JBD: round commit timer up to avoid uncommitted transaction
[linux/fpc-iii.git] / drivers / net / ns83820.c
blobc594e1946476f097386894c5aa484fef744e0ee6
1 #define VERSION "0.23"
2 /* ns83820.c by Benjamin LaHaise with contributions.
4 * Questions/comments/discussion to linux-ns83820@kvack.org.
6 * $Revision: 1.34.2.23 $
8 * Copyright 2001 Benjamin LaHaise.
9 * Copyright 2001, 2002 Red Hat.
11 * Mmmm, chocolate vanilla mocha...
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with this program; if not, write to the Free Software
26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 * ChangeLog
30 * =========
31 * 20010414 0.1 - created
32 * 20010622 0.2 - basic rx and tx.
33 * 20010711 0.3 - added duplex and link state detection support.
34 * 20010713 0.4 - zero copy, no hangs.
35 * 0.5 - 64 bit dma support (davem will hate me for this)
36 * - disable jumbo frames to avoid tx hangs
37 * - work around tx deadlocks on my 1.02 card via
38 * fiddling with TXCFG
39 * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
40 * 20010816 0.7 - misc cleanups
41 * 20010826 0.8 - fix critical zero copy bugs
42 * 0.9 - internal experiment
43 * 20010827 0.10 - fix ia64 unaligned access.
44 * 20010906 0.11 - accept all packets with checksum errors as
45 * otherwise fragments get lost
46 * - fix >> 32 bugs
47 * 0.12 - add statistics counters
48 * - add allmulti/promisc support
49 * 20011009 0.13 - hotplug support, other smaller pci api cleanups
50 * 20011204 0.13a - optical transceiver support added
51 * by Michael Clark <michael@metaparadigm.com>
52 * 20011205 0.13b - call register_netdev earlier in initialization
53 * suppress duplicate link status messages
54 * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
55 * 20011204 0.15 get ppc (big endian) working
56 * 20011218 0.16 various cleanups
57 * 20020310 0.17 speedups
58 * 20020610 0.18 - actually use the pci dma api for highmem
59 * - remove pci latency register fiddling
60 * 0.19 - better bist support
61 * - add ihr and reset_phy parameters
62 * - gmii bus probing
63 * - fix missed txok introduced during performance
64 * tuning
65 * 0.20 - fix stupid RFEN thinko. i am such a smurf.
66 * 20040828 0.21 - add hardware vlan accleration
67 * by Neil Horman <nhorman@redhat.com>
68 * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
69 * - removal of dead code from Adrian Bunk
70 * - fix half duplex collision behaviour
71 * Driver Overview
72 * ===============
74 * This driver was originally written for the National Semiconductor
75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
76 * this code will turn out to be a) clean, b) correct, and c) fast.
77 * With that in mind, I'm aiming to split the code up as much as
78 * reasonably possible. At present there are X major sections that
79 * break down into a) packet receive, b) packet transmit, c) link
80 * management, d) initialization and configuration. Where possible,
81 * these code paths are designed to run in parallel.
83 * This driver has been tested and found to work with the following
84 * cards (in no particular order):
86 * Cameo SOHO-GA2000T SOHO-GA2500T
87 * D-Link DGE-500T
88 * PureData PDP8023Z-TG
89 * SMC SMC9452TX SMC9462TX
90 * Netgear GA621
92 * Special thanks to SMC for providing hardware to test this driver on.
94 * Reports of success or failure would be greatly appreciated.
96 //#define dprintk printk
97 #define dprintk(x...) do { } while (0)
99 #include <linux/module.h>
100 #include <linux/moduleparam.h>
101 #include <linux/types.h>
102 #include <linux/pci.h>
103 #include <linux/dma-mapping.h>
104 #include <linux/netdevice.h>
105 #include <linux/etherdevice.h>
106 #include <linux/delay.h>
107 #include <linux/workqueue.h>
108 #include <linux/init.h>
109 #include <linux/ip.h> /* for iph */
110 #include <linux/in.h> /* for IPPROTO_... */
111 #include <linux/compiler.h>
112 #include <linux/prefetch.h>
113 #include <linux/ethtool.h>
114 #include <linux/timer.h>
115 #include <linux/if_vlan.h>
116 #include <linux/rtnetlink.h>
117 #include <linux/jiffies.h>
119 #include <asm/io.h>
120 #include <asm/uaccess.h>
121 #include <asm/system.h>
123 #define DRV_NAME "ns83820"
125 /* Global parameters. See module_param near the bottom. */
126 static int ihr = 2;
127 static int reset_phy = 0;
128 static int lnksts = 0; /* CFG_LNKSTS bit polarity */
130 /* Dprintk is used for more interesting debug events */
131 #undef Dprintk
132 #define Dprintk dprintk
134 /* tunables */
135 #define RX_BUF_SIZE 1500 /* 8192 */
136 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
137 #define NS83820_VLAN_ACCEL_SUPPORT
138 #endif
140 /* Must not exceed ~65000. */
141 #define NR_RX_DESC 64
142 #define NR_TX_DESC 128
144 /* not tunable */
145 #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
147 #define MIN_TX_DESC_FREE 8
149 /* register defines */
150 #define CFGCS 0x04
152 #define CR_TXE 0x00000001
153 #define CR_TXD 0x00000002
154 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
155 * The Receive engine skips one descriptor and moves
156 * onto the next one!! */
157 #define CR_RXE 0x00000004
158 #define CR_RXD 0x00000008
159 #define CR_TXR 0x00000010
160 #define CR_RXR 0x00000020
161 #define CR_SWI 0x00000080
162 #define CR_RST 0x00000100
164 #define PTSCR_EEBIST_FAIL 0x00000001
165 #define PTSCR_EEBIST_EN 0x00000002
166 #define PTSCR_EELOAD_EN 0x00000004
167 #define PTSCR_RBIST_FAIL 0x000001b8
168 #define PTSCR_RBIST_DONE 0x00000200
169 #define PTSCR_RBIST_EN 0x00000400
170 #define PTSCR_RBIST_RST 0x00002000
172 #define MEAR_EEDI 0x00000001
173 #define MEAR_EEDO 0x00000002
174 #define MEAR_EECLK 0x00000004
175 #define MEAR_EESEL 0x00000008
176 #define MEAR_MDIO 0x00000010
177 #define MEAR_MDDIR 0x00000020
178 #define MEAR_MDC 0x00000040
180 #define ISR_TXDESC3 0x40000000
181 #define ISR_TXDESC2 0x20000000
182 #define ISR_TXDESC1 0x10000000
183 #define ISR_TXDESC0 0x08000000
184 #define ISR_RXDESC3 0x04000000
185 #define ISR_RXDESC2 0x02000000
186 #define ISR_RXDESC1 0x01000000
187 #define ISR_RXDESC0 0x00800000
188 #define ISR_TXRCMP 0x00400000
189 #define ISR_RXRCMP 0x00200000
190 #define ISR_DPERR 0x00100000
191 #define ISR_SSERR 0x00080000
192 #define ISR_RMABT 0x00040000
193 #define ISR_RTABT 0x00020000
194 #define ISR_RXSOVR 0x00010000
195 #define ISR_HIBINT 0x00008000
196 #define ISR_PHY 0x00004000
197 #define ISR_PME 0x00002000
198 #define ISR_SWI 0x00001000
199 #define ISR_MIB 0x00000800
200 #define ISR_TXURN 0x00000400
201 #define ISR_TXIDLE 0x00000200
202 #define ISR_TXERR 0x00000100
203 #define ISR_TXDESC 0x00000080
204 #define ISR_TXOK 0x00000040
205 #define ISR_RXORN 0x00000020
206 #define ISR_RXIDLE 0x00000010
207 #define ISR_RXEARLY 0x00000008
208 #define ISR_RXERR 0x00000004
209 #define ISR_RXDESC 0x00000002
210 #define ISR_RXOK 0x00000001
212 #define TXCFG_CSI 0x80000000
213 #define TXCFG_HBI 0x40000000
214 #define TXCFG_MLB 0x20000000
215 #define TXCFG_ATP 0x10000000
216 #define TXCFG_ECRETRY 0x00800000
217 #define TXCFG_BRST_DIS 0x00080000
218 #define TXCFG_MXDMA1024 0x00000000
219 #define TXCFG_MXDMA512 0x00700000
220 #define TXCFG_MXDMA256 0x00600000
221 #define TXCFG_MXDMA128 0x00500000
222 #define TXCFG_MXDMA64 0x00400000
223 #define TXCFG_MXDMA32 0x00300000
224 #define TXCFG_MXDMA16 0x00200000
225 #define TXCFG_MXDMA8 0x00100000
227 #define CFG_LNKSTS 0x80000000
228 #define CFG_SPDSTS 0x60000000
229 #define CFG_SPDSTS1 0x40000000
230 #define CFG_SPDSTS0 0x20000000
231 #define CFG_DUPSTS 0x10000000
232 #define CFG_TBI_EN 0x01000000
233 #define CFG_MODE_1000 0x00400000
