 wr32(E1000_VMOLR(vf), reg);
4108 return 0;
4111 return -1;
4114 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
4116 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
4117 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
4119 return igb_vlvf_set(adapter, vid, add, vf);
4122 static inline void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
4124 struct e1000_hw *hw = &adapter->hw;
4126 /* disable mailbox functionality for vf */
4127 adapter->vf_data[vf].clear_to_send = false;
4129 /* reset offloads to defaults */
4130 igb_set_vmolr(hw, vf);
4132 /* reset vlans for device */
4133 igb_clear_vf_vfta(adapter, vf);
4135 /* reset multicast table array for vf */
4136 adapter->vf_data[vf].num_vf_mc_hashes = 0;
4138 /* Flush and reset the mta with the new values */
4139 igb_set_rx_mode(adapter->netdev);
4142 static inline void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4144 struct e1000_hw *hw = &adapter->hw;
4145 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
4146 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4147 u32 reg, msgbuf[3];
4148 u8 *addr = (u8 *)(&msgbuf[1]);
4150 /* process all the same items cleared in a function level reset */
4151 igb_vf_reset_event(adapter, vf);
4153 /* set vf mac address */
4154 igb_rar_set(hw, vf_mac, rar_entry);
4155 igb_set_rah_pool(hw, vf, rar_entry);
4157 /* enable transmit and receive for vf */
4158 reg = rd32(E1000_VFTE);
4159 wr32(E1000_VFTE, reg | (1 << vf));
4160 reg = rd32(E1000_VFRE);
4161 wr32(E1000_VFRE, reg | (1 << vf));
4163 /* enable mailbox functionality for vf */
4164 adapter->vf_data[vf].clear_to_send = true;
4166 /* reply to reset with ack and vf mac address */
4167 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
4168 memcpy(addr, vf_mac, 6);
4169 igb_write_mbx(hw, msgbuf, 3, vf);
4172 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
4174 unsigned char *addr = (char *)&msg[1];
4175 int err = -1;
4177 if (is_valid_ether_addr(addr))
4178 err = igb_set_vf_mac(adapter, vf, addr);
4180 return err;
4184 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
4186 struct e1000_hw *hw = &adapter->hw;
4187 u32 msg = E1000_VT_MSGTYPE_NACK;
4189 /* if device isn't clear to send it shouldn't be reading either */
4190 if (!adapter->vf_data[vf].clear_to_send)
4191 igb_write_mbx(hw, &msg, 1, vf);
4195 static void igb_msg_task(struct igb_adapter *adapter)
4197 struct e1000_hw *hw = &adapter->hw;
4198 u32 vf;
4200 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
4201 /* process any reset requests */
4202 if (!igb_check_for_rst(hw, vf)) {
4203 adapter->vf_data[vf].clear_to_send = false;
4204 igb_vf_reset_event(adapter, vf);
4207 /* process any messages pending */
4208 if (!igb_check_for_msg(hw, vf))
4209 igb_rcv_msg_from_vf(adapter, vf);
4211 /* process any acks */
4212 if (!igb_check_for_ack(hw, vf))
4213 igb_rcv_ack_from_vf(adapter, vf);
4218 static int igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4220 u32 mbx_size = E1000_VFMAILBOX_SIZE;
4221 u32 msgbuf[mbx_size];
4222 struct e1000_hw *hw = &adapter->hw;
4223 s32 retval;
4225 retval = igb_read_mbx(hw, msgbuf, mbx_size, vf);
4227 if (retval)
4228 dev_err(&adapter->pdev->dev,
4229 "Error receiving message from VF\n");
4231 /* this is a message we already processed, do nothing */
4232 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
4233 return retval;
4236 * until the vf completes a reset it should not be
4237 * allowed to start any configuration.
4240 if (msgbuf[0] == E1000_VF_RESET) {
4241 igb_vf_reset_msg(adapter, vf);
4243 return retval;
4246 if (!adapter->vf_data[vf].clear_to_send) {
4247 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4248 igb_write_mbx(hw, msgbuf, 1, vf);
4249 return retval;
4252 switch ((msgbuf[0] & 0xFFFF)) {
4253 case E1000_VF_SET_MAC_ADDR:
4254 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
4255 break;
4256 case E1000_VF_SET_MULTICAST:
4257 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
4258 break;
4259 case E1000_VF_SET_LPE:
4260 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
4261 break;
4262 case E1000_VF_SET_VLAN:
4263 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4264 break;
4265 default:
4266 dev_err(&adapter->pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4267 retval = -1;
4268 break;
4271 /* notify the VF of the results of what it sent us */
4272 if (retval)
4273 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
4274 else
4275 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
4277 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
4279 igb_write_mbx(hw, msgbuf, 1, vf);
4281 return retval;
4285 * igb_intr_msi - Interrupt Handler
4286 * @irq: interrupt number
4287 * @data: pointer to a network interface device structure
4289 static irqreturn_t igb_intr_msi(int irq, void *data)
4291 struct net_device *netdev = data;
4292 struct igb_adapter *adapter = netdev_priv(netdev);
4293 struct e1000_hw *hw = &adapter->hw;
4294 /* read ICR disables interrupts using IAM */
4295 u32 icr = rd32(E1000_ICR);
4297 igb_write_itr(adapter->rx_ring);
4299 if(icr & E1000_ICR_DOUTSYNC) {
4300 /* HW is reporting DMA is out of sync */
4301 adapter->stats.doosync++;
4304 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4305 hw->mac.get_link_status = 1;
4306 if (!test_bit(__IGB_DOWN, &adapter->state))
4307 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4310 napi_schedule(&adapter->rx_ring[0].napi);
4312 return IRQ_HANDLED;
4316 * igb_intr - Legacy Interrupt Handler
4317 * @irq: interrupt number
