2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
27 #include <linux/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
46 char qlge_driver_name
[] = DRV_NAME
;
47 const char qlge_driver_version
[] = DRV_VERSION
;
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING
" ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION
);
54 static const u32 default_msg
=
55 NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
|
56 /* NETIF_MSG_TIMER | */
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW
| NETIF_MSG_WOL
| 0;
66 static int debug
= 0x00007fff; /* defaults above */
67 module_param(debug
, int, 0);
68 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
73 static int irq_type
= MSIX_IRQ
;
74 module_param(irq_type
, int, MSIX_IRQ
);
75 MODULE_PARM_DESC(irq_type
, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static struct pci_device_id qlge_pci_tbl
[] __devinitdata
= {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC
, QLGE_DEVICE_ID_8012
)},
79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC
, QLGE_DEVICE_ID_8000
)},
80 /* required last entry */
84 MODULE_DEVICE_TABLE(pci
, qlge_pci_tbl
);
86 /* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
90 static int ql_sem_trylock(struct ql_adapter
*qdev
, u32 sem_mask
)
96 sem_bits
= SEM_SET
<< SEM_XGMAC0_SHIFT
;
99 sem_bits
= SEM_SET
<< SEM_XGMAC1_SHIFT
;
102 sem_bits
= SEM_SET
<< SEM_ICB_SHIFT
;
104 case SEM_MAC_ADDR_MASK
:
105 sem_bits
= SEM_SET
<< SEM_MAC_ADDR_SHIFT
;
108 sem_bits
= SEM_SET
<< SEM_FLASH_SHIFT
;
111 sem_bits
= SEM_SET
<< SEM_PROBE_SHIFT
;
113 case SEM_RT_IDX_MASK
:
114 sem_bits
= SEM_SET
<< SEM_RT_IDX_SHIFT
;
116 case SEM_PROC_REG_MASK
:
117 sem_bits
= SEM_SET
<< SEM_PROC_REG_SHIFT
;
120 QPRINTK(qdev
, PROBE
, ALERT
, "Bad Semaphore mask!.\n");
124 ql_write32(qdev
, SEM
, sem_bits
| sem_mask
);
125 return !(ql_read32(qdev
, SEM
) & sem_bits
);
128 int ql_sem_spinlock(struct ql_adapter
*qdev
, u32 sem_mask
)
130 unsigned int wait_count
= 30;
132 if (!ql_sem_trylock(qdev
, sem_mask
))
135 } while (--wait_count
);
139 void ql_sem_unlock(struct ql_adapter
*qdev
, u32 sem_mask
)
141 ql_write32(qdev
, SEM
, sem_mask
);
142 ql_read32(qdev
, SEM
); /* flush */
145 /* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
150 int ql_wait_reg_rdy(struct ql_adapter
*qdev
, u32 reg
, u32 bit
, u32 err_bit
)
153 int count
= UDELAY_COUNT
;
156 temp
= ql_read32(qdev
, reg
);
158 /* check for errors */
159 if (temp
& err_bit
) {
160 QPRINTK(qdev
, PROBE
, ALERT
,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
164 } else if (temp
& bit
)
166 udelay(UDELAY_DELAY
);
169 QPRINTK(qdev
, PROBE
, ALERT
,
170 "Timed out waiting for reg %x to come ready.\n", reg
);
174 /* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
177 static int ql_wait_cfg(struct ql_adapter
*qdev
, u32 bit
)
179 int count
= UDELAY_COUNT
;
183 temp
= ql_read32(qdev
, CFG
);
188 udelay(UDELAY_DELAY
);
195 /* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
198 int ql_write_cfg(struct ql_adapter
*qdev
, void *ptr
, int size
, u32 bit
,
208 (bit
& (CFG_LRQ
| CFG_LR
| CFG_LCQ
)) ? PCI_DMA_TODEVICE
:
211 map
= pci_map_single(qdev
->pdev
, ptr
, size
, direction
);
212 if (pci_dma_mapping_error(qdev
->pdev
, map
)) {
213 QPRINTK(qdev
, IFUP
, ERR
, "Couldn't map DMA area.\n");
217 status
= ql_sem_spinlock(qdev
, SEM_ICB_MASK
);
221 status
= ql_wait_cfg(qdev
, bit
);
223 QPRINTK(qdev
, IFUP
, ERR
,
224 "Timed out waiting for CFG to come ready.\n");
228 ql_write32(qdev
, ICB_L
, (u32
) map
);
229 ql_write32(qdev
, ICB_H
, (u32
) (map
>> 32));
231 mask
= CFG_Q_MASK
| (bit
<< 16);
232 value
= bit
| (q_id
<< CFG_Q_SHIFT
);
233 ql_write32(qdev
, CFG
, (mask
| value
));
236 * Wait for the bit to clear after signaling hw.