234 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
235 * Read the Phy response and then configure the MAC accordingly */
236 #define CFG_AUTO_1000 0x00200000
237 #define CFG_PINT_CTL 0x001c0000
238 #define CFG_PINT_DUPSTS 0x00100000
239 #define CFG_PINT_LNKSTS 0x00080000
240 #define CFG_PINT_SPDSTS 0x00040000
241 #define CFG_TMRTEST 0x00020000
242 #define CFG_MRM_DIS 0x00010000
243 #define CFG_MWI_DIS 0x00008000
244 #define CFG_T64ADDR 0x00004000
245 #define CFG_PCI64_DET 0x00002000
246 #define CFG_DATA64_EN 0x00001000
247 #define CFG_M64ADDR 0x00000800
248 #define CFG_PHY_RST 0x00000400
249 #define CFG_PHY_DIS 0x00000200
250 #define CFG_EXTSTS_EN 0x00000100
251 #define CFG_REQALG 0x00000080
252 #define CFG_SB 0x00000040
253 #define CFG_POW 0x00000020
254 #define CFG_EXD 0x00000010
255 #define CFG_PESEL 0x00000008
256 #define CFG_BROM_DIS 0x00000004
257 #define CFG_EXT_125 0x00000002
258 #define CFG_BEM 0x00000001
260 #define EXTSTS_UDPPKT 0x00200000
261 #define EXTSTS_TCPPKT 0x00080000
262 #define EXTSTS_IPPKT 0x00020000
263 #define EXTSTS_VPKT 0x00010000
264 #define EXTSTS_VTG_MASK 0x0000ffff
266 #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
268 #define MIBC_MIBS 0x00000008
269 #define MIBC_ACLR 0x00000004
270 #define MIBC_FRZ 0x00000002
271 #define MIBC_WRN 0x00000001
273 #define PCR_PSEN (1 << 31)
274 #define PCR_PS_MCAST (1 << 30)
275 #define PCR_PS_DA (1 << 29)
276 #define PCR_STHI_8 (3 << 23)
277 #define PCR_STLO_4 (1 << 23)
278 #define PCR_FFHI_8K (3 << 21)
279 #define PCR_FFLO_4K (1 << 21)
280 #define PCR_PAUSE_CNT 0xFFFE
282 #define RXCFG_AEP 0x80000000
283 #define RXCFG_ARP 0x40000000
284 #define RXCFG_STRIPCRC 0x20000000
285 #define RXCFG_RX_FD 0x10000000
286 #define RXCFG_ALP 0x08000000
287 #define RXCFG_AIRL 0x04000000
288 #define RXCFG_MXDMA512 0x00700000
289 #define RXCFG_DRTH 0x0000003e
290 #define RXCFG_DRTH0 0x00000002
292 #define RFCR_RFEN 0x80000000
293 #define RFCR_AAB 0x40000000
294 #define RFCR_AAM 0x20000000
295 #define RFCR_AAU 0x10000000
296 #define RFCR_APM 0x08000000
297 #define RFCR_APAT 0x07800000
298 #define RFCR_APAT3 0x04000000
299 #define RFCR_APAT2 0x02000000
300 #define RFCR_APAT1 0x01000000
301 #define RFCR_APAT0 0x00800000
302 #define RFCR_AARP 0x00400000
303 #define RFCR_MHEN 0x00200000
304 #define RFCR_UHEN 0x00100000
305 #define RFCR_ULM 0x00080000
307 #define VRCR_RUDPE 0x00000080
308 #define VRCR_RTCPE 0x00000040
309 #define VRCR_RIPE 0x00000020
310 #define VRCR_IPEN 0x00000010
311 #define VRCR_DUTF 0x00000008
312 #define VRCR_DVTF 0x00000004
313 #define VRCR_VTREN 0x00000002
314 #define VRCR_VTDEN 0x00000001
316 #define VTCR_PPCHK 0x00000008
317 #define VTCR_GCHK 0x00000004
318 #define VTCR_VPPTI 0x00000002
319 #define VTCR_VGTI 0x00000001
321 #define CR 0x00
322 #define CFG 0x04
323 #define MEAR 0x08
324 #define PTSCR 0x0c
325 #define ISR 0x10
326 #define IMR 0x14
327 #define IER 0x18
328 #define IHR 0x1c
329 #define TXDP 0x20
330 #define TXDP_HI 0x24
331 #define TXCFG 0x28
332 #define GPIOR 0x2c
333 #define RXDP 0x30
334 #define RXDP_HI 0x34
335 #define RXCFG 0x38
336 #define PQCR 0x3c
337 #define WCSR 0x40
338 #define PCR 0x44
339 #define RFCR 0x48
340 #define RFDR 0x4c
342 #define SRR 0x58
344 #define VRCR 0xbc
345 #define VTCR 0xc0
346 #define VDR 0xc4
347 #define CCSR 0xcc
349 #define TBICR 0xe0
350 #define TBISR 0xe4
351 #define TANAR 0xe8
352 #define TANLPAR 0xec
353 #define TANER 0xf0
354 #define TESR 0xf4
356 #define TBICR_MR_AN_ENABLE 0x00001000
357 #define TBICR_MR_RESTART_AN 0x00000200
359 #define TBISR_MR_LINK_STATUS 0x00000020
360 #define TBISR_MR_AN_COMPLETE 0x00000004
362 #define TANAR_PS2 0x00000100
363 #define TANAR_PS1 0x00000080
364 #define TANAR_HALF_DUP 0x00000040
365 #define TANAR_FULL_DUP 0x00000020
367 #define GPIOR_GP5_OE 0x00000200
368 #define GPIOR_GP4_OE 0x00000100
369 #define GPIOR_GP3_OE 0x00000080
370 #define GPIOR_GP2_OE 0x00000040
371 #define GPIOR_GP1_OE 0x00000020
372 #define GPIOR_GP3_OUT 0x00000004
373 #define GPIOR_GP1_OUT 0x00000001
375 #define LINK_AUTONEGOTIATE 0x01
376 #define LINK_DOWN 0x02
377 #define LINK_UP 0x04
379 #define HW_ADDR_LEN sizeof(dma_addr_t)
380 #define desc_addr_set(desc, addr) \
381 do { \
382 ((desc)[0] = cpu_to_le32(addr)); \
383 if (HW_ADDR_LEN == 8) \
384 (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
385 } while(0)
386 #define desc_addr_get(desc) \
387 (le32_to_cpu((desc)[0]) | \
388 (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
390 #define DESC_LINK 0
391 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
392 #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
393 #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
395 #define CMDSTS_OWN 0x80000000
396 #define CMDSTS_MORE 0x40000000
397 #define CMDSTS_INTR 0x20000000
398 #define CMDSTS_ERR 0x10000000
399 #define CMDSTS_OK 0x08000000
400 #define CMDSTS_RUNT 0x00200000
401 #define CMDSTS_LEN_MASK 0x0000ffff
403 #define CMDSTS_DEST_MASK 0x01800000
404 #define CMDSTS_DEST_SELF 0x00800000
405 #define CMDSTS_DEST_MULTI 0x01000000
407 #define DESC_SIZE 8 /* Should be cache line sized */
409 struct rx_info {
410 spinlock_t lock;
411 int up;
412 unsigned long idle;
414 struct sk_buff *skbs[NR_RX_DESC];
416 __le32 *next_rx_desc;
417 u16 next_rx, next_empty;
419 __le32 *descs;
420 dma_addr_t phy_descs;
424 struct ns83820 {
425 struct net_device_stats stats;
426 u8 __iomem *base;
428 struct pci_dev *pci_dev;
429 struct net_device *ndev;
431 #ifdef NS83820_VLAN_ACCEL_SUPPORT
432 struct vlan_group *vlgrp;
433 #endif
435 struct rx_info rx_info;
436 struct tasklet_struct rx_tasklet;
438 unsigned ihr;
439 struct work_struct tq_refill;
441 /* protects everything below. irqsave when using. */
442 spinlock_t misc_lock;
444 u32 CFG_cache;
446 u32 MEAR_cache;
447 u32 IMR_cache;
449 unsigned linkstate;
451 spinlock_t tx_lock;
453 u16 tx_done_idx;
454 u16 tx_idx;
455 volatile u16 tx_free_idx; /* idx of free desc chain */
456 u16 tx_intr_idx;
458 atomic_t nr_tx_skbs;
459 struct sk_buff *tx_skbs[NR_TX_DESC];
461 char pad[16] __attribute__((aligned(16)));
462 __le32 *tx_descs;
463 dma_addr_t tx_phy_descs;
465 struct timer_list tx_watchdog;
468 static inline struct ns83820 *PRIV(struct net_device *dev)
470 return netdev_priv(dev);
473 #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
475 static inline void kick_rx(struct net_device *ndev)
477 struct ns83820 *dev = PRIV(ndev);
478 dprintk("kick_rx: maybe kicking\n");
479 if (test_and_clear_bit(0, &dev->rx_info.idle)) {
480 dprintk("actually kicking\n");
481 writel(dev->rx_info.phy_descs +
482 (4 * DESC_SIZE * dev->rx_info.next_rx),
483 dev->base + RXDP);
484 if (dev->rx_info.next_rx == dev->rx_info.next_empty)
485 printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
486 ndev->name);
487 __kick_rx(dev);
491 //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
492 #define start_tx_okay(dev) \
493 (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
496 #ifdef NS83820_VLAN_ACCEL_SUPPORT
497 static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
499 struct ns83820 *dev = PRIV(ndev);
501 spin_lock_irq(&dev->misc_lock);
502 spin_lock(&dev->tx_lock);
504 dev->vlgrp = grp;
506 spin_unlock(&dev->tx_lock);
507 spin_unlock_irq(&dev->misc_lock);
509 #endif
511 /* Packet Receiver
513 * The hardware supports linked lists of receive descriptors for
514 * which ownership is transfered back and forth by means of an
515 * ownership bit. While the hardware does support the use of a
516 * ring for receive descriptors, we only make use of a chain in
517 * an attempt to reduce bus traffic under heavy load scenarios.