4318 * @data: pointer to a network interface device structure
4320 static irqreturn_t igb_intr(int irq, void *data)
4322 struct net_device *netdev = data;
4323 struct igb_adapter *adapter = netdev_priv(netdev);
4324 struct e1000_hw *hw = &adapter->hw;
4325 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4326 * need for the IMC write */
4327 u32 icr = rd32(E1000_ICR);
4328 if (!icr)
4329 return IRQ_NONE; /* Not our interrupt */
4331 igb_write_itr(adapter->rx_ring);
4333 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4334 * not set, then the adapter didn't send an interrupt */
4335 if (!(icr & E1000_ICR_INT_ASSERTED))
4336 return IRQ_NONE;
4338 if(icr & E1000_ICR_DOUTSYNC) {
4339 /* HW is reporting DMA is out of sync */
4340 adapter->stats.doosync++;
4343 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
4344 hw->mac.get_link_status = 1;
4345 /* guard against interrupt when we're going down */
4346 if (!test_bit(__IGB_DOWN, &adapter->state))
4347 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4350 napi_schedule(&adapter->rx_ring[0].napi);
4352 return IRQ_HANDLED;
4355 static inline void igb_rx_irq_enable(struct igb_ring *rx_ring)
4357 struct igb_adapter *adapter = rx_ring->adapter;
4358 struct e1000_hw *hw = &adapter->hw;
4360 if (adapter->itr_setting & 3) {
4361 if (adapter->num_rx_queues == 1)
4362 igb_set_itr(adapter);
4363 else
4364 igb_update_ring_itr(rx_ring);
4367 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4368 if (adapter->msix_entries)
4369 wr32(E1000_EIMS, rx_ring->eims_value);
4370 else
4371 igb_irq_enable(adapter);
4376 * igb_poll - NAPI Rx polling callback
4377 * @napi: napi polling structure
4378 * @budget: count of how many packets we should handle
4380 static int igb_poll(struct napi_struct *napi, int budget)
4382 struct igb_ring *rx_ring = container_of(napi, struct igb_ring, napi);
4383 int work_done = 0;
4385 #ifdef CONFIG_IGB_DCA
4386 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4387 igb_update_rx_dca(rx_ring);
4388 #endif
4389 igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
4391 if (rx_ring->buddy) {
4392 #ifdef CONFIG_IGB_DCA
4393 if (rx_ring->adapter->flags & IGB_FLAG_DCA_ENABLED)
4394 igb_update_tx_dca(rx_ring->buddy);
4395 #endif
4396 if (!igb_clean_tx_irq(rx_ring->buddy))
4397 work_done = budget;
4400 /* If not enough Rx work done, exit the polling mode */
4401 if (work_done < budget) {
4402 napi_complete(napi);
4403 igb_rx_irq_enable(rx_ring);
4406 return work_done;
4410 * igb_hwtstamp - utility function which checks for TX time stamp
4411 * @adapter: board private structure
4412 * @skb: packet that was just sent
4414 * If we were asked to do hardware stamping and such a time stamp is
4415 * available, then it must have been for this skb here because we only
4416 * allow only one such packet into the queue.
4418 static void igb_tx_hwtstamp(struct igb_adapter *adapter, struct sk_buff *skb)
4420 union skb_shared_tx *shtx = skb_tx(skb);
4421 struct e1000_hw *hw = &adapter->hw;
4423 if (unlikely(shtx->hardware)) {
4424 u32 valid = rd32(E1000_TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID;
4425 if (valid) {
4426 u64 regval = rd32(E1000_TXSTMPL);
4427 u64 ns;
4428 struct skb_shared_hwtstamps shhwtstamps;
4430 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
4431 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
4432 ns = timecounter_cyc2time(&adapter->clock,
4433 regval);
4434 timecompare_update(&adapter->compare, ns);
4435 shhwtstamps.hwtstamp = ns_to_ktime(ns);
4436 shhwtstamps.syststamp =
4437 timecompare_transform(&adapter->compare, ns);
4438 skb_tstamp_tx(skb, &shhwtstamps);
4444 * igb_clean_tx_irq - Reclaim resources after transmit completes
4445 * @adapter: board private structure
4446 * returns true if ring is completely cleaned
4448 static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
4450 struct igb_adapter *adapter = tx_ring->adapter;
4451 struct net_device *netdev = adapter->netdev;
4452 struct e1000_hw *hw = &adapter->hw;
4453 struct igb_buffer *buffer_info;
4454 struct sk_buff *skb;
4455 union e1000_adv_tx_desc *tx_desc, *eop_desc;
4456 unsigned int total_bytes = 0, total_packets = 0;
4457 unsigned int i, eop, count = 0;
4458 bool cleaned = false;
4460 i = tx_ring->next_to_clean;
4461 eop = tx_ring->buffer_info[i].next_to_watch;
4462 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4464 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
4465 (count < tx_ring->count)) {
4466 for (cleaned = false; !cleaned; count++) {
4467 tx_desc = E1000_TX_DESC_ADV(*tx_ring, i);
4468 buffer_info = &tx_ring->buffer_info[i];
4469 cleaned = (i == eop);
4470 skb = buffer_info->skb;
4472 if (skb) {
4473 unsigned int segs, bytecount;
4474 /* gso_segs is currently only valid for tcp */
4475 segs = skb_shinfo(skb)->gso_segs ?: 1;
4476 /* multiply data chunks by size of headers */
4477 bytecount = ((segs - 1) * skb_headlen(skb)) +
4478 skb->len;
4479 total_packets += segs;
4480 total_bytes += bytecount;
4482 igb_tx_hwtstamp(adapter, skb);
4485 igb_unmap_and_free_tx_resource(adapter, buffer_info);
4486 tx_desc->wb.status = 0;
4488 i++;
4489 if (i == tx_ring->count)
4490 i = 0;
4492 eop = tx_ring->buffer_info[i].next_to_watch;
4493 eop_desc = E1000_TX_DESC_ADV(*tx_ring, eop);
4496 tx_ring->next_to_clean = i;
4498 if (unlikely(count &&
4499 netif_carrier_ok(netdev) &&
4500 igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
4501 /* Make sure that anybody stopping the queue after this
4502 * sees the new next_to_clean.