238 status
= ql_wait_cfg(qdev
, bit
);
240 ql_sem_unlock(qdev
, SEM_ICB_MASK
); /* does flush too */
241 pci_unmap_single(qdev
->pdev
, map
, size
, direction
);
245 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
246 int ql_get_mac_addr_reg(struct ql_adapter
*qdev
, u32 type
, u16 index
,
253 case MAC_ADDR_TYPE_MULTI_MAC
:
254 case MAC_ADDR_TYPE_CAM_MAC
:
257 ql_wait_reg_rdy(qdev
,
258 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
261 ql_write32(qdev
, MAC_ADDR_IDX
, (offset
++) | /* offset */
262 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
263 MAC_ADDR_ADR
| MAC_ADDR_RS
| type
); /* type */
265 ql_wait_reg_rdy(qdev
,
266 MAC_ADDR_IDX
, MAC_ADDR_MR
, 0);
269 *value
++ = ql_read32(qdev
, MAC_ADDR_DATA
);
271 ql_wait_reg_rdy(qdev
,
272 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
275 ql_write32(qdev
, MAC_ADDR_IDX
, (offset
++) | /* offset */
276 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
277 MAC_ADDR_ADR
| MAC_ADDR_RS
| type
); /* type */
279 ql_wait_reg_rdy(qdev
,
280 MAC_ADDR_IDX
, MAC_ADDR_MR
, 0);
283 *value
++ = ql_read32(qdev
, MAC_ADDR_DATA
);
284 if (type
== MAC_ADDR_TYPE_CAM_MAC
) {
286 ql_wait_reg_rdy(qdev
,
287 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
290 ql_write32(qdev
, MAC_ADDR_IDX
, (offset
++) | /* offset */
291 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
292 MAC_ADDR_ADR
| MAC_ADDR_RS
| type
); /* type */
294 ql_wait_reg_rdy(qdev
, MAC_ADDR_IDX
,
298 *value
++ = ql_read32(qdev
, MAC_ADDR_DATA
);
302 case MAC_ADDR_TYPE_VLAN
:
303 case MAC_ADDR_TYPE_MULTI_FLTR
:
305 QPRINTK(qdev
, IFUP
, CRIT
,
306 "Address type %d not yet supported.\n", type
);
313 /* Set up a MAC, multicast or VLAN address for the
314 * inbound frame matching.
316 static int ql_set_mac_addr_reg(struct ql_adapter
*qdev
, u8
*addr
, u32 type
,
323 case MAC_ADDR_TYPE_MULTI_MAC
:
324 case MAC_ADDR_TYPE_CAM_MAC
:
327 u32 upper
= (addr
[0] << 8) | addr
[1];
329 (addr
[2] << 24) | (addr
[3] << 16) | (addr
[4] << 8) |
332 QPRINTK(qdev
, IFUP
, DEBUG
,
333 "Adding %s address %pM"
334 " at index %d in the CAM.\n",
336 MAC_ADDR_TYPE_MULTI_MAC
) ? "MULTICAST" :
337 "UNICAST"), addr
, index
);
340 ql_wait_reg_rdy(qdev
,
341 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
344 ql_write32(qdev
, MAC_ADDR_IDX
, (offset
++) | /* offset */
345 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
347 ql_write32(qdev
, MAC_ADDR_DATA
, lower
);
349 ql_wait_reg_rdy(qdev
,
350 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
353 ql_write32(qdev
, MAC_ADDR_IDX
, (offset
++) | /* offset */
354 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
356 ql_write32(qdev
, MAC_ADDR_DATA
, upper
);
358 ql_wait_reg_rdy(qdev
,
359 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
362 ql_write32(qdev
, MAC_ADDR_IDX
, (offset
) | /* offset */
363 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
365 /* This field should also include the queue id
366 and possibly the function id. Right now we hardcode
367 the route field to NIC core.
369 if (type
== MAC_ADDR_TYPE_CAM_MAC
) {
370 cam_output
= (CAM_OUT_ROUTE_NIC
|
372 func
<< CAM_OUT_FUNC_SHIFT
) |
373 (0 << CAM_OUT_CQ_ID_SHIFT
));
375 cam_output
|= CAM_OUT_RV
;
376 /* route to NIC core */
377 ql_write32(qdev
, MAC_ADDR_DATA
, cam_output
);
381 case MAC_ADDR_TYPE_VLAN
:
383 u32 enable_bit
= *((u32
*) &addr
[0]);
384 /* For VLAN, the addr actually holds a bit that
385 * either enables or disables the vlan id we are
386 * addressing. It's either MAC_ADDR_E on or off.
387 * That's bit-27 we're talking about.
389 QPRINTK(qdev
, IFUP
, INFO
, "%s VLAN ID %d %s the CAM.\n",
390 (enable_bit
? "Adding" : "Removing"),
391 index
, (enable_bit
? "to" : "from"));
394 ql_wait_reg_rdy(qdev
,
395 MAC_ADDR_IDX
, MAC_ADDR_MW
, 0);
398 ql_write32(qdev
, MAC_ADDR_IDX
, offset
| /* offset */
399 (index
<< MAC_ADDR_IDX_SHIFT
) | /* index */
401 enable_bit
); /* enable/disable */
404 case MAC_ADDR_TYPE_MULTI_FLTR
:
406 QPRINTK(qdev
, IFUP
, CRIT
,
407 "Address type %d not yet supported.\n", type
);
414 /* Set or clear MAC address in hardware. We sometimes
415 * have to clear it to prevent wrong frame routing
416 * especially in a bonding environment.