518 * This will also make bugs a bit more obvious. The current code
519 * only makes use of a single rx chain; I hope to implement
520 * priority based rx for version 1.0. Goal: even under overload
521 * conditions, still route realtime traffic with as low jitter as
522 * possible.
524 static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
526 desc_addr_set(desc + DESC_LINK, link);
527 desc_addr_set(desc + DESC_BUFPTR, buf);
528 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
529 mb();
530 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
533 #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
534 static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
536 unsigned next_empty;
537 u32 cmdsts;
538 __le32 *sg;
539 dma_addr_t buf;
541 next_empty = dev->rx_info.next_empty;
543 /* don't overrun last rx marker */
544 if (unlikely(nr_rx_empty(dev) <= 2)) {
545 kfree_skb(skb);
546 return 1;
549 #if 0
550 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
551 dev->rx_info.next_empty,
552 dev->rx_info.nr_used,
553 dev->rx_info.next_rx
555 #endif
557 sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
558 BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
559 dev->rx_info.skbs[next_empty] = skb;
561 dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
562 cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
563 buf = pci_map_single(dev->pci_dev, skb->data,
564 REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
565 build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
566 /* update link of previous rx */
567 if (likely(next_empty != dev->rx_info.next_rx))
568 dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
570 return 0;
573 static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
575 struct ns83820 *dev = PRIV(ndev);
576 unsigned i;
577 unsigned long flags = 0;
579 if (unlikely(nr_rx_empty(dev) <= 2))
580 return 0;
582 dprintk("rx_refill(%p)\n", ndev);
583 if (gfp == GFP_ATOMIC)
584 spin_lock_irqsave(&dev->rx_info.lock, flags);
585 for (i=0; i<NR_RX_DESC; i++) {
586 struct sk_buff *skb;
587 long res;
589 /* extra 16 bytes for alignment */
590 skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp);
591 if (unlikely(!skb))
592 break;
594 skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16));
595 if (gfp != GFP_ATOMIC)
596 spin_lock_irqsave(&dev->rx_info.lock, flags);
597 res = ns83820_add_rx_skb(dev, skb);
598 if (gfp != GFP_ATOMIC)
599 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
600 if (res) {
601 i = 1;
602 break;
605 if (gfp == GFP_ATOMIC)
606 spin_unlock_irqrestore(&dev->rx_info.lock, flags);
608 return i ? 0 : -ENOMEM;
611 static void rx_refill_atomic(struct net_device *ndev)
613 rx_refill(ndev, GFP_ATOMIC);
616 /* REFILL */
617 static inline void queue_refill(struct work_struct *work)
619 struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
620 struct net_device *ndev = dev->ndev;
622 rx_refill(ndev, GFP_KERNEL);
623 if (dev->rx_info.up)
624 kick_rx(ndev);
627 static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
629 build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
632 static void phy_intr(struct net_device *ndev)
634 struct ns83820 *dev = PRIV(ndev);
635 static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
636 u32 cfg, new_cfg;
637 u32 tbisr, tanar, tanlpar;
638 int speed, fullduplex, newlinkstate;
640 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
642 if (dev->CFG_cache & CFG_TBI_EN) {
643 /* we have an optical transceiver */
644 tbisr = readl(dev->base + TBISR);
645 tanar = readl(dev->base + TANAR);
646 tanlpar = readl(dev->base + TANLPAR);
647 dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
648 tbisr, tanar, tanlpar);
650 if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
651 && (tanar & TANAR_FULL_DUP)) ) {
653 /* both of us are full duplex */
654 writel(readl(dev->base + TXCFG)
655 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
656 dev->base + TXCFG);
657 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
658 dev->base + RXCFG);
659 /* Light up full duplex LED */
660 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
661 dev->base + GPIOR);
663 } else if(((tanlpar & TANAR_HALF_DUP)
664 && (tanar & TANAR_HALF_DUP))
665 || ((tanlpar & TANAR_FULL_DUP)
666 && (tanar & TANAR_HALF_DUP))
667 || ((tanlpar & TANAR_HALF_DUP)
668 && (tanar & TANAR_FULL_DUP))) {
670 /* one or both of us are half duplex */
671 writel((readl(dev->base + TXCFG)
672 & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
673 dev->base + TXCFG);
674 writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
675 dev->base + RXCFG);
676 /* Turn off full duplex LED */
677 writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
678 dev->base + GPIOR);
681 speed = 4; /* 1000F */
683 } else {
684 /* we have a copper transceiver */
685 new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
687 if (cfg & CFG_SPDSTS1)
688 new_cfg |= CFG_MODE_1000;
689 else
690 new_cfg &= ~CFG_MODE_1000;
692 speed = ((cfg / CFG_SPDSTS0) & 3);
693 fullduplex = (cfg & CFG_DUPSTS);
695 if (fullduplex) {
696 new_cfg |= CFG_SB;
697 writel(readl(dev->base + TXCFG)
698 | TXCFG_CSI | TXCFG_HBI,
699 dev->base + TXCFG);
700 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
701 dev->base + RXCFG);
702 } else {
703 writel(readl(dev->base + TXCFG)
704 & ~(TXCFG_CSI | TXCFG_HBI),
705 dev->base + TXCFG);
706 writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
707 dev->base + RXCFG);
710 if ((cfg & CFG_LNKSTS) &&
711 ((new_cfg ^ dev->CFG_cache) != 0)) {
712 writel(new_cfg, dev->base + CFG);
713 dev->CFG_cache = new_cfg;
716 dev->CFG_cache &= ~CFG_SPDSTS;
717 dev->CFG_cache |= cfg & CFG_SPDSTS;
720 newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
722 if (newlinkstate & LINK_UP
723 && dev->linkstate != newlinkstate) {
724 netif_start_queue(ndev);
725 netif_wake_queue(ndev);
726 printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
727 ndev->name,
728 speeds[speed],
729 fullduplex ? "full" : "half");
730 } else if (newlinkstate & LINK_DOWN
731 && dev->linkstate != newlinkstate) {
732 netif_stop_queue(ndev);
733 printk(KERN_INFO "%s: link now down.\n", ndev->name);
736 dev->linkstate = newlinkstate;
739 static int ns83820_setup_rx(struct net_device *ndev)
741 struct ns83820 *dev = PRIV(ndev);
742 unsigned i;
743 int ret;
745 dprintk("ns83820_setup_rx(%p)\n", ndev);
747 dev->rx_info.idle = 1;
748 dev->rx_info.next_rx = 0;
749 dev->rx_info.next_rx_desc = dev->rx_info.descs;
750 dev->rx_info.next_empty = 0;
752 for (i=0; i<NR_RX_DESC; i++)
753 clear_rx_desc(dev, i);
755 writel(0, dev->base + RXDP_HI);
756 writel(dev->rx_info.phy_descs, dev->base + RXDP);
758 ret = rx_refill(ndev, GFP_KERNEL);
759 if (!ret) {
760 dprintk("starting receiver\n");
761 /* prevent the interrupt handler from stomping on us */
762 spin_lock_irq(&dev->rx_info.lock);
764 writel(0x0001, dev->base + CCSR);
765 writel(0, dev->base + RFCR);
766 writel(0x7fc00000, dev->base + RFCR);
767 writel(0xffc00000, dev->base + RFCR);
769 dev->rx_info.up = 1;
771 phy_intr(ndev);
773 /* Okay, let it rip */
774 spin_lock_irq(&dev->misc_lock);
775 dev->IMR_cache |= ISR_PHY;
776 dev->IMR_cache |= ISR_RXRCMP;
777 //dev->IMR_cache |= ISR_RXERR;
778 //dev->IMR_cache |= ISR_RXOK;
779 dev->IMR_cache |= ISR_RXORN;
780 dev->IMR_cache |= ISR_RXSOVR;
781 dev->IMR_cache |= ISR_RXDESC;
782 dev->IMR_cache |= ISR_RXIDLE;
783 dev->IMR_cache |= ISR_TXDESC;
784 dev->IMR_cache |= ISR_TXIDLE;
786 writel(dev->IMR_cache, dev->base + IMR);
787 writel(1, dev->base + IER);
788 spin_unlock(&dev->misc_lock);
790 kick_rx(ndev);
792 spin_unlock_irq(&dev->rx_info.lock);
794 return ret;
797 static void ns83820_cleanup_rx(struct ns83820 *dev)
799 unsigned i;
800 unsigned long flags;
802 dprintk("ns83820_cleanup_rx(%p)\n", dev);