4504 smp_mb();
4505 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
4506 !(test_bit(__IGB_DOWN, &adapter->state))) {
4507 netif_wake_subqueue(netdev, tx_ring->queue_index);
4508 ++adapter->restart_queue;
4512 if (tx_ring->detect_tx_hung) {
4513 /* Detect a transmit hang in hardware, this serializes the
4514 * check with the clearing of time_stamp and movement of i */
4515 tx_ring->detect_tx_hung = false;
4516 if (tx_ring->buffer_info[i].time_stamp &&
4517 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
4518 (adapter->tx_timeout_factor * HZ))
4519 && !(rd32(E1000_STATUS) &
4520 E1000_STATUS_TXOFF)) {
4522 /* detected Tx unit hang */
4523 dev_err(&adapter->pdev->dev,
4524 "Detected Tx Unit Hang\n"
4525 " Tx Queue <%d>\n"
4526 " TDH <%x>\n"
4527 " TDT <%x>\n"
4528 " next_to_use <%x>\n"
4529 " next_to_clean <%x>\n"
4530 "buffer_info[next_to_clean]\n"
4531 " time_stamp <%lx>\n"
4532 " next_to_watch <%x>\n"
4533 " jiffies <%lx>\n"
4534 " desc.status <%x>\n",
4535 tx_ring->queue_index,
4536 readl(adapter->hw.hw_addr + tx_ring->head),
4537 readl(adapter->hw.hw_addr + tx_ring->tail),
4538 tx_ring->next_to_use,
4539 tx_ring->next_to_clean,
4540 tx_ring->buffer_info[i].time_stamp,
4541 eop,
4542 jiffies,
4543 eop_desc->wb.status);
4544 netif_stop_subqueue(netdev, tx_ring->queue_index);
4547 tx_ring->total_bytes += total_bytes;
4548 tx_ring->total_packets += total_packets;
4549 tx_ring->tx_stats.bytes += total_bytes;
4550 tx_ring->tx_stats.packets += total_packets;
4551 adapter->net_stats.tx_bytes += total_bytes;
4552 adapter->net_stats.tx_packets += total_packets;
4553 return (count < tx_ring->count);
4557 * igb_receive_skb - helper function to handle rx indications
4558 * @ring: pointer to receive ring receving this packet
4559 * @status: descriptor status field as written by hardware
4560 * @rx_desc: receive descriptor containing vlan and type information.
4561 * @skb: pointer to sk_buff to be indicated to stack
4563 static void igb_receive_skb(struct igb_ring *ring, u8 status,
4564 union e1000_adv_rx_desc * rx_desc,
4565 struct sk_buff *skb)
4567 struct igb_adapter * adapter = ring->adapter;
4568 bool vlan_extracted = (adapter->vlgrp && (status & E1000_RXD_STAT_VP));
4570 skb_record_rx_queue(skb, ring->queue_index);
4571 if (vlan_extracted)
4572 vlan_gro_receive(&ring->napi, adapter->vlgrp,
4573 le16_to_cpu(rx_desc->wb.upper.vlan),
4574 skb);
4575 else
4576 napi_gro_receive(&ring->napi, skb);
4579 static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
4580 u32 status_err, struct sk_buff *skb)
4582 skb->ip_summed = CHECKSUM_NONE;
4584 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
4585 if ((status_err & E1000_RXD_STAT_IXSM) ||
4586 (adapter->flags & IGB_FLAG_RX_CSUM_DISABLED))
4587 return;
4588 /* TCP/UDP checksum error bit is set */
4589 if (status_err &
4590 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
4592 * work around errata with sctp packets where the TCPE aka
4593 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
4594 * packets, (aka let the stack check the crc32c)
4596 if (!((adapter->hw.mac.type == e1000_82576) &&
4597 (skb->len == 60)))
4598 adapter->hw_csum_err++;
4599 /* let the stack verify checksum errors */
4600 return;
4602 /* It must be a TCP or UDP packet with a valid checksum */
4603 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
4604 skb->ip_summed = CHECKSUM_UNNECESSARY;
4606 dev_dbg(&adapter->pdev->dev, "cksum success: bits %08X\n", status_err);
4607 adapter->hw_csum_good++;
4610 static inline u16 igb_get_hlen(struct igb_adapter *adapter,
4611 union e1000_adv_rx_desc *rx_desc)
4613 /* HW will not DMA in data larger than the given buffer, even if it
4614 * parses the (NFS, of course) header to be larger. In that case, it
4615 * fills the header buffer and spills the rest into the page.