418 static int ql_set_mac_addr(struct ql_adapter
*qdev
, int set
)
421 char zero_mac_addr
[ETH_ALEN
];
425 addr
= &qdev
->ndev
->dev_addr
[0];
426 QPRINTK(qdev
, IFUP
, DEBUG
,
427 "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
428 addr
[0], addr
[1], addr
[2], addr
[3],
431 memset(zero_mac_addr
, 0, ETH_ALEN
);
432 addr
= &zero_mac_addr
[0];
433 QPRINTK(qdev
, IFUP
, DEBUG
,
434 "Clearing MAC address on %s\n",
437 status
= ql_sem_spinlock(qdev
, SEM_MAC_ADDR_MASK
);
440 status
= ql_set_mac_addr_reg(qdev
, (u8
*) addr
,
441 MAC_ADDR_TYPE_CAM_MAC
, qdev
->func
* MAX_CQ
);
442 ql_sem_unlock(qdev
, SEM_MAC_ADDR_MASK
);
444 QPRINTK(qdev
, IFUP
, ERR
, "Failed to init mac "
449 void ql_link_on(struct ql_adapter
*qdev
)
451 QPRINTK(qdev
, LINK
, ERR
, "%s: Link is up.\n",
453 netif_carrier_on(qdev
->ndev
);
454 ql_set_mac_addr(qdev
, 1);
457 void ql_link_off(struct ql_adapter
*qdev
)
459 QPRINTK(qdev
, LINK
, ERR
, "%s: Link is down.\n",
461 netif_carrier_off(qdev
->ndev
);
462 ql_set_mac_addr(qdev
, 0);
465 /* Get a specific frame routing value from the CAM.
466 * Used for debug and reg dump.
468 int ql_get_routing_reg(struct ql_adapter
*qdev
, u32 index
, u32
*value
)
472 status
= ql_wait_reg_rdy(qdev
, RT_IDX
, RT_IDX_MW
, 0);
476 ql_write32(qdev
, RT_IDX
,
477 RT_IDX_TYPE_NICQ
| RT_IDX_RS
| (index
<< RT_IDX_IDX_SHIFT
));
478 status
= ql_wait_reg_rdy(qdev
, RT_IDX
, RT_IDX_MR
, 0);
481 *value
= ql_read32(qdev
, RT_DATA
);
486 /* The NIC function for this chip has 16 routing indexes. Each one can be used
487 * to route different frame types to various inbound queues. We send broadcast/
488 * multicast/error frames to the default queue for slow handling,
489 * and CAM hit/RSS frames to the fast handling queues.
491 static int ql_set_routing_reg(struct ql_adapter
*qdev
, u32 index
, u32 mask
,
494 int status
= -EINVAL
; /* Return error if no mask match. */
497 QPRINTK(qdev
, IFUP
, DEBUG
,
498 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
499 (enable
? "Adding" : "Removing"),
500 ((index
== RT_IDX_ALL_ERR_SLOT
) ? "MAC ERROR/ALL ERROR" : ""),
501 ((index
== RT_IDX_IP_CSUM_ERR_SLOT
) ? "IP CSUM ERROR" : ""),
503 RT_IDX_TCP_UDP_CSUM_ERR_SLOT
) ? "TCP/UDP CSUM ERROR" : ""),
504 ((index
== RT_IDX_BCAST_SLOT
) ? "BROADCAST" : ""),
505 ((index
== RT_IDX_MCAST_MATCH_SLOT
) ? "MULTICAST MATCH" : ""),
506 ((index
== RT_IDX_ALLMULTI_SLOT
) ? "ALL MULTICAST MATCH" : ""),
507 ((index
== RT_IDX_UNUSED6_SLOT
) ? "UNUSED6" : ""),
508 ((index
== RT_IDX_UNUSED7_SLOT
) ? "UNUSED7" : ""),
509 ((index
== RT_IDX_RSS_MATCH_SLOT
) ? "RSS ALL/IPV4 MATCH" : ""),
510 ((index
== RT_IDX_RSS_IPV6_SLOT
) ? "RSS IPV6" : ""),
511 ((index
== RT_IDX_RSS_TCP4_SLOT
) ? "RSS TCP4" : ""),
512 ((index
== RT_IDX_RSS_TCP6_SLOT
) ? "RSS TCP6" : ""),
513 ((index
== RT_IDX_CAM_HIT_SLOT
) ? "CAM HIT" : ""),
514 ((index
== RT_IDX_UNUSED013
) ? "UNUSED13" : ""),
515 ((index
== RT_IDX_UNUSED014
) ? "UNUSED14" : ""),
516 ((index
== RT_IDX_PROMISCUOUS_SLOT
) ? "PROMISCUOUS" : ""),
517 (enable
? "to" : "from"));
522 value
= RT_IDX_DST_CAM_Q
| /* dest */
523 RT_IDX_TYPE_NICQ
| /* type */
524 (RT_IDX_CAM_HIT_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
527 case RT_IDX_VALID
: /* Promiscuous Mode frames. */
529 value
= RT_IDX_DST_DFLT_Q
| /* dest */
530 RT_IDX_TYPE_NICQ
| /* type */
531 (RT_IDX_PROMISCUOUS_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
534 case RT_IDX_ERR
: /* Pass up MAC,IP,TCP/UDP error frames. */
536 value