804 /* disable receive interrupts */
805 spin_lock_irqsave(&dev->misc_lock, flags);
806 dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
807 writel(dev->IMR_cache, dev->base + IMR);
808 spin_unlock_irqrestore(&dev->misc_lock, flags);
810 /* synchronize with the interrupt handler and kill it */
811 dev->rx_info.up = 0;
812 synchronize_irq(dev->pci_dev->irq);
814 /* touch the pci bus... */
815 readl(dev->base + IMR);
817 /* assumes the transmitter is already disabled and reset */
818 writel(0, dev->base + RXDP_HI);
819 writel(0, dev->base + RXDP);
821 for (i=0; i<NR_RX_DESC; i++) {
822 struct sk_buff *skb = dev->rx_info.skbs[i];
823 dev->rx_info.skbs[i] = NULL;
824 clear_rx_desc(dev, i);
825 kfree_skb(skb);
829 static void ns83820_rx_kick(struct net_device *ndev)
831 struct ns83820 *dev = PRIV(ndev);
832 /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
833 if (dev->rx_info.up) {
834 rx_refill_atomic(ndev);
835 kick_rx(ndev);
839 if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
840 schedule_work(&dev->tq_refill);
841 else
842 kick_rx(ndev);
843 if (dev->rx_info.idle)
844 printk(KERN_DEBUG "%s: BAD\n", ndev->name);
847 /* rx_irq
850 static void rx_irq(struct net_device *ndev)
852 struct ns83820 *dev = PRIV(ndev);
853 struct rx_info *info = &dev->rx_info;
854 unsigned next_rx;
855 int rx_rc, len;
856 u32 cmdsts;
857 __le32 *desc;
858 unsigned long flags;
859 int nr = 0;
861 dprintk("rx_irq(%p)\n", ndev);
862 dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
863 readl(dev->base + RXDP),
864 (long)(dev->rx_info.phy_descs),
865 (int)dev->rx_info.next_rx,
866 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
867 (int)dev->rx_info.next_empty,
868 (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
871 spin_lock_irqsave(&info->lock, flags);
872 if (!info->up)
873 goto out;
875 dprintk("walking descs\n");
876 next_rx = info->next_rx;
877 desc = info->next_rx_desc;
878 while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
879 (cmdsts != CMDSTS_OWN)) {
880 struct sk_buff *skb;
881 u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
882 dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
884 dprintk("cmdsts: %08x\n", cmdsts);
885 dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
886 dprintk("extsts: %08x\n", extsts);
888 skb = info->skbs[next_rx];
889 info->skbs[next_rx] = NULL;
890 info->next_rx = (next_rx + 1) % NR_RX_DESC;
892 mb();
893 clear_rx_desc(dev, next_rx);
895 pci_unmap_single(dev->pci_dev, bufptr,
896 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
897 len = cmdsts & CMDSTS_LEN_MASK;
898 #ifdef NS83820_VLAN_ACCEL_SUPPORT
899 /* NH: As was mentioned below, this chip is kinda
900 * brain dead about vlan tag stripping. Frames
901 * that are 64 bytes with a vlan header appended
902 * like arp frames, or pings, are flagged as Runts
903 * when the tag is stripped and hardware. This
904 * also means that the OK bit in the descriptor
905 * is cleared when the frame comes in so we have
906 * to do a specific length check here to make sure
907 * the frame would have been ok, had we not stripped
908 * the tag.
910 if (likely((CMDSTS_OK & cmdsts) ||
911 ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
912 #else
913 if (likely(CMDSTS_OK & cmdsts)) {
914 #endif
915 skb_put(skb, len);
916 if (unlikely(!skb))
917 goto netdev_mangle_me_harder_failed;
918 if (cmdsts & CMDSTS_DEST_MULTI)
919 dev->stats.multicast ++;
920 dev->stats.rx_packets ++;
921 dev->stats.rx_bytes += len;
922 if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
923 skb->ip_summed = CHECKSUM_UNNECESSARY;
924 } else {
925 skb->ip_summed = CHECKSUM_NONE;
927 skb->protocol = eth_type_trans(skb, ndev);
928 #ifdef NS83820_VLAN_ACCEL_SUPPORT
929 if(extsts & EXTSTS_VPKT) {
930 unsigned short tag;
931 tag = ntohs(extsts & EXTSTS_VTG_MASK);
932 rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
933 } else {
934 rx_rc = netif_rx(skb);
936 #else
937 rx_rc = netif_rx(skb);
938 #endif
939 if (NET_RX_DROP == rx_rc) {
940 netdev_mangle_me_harder_failed:
941 dev->stats.rx_dropped ++;
943 } else {
944 kfree_skb(skb);
947 nr++;
948 next_rx = info->next_rx;
949 desc = info->descs + (DESC_SIZE * next_rx);
951 info->next_rx = next_rx;
952 info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
954 out:
955 if (0 && !nr) {
956 Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
959 spin_unlock_irqrestore(&info->lock, flags);
962 static void rx_action(unsigned long _dev)
964 struct net_device *ndev = (void *)_dev;
965 struct ns83820 *dev = PRIV(ndev);
966 rx_irq(ndev);
967 writel(ihr, dev->base + IHR);
969 spin_lock_irq(&dev->misc_lock);
970 dev->IMR_cache |= ISR_RXDESC;
971 writel(dev->IMR_cache, dev->base + IMR);
972 spin_unlock_irq(&dev->misc_lock);
974 rx_irq(ndev);
975 ns83820_rx_kick(ndev);
978 /* Packet Transmit code
980 static inline void kick_tx(struct ns83820 *dev)
982 dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
983 dev, dev->tx_idx, dev->tx_free_idx);
984 writel(CR_TXE, dev->base + CR);
987 /* No spinlock needed on the transmit irq path as the interrupt handler is
988 * serialized.
990 static void do_tx_done(struct net_device *ndev)
992 struct ns83820 *dev = PRIV(ndev);
993 u32 cmdsts, tx_done_idx;
994 __le32 *desc;
996 dprintk("do_tx_done(%p)\n", ndev);
997 tx_done_idx = dev->tx_done_idx;
998 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1000 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1001 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1002 while ((tx_done_idx != dev->tx_free_idx) &&
1003 !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
1004 struct sk_buff *skb;
1005 unsigned len;
1006 dma_addr_t addr;
1008 if (cmdsts & CMDSTS_ERR)
1009 dev->stats.tx_errors ++;
1010 if (cmdsts & CMDSTS_OK)
1011 dev->stats.tx_packets ++;
1012 if (cmdsts & CMDSTS_OK)
1013 dev->stats.tx_bytes += cmdsts & 0xffff;
1015 dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1016 tx_done_idx, dev->tx_free_idx, cmdsts);
1017 skb = dev->tx_skbs[tx_done_idx];
1018 dev->tx_skbs[tx_done_idx] = NULL;
1019 dprintk("done(%p)\n", skb);
1021 len = cmdsts & CMDSTS_LEN_MASK;
1022 addr = desc_addr_get(desc + DESC_BUFPTR);
1023 if (skb) {
1024 pci_unmap_single(dev->pci_dev,
1025 addr,
1026 len,
1027 PCI_DMA_TODEVICE);
1028 dev_kfree_skb_irq(skb);
1029 atomic_dec(&dev->nr_tx_skbs);
1030 } else
1031 pci_unmap_page(dev->pci_dev,
1032 addr,
1033 len,
1034 PCI_DMA_TODEVICE);
1036 tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1037 dev->tx_done_idx = tx_done_idx;
1038 desc[DESC_CMDSTS] = cpu_to_le32(0);
1039 mb();
1040 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1043 /* Allow network stack to resume queueing packets after we've
1044 * finished transmitting at least 1/4 of the packets in the queue.
1046 if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1047 dprintk("start_queue(%p)\n", ndev);
1048 netif_start_queue(ndev);
1049 netif_wake_queue(ndev);
1053 static void ns83820_cleanup_tx(struct ns83820 *dev)
1055 unsigned i;
1057 for (i=0; i<NR_TX_DESC; i++) {
1058 struct sk_buff *skb = dev->tx_skbs[i];
1059 dev->tx_skbs[i] = NULL;
1060 if (skb) {
1061 __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1062 pci_unmap_single(dev->pci_dev,
1063 desc_addr_get(desc + DESC_BUFPTR),
1064 le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1065 PCI_DMA_TODEVICE);
1066 dev_kfree_skb_irq(skb);
1067 atomic_dec(&dev->nr_tx_skbs);
1071 memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1074 /* transmit routine. This code relies on the network layer serializing
1075 * its calls in, but will run happily in parallel with the interrupt
1076 * handler. This code currently has provisions for fragmenting tx buffers
1077 * while trying to track down a bug in either the zero copy code or
1078 * the tx fifo (hence the MAX_FRAG_LEN).