4617 u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
4618 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
4619 if (hlen > adapter->rx_ps_hdr_size)
4620 hlen = adapter->rx_ps_hdr_size;
4621 return hlen;
4624 static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
4625 int *work_done, int budget)
4627 struct igb_adapter *adapter = rx_ring->adapter;
4628 struct net_device *netdev = adapter->netdev;
4629 struct e1000_hw *hw = &adapter->hw;
4630 struct pci_dev *pdev = adapter->pdev;
4631 union e1000_adv_rx_desc *rx_desc , *next_rxd;
4632 struct igb_buffer *buffer_info , *next_buffer;
4633 struct sk_buff *skb;
4634 bool cleaned = false;
4635 int cleaned_count = 0;
4636 unsigned int total_bytes = 0, total_packets = 0;
4637 unsigned int i;
4638 u32 staterr;
4639 u16 length;
4641 i = rx_ring->next_to_clean;
4642 buffer_info = &rx_ring->buffer_info[i];
4643 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4644 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4646 while (staterr & E1000_RXD_STAT_DD) {
4647 if (*work_done >= budget)
4648 break;
4649 (*work_done)++;
4651 skb = buffer_info->skb;
4652 prefetch(skb->data - NET_IP_ALIGN);
4653 buffer_info->skb = NULL;
4655 i++;
4656 if (i == rx_ring->count)
4657 i = 0;
4658 next_rxd = E1000_RX_DESC_ADV(*rx_ring, i);
4659 prefetch(next_rxd);
4660 next_buffer = &rx_ring->buffer_info[i];
4662 length = le16_to_cpu(rx_desc->wb.upper.length);
4663 cleaned = true;
4664 cleaned_count++;
4666 /* this is the fast path for the non-packet split case */
4667 if (!adapter->rx_ps_hdr_size) {
4668 pci_unmap_single(pdev, buffer_info->dma,
4669 adapter->rx_buffer_len,
4670 PCI_DMA_FROMDEVICE);
4671 buffer_info->dma = 0;
4672 skb_put(skb, length);
4673 goto send_up;
4676 if (buffer_info->dma) {
4677 u16 hlen = igb_get_hlen(adapter, rx_desc);
4678 pci_unmap_single(pdev, buffer_info->dma,
4679 adapter->rx_ps_hdr_size,
4680 PCI_DMA_FROMDEVICE);
4681 buffer_info->dma = 0;
4682 skb_put(skb, hlen);
4685 if (length) {
4686 pci_unmap_page(pdev, buffer_info->page_dma,
4687 PAGE_SIZE / 2, PCI_DMA_FROMDEVICE);
4688 buffer_info->page_dma = 0;
4690 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
4691 buffer_info->page,
4692 buffer_info->page_offset,
4693 length);
4695 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
4696 (page_count(buffer_info->page) != 1))
4697 buffer_info->page = NULL;
4698 else
4699 get_page(buffer_info->page);
4701 skb->len += length;
4702 skb->data_len += length;
4704 skb->truesize += length;
4707 if (!(staterr & E1000_RXD_STAT_EOP)) {
4708 buffer_info->skb = next_buffer->skb;
4709 buffer_info->dma = next_buffer->dma;
4710 next_buffer->skb = skb;
4711 next_buffer->dma = 0;
4712 goto next_desc;
4714 send_up:
4716 * If this bit is set, then the RX registers contain
4717 * the time stamp. No other packet will be time
4718 * stamped until we read these registers, so read the
4719 * registers to make them available again. Because
4720 * only one packet can be time stamped at a time, we
4721 * know that the register values must belong to this
4722 * one here and therefore we don't need to compare
4723 * any of the additional attributes stored for it.
4725 * If nothing went wrong, then it should have a
4726 * skb_shared_tx that we can turn into a
4727 * skb_shared_hwtstamps.
4729 * TODO: can time stamping be triggered (thus locking
4730 * the registers) without the packet reaching this point
4731 * here? In that case RX time stamping would get stuck.
4733 * TODO: in "time stamp all packets" mode this bit is
4734 * not set. Need a global flag for this mode and then
4735 * always read the registers. Cannot be done without
4736 * a race condition.
4738 if (unlikely(staterr & E1000_RXD_STAT_TS)) {
4739 u64 regval;
4740 u64 ns;
4741 struct skb_shared_hwtstamps *shhwtstamps =
4742 skb_hwtstamps(skb);
4744 WARN(!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID),
4745 "igb: no RX time stamp available for time stamped packet");
4746 regval = rd32(E1000_RXSTMPL);
4747 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
4748 ns = timecounter_cyc2time(&adapter->clock, regval);
4749 timecompare_update(&adapter->compare, ns);
4750 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
4751 shhwtstamps->hwtstamp = ns_to_ktime(ns);
4752 shhwtstamps->syststamp =
4753 timecompare_transform(&adapter->compare, ns);
4756 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
4757 dev_kfree_skb_irq(skb);
4758 goto next_desc;
4761 total_bytes += skb->len;
4762 total_packets++;
4764 igb_rx_checksum_adv(adapter, staterr, skb);
4766 skb->protocol = eth_type_trans(skb, netdev);
4768 igb_receive_skb(rx_ring, staterr, rx_desc, skb);
4770 next_desc:
4771 rx_desc->wb.upper.status_error = 0;
4773 /* return some buffers to hardware, one at a time is too slow */
4774 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
4775 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4776 cleaned_count = 0;
4779 /* use prefetched values */
4780 rx_desc = next_rxd;
4781 buffer_info = next_buffer;
4782 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
4785 rx_ring->next_to_clean = i;
4786 cleaned_count = igb_desc_unused(rx_ring);
4788 if (cleaned_count)
4789 igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
4791 rx_ring->total_packets += total_packets;
4792 rx_ring->total_bytes += total_bytes;
4793 rx_ring->rx_stats.packets += total_packets;
4794 rx_ring->rx_stats.bytes += total_bytes;
4795 adapter->net_stats.rx_bytes += total_bytes;
4796 adapter->net_stats.rx_packets += total_packets;
4797 return cleaned;
4801 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
4802 * @adapter: address of board private structure
4804 static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
4805 int cleaned_count)
4807 struct igb_adapter *adapter = rx_ring->adapter;
4808 struct net_device *netdev = adapter->netdev;
4809 struct pci_dev *pdev = adapter->pdev;
4810 union e1000_adv_rx_desc *rx_desc;
4811 struct igb_buffer *buffer_info;
4812 struct sk_buff *skb;
4813 unsigned int i;
4814 int bufsz;
4816 i = rx_ring->next_to_use;
4817 buffer_info = &rx_ring->buffer_info[i];
4819 if (adapter->rx_ps_hdr_size)
4820 bufsz = adapter->rx_ps_hdr_size;
4821 else
4822 bufsz = adapter->rx_buffer_len;
4824 while (cleaned_count--) {
4825 rx_desc = E1000_RX_DESC_ADV(*rx_ring, i);
4827 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
4828 if (!buffer_info->page) {
4829 buffer_info->page = alloc_page(GFP_ATOMIC);
4830 if (!buffer_info->page) {
4831 adapter->alloc_rx_buff_failed++;
4832 goto no_buffers;
4834 buffer_info->page_offset = 0;
4835 } else {
4836 buffer_info->page_offset ^= PAGE_SIZE / 2;
4838 buffer_info->page_dma =
4839 pci_map_page(pdev, buffer_info->page,