= RT_IDX_DST_DFLT_Q
| /* dest */
537 RT_IDX_TYPE_NICQ
| /* type */
538 (RT_IDX_ALL_ERR_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
541 case RT_IDX_BCAST
: /* Pass up Broadcast frames to default Q. */
543 value
= RT_IDX_DST_DFLT_Q
| /* dest */
544 RT_IDX_TYPE_NICQ
| /* type */
545 (RT_IDX_BCAST_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
548 case RT_IDX_MCAST
: /* Pass up All Multicast frames. */
550 value
= RT_IDX_DST_CAM_Q
| /* dest */
551 RT_IDX_TYPE_NICQ
| /* type */
552 (RT_IDX_ALLMULTI_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
555 case RT_IDX_MCAST_MATCH
: /* Pass up matched Multicast frames. */
557 value
= RT_IDX_DST_CAM_Q
| /* dest */
558 RT_IDX_TYPE_NICQ
| /* type */
559 (RT_IDX_MCAST_MATCH_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
562 case RT_IDX_RSS_MATCH
: /* Pass up matched RSS frames. */
564 value
= RT_IDX_DST_RSS
| /* dest */
565 RT_IDX_TYPE_NICQ
| /* type */
566 (RT_IDX_RSS_MATCH_SLOT
<< RT_IDX_IDX_SHIFT
);/* index */
569 case 0: /* Clear the E-bit on an entry. */
571 value
= RT_IDX_DST_DFLT_Q
| /* dest */
572 RT_IDX_TYPE_NICQ
| /* type */
573 (index
<< RT_IDX_IDX_SHIFT
);/* index */
577 QPRINTK(qdev
, IFUP
, ERR
, "Mask type %d not yet supported.\n",
584 status
= ql_wait_reg_rdy(qdev
, RT_IDX
, RT_IDX_MW
, 0);
587 value
|= (enable
? RT_IDX_E
: 0);
588 ql_write32(qdev
, RT_IDX
, value
);
589 ql_write32(qdev
, RT_DATA
, enable
? mask
: 0);
595 static void ql_enable_interrupts(struct ql_adapter
*qdev
)
597 ql_write32(qdev
, INTR_EN
, (INTR_EN_EI
<< 16) | INTR_EN_EI
);
600 static void ql_disable_interrupts(struct ql_adapter
*qdev
)
602 ql_write32(qdev
, INTR_EN
, (INTR_EN_EI
<< 16));
605 /* If we're running with multiple MSI-X vectors then we enable on the fly.
606 * Otherwise, we may have multiple outstanding workers and don't want to
607 * enable until the last one finishes. In this case, the irq_cnt gets
608 * incremented everytime we queue a worker and decremented everytime
609 * a worker finishes. Once it hits zero we enable the interrupt.
611 u32
ql_enable_completion_interrupt(struct ql_adapter
*qdev
, u32 intr
)
614 unsigned long hw_flags
= 0;
615 struct intr_context
*ctx
= qdev
->intr_context
+ intr
;
617 if (likely(test_bit(QL_MSIX_ENABLED
, &qdev
->flags
) && intr
)) {
618 /* Always enable if we're MSIX multi interrupts and
619 * it's not the default (zeroeth) interrupt.
621 ql_write32(qdev
, INTR_EN
,
623 var
= ql_read32(qdev
, STS
);
627 spin_lock_irqsave(&qdev
->hw_lock
, hw_flags
);
628 if (atomic_dec_and_test(&ctx
->irq_cnt
)) {
629 ql_write32(qdev
, INTR_EN
,
631 var
= ql_read32(qdev
, STS
);
633 spin_unlock_irqrestore(&qdev
->hw_lock
, hw_flags
);
637 static u32
ql_disable_completion_interrupt(struct ql_adapter
*qdev
, u32 intr
)
640 struct intr_context
*ctx
;
642 /* HW disables for us if we're MSIX multi interrupts and
643 * it's not the default (zeroeth) interrupt.
645 if (likely(test_bit(QL_MSIX_ENABLED
, &qdev
->flags
) && intr
))
648 ctx
= qdev
->intr_context
+ intr
;
649 spin_lock(&qdev
->hw_lock
);
650 if (!atomic_read(&ctx
->irq_cnt
)) {
651 ql_write32(qdev
, INTR_EN
,
653 var
= ql_read32(qdev
, STS
);
655 atomic_inc(&ctx
->irq_cnt
);
656 spin_unlock(&qdev
->hw_lock
);
660 static void ql_enable_all_completion_interrupts(struct ql_adapter
*qdev
)
663 for (i
= 0; i
< qdev
->intr_count
; i
++) {
664 /* The enable call does a atomic_dec_and_test
665 * and enables only if the result is zero.
666 * So we precharge it here.