1080 static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb,
1081 struct net_device *ndev)
1083 struct ns83820 *dev = PRIV(ndev);
1084 u32 free_idx, cmdsts, extsts;
1085 int nr_free, nr_frags;
1086 unsigned tx_done_idx, last_idx;
1087 dma_addr_t buf;
1088 unsigned len;
1089 skb_frag_t *frag;
1090 int stopped = 0;
1091 int do_intr = 0;
1092 volatile __le32 *first_desc;
1094 dprintk("ns83820_hard_start_xmit\n");
1096 nr_frags = skb_shinfo(skb)->nr_frags;
1097 again:
1098 if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1099 netif_stop_queue(ndev);
1100 if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1101 return NETDEV_TX_BUSY;
1102 netif_start_queue(ndev);
1105 last_idx = free_idx = dev->tx_free_idx;
1106 tx_done_idx = dev->tx_done_idx;
1107 nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1108 nr_free -= 1;
1109 if (nr_free <= nr_frags) {
1110 dprintk("stop_queue - not enough(%p)\n", ndev);
1111 netif_stop_queue(ndev);
1113 /* Check again: we may have raced with a tx done irq */
1114 if (dev->tx_done_idx != tx_done_idx) {
1115 dprintk("restart queue(%p)\n", ndev);
1116 netif_start_queue(ndev);
1117 goto again;
1119 return NETDEV_TX_BUSY;
1122 if (free_idx == dev->tx_intr_idx) {
1123 do_intr = 1;
1124 dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1127 nr_free -= nr_frags;
1128 if (nr_free < MIN_TX_DESC_FREE) {
1129 dprintk("stop_queue - last entry(%p)\n", ndev);
1130 netif_stop_queue(ndev);
1131 stopped = 1;
1134 frag = skb_shinfo(skb)->frags;
1135 if (!nr_frags)
1136 frag = NULL;
1137 extsts = 0;
1138 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1139 extsts |= EXTSTS_IPPKT;
1140 if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1141 extsts |= EXTSTS_TCPPKT;
1142 else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1143 extsts |= EXTSTS_UDPPKT;
1146 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1147 if(vlan_tx_tag_present(skb)) {
1148 /* fetch the vlan tag info out of the
1149 * ancilliary data if the vlan code
1150 * is using hw vlan acceleration
1152 short tag = vlan_tx_tag_get(skb);
1153 extsts |= (EXTSTS_VPKT | htons(tag));
1155 #endif
1157 len = skb->len;
1158 if (nr_frags)
1159 len -= skb->data_len;
1160 buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1162 first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1164 for (;;) {
1165 volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1167 dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1168 (unsigned long long)buf);
1169 last_idx = free_idx;
1170 free_idx = (free_idx + 1) % NR_TX_DESC;
1171 desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1172 desc_addr_set(desc + DESC_BUFPTR, buf);
1173 desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1175 cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1176 cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1177 cmdsts |= len;
1178 desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1180 if (!nr_frags)
1181 break;
1183 buf = pci_map_page(dev->pci_dev, frag->page,
1184 frag->page_offset,
1185 frag->size, PCI_DMA_TODEVICE);
1186 dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
1187 (long long)buf, (long) page_to_pfn(frag->page),
1188 frag->page_offset);
1189 len = frag->size;
1190 frag++;
1191 nr_frags--;
1193 dprintk("done pkt\n");
1195 spin_lock_irq(&dev->tx_lock);
1196 dev->tx_skbs[last_idx] = skb;
1197 first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1198 dev->tx_free_idx = free_idx;
1199 atomic_inc(&dev->nr_tx_skbs);
1200 spin_unlock_irq(&dev->tx_lock);
1202 kick_tx(dev);
1204 /* Check again: we may have raced with a tx done irq */
1205 if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1206 netif_start_queue(ndev);
1208 return NETDEV_TX_OK;
1211 static void ns83820_update_stats(struct ns83820 *dev)
1213 u8 __iomem *base = dev->base;
1215 /* the DP83820 will freeze counters, so we need to read all of them */
1216 dev->stats.rx_errors += readl(base + 0x60) & 0xffff;
1217 dev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
1218 dev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
1219 dev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
1220 /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1221 dev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
1222 dev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
1223 /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1224 /*dev->stats.rx_pause_count += */ readl(base + 0x80);
1225 /*dev->stats.tx_pause_count += */ readl(base + 0x84);
1226 dev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
1229 static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1231 struct ns83820 *dev = PRIV(ndev);
1233 /* somewhat overkill */
1234 spin_lock_irq(&dev->misc_lock);
1235 ns83820_update_stats(dev);
1236 spin_unlock_irq(&dev->misc_lock);
1238 return &dev->stats;
1241 /* Let ethtool retrieve info */
1242 static int ns83820_get_settings(struct net_device *ndev,
1243 struct ethtool_cmd *cmd)
1245 struct ns83820 *dev = PRIV(ndev);
1246 u32 cfg, tanar, tbicr;
1247 int have_optical = 0;
1248 int fullduplex = 0;
1251 * Here's the list of available ethtool commands from other drivers:
1252 * cmd->advertising =
1253 * cmd->speed =
1254 * cmd->duplex =
1255 * cmd->port = 0;
1256 * cmd->phy_address =
1257 * cmd->transceiver = 0;
1258 * cmd->autoneg =
1259 * cmd->maxtxpkt = 0;
1260 * cmd->maxrxpkt = 0;
1263 /* read current configuration */
1264 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1265 tanar = readl(dev->base + TANAR);
1266 tbicr = readl(dev->base + TBICR);
1268 if (dev->CFG_cache & CFG_TBI_EN) {
1269 /* we have an optical interface */
1270 have_optical = 1;
1271 fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1273 } else {
1274 /* We have copper */
1275 fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1278 cmd->supported = SUPPORTED_Autoneg;
1280 /* we have optical interface */
1281 if (dev->CFG_cache & CFG_TBI_EN) {
1282 cmd->supported |= SUPPORTED_1000baseT_Half |
1283 SUPPORTED_1000baseT_Full |
1284 SUPPORTED_FIBRE;
1285 cmd->port = PORT_FIBRE;
1286 } /* TODO: else copper related support */
1288 cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1289 switch (cfg / CFG_SPDSTS0 & 3) {
1290 case 2:
1291 cmd->speed = SPEED_1000;
1292 break;
1293 case 1:
1294 cmd->speed = SPEED_100;
1295 break;
1296 default:
1297 cmd->speed = SPEED_10;
1298 break;
1300 cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE) ? 1: 0;
1301 return 0;
1304 /* Let ethool change settings*/
1305 static int ns83820_set_settings(struct net_device *ndev,
1306 struct ethtool_cmd *cmd)
1308 struct ns83820 *dev = PRIV(ndev);
1309 u32 cfg, tanar;
1310 int have_optical = 0;
1311 int fullduplex = 0;
1313 /* read current configuration */
1314 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1315 tanar = readl(dev->base + TANAR);
1317 if (dev->CFG_cache & CFG_TBI_EN) {
1318 /* we have optical */
1319 have_optical = 1;
1320 fullduplex = (tanar & TANAR_FULL_DUP);
1322 } else {
1323 /* we have copper */
1324 fullduplex = cfg & CFG_DUPSTS;
1327 spin_lock_irq(&dev->misc_lock);
1328 spin_lock(&dev->tx_lock);
1330 /* Set duplex */
1331 if (cmd->duplex != fullduplex) {
1332 if (have_optical) {
1333 /*set full duplex*/
1334 if (cmd->duplex == DUPLEX_FULL) {
1335 /* force full duplex */
1336 writel(readl(dev->base + TXCFG)
1337 | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1338 dev->base + TXCFG);
1339 writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1340 dev->base + RXCFG);
1341 /* Light up full duplex LED */
1342 writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1343 dev->base + GPIOR);
1344 } else {
1345 /*TODO: set half duplex */
1348 } else {
1349 /*we have copper*/
1350 /* TODO: Set duplex for copper cards */
1352 printk(KERN_INFO "%s: Duplex set via ethtool\n",
1353 ndev->name);
1356 /* Set autonegotiation */
1357 if (1) {
1358 if (cmd->autoneg == AUTONEG_ENABLE) {
1359 /* restart auto negotiation */
1360 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1361 dev->base + TBICR);
1362 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1363 dev->linkstate = LINK_AUTONEGOTIATE;
1365 printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1366 ndev->name);
1367 } else {
1368 /* disable auto negotiation */
1369 writel(0x00000000, dev->base + TBICR);
1372 printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1373 cmd->autoneg ? "ENABLED" : "DISABLED");
1376 phy_intr(ndev);
1377 spin_unlock(&dev->tx_lock);
1378 spin_unlock_irq(&dev->misc_lock);
1380 return 0;
1382 /* end ethtool get/set support -df */
1384 static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1386 struct ns83820 *dev = PRIV(ndev);
1387 strcpy(info->driver, "ns83820");
1388 strcpy(info->version, VERSION);
1389 strcpy(info->bus_info, pci_name(dev->pci_dev));
1392 static u32 ns83820_get_link(struct net_device *ndev)
1394 struct ns83820 *dev = PRIV(ndev);
1395 u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1396 return cfg & CFG_LNKSTS ? 1 : 0;
1399 static const struct ethtool_ops ops = {
1400 .get_settings = ns83820_get_settings,
1401 .set_settings = ns83820_set_settings,
1402 .get_drvinfo = ns83820_get_drvinfo,
1403 .get_link = ns83820_get_link
1406 /* this function is called in irq context from the ISR */
1407 static void ns83820_mib_isr(struct ns83820 *dev)
1409 unsigned long flags;
1410 spin_lock_irqsave(&dev->misc_lock, flags);
1411 ns83820_update_stats(dev);
1412 spin_unlock_irqrestore(&dev->misc_lock, flags);
1415 static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1416 static irqreturn_t ns83820_irq(int foo, void *data)
1418 struct net_device *ndev = data;
1419 struct ns83820 *dev = PRIV(ndev);
1420 u32 isr;
1421 dprintk("ns83820_irq(%p)\n", ndev);
1423 dev->ihr = 0;
1425 isr = readl(dev->base + ISR);
1426 dprintk("irq: %08x\n", isr);
1427 ns83820_do_isr(ndev, isr);
1428 return IRQ_HANDLED;
1431 static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1433 struct ns83820 *dev = PRIV(ndev);
1434 unsigned long flags;
1436 #ifdef DEBUG
1437 if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1438 Dprintk("odd isr? 0x%08x\n", isr);
1439 #endif
1441 if (ISR_RXIDLE & isr) {
1442 dev->rx_info.idle = 1;
1443 Dprintk("oh dear, we are idle\n");
1444 ns83820_rx_kick(ndev);
1447 if ((ISR_RXDESC | ISR_RXOK) & isr) {
1448 prefetch(dev->rx_info.next_rx_desc);
1450 spin_lock_irqsave(&dev->misc_lock, flags);
1451 dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1452 writel(dev->IMR_cache, dev->base + IMR);
1453 spin_unlock_irqrestore(&dev->misc_lock, flags);
1455 tasklet_schedule(&dev->rx_tasklet);
1456 //rx_irq(ndev);
1457 //writel(4, dev->base + IHR);
1460 if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1461 ns83820_rx_kick(ndev);
1463 if (unlikely(ISR_RXSOVR & isr)) {
1464 //printk("overrun: rxsovr\n");
1465 dev->stats.rx_fifo_errors ++;
1468 if (unlikely(ISR_RXORN & isr)) {
1469 //printk("overrun: rxorn\n");
1470 dev->stats.rx_fifo_errors ++;
1473 if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1474 writel(CR_RXE, dev->base + CR);
1476 if (ISR_TXIDLE & isr) {
1477 u32 txdp;
1478 txdp = readl(dev->base + TXDP);
1479 dprintk("txdp: %08x\n", txdp);
1480 txdp -= dev->tx_phy_descs;
1481 dev->tx_idx = txdp / (DESC_SIZE * 4);
1482 if (dev->tx_idx >= NR_TX_DESC) {
1483 printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1484 dev->tx_idx = 0;
1486 /* The may have been a race between a pci originated read
1487 * and the descriptor update from the cpu. Just in case,
1488 * kick the transmitter if the hardware thinks it is on a
1489 * different descriptor than we are.