4840 buffer_info->page_offset,
4841 PAGE_SIZE / 2,
4842 PCI_DMA_FROMDEVICE);
4845 if (!buffer_info->skb) {
4846 skb = netdev_alloc_skb(netdev, bufsz + NET_IP_ALIGN);
4847 if (!skb) {
4848 adapter->alloc_rx_buff_failed++;
4849 goto no_buffers;
4852 /* Make buffer alignment 2 beyond a 16 byte boundary
4853 * this will result in a 16 byte aligned IP header after
4854 * the 14 byte MAC header is removed
4856 skb_reserve(skb, NET_IP_ALIGN);
4858 buffer_info->skb = skb;
4859 buffer_info->dma = pci_map_single(pdev, skb->data,
4860 bufsz,
4861 PCI_DMA_FROMDEVICE);
4863 /* Refresh the desc even if buffer_addrs didn't change because
4864 * each write-back erases this info. */
4865 if (adapter->rx_ps_hdr_size) {
4866 rx_desc->read.pkt_addr =
4867 cpu_to_le64(buffer_info->page_dma);
4868 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
4869 } else {
4870 rx_desc->read.pkt_addr =
4871 cpu_to_le64(buffer_info->dma);
4872 rx_desc->read.hdr_addr = 0;
4875 i++;
4876 if (i == rx_ring->count)
4877 i = 0;
4878 buffer_info = &rx_ring->buffer_info[i];
4881 no_buffers:
4882 if (rx_ring->next_to_use != i) {
4883 rx_ring->next_to_use = i;
4884 if (i == 0)
4885 i = (rx_ring->count - 1);
4886 else
4887 i--;
4889 /* Force memory writes to complete before letting h/w
4890 * know there are new descriptors to fetch. (Only
4891 * applicable for weak-ordered memory model archs,
4892 * such as IA-64). */
4893 wmb();
4894 writel(i, adapter->hw.hw_addr + rx_ring->tail);
4899 * igb_mii_ioctl -
4900 * @netdev:
4901 * @ifreq:
4902 * @cmd:
4904 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4906 struct igb_adapter *adapter = netdev_priv(netdev);
4907 struct mii_ioctl_data *data = if_mii(ifr);
4909 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4910 return -EOPNOTSUPP;
4912 switch (cmd) {
4913 case SIOCGMIIPHY:
4914 data->phy_id = adapter->hw.phy.addr;
4915 break;
4916 case SIOCGMIIREG:
4917 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4918 &data->val_out))
4919 return -EIO;
4920 break;
4921 case SIOCSMIIREG:
4922 default:
4923 return -EOPNOTSUPP;
4925 return 0;
4929 * igb_hwtstamp_ioctl - control hardware time stamping
4930 * @netdev:
4931 * @ifreq:
4932 * @cmd:
4934 * Outgoing time stamping can be enabled and disabled. Play nice and
4935 * disable it when requested, although it shouldn't case any overhead
4936 * when no packet needs it. At most one packet in the queue may be
4937 * marked for time stamping, otherwise it would be impossible to tell
4938 * for sure to which packet the hardware time stamp belongs.
4940 * Incoming time stamping has to be configured via the hardware
4941 * filters. Not all combinations are supported, in particular event
4942 * type has to be specified. Matching the kind of event packet is
4943 * not supported, with the exception of "all V2 events regardless of
4944 * level 2 or 4".
4947 static int igb_hwtstamp_ioctl(struct net_device *netdev,
4948 struct ifreq *ifr, int cmd)
4950 struct igb_adapter *adapter = netdev_priv(netdev);
4951 struct e1000_hw *hw = &adapter->hw;
4952 struct hwtstamp_config config;
4953 u32 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4954 u32 tsync_rx_ctl_bit = E1000_TSYNCRXCTL_ENABLED;
4955 u32 tsync_rx_ctl_type = 0;
4956 u32 tsync_rx_cfg = 0;
4957 int is_l4 = 0;
4958 int is_l2 = 0;
4959 short port = 319; /* PTP */
4960 u32 regval;
4962 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
4963 return -EFAULT;
4965 /* reserved for future extensions */
4966 if (config.flags)
4967 return -EINVAL;
4969 switch (config.tx_type) {
4970 case HWTSTAMP_TX_OFF:
4971 tsync_tx_ctl_bit = 0;
4972 break;
4973 case HWTSTAMP_TX_ON:
4974 tsync_tx_ctl_bit = E1000_TSYNCTXCTL_ENABLED;
4975 break;
4976 default:
4977 return -ERANGE;
4980 switch (config.rx_filter) {
4981 case HWTSTAMP_FILTER_NONE:
4982 tsync_rx_ctl_bit = 0;
4983 break;
4984 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
4985 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
4986 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
4987 case HWTSTAMP_FILTER_ALL:
4989 * register TSYNCRXCFG must be set, therefore it is not
4990 * possible to time stamp both Sync and Delay_Req messages
4991 * => fall back to time stamping all packets
4993 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_ALL;
4994 config.rx_filter = HWTSTAMP_FILTER_ALL;
4995 break;
4996 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
4997 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
4998 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
4999 is_l4 = 1;
5000 break;
5001 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
5002 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L4_V1;
5003 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
5004 is_l4 = 1;
5005 break;
5006 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5007 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5008 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5009 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_SYNC_MESSAGE;
5010 is_l2 = 1;
5011 is_l4 = 1;
5012 config.rx_filter = HWTSTAMP_FILTER_SOME;
5013 break;
5014 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5015 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5016 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
5017 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V2_DELAY_REQ_MESSAGE;
5018 is_l2 = 1;
5019 is_l4 = 1;
5020 config.rx_filter = HWTSTAMP_FILTER_SOME;
5021 break;
5022 case HWTSTAMP_FILTER_PTP_V2_EVENT:
5023 case HWTSTAMP_FILTER_PTP_V2_SYNC:
5024 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5025 tsync_rx_ctl_type = E1000_TSYNCRXCTL_TYPE_EVENT_V2;
5026 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
5027 is_l2 = 1;
5028 break;
5029 default:
5030 return -ERANGE;
5033 /* enable/disable TX */
5034 regval = rd32(E1000_TSYNCTXCTL);
5035 regval = (regval & ~E1000_TSYNCTXCTL_ENABLED) | tsync_tx_ctl_bit;
5036 wr32(E1000_TSYNCTXCTL, regval);
5038 /* enable/disable RX, define which PTP packets are time stamped */
5039 regval = rd32(E1000_TSYNCRXCTL);
5040 regval = (regval & ~E1000_TSYNCRXCTL_ENABLED) | tsync_rx_ctl_bit;
5041 regval = (regval & ~0xE) | tsync_rx_ctl_type;
5042 wr32(E1000_TSYNCRXCTL, regval);
5043 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
5046 * Ethertype Filter Queue Filter[0][15:0] = 0x88F7
5047 * (Ethertype to filter on)
5048 * Ethertype Filter Queue Filter[0][26] = 0x1 (Enable filter)
5049 * Ethertype Filter Queue Filter[0][30] = 0x1 (Enable Timestamping)
5051 wr32(E1000_ETQF0, is_l2 ? 0x440088f7 : 0);
5053 /* L4 Queue Filter[0]: only filter by source and destination port */
5054 wr32(E1000_SPQF0, htons(port));
5055 wr32(E1000_IMIREXT(0), is_l4 ?