668 if (unlikely(!test_bit(QL_MSIX_ENABLED
, &qdev
->flags
) ||
670 atomic_set(&qdev
->intr_context
[i
].irq_cnt
, 1);
671 ql_enable_completion_interrupt(qdev
, i
);
676 static int ql_validate_flash(struct ql_adapter
*qdev
, u32 size
, const char *str
)
680 __le16
*flash
= (__le16
*)&qdev
->flash
;
682 status
= strncmp((char *)&qdev
->flash
, str
, 4);
684 QPRINTK(qdev
, IFUP
, ERR
, "Invalid flash signature.\n");
688 for (i
= 0; i
< size
; i
++)
689 csum
+= le16_to_cpu(*flash
++);
692 QPRINTK(qdev
, IFUP
, ERR
,
693 "Invalid flash checksum, csum = 0x%.04x.\n", csum
);
698 static int ql_read_flash_word(struct ql_adapter
*qdev
, int offset
, __le32
*data
)
701 /* wait for reg to come ready */
702 status
= ql_wait_reg_rdy(qdev
,
703 FLASH_ADDR
, FLASH_ADDR_RDY
, FLASH_ADDR_ERR
);
706 /* set up for reg read */
707 ql_write32(qdev
, FLASH_ADDR
, FLASH_ADDR_R
| offset
);
708 /* wait for reg to come ready */
709 status
= ql_wait_reg_rdy(qdev
,
710 FLASH_ADDR
, FLASH_ADDR_RDY
, FLASH_ADDR_ERR
);
713 /* This data is stored on flash as an array of
714 * __le32. Since ql_read32() returns cpu endian
715 * we need to swap it back.
717 *data
= cpu_to_le32(ql_read32(qdev
, FLASH_DATA
));
722 static int ql_get_8000_flash_params(struct ql_adapter
*qdev
)
726 __le32
*p
= (__le32
*)&qdev
->flash
;
730 /* Get flash offset for function and adjust
734 offset
= FUNC0_FLASH_OFFSET
/ sizeof(u32
);
736 offset
= FUNC1_FLASH_OFFSET
/ sizeof(u32
);
738 if (ql_sem_spinlock(qdev
, SEM_FLASH_MASK
))
741 size
= sizeof(struct flash_params_8000
) / sizeof(u32
);
742 for (i
= 0; i
< size
; i
++, p
++) {
743 status
= ql_read_flash_word(qdev
, i
+offset
, p
);
745 QPRINTK(qdev
, IFUP
, ERR
, "Error reading flash.\n");
750 status
= ql_validate_flash(qdev
,
751 sizeof(struct flash_params_8000
) / sizeof(u16
),
754 QPRINTK(qdev
, IFUP
, ERR
, "Invalid flash.\n");
759 /* Extract either manufacturer or BOFM modified
762 if (qdev
->flash
.flash_params_8000
.data_type1
== 2)
764 qdev
->flash
.flash_params_8000
.mac_addr1
,
765 qdev
->ndev
->addr_len
);
768 qdev
->flash
.flash_params_8000
.mac_addr
,
769 qdev
->ndev
->addr_len
);
771 if (!is_valid_ether_addr(mac_addr
)) {
772 QPRINTK(qdev
, IFUP
, ERR
, "Invalid MAC address.\n");
777 memcpy(qdev
->ndev
->dev_addr
,
779 qdev
->ndev
->addr_len
);
782 ql_sem_unlock(qdev
, SEM_FLASH_MASK
);
786 static int ql_get_8012_flash_params(struct ql_adapter
*qdev
)
790 __le32
*p
= (__le32
*)&qdev
->flash
;
792 u32 size
= sizeof(struct flash_params_8012
) / sizeof(u32
);
794 /* Second function's parameters follow the first
800 if (ql_sem_spinlock(qdev
, SEM_FLASH_MASK
))
803 for (i
= 0; i
< size
; i
++, p
++) {
804 status
= ql_read_flash_word(qdev
, i
+offset
, p
);
806 QPRINTK(qdev
, IFUP
, ERR
, "Error reading flash.\n");
812 status
= ql_validate_flash(qdev
,
813 sizeof(struct flash_params_8012
) / sizeof(u16
),
816 QPRINTK(qdev
, IFUP
, ERR
, "Invalid flash.\n");
821 if (!is_valid_ether_addr(qdev
->flash
.flash_params_8012
.mac_addr
)) {
826 memcpy(qdev
->ndev
->dev_addr
,
827 qdev
->flash
.flash_params_8012
.mac_addr
,
828 qdev
->ndev
->addr_len
);
831 ql_sem_unlock(qdev
, SEM_FLASH_MASK
);
835 /* xgmac register are located behind the xgmac_addr and xgmac_data
836 * register pair. Each read/write requires us to wait for the ready
837 * bit before reading/writing the data.
839 static int ql_write_xgmac_reg(struct ql_adapter
*qdev
, u32 reg
, u32 data
)
842 /* wait for reg to come ready */
843 status
= ql_wait_reg_rdy(qdev
,
844 XGMAC_ADDR
, XGMAC_ADDR_RDY
, XGMAC_ADDR_XME
);
847 /* write the data to the data reg */
848 ql_write32(qdev
, XGMAC_DATA
, data
);
849 /* trigger the write */
850 ql_write32(qdev
, XGMAC_ADDR
, reg
);
854 /* xgmac register are located behind the xgmac_addr and xgmac_data
855 * register pair. Each read/write requires us to wait for the ready
856 * bit before reading/writing the data.