1491 if (dev->tx_idx != dev->tx_free_idx)
1492 kick_tx(dev);
1495 /* Defer tx ring processing until more than a minimum amount of
1496 * work has accumulated
1498 if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1499 spin_lock_irqsave(&dev->tx_lock, flags);
1500 do_tx_done(ndev);
1501 spin_unlock_irqrestore(&dev->tx_lock, flags);
1503 /* Disable TxOk if there are no outstanding tx packets.
1505 if ((dev->tx_done_idx == dev->tx_free_idx) &&
1506 (dev->IMR_cache & ISR_TXOK)) {
1507 spin_lock_irqsave(&dev->misc_lock, flags);
1508 dev->IMR_cache &= ~ISR_TXOK;
1509 writel(dev->IMR_cache, dev->base + IMR);
1510 spin_unlock_irqrestore(&dev->misc_lock, flags);
1514 /* The TxIdle interrupt can come in before the transmit has
1515 * completed. Normally we reap packets off of the combination
1516 * of TxDesc and TxIdle and leave TxOk disabled (since it
1517 * occurs on every packet), but when no further irqs of this
1518 * nature are expected, we must enable TxOk.
1520 if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1521 spin_lock_irqsave(&dev->misc_lock, flags);
1522 dev->IMR_cache |= ISR_TXOK;
1523 writel(dev->IMR_cache, dev->base + IMR);
1524 spin_unlock_irqrestore(&dev->misc_lock, flags);
1527 /* MIB interrupt: one of the statistics counters is about to overflow */
1528 if (unlikely(ISR_MIB & isr))
1529 ns83820_mib_isr(dev);
1531 /* PHY: Link up/down/negotiation state change */
1532 if (unlikely(ISR_PHY & isr))
1533 phy_intr(ndev);
1535 #if 0 /* Still working on the interrupt mitigation strategy */
1536 if (dev->ihr)
1537 writel(dev->ihr, dev->base + IHR);
1538 #endif
1541 static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1543 Dprintk("resetting chip...\n");
1544 writel(which, dev->base + CR);
1545 do {
1546 schedule();
1547 } while (readl(dev->base + CR) & which);
1548 Dprintk("okay!\n");
1551 static int ns83820_stop(struct net_device *ndev)
1553 struct ns83820 *dev = PRIV(ndev);
1555 /* FIXME: protect against interrupt handler? */
1556 del_timer_sync(&dev->tx_watchdog);
1558 /* disable interrupts */
1559 writel(0, dev->base + IMR);
1560 writel(0, dev->base + IER);
1561 readl(dev->base + IER);
1563 dev->rx_info.up = 0;
1564 synchronize_irq(dev->pci_dev->irq);
1566 ns83820_do_reset(dev, CR_RST);
1568 synchronize_irq(dev->pci_dev->irq);
1570 spin_lock_irq(&dev->misc_lock);
1571 dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1572 spin_unlock_irq(&dev->misc_lock);
1574 ns83820_cleanup_rx(dev);
1575 ns83820_cleanup_tx(dev);
1577 return 0;
1580 static void ns83820_tx_timeout(struct net_device *ndev)
1582 struct ns83820 *dev = PRIV(ndev);
1583 u32 tx_done_idx;
1584 __le32 *desc;
1585 unsigned long flags;
1587 spin_lock_irqsave(&dev->tx_lock, flags);
1589 tx_done_idx = dev->tx_done_idx;
1590 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1592 printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1593 ndev->name,
1594 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1596 #if defined(DEBUG)
1598 u32 isr;
1599 isr = readl(dev->base + ISR);
1600 printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1601 ns83820_do_isr(ndev, isr);
1603 #endif
1605 do_tx_done(ndev);
1607 tx_done_idx = dev->tx_done_idx;
1608 desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1610 printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1611 ndev->name,
1612 tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1614 spin_unlock_irqrestore(&dev->tx_lock, flags);
1617 static void ns83820_tx_watch(unsigned long data)
1619 struct net_device *ndev = (void *)data;
1620 struct ns83820 *dev = PRIV(ndev);
1622 #if defined(DEBUG)
1623 printk("ns83820_tx_watch: %u %u %d\n",
1624 dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1626 #endif
1628 if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) &&
1629 dev->tx_done_idx != dev->tx_free_idx) {
1630 printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1631 ndev->name,
1632 dev->tx_done_idx, dev->tx_free_idx,
1633 atomic_read(&dev->nr_tx_skbs));
1634 ns83820_tx_timeout(ndev);
1637 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1640 static int ns83820_open(struct net_device *ndev)
1642 struct ns83820 *dev = PRIV(ndev);
1643 unsigned i;
1644 u32 desc;
1645 int ret;
1647 dprintk("ns83820_open\n");
1649 writel(0, dev->base + PQCR);
1651 ret = ns83820_setup_rx(ndev);
1652 if (ret)
1653 goto failed;
1655 memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1656 for (i=0; i<NR_TX_DESC; i++) {
1657 dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1658 = cpu_to_le32(
1659 dev->tx_phy_descs
1660 + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1663 dev->tx_idx = 0;
1664 dev->tx_done_idx = 0;
1665 desc = dev->tx_phy_descs;
1666 writel(0, dev->base + TXDP_HI);
1667 writel(desc, dev->base + TXDP);
1669 init_timer(&dev->tx_watchdog);
1670 dev->tx_watchdog.data = (unsigned long)ndev;
1671 dev->tx_watchdog.function = ns83820_tx_watch;
1672 mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1674 netif_start_queue(ndev); /* FIXME: wait for phy to come up */
1676 return 0;
1678 failed:
1679 ns83820_stop(ndev);
1680 return ret;
1683 static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1685 unsigned i;
1686 for (i=0; i<3; i++) {
1687 u32 data;
1689 /* Read from the perfect match memory: this is loaded by
1690 * the chip from the EEPROM via the EELOAD self test.