5056 ((1<<12) | (1<<19) /* bypass size and control flags */) : 0);
5057 wr32(E1000_IMIR(0), is_l4 ?
5058 (htons(port)
5059 | (0<<16) /* immediate interrupt disabled */
5060 | 0 /* (1<<17) bit cleared: do not bypass
5061 destination port check */)
5062 : 0);
5063 wr32(E1000_FTQF0, is_l4 ?
5064 (0x11 /* UDP */
5065 | (1<<15) /* VF not compared */
5066 | (1<<27) /* Enable Timestamping */
5067 | (7<<28) /* only source port filter enabled,
5068 source/target address and protocol
5069 masked */)
5070 : ((1<<15) | (15<<28) /* all mask bits set = filter not
5071 enabled */));
5073 wrfl();
5075 adapter->hwtstamp_config = config;
5077 /* clear TX/RX time stamp registers, just to be sure */
5078 regval = rd32(E1000_TXSTMPH);
5079 regval = rd32(E1000_RXSTMPH);
5081 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
5082 -EFAULT : 0;
5086 * igb_ioctl -
5087 * @netdev:
5088 * @ifreq:
5089 * @cmd:
5091 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5093 switch (cmd) {
5094 case SIOCGMIIPHY:
5095 case SIOCGMIIREG:
5096 case SIOCSMIIREG:
5097 return igb_mii_ioctl(netdev, ifr, cmd);
5098 case SIOCSHWTSTAMP:
5099 return igb_hwtstamp_ioctl(netdev, ifr, cmd);
5100 default:
5101 return -EOPNOTSUPP;
5105 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5107 struct igb_adapter *adapter = hw->back;
5108 u16 cap_offset;
5110 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5111 if (!cap_offset)
5112 return -E1000_ERR_CONFIG;
5114 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
5116 return 0;
5119 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
5121 struct igb_adapter *adapter = hw->back;
5122 u16 cap_offset;
5124 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
5125 if (!cap_offset)
5126 return -E1000_ERR_CONFIG;
5128 pci_write_config_word(adapter->pdev, cap_offset + reg, *value);
5130 return 0;
5133 static void igb_vlan_rx_register(struct net_device *netdev,
5134 struct vlan_group *grp)
5136 struct igb_adapter *adapter = netdev_priv(netdev);
5137 struct e1000_hw *hw = &adapter->hw;
5138 u32 ctrl, rctl;
5140 igb_irq_disable(adapter);
5141 adapter->vlgrp = grp;
5143 if (grp) {
5144 /* enable VLAN tag insert/strip */
5145 ctrl = rd32(E1000_CTRL);
5146 ctrl |= E1000_CTRL_VME;
5147 wr32(E1000_CTRL, ctrl);
5149 /* enable VLAN receive filtering */
5150 rctl = rd32(E1000_RCTL);
5151 rctl &= ~E1000_RCTL_CFIEN;
5152 wr32(E1000_RCTL, rctl);
5153 igb_update_mng_vlan(adapter);
5154 } else {
5155 /* disable VLAN tag insert/strip */
5156 ctrl = rd32(E1000_CTRL);
5157 ctrl &= ~E1000_CTRL_VME;
5158 wr32(E1000_CTRL, ctrl);
5160 if (adapter->mng_vlan_id != (u16)IGB_MNG_VLAN_NONE) {
5161 igb_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
5162 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
5166 igb_rlpml_set(adapter);
5168 if (!test_bit(__IGB_DOWN, &adapter->state))
5169 igb_irq_enable(adapter);
5172 static void igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
5174 struct igb_adapter *adapter = netdev_priv(netdev);
5175 struct e1000_hw *hw = &adapter->hw;
5176 int pf_id = adapter->vfs_allocated_count;
5178 if ((hw->mng_cookie.status &
5179 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5180 (vid == adapter->mng_vlan_id))
5181 return;
5183 /* add vid to vlvf if sr-iov is enabled,
5184 * if that fails add directly to filter table */
5185 if (igb_vlvf_set(adapter, vid, true, pf_id))
5186 igb_vfta_set(hw, vid, true);
5190 static void igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
5192 struct igb_adapter *adapter = netdev_priv(netdev);
5193 struct e1000_hw *hw = &adapter->hw;
5194 int pf_id = adapter->vfs_allocated_count;
5196 igb_irq_disable(adapter);
5197 vlan_group_set_device(adapter->vlgrp, vid, NULL);
5199 if (!test_bit(__IGB_DOWN, &adapter->state))
5200 igb_irq_enable(adapter);
5202 if ((adapter->hw.mng_cookie.status &
5203 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
5204 (vid == adapter->mng_vlan_id)) {
5205 /* release control to f/w */
5206 igb_release_hw_control(adapter);
5207 return;
5210 /* remove vid from vlvf if sr-iov is enabled,
5211 * if not in vlvf remove from vfta */
5212 if (igb_vlvf_set(adapter, vid, false, pf_id))
5213 igb_vfta_set(hw, vid, false);
5216 static void igb_restore_vlan(struct igb_adapter *adapter)
5218 igb_vlan_rx_register(adapter->netdev, adapter->vlgrp);
5220 if (adapter->vlgrp) {
5221 u16 vid;
5222 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
5223 if (!vlan_group_get_device(adapter->vlgrp, vid))
5224 continue;
5225 igb_vlan_rx_add_vid(adapter->netdev, vid);