858 int ql_read_xgmac_reg(struct ql_adapter
*qdev
, u32 reg
, u32
*data
)
861 /* wait for reg to come ready */
862 status
= ql_wait_reg_rdy(qdev
,
863 XGMAC_ADDR
, XGMAC_ADDR_RDY
, XGMAC_ADDR_XME
);
866 /* set up for reg read */
867 ql_write32(qdev
, XGMAC_ADDR
, reg
| XGMAC_ADDR_R
);
868 /* wait for reg to come ready */
869 status
= ql_wait_reg_rdy(qdev
,
870 XGMAC_ADDR
, XGMAC_ADDR_RDY
, XGMAC_ADDR_XME
);
874 *data
= ql_read32(qdev
, XGMAC_DATA
);
879 /* This is used for reading the 64-bit statistics regs. */
880 int ql_read_xgmac_reg64(struct ql_adapter
*qdev
, u32 reg
, u64
*data
)
886 status
= ql_read_xgmac_reg(qdev
, reg
, &lo
);
890 status
= ql_read_xgmac_reg(qdev
, reg
+ 4, &hi
);
894 *data
= (u64
) lo
| ((u64
) hi
<< 32);
900 static int ql_8000_port_initialize(struct ql_adapter
*qdev
)
904 * Get MPI firmware version for driver banner
907 status
= ql_mb_about_fw(qdev
);
910 status
= ql_mb_get_fw_state(qdev
);
913 /* Wake up a worker to get/set the TX/RX frame sizes. */
914 queue_delayed_work(qdev
->workqueue
, &qdev
->mpi_port_cfg_work
, 0);
919 /* Take the MAC Core out of reset.
920 * Enable statistics counting.
921 * Take the transmitter/receiver out of reset.
922 * This functionality may be done in the MPI firmware at a
925 static int ql_8012_port_initialize(struct ql_adapter
*qdev
)
930 if (ql_sem_trylock(qdev
, qdev
->xg_sem_mask
)) {
931 /* Another function has the semaphore, so
932 * wait for the port init bit to come ready.
934 QPRINTK(qdev
, LINK
, INFO
,
935 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
936 status
= ql_wait_reg_rdy(qdev
, STS
, qdev
->port_init
, 0);
938 QPRINTK(qdev
, LINK
, CRIT
,
939 "Port initialize timed out.\n");
944 QPRINTK(qdev
, LINK
, INFO
, "Got xgmac semaphore!.\n");
945 /* Set the core reset. */
946 status
= ql_read_xgmac_reg(qdev
, GLOBAL_CFG
, &data
);
949 data
|= GLOBAL_CFG_RESET
;
950 status
= ql_write_xgmac_reg(qdev
, GLOBAL_CFG
, data
);
954 /* Clear the core reset and turn on jumbo for receiver. */
955 data
&= ~GLOBAL_CFG_RESET
; /* Clear core reset. */
956 data
|= GLOBAL_CFG_JUMBO
; /* Turn on jumbo. */
957 data
|= GLOBAL_CFG_TX_STAT_EN
;
958 data
|= GLOBAL_CFG_RX_STAT_EN
;
959 status
= ql_write_xgmac_reg(qdev
, GLOBAL_CFG
, data
);
963 /* Enable transmitter, and clear it's reset. */
964 status
= ql_read_xgmac_reg(qdev
, TX_CFG
, &data
);
967 data
&= ~TX_CFG_RESET
; /* Clear the TX MAC reset. */
968 data
|= TX_CFG_EN
; /* Enable the transmitter. */
969 status
= ql_write_xgmac_reg(qdev
, TX_CFG
, data
);
973 /* Enable receiver and clear it's reset. */
974 status
= ql_read_xgmac_reg(qdev
, RX_CFG
, &data
);
977 data
&= ~RX_CFG_RESET
; /* Clear the RX MAC reset. */
978 data
|= RX_CFG_EN
; /* Enable the receiver. */
979 status
= ql_write_xgmac_reg(qdev
, RX_CFG
, data
);
985 ql_write_xgmac_reg(qdev
, MAC_TX_PARAMS
, MAC_TX_PARAMS_JUMBO
| (0x2580 << 16));
989 ql_write_xgmac_reg(qdev
, MAC_RX_PARAMS
, 0x2580);
993 /* Signal to the world that the port is enabled. */
994 ql_write32(qdev
, STS
, ((qdev
->port_init
<< 16) | qdev
->port_init
));
996 ql_sem_unlock(qdev
, qdev
->xg_sem_mask
);
1000 /* Get the next large buffer. */
1001 static struct bq_desc
*ql_get_curr_lbuf(struct rx_ring
*rx_ring
)
1003 struct bq_desc
*lbq_desc
= &rx_ring
->lbq
[rx_ring
->lbq_curr_idx
];
1004 rx_ring
->lbq_curr_idx
++;
1005 if (rx_ring
->lbq_curr_idx
== rx_ring
->lbq_len
)
1006 rx_ring
->lbq_curr_idx
= 0;
1007 rx_ring
->lbq_free_cnt
++;
1011 /* Get the next small buffer. */
1012 static struct bq_desc
*ql_get_curr_sbuf(struct rx_ring
*rx_ring
)
1014 struct bq_desc
*sbq_desc
= &rx_ring
->sbq
[rx_ring
->sbq_curr_idx
];
1015 rx_ring
->sbq_curr_idx
++;
1016 if (rx_ring
->sbq_curr_idx
== rx_ring
->sbq_len
)
1017 rx_ring
->sbq_curr_idx
= 0;
1018 rx_ring
->sbq_free_cnt
++;
1022 /* Update an rx ring index. */
1023 static void ql_update_cq(struct rx_ring
*rx_ring
)
1025 rx_ring
->cnsmr_idx
++;
1026 rx_ring
->curr_entry
++;
1027 if (unlikely(rx_ring
->cnsmr_idx
== rx_ring
->cq_len
)) {
1028 rx_ring
->cnsmr_idx
= 0;
1029 rx_ring
->curr_entry
= rx_ring
->cq_base
;
1033 static void ql_write_cq_idx(struct rx_ring