1692 writel(i*2, dev->base + RFCR);
1693 data = readl(dev->base + RFDR);
1695 *mac++ = data;
1696 *mac++ = data >> 8;
1700 static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1702 if (new_mtu > RX_BUF_SIZE)
1703 return -EINVAL;
1704 ndev->mtu = new_mtu;
1705 return 0;
1708 static void ns83820_set_multicast(struct net_device *ndev)
1710 struct ns83820 *dev = PRIV(ndev);
1711 u8 __iomem *rfcr = dev->base + RFCR;
1712 u32 and_mask = 0xffffffff;
1713 u32 or_mask = 0;
1714 u32 val;
1716 if (ndev->flags & IFF_PROMISC)
1717 or_mask |= RFCR_AAU | RFCR_AAM;
1718 else
1719 and_mask &= ~(RFCR_AAU | RFCR_AAM);
1721 if (ndev->flags & IFF_ALLMULTI || ndev->mc_count)
1722 or_mask |= RFCR_AAM;
1723 else
1724 and_mask &= ~RFCR_AAM;
1726 spin_lock_irq(&dev->misc_lock);
1727 val = (readl(rfcr) & and_mask) | or_mask;
1728 /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1729 writel(val & ~RFCR_RFEN, rfcr);
1730 writel(val, rfcr);
1731 spin_unlock_irq(&dev->misc_lock);
1734 static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1736 struct ns83820 *dev = PRIV(ndev);
1737 int timed_out = 0;
1738 unsigned long start;
1739 u32 status;
1740 int loops = 0;
1742 dprintk("%s: start %s\n", ndev->name, name);
1744 start = jiffies;
1746 writel(enable, dev->base + PTSCR);
1747 for (;;) {
1748 loops++;
1749 status = readl(dev->base + PTSCR);
1750 if (!(status & enable))
1751 break;
1752 if (status & done)
1753 break;
1754 if (status & fail)
1755 break;
1756 if (time_after_eq(jiffies, start + HZ)) {
1757 timed_out = 1;
1758 break;
1760 schedule_timeout_uninterruptible(1);
1763 if (status & fail)
1764 printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1765 ndev->name, name, status, fail);
1766 else if (timed_out)
1767 printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1768 ndev->name, name, status);
1770 dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1773 #ifdef PHY_CODE_IS_FINISHED
1774 static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1776 /* drive MDC low */
1777 dev->MEAR_cache &= ~MEAR_MDC;
1778 writel(dev->MEAR_cache, dev->base + MEAR);
1779 readl(dev->base + MEAR);
1781 /* enable output, set bit */
1782 dev->MEAR_cache |= MEAR_MDDIR;
1783 if (bit)
1784 dev->MEAR_cache |= MEAR_MDIO;
1785 else
1786 dev->MEAR_cache &= ~MEAR_MDIO;
1788 /* set the output bit */
1789 writel(dev->MEAR_cache, dev->base + MEAR);
1790 readl(dev->base + MEAR);
1792 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1793 udelay(1);
1795 /* drive MDC high causing the data bit to be latched */
1796 dev->MEAR_cache |= MEAR_MDC;
1797 writel(dev->MEAR_cache, dev->base + MEAR);
1798 readl(dev->base + MEAR);
1800 /* Wait again... */
1801 udelay(1);
1804 static int ns83820_mii_read_bit(struct ns83820 *dev)
1806 int bit;
1808 /* drive MDC low, disable output */
1809 dev->MEAR_cache &= ~MEAR_MDC;
1810 dev->MEAR_cache &= ~MEAR_MDDIR;
1811 writel(dev->MEAR_cache, dev->base + MEAR);
1812 readl(dev->base + MEAR);
1814 /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
1815 udelay(1);
1817 /* drive MDC high causing the data bit to be latched */
1818 bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1819 dev->MEAR_cache |= MEAR_MDC;
1820 writel(dev->MEAR_cache, dev->base + MEAR);
1822 /* Wait again... */
1823 udelay(1);
1825 return bit;
1828 static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1830 unsigned data = 0;
1831 int i;
1833 /* read some garbage so that we eventually sync up */
1834 for (i=0; i<64; i++)
1835 ns83820_mii_read_bit(dev);
1837 ns83820_mii_write_bit(dev, 0); /* start */
1838 ns83820_mii_write_bit(dev, 1);
1839 ns83820_mii_write_bit(dev, 1); /* opcode read */
1840 ns83820_mii_write_bit(dev, 0);
1842 /* write out the phy address: 5 bits, msb first */
1843 for (i=0; i<5; i++)
1844 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1846 /* write out the register address, 5 bits, msb first */
1847 for (i=0; i<5; i++)
1848 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1850 ns83820_mii_read_bit(dev); /* turn around cycles */
1851 ns83820_mii_read_bit(dev);
1853 /* read in the register data, 16 bits msb first */
1854 for (i=0; i<16; i++) {
1855 data <<= 1;
1856 data |= ns83820_mii_read_bit(dev);
1859 return data;
1862 static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1864 int i;
1866 /* read some garbage so that we eventually sync up */
1867 for (i=0; i<64; i++)
1868 ns83820_mii_read_bit(dev);
1870 ns83820_mii_write_bit(dev, 0); /* start */
1871 ns83820_mii_write_bit(dev, 1);
1872 ns83820_mii_write_bit(dev, 0); /* opcode read */
1873 ns83820_mii_write_bit(dev, 1);
1875 /* write out the phy address: 5 bits, msb first */
1876 for (i=0; i<5; i++)
1877 ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1879 /* write out the register address, 5 bits, msb first */
1880 for (i=0; i<5; i++)
1881 ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1883 ns83820_mii_read_bit(dev); /* turn around cycles */
1884 ns83820_mii_read_bit(dev);
1886 /* read in the register data, 16 bits msb first */
1887 for (i=0; i<16; i++)
1888 ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1890 return data;
1893 static void ns83820_probe_phy(struct net_device *ndev)
1895 struct ns83820 *dev = PRIV(ndev);
1896 static int first;
1897 int i;
1898 #define MII_PHYIDR1 0x02
1899 #define MII_PHYIDR2 0x03
1901 #if 0
1902 if (!first) {
1903 unsigned tmp;
1904 ns83820_mii_read_reg(dev, 1, 0x09);
1905 ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1907 tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1908 ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1909 udelay(1300);
1910 ns83820_mii_read_reg(dev, 1, 0x09);
1912 #endif
1913 first = 1;
1915 for (i=1; i<2; i++) {
1916 int j;
1917 unsigned a, b;
1918 a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1919 b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1921 //printk("%s: phy %d: 0x%04x 0x%04x\n",
1922 // ndev->name, i, a, b);
1924 for (j=0; j<0x16; j+=4) {
1925 dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1926 ndev->name, j,
1927 ns83820_mii_read_reg(dev, i, 0 + j),
1928 ns83820_mii_read_reg(dev, i, 1 + j),
1929 ns83820_mii_read_reg(dev, i, 2 + j),
1930 ns83820_mii_read_reg(dev, i, 3 + j)
1935 unsigned a, b;
1936 /* read firmware version: memory addr is 0x8402 and 0x8403 */
1937 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1938 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1939 a = ns83820_mii_read_reg(dev, 1, 0x1d);
1941 ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1942 ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1943 b = ns83820_mii_read_reg(dev, 1, 0x1d);
1944 dprintk("version: 0x%04x 0x%04x\n", a, b);
1947 #endif
1949 static const struct net_device_ops netdev_ops = {
1950 .ndo_open = ns83820_open,
1951 .ndo_stop = ns83820_stop,
1952 .ndo_start_xmit = ns83820_hard_start_xmit,
1953 .ndo_get_stats = ns83820_get_stats,
1954 .ndo_change_mtu = ns83820_change_mtu,
1955 .ndo_set_multicast_list = ns83820_set_multicast,
1956 .ndo_validate_addr = eth_validate_addr,
1957 .ndo_set_mac_address = eth_mac_addr,
1958 .ndo_tx_timeout = ns83820_tx_timeout,
1959 #ifdef NS83820_VLAN_ACCEL_SUPPORT
1960 .ndo_vlan_rx_register = ns83820_vlan_rx_register,
1961 #endif
1964 static int __devinit ns83820_init_one(struct pci_dev *pci_dev,
1965 const struct pci_device_id *id)
1967 struct net_device *ndev;
1968 struct ns83820 *dev;
1969 long addr;
1970 int err;
1971 int using_dac = 0;
1973 /* See if we can set the dma mask early on; failure is fatal. */
1974 if (sizeof(dma_addr_t) == 8 &&
1975 !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) {
1976 using_dac = 1;
1977 } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) {
1978 using_dac = 0;
1979 } else {
1980 dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1981 return -ENODEV;
1984 ndev = alloc_etherdev(sizeof(struct ns83820));
1985 dev = PRIV(ndev);
1987 err = -ENOMEM;
1988 if (!dev)
1989 goto out;
1991 dev->ndev = ndev;
1993 spin_lock_init(&dev->rx_info.lock);
1994 spin_lock_init(&dev->tx_lock);
1995 spin_lock_init(&dev->misc_lock);
1996 dev->pci_dev = pci_dev;
1998 SET_NETDEV_DEV(ndev, &pci_dev->dev);
2000 INIT_WORK(&dev->tq_refill, queue_refill);
2001 tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
2003 err = pci_enable_device(pci_dev);
2004 if (err) {
2005 dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
2006 goto out_free;
2009 pci_set_master(pci_dev);
2010 addr = pci_resource_start(pci_dev, 1);
2011 dev->base = ioremap_nocache(addr, PAGE_SIZE);
2012 dev->tx_descs = pci_alloc_consistent(pci_dev,
2013 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
2014 dev->rx_info.descs = pci_alloc_consistent(pci_dev,
2015 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
2016 err = -ENOMEM;
2017 if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
2018 goto out_disable;
2020 dprintk("%p: %08lx %p: %08lx\n",
2021 dev->tx_descs, (long)dev->tx_phy_descs,
2022 dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2024 /* disable interrupts */
2025 writel(0, dev->base + IMR);
2026 writel(0, dev->base + IER);
2027 readl(dev->base + IER);
2029 dev->IMR_cache = 0;
2031 err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2032 DRV_NAME, ndev);
2033 if (err) {
2034 dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2035 pci_dev->irq, err);
2036 goto out_disable;
2040 * FIXME: we are holding rtnl_lock() over obscenely long area only
2041 * because some of the setup code uses dev->name. It's Wrong(tm) -
2042 * we should be using driver-specific names for all that stuff.