5230 int igb_set_spd_dplx(struct igb_adapter *adapter, u16 spddplx)
5232 struct e1000_mac_info *mac = &adapter->hw.mac;
5234 mac->autoneg = 0;
5236 switch (spddplx) {
5237 case SPEED_10 + DUPLEX_HALF:
5238 mac->forced_speed_duplex = ADVERTISE_10_HALF;
5239 break;
5240 case SPEED_10 + DUPLEX_FULL:
5241 mac->forced_speed_duplex = ADVERTISE_10_FULL;
5242 break;
5243 case SPEED_100 + DUPLEX_HALF:
5244 mac->forced_speed_duplex = ADVERTISE_100_HALF;
5245 break;
5246 case SPEED_100 + DUPLEX_FULL:
5247 mac->forced_speed_duplex = ADVERTISE_100_FULL;
5248 break;
5249 case SPEED_1000 + DUPLEX_FULL:
5250 mac->autoneg = 1;
5251 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5252 break;
5253 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5254 default:
5255 dev_err(&adapter->pdev->dev,
5256 "Unsupported Speed/Duplex configuration\n");
5257 return -EINVAL;
5259 return 0;
5262 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake)
5264 struct net_device *netdev = pci_get_drvdata(pdev);
5265 struct igb_adapter *adapter = netdev_priv(netdev);
5266 struct e1000_hw *hw = &adapter->hw;
5267 u32 ctrl, rctl, status;
5268 u32 wufc = adapter->wol;
5269 #ifdef CONFIG_PM
5270 int retval = 0;
5271 #endif
5273 netif_device_detach(netdev);
5275 if (netif_running(netdev))
5276 igb_close(netdev);
5278 igb_reset_interrupt_capability(adapter);
5280 igb_free_queues(adapter);
5282 #ifdef CONFIG_PM
5283 retval = pci_save_state(pdev);
5284 if (retval)
5285 return retval;
5286 #endif
5288 status = rd32(E1000_STATUS);
5289 if (status & E1000_STATUS_LU)
5290 wufc &= ~E1000_WUFC_LNKC;
5292 if (wufc) {
5293 igb_setup_rctl(adapter);
5294 igb_set_rx_mode(netdev);
5296 /* turn on all-multi mode if wake on multicast is enabled */
5297 if (wufc & E1000_WUFC_MC) {
5298 rctl = rd32(E1000_RCTL);
5299 rctl |= E1000_RCTL_MPE;
5300 wr32(E1000_RCTL, rctl);
5303 ctrl = rd32(E1000_CTRL);
5304 /* advertise wake from D3Cold */
5305 #define E1000_CTRL_ADVD3WUC 0x00100000
5306 /* phy power management enable */
5307 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5308 ctrl |= E1000_CTRL_ADVD3WUC;
5309 wr32(E1000_CTRL, ctrl);
5311 /* Allow time for pending master requests to run */
5312 igb_disable_pcie_master(&adapter->hw);
5314 wr32(E1000_WUC, E1000_WUC_PME_EN);
5315 wr32(E1000_WUFC, wufc);
5316 } else {
5317 wr32(E1000_WUC, 0);
5318 wr32(E1000_WUFC, 0);
5321 *enable_wake = wufc || adapter->en_mng_pt;
5322 if (!*enable_wake)
5323 igb_shutdown_fiber_serdes_link_82575(hw);
5325 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5326 * would have already happened in close and is redundant. */
5327 igb_release_hw_control(adapter);
5329 pci_disable_device(pdev);
5331 return 0;
5334 #ifdef CONFIG_PM
5335 static int igb_suspend(struct pci_dev *pdev, pm_message_t state)
5337 int retval;
5338 bool wake;
5340 retval = __igb_shutdown(pdev, &wake);
5341 if (retval)
5342 return retval;
5344 if (wake) {
5345 pci_prepare_to_sleep(pdev);
5346 } else {
5347 pci_wake_from_d3(pdev, false);
5348 pci_set_power_state(pdev, PCI_D3hot);
5351 return 0;
5354 static int igb_resume(struct pci_dev *pdev)
5356 struct net_device *netdev = pci_get_drvdata(pdev);
5357 struct igb_adapter *adapter = netdev_priv(netdev);
5358 struct e1000_hw *hw = &adapter->hw;
5359 u32 err;
5361 pci_set_power_state(pdev, PCI_D0);
5362 pci_restore_state(pdev);
5364 err = pci_enable_device_mem(pdev);
5365 if (err) {
5366 dev_err(&pdev->dev,
5367 "igb: Cannot enable PCI device from suspend\n");
5368 return err;
5370 pci_set_master(pdev);
5372 pci_enable_wake(pdev, PCI_D3hot, 0);
5373 pci_enable_wake(pdev, PCI_D3cold, 0);
5375 igb_set_interrupt_capability(adapter);
5377 if (igb_alloc_queues(adapter)) {
5378 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
5379 return -ENOMEM;
5382 /* e1000_power_up_phy(adapter); */
5384 igb_reset(adapter);
5386 /* let the f/w know that the h/w is now under the control of the
5387 * driver. */
5388 igb_get_hw_control(adapter);
5390 wr32(E1000_WUS, ~0);
5392 if (netif_running(netdev)) {
5393 err = igb_open(netdev);
5394 if (err)
5395 return err;
5398 netif_device_attach(netdev);
5400 return 0;
5402 #endif
5404 static void igb_shutdown(struct pci_dev *pdev)
5406 bool wake;
5408 __igb_shutdown(pdev, &wake);
5410 if (system_state == SYSTEM_POWER_OFF) {
5411 pci_wake_from_d3(pdev, wake);
5412 pci_set_power_state(pdev, PCI_D3hot);
5416 #ifdef CONFIG_NET_POLL_CONTROLLER
5418 * Polling 'interrupt' - used by things like netconsole to send skbs
5419 * without having to re-enable interrupts. It's not called while
5420 * the interrupt routine is executing.