*rx_ring
)
1035 ql_write_db_reg(rx_ring
->cnsmr_idx
, rx_ring
->cnsmr_idx_db_reg
);
1038 /* Process (refill) a large buffer queue. */
1039 static void ql_update_lbq(struct ql_adapter
*qdev
, struct rx_ring
*rx_ring
)
1041 u32 clean_idx
= rx_ring
->lbq_clean_idx
;
1042 u32 start_idx
= clean_idx
;
1043 struct bq_desc
*lbq_desc
;
1047 while (rx_ring
->lbq_free_cnt
> 16) {
1048 for (i
= 0; i
< 16; i
++) {
1049 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1050 "lbq: try cleaning clean_idx = %d.\n",
1052 lbq_desc
= &rx_ring
->lbq
[clean_idx
];
1053 if (lbq_desc
->p
.lbq_page
== NULL
) {
1054 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1055 "lbq: getting new page for index %d.\n",
1057 lbq_desc
->p
.lbq_page
= alloc_page(GFP_ATOMIC
);
1058 if (lbq_desc
->p
.lbq_page
== NULL
) {
1059 rx_ring
->lbq_clean_idx
= clean_idx
;
1060 QPRINTK(qdev
, RX_STATUS
, ERR
,
1061 "Couldn't get a page.\n");
1064 map
= pci_map_page(qdev
->pdev
,
1065 lbq_desc
->p
.lbq_page
,
1067 PCI_DMA_FROMDEVICE
);
1068 if (pci_dma_mapping_error(qdev
->pdev
, map
)) {
1069 rx_ring
->lbq_clean_idx
= clean_idx
;
1070 put_page(lbq_desc
->p
.lbq_page
);
1071 lbq_desc
->p
.lbq_page
= NULL
;
1072 QPRINTK(qdev
, RX_STATUS
, ERR
,
1073 "PCI mapping failed.\n");
1076 pci_unmap_addr_set(lbq_desc
, mapaddr
, map
);
1077 pci_unmap_len_set(lbq_desc
, maplen
, PAGE_SIZE
);
1078 *lbq_desc
->addr
= cpu_to_le64(map
);
1081 if (clean_idx
== rx_ring
->lbq_len
)
1085 rx_ring
->lbq_clean_idx
= clean_idx
;
1086 rx_ring
->lbq_prod_idx
+= 16;
1087 if (rx_ring
->lbq_prod_idx
== rx_ring
->lbq_len
)
1088 rx_ring
->lbq_prod_idx
= 0;
1089 rx_ring
->lbq_free_cnt
-= 16;
1092 if (start_idx
!= clean_idx
) {
1093 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1094 "lbq: updating prod idx = %d.\n",
1095 rx_ring
->lbq_prod_idx
);
1096 ql_write_db_reg(rx_ring
->lbq_prod_idx
,
1097 rx_ring
->lbq_prod_idx_db_reg
);
1101 /* Process (refill) a small buffer queue. */
1102 static void ql_update_sbq(struct ql_adapter
*qdev
, struct rx_ring
*rx_ring
)
1104 u32 clean_idx
= rx_ring
->sbq_clean_idx
;
1105 u32 start_idx
= clean_idx
;
1106 struct bq_desc
*sbq_desc
;
1110 while (rx_ring
->sbq_free_cnt
> 16) {
1111 for (i
= 0; i
< 16; i
++) {
1112 sbq_desc
= &rx_ring
->sbq
[clean_idx
];
1113 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1114 "sbq: try cleaning clean_idx = %d.\n",
1116 if (sbq_desc
->p
.skb
== NULL
) {
1117 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1118 "sbq: getting new skb for index %d.\n",
1121 netdev_alloc_skb(qdev
->ndev
,
1122 rx_ring
->sbq_buf_size
);
1123 if (sbq_desc
->p
.skb
== NULL
) {
1124 QPRINTK(qdev
, PROBE
, ERR
,
1125 "Couldn't get an skb.\n");
1126 rx_ring
->sbq_clean_idx
= clean_idx
;
1129 skb_reserve(sbq_desc
->p
.skb
, QLGE_SB_PAD
);
1130 map
= pci_map_single(qdev
->pdev
,
1131 sbq_desc
->p
.skb
->data
,
1132 rx_ring
->sbq_buf_size
/
1133 2, PCI_DMA_FROMDEVICE
);
1134 if (pci_dma_mapping_error(qdev
->pdev
, map
)) {
1135 QPRINTK(qdev
, IFUP
, ERR
, "PCI mapping failed.\n");
1136 rx_ring
->sbq_clean_idx
= clean_idx
;
1137 dev_kfree_skb_any(sbq_desc
->p
.skb
);
1138 sbq_desc
->p
.skb
= NULL
;
1141 pci_unmap_addr_set(sbq_desc
, mapaddr
, map
);
1142 pci_unmap_len_set(sbq_desc
, maplen
,
1143 rx_ring
->sbq_buf_size
/ 2);
1144 *sbq_desc
->addr
= cpu_to_le64(map
);
1148 if (clean_idx
== rx_ring
->sbq_len
)
1151 rx_ring
->sbq_clean_idx
= clean_idx
;
1152 rx_ring
->sbq_prod_idx
+= 16;
1153 if (rx_ring
->sbq_prod_idx
== rx_ring
->sbq_len
)
1154 rx_ring
->sbq_prod_idx
= 0;
1155 rx_ring
->sbq_free_cnt
-= 16;
1158 if (start_idx
!= clean_idx
) {
1159 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1160 "sbq: updating prod idx = %d.\n",
1161 rx_ring
->sbq_prod_idx
);
1162 ql_write_db_reg(rx_ring
->sbq_prod_idx
,
1163 rx_ring
->sbq_prod_idx_db_reg
);
1167 static void ql_update_buffer_queues(struct ql_adapter
*qdev
,
1168 struct rx_ring
*rx_ring
)
1170 ql_update_sbq(qdev
, rx_ring
);
1171 ql_update_lbq(qdev
, rx_ring
);
1174 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1175 * fails at some stage, or from the interrupt when a tx completes.