2043 * For now that will do, but we really need to come back and kill
2044 * most of the dev_alloc_name() users later.
2046 rtnl_lock();
2047 err = dev_alloc_name(ndev, ndev->name);
2048 if (err < 0) {
2049 dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2050 goto out_free_irq;
2053 printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2054 ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2055 pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2057 ndev->netdev_ops = &netdev_ops;
2058 SET_ETHTOOL_OPS(ndev, &ops);
2059 ndev->watchdog_timeo = 5 * HZ;
2060 pci_set_drvdata(pci_dev, ndev);
2062 ns83820_do_reset(dev, CR_RST);
2064 /* Must reset the ram bist before running it */
2065 writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2066 ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
2067 PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2068 ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2069 PTSCR_EEBIST_FAIL);
2070 ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2072 /* I love config registers */
2073 dev->CFG_cache = readl(dev->base + CFG);
2075 if ((dev->CFG_cache & CFG_PCI64_DET)) {
2076 printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2077 ndev->name);
2078 /*dev->CFG_cache |= CFG_DATA64_EN;*/
2079 if (!(dev->CFG_cache & CFG_DATA64_EN))
2080 printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
2081 ndev->name);
2082 } else
2083 dev->CFG_cache &= ~(CFG_DATA64_EN);
2085 dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
2086 CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2087 CFG_M64ADDR);
2088 dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2089 CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
2090 dev->CFG_cache |= CFG_REQALG;
2091 dev->CFG_cache |= CFG_POW;
2092 dev->CFG_cache |= CFG_TMRTEST;
2094 /* When compiled with 64 bit addressing, we must always enable
2095 * the 64 bit descriptor format.
2097 if (sizeof(dma_addr_t) == 8)
2098 dev->CFG_cache |= CFG_M64ADDR;
2099 if (using_dac)
2100 dev->CFG_cache |= CFG_T64ADDR;
2102 /* Big endian mode does not seem to do what the docs suggest */
2103 dev->CFG_cache &= ~CFG_BEM;
2105 /* setup optical transceiver if we have one */
2106 if (dev->CFG_cache & CFG_TBI_EN) {
2107 printk(KERN_INFO "%s: enabling optical transceiver\n",
2108 ndev->name);
2109 writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2111 /* setup auto negotiation feature advertisement */
2112 writel(readl(dev->base + TANAR)
2113 | TANAR_HALF_DUP | TANAR_FULL_DUP,
2114 dev->base + TANAR);
2116 /* start auto negotiation */
2117 writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2118 dev->base + TBICR);
2119 writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2120 dev->linkstate = LINK_AUTONEGOTIATE;
2122 dev->CFG_cache |= CFG_MODE_1000;
2125 writel(dev->CFG_cache, dev->base + CFG);
2126 dprintk("CFG: %08x\n", dev->CFG_cache);
2128 if (reset_phy) {
2129 printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2130 writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2131 msleep(10);
2132 writel(dev->CFG_cache, dev->base + CFG);
2135 #if 0 /* Huh? This sets the PCI latency register. Should be done via
2136 * the PCI layer. FIXME.
2138 if (readl(dev->base + SRR))
2139 writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2140 #endif
2142 /* Note! The DMA burst size interacts with packet
2143 * transmission, such that the largest packet that
2144 * can be transmitted is 8192 - FLTH - burst size.
2145 * If only the transmit fifo was larger...
2147 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2148 * some DELL and COMPAQ SMP systems */
2149 writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2150 | ((1600 / 32) * 0x100),
2151 dev->base + TXCFG);
2153 /* Flush the interrupt holdoff timer */
2154 writel(0x000, dev->base + IHR);
2155 writel(0x100, dev->base + IHR);
2156 writel(0x000, dev->base + IHR);
2158 /* Set Rx to full duplex, don't accept runt, errored, long or length
2159 * range errored packets. Use 512 byte DMA.
2161 /* Ramit : 1024 DMA is not a good idea, it ends up banging
2162 * some DELL and COMPAQ SMP systems
2163 * Turn on ALP, only we are accpeting Jumbo Packets */
2164 writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2165 | RXCFG_STRIPCRC
2166 //| RXCFG_ALP
2167 | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2169 /* Disable priority queueing */
2170 writel(0, dev->base + PQCR);
2172 /* Enable IP checksum validation and detetion of VLAN headers.
2173 * Note: do not set the reject options as at least the 0x102
2174 * revision of the chip does not properly accept IP fragments
2175 * at least for UDP.
2177 /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2178 * the MAC it calculates the packetsize AFTER stripping the VLAN
2179 * header, and if a VLAN Tagged packet of 64 bytes is received (like
2180 * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2181 * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2182 * it discrards it!. These guys......
2183 * also turn on tag stripping if hardware acceleration is enabled
2185 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2186 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2187 #else
2188 #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2189 #endif
2190 writel(VRCR_INIT_VALUE, dev->base + VRCR);
2192 /* Enable per-packet TCP/UDP/IP checksumming
2193 * and per packet vlan tag insertion if
2194 * vlan hardware acceleration is enabled
2196 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2197 #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2198 #else
2199 #define VTCR_INIT_VALUE VTCR_PPCHK
2200 #endif
2201 writel(VTCR_INIT_VALUE, dev->base + VTCR);
2203 /* Ramit : Enable async and sync pause frames */
2204 /* writel(0, dev->base + PCR); */
2205 writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2206 PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2207 dev->base + PCR);
2209 /* Disable Wake On Lan */
2210 writel(0, dev->base + WCSR);
2212 ns83820_getmac(dev, ndev->dev_addr);
2214 /* Yes, we support dumb IP checksum on transmit */
2215 ndev->features |= NETIF_F_SG;
2216 ndev->features |= NETIF_F_IP_CSUM;
2218 #ifdef NS83820_VLAN_ACCEL_SUPPORT
2219 /* We also support hardware vlan acceleration */
2220 ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2221 #endif
2223 if (using_dac) {
2224 printk(KERN_INFO "%s: using 64 bit addressing.\n",
2225 ndev->name);
2226 ndev->features |= NETIF_F_HIGHDMA;
2229 printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n",
2230 ndev->name,
2231 (unsigned)readl(dev->base + SRR) >> 8,
2232 (unsigned)readl(dev->base + SRR) & 0xff,
2233 ndev->dev_addr, addr, pci_dev->irq,
2234 (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2237 #ifdef PHY_CODE_IS_FINISHED
2238 ns83820_probe_phy(ndev);
2239 #endif
2241 err = register_netdevice(ndev);
2242 if (err) {
2243 printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2244 goto out_cleanup;
2246 rtnl_unlock();
2248 return 0;
2250 out_cleanup:
2251 writel(0, dev->base + IMR); /* paranoia */
2252 writel(0, dev->base + IER);
2253 readl(dev->base + IER);
2254 out_free_irq:
2255 rtnl_unlock();
2256 free_irq(pci_dev->irq, ndev);
2257 out_disable:
2258 if (dev->base)
2259 iounmap(dev->base);
2260 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2261 pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2262 pci_disable_device(pci_dev);
2263 out_free:
2264 free_netdev(ndev);
2265 pci_set_drvdata(pci_dev, NULL);
2266 out:
2267 return err;
2270 static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2272 struct net_device *ndev = pci_get_drvdata(pci_dev);
2273 struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2275 if (!ndev) /* paranoia */
2276 return;
2278 writel(0, dev->base + IMR); /* paranoia */
2279 writel(0, dev->base + IER);
2280 readl(dev->base + IER);
2282 unregister_netdev(ndev);
2283 free_irq(dev->pci_dev->irq, ndev);
2284 iounmap(dev->base);
2285 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2286 dev->tx_descs, dev->tx_phy_descs);
2287 pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2288 dev->rx_info.descs, dev->rx_info.phy_descs);
2289 pci_disable_device(dev->pci_dev);
2290 free_netdev(ndev);
2291 pci_set_drvdata(pci_dev, NULL);
2294 static struct pci_device_id ns83820_pci_tbl[] = {
2295 { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2296 { 0, },
2299 static struct pci_driver driver = {
2300 .name = "ns83820",
2301 .id_table = ns83820_pci_tbl,
2302 .probe = ns83820_init_one,
2303 .remove = __devexit_p(ns83820_remove_one),
2304 #if 0 /* FIXME: implement */
2305 .suspend = ,
2306 .resume = ,
2307 #endif
2311 static int __init ns83820_init(void)
2313 printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2314 return pci_register_driver(&driver);
2317 static void __exit ns83820_exit(void)
2319 pci_unregister_driver(&driver);
2322 MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2323 MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2324 MODULE_LICENSE("GPL");
2326 MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2328 module_param(lnksts, int, 0);
2329 MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2331 module_param(ihr, int, 0);
2332 MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2334 module_param(reset_phy, int, 0);
2335 MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2337 module_init(ns83820_init);
2338 module_exit(ns83820_exit);