5422 static void igb_netpoll(struct net_device *netdev)
5424 struct igb_adapter *adapter = netdev_priv(netdev);
5425 struct e1000_hw *hw = &adapter->hw;
5426 int i;
5428 if (!adapter->msix_entries) {
5429 igb_irq_disable(adapter);
5430 napi_schedule(&adapter->rx_ring[0].napi);
5431 return;
5434 for (i = 0; i < adapter->num_tx_queues; i++) {
5435 struct igb_ring *tx_ring = &adapter->tx_ring[i];
5436 wr32(E1000_EIMC, tx_ring->eims_value);
5437 igb_clean_tx_irq(tx_ring);
5438 wr32(E1000_EIMS, tx_ring->eims_value);
5441 for (i = 0; i < adapter->num_rx_queues; i++) {
5442 struct igb_ring *rx_ring = &adapter->rx_ring[i];
5443 wr32(E1000_EIMC, rx_ring->eims_value);
5444 napi_schedule(&rx_ring->napi);
5447 #endif /* CONFIG_NET_POLL_CONTROLLER */
5450 * igb_io_error_detected - called when PCI error is detected
5451 * @pdev: Pointer to PCI device
5452 * @state: The current pci connection state
5454 * This function is called after a PCI bus error affecting
5455 * this device has been detected.
5457 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
5458 pci_channel_state_t state)
5460 struct net_device *netdev = pci_get_drvdata(pdev);
5461 struct igb_adapter *adapter = netdev_priv(netdev);
5463 netif_device_detach(netdev);
5465 if (state == pci_channel_io_perm_failure)
5466 return PCI_ERS_RESULT_DISCONNECT;
5468 if (netif_running(netdev))
5469 igb_down(adapter);
5470 pci_disable_device(pdev);
5472 /* Request a slot slot reset. */
5473 return PCI_ERS_RESULT_NEED_RESET;
5477 * igb_io_slot_reset - called after the pci bus has been reset.
5478 * @pdev: Pointer to PCI device
5480 * Restart the card from scratch, as if from a cold-boot. Implementation
5481 * resembles the first-half of the igb_resume routine.
5483 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
5485 struct net_device *netdev = pci_get_drvdata(pdev);
5486 struct igb_adapter *adapter = netdev_priv(netdev);
5487 struct e1000_hw *hw = &adapter->hw;
5488 pci_ers_result_t result;
5489 int err;
5491 if (pci_enable_device_mem(pdev)) {
5492 dev_err(&pdev->dev,
5493 "Cannot re-enable PCI device after reset.\n");
5494 result = PCI_ERS_RESULT_DISCONNECT;
5495 } else {
5496 pci_set_master(pdev);
5497 pci_restore_state(pdev);
5499 pci_enable_wake(pdev, PCI_D3hot, 0);
5500 pci_enable_wake(pdev, PCI_D3cold, 0);
5502 igb_reset(adapter);
5503 wr32(E1000_WUS, ~0);
5504 result = PCI_ERS_RESULT_RECOVERED;
5507 err = pci_cleanup_aer_uncorrect_error_status(pdev);
5508 if (err) {
5509 dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
5510 "failed 0x%0x\n", err);
5511 /* non-fatal, continue */
5514 return result;
5518 * igb_io_resume - called when traffic can start flowing again.
5519 * @pdev: Pointer to PCI device
5521 * This callback is called when the error recovery driver tells us that
5522 * its OK to resume normal operation. Implementation resembles the
5523 * second-half of the igb_resume routine.
5525 static void igb_io_resume(struct pci_dev *pdev)
5527 struct net_device *netdev = pci_get_drvdata(pdev);
5528 struct igb_adapter *adapter = netdev_priv(netdev);
5530 if (netif_running(netdev)) {
5531 if (igb_up(adapter)) {
5532 dev_err(&pdev->dev, "igb_up failed after reset\n");
5533 return;
5537 netif_device_attach(netdev);
5539 /* let the f/w know that the h/w is now under the control of the
5540 * driver. */
5541 igb_get_hw_control(adapter);
5544 static int igb_set_vf_mac(struct igb_adapter *adapter,
5545 int vf, unsigned char *mac_addr)
5547 struct e1000_hw *hw = &adapter->hw;
5548 /* VF MAC addresses start at end of receive addresses and moves
5549 * torwards the first, as a result a collision should not be possible */
5550 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5552 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
5554 igb_rar_set(hw, mac_addr, rar_entry);
5555 igb_set_rah_pool(hw, vf, rar_entry);
5557 return 0;
5560 static void igb_vmm_control(struct igb_adapter *adapter)
5562 struct e1000_hw *hw = &adapter->hw;
5563 u32 reg_data;
5565 if (!adapter->vfs_allocated_count)
5566 return;
5568 /* VF's need PF reset indication before they
5569 * can send/receive mail */
5570 reg_data = rd32(E1000_CTRL_EXT);
5571 reg_data |= E1000_CTRL_EXT_PFRSTD;
5572 wr32(E1000_CTRL_EXT, reg_data);
5574 igb_vmdq_set_loopback_pf(hw, true);
5575 igb_vmdq_set_replication_pf(hw, true);
5578 /* igb_main.c */