1177 static void ql_unmap_send(struct ql_adapter
*qdev
,
1178 struct tx_ring_desc
*tx_ring_desc
, int mapped
)
1181 for (i
= 0; i
< mapped
; i
++) {
1182 if (i
== 0 || (i
== 7 && mapped
> 7)) {
1184 * Unmap the skb->data area, or the
1185 * external sglist (AKA the Outbound
1186 * Address List (OAL)).
1187 * If its the zeroeth element, then it's
1188 * the skb->data area. If it's the 7th
1189 * element and there is more than 6 frags,
1193 QPRINTK(qdev
, TX_DONE
, DEBUG
,
1194 "unmapping OAL area.\n");
1196 pci_unmap_single(qdev
->pdev
,
1197 pci_unmap_addr(&tx_ring_desc
->map
[i
],
1199 pci_unmap_len(&tx_ring_desc
->map
[i
],
1203 QPRINTK(qdev
, TX_DONE
, DEBUG
, "unmapping frag %d.\n",
1205 pci_unmap_page(qdev
->pdev
,
1206 pci_unmap_addr(&tx_ring_desc
->map
[i
],
1208 pci_unmap_len(&tx_ring_desc
->map
[i
],
1209 maplen
), PCI_DMA_TODEVICE
);
1215 /* Map the buffers for this transmit. This will return
1216 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1218 static int ql_map_send(struct ql_adapter
*qdev
,
1219 struct ob_mac_iocb_req
*mac_iocb_ptr
,
1220 struct sk_buff
*skb
, struct tx_ring_desc
*tx_ring_desc
)
1222 int len
= skb_headlen(skb
);
1224 int frag_idx
, err
, map_idx
= 0;
1225 struct tx_buf_desc
*tbd
= mac_iocb_ptr
->tbd
;
1226 int frag_cnt
= skb_shinfo(skb
)->nr_frags
;
1229 QPRINTK(qdev
, TX_QUEUED
, DEBUG
, "frag_cnt = %d.\n", frag_cnt
);
1232 * Map the skb buffer first.
1234 map
= pci_map_single(qdev
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
1236 err
= pci_dma_mapping_error(qdev
->pdev
, map
);
1238 QPRINTK(qdev
, TX_QUEUED
, ERR
,
1239 "PCI mapping failed with error: %d\n", err
);
1241 return NETDEV_TX_BUSY
;
1244 tbd
->len
= cpu_to_le32(len
);
1245 tbd
->addr
= cpu_to_le64(map
);
1246 pci_unmap_addr_set(&tx_ring_desc
->map
[map_idx
], mapaddr
, map
);
1247 pci_unmap_len_set(&tx_ring_desc
->map
[map_idx
], maplen
, len
);
1251 * This loop fills the remainder of the 8 address descriptors
1252 * in the IOCB. If there are more than 7 fragments, then the
1253 * eighth address desc will point to an external list (OAL).
1254 * When this happens, the remainder of the frags will be stored
1257 for (frag_idx
= 0; frag_idx
< frag_cnt
; frag_idx
++, map_idx
++) {
1258 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[frag_idx
];
1260 if (frag_idx
== 6 && frag_cnt
> 7) {
1261 /* Let's tack on an sglist.
1262 * Our control block will now
1264 * iocb->seg[0] = skb->data
1265 * iocb->seg[1] = frag[0]
1266 * iocb->seg[2] = frag[1]
1267 * iocb->seg[3] = frag[2]
1268 * iocb->seg[4] = frag[3]
1269 * iocb->seg[5] = frag[4]
1270 * iocb->seg[6] = frag[5]
1271 * iocb->seg[7] = ptr to OAL (external sglist)
1272 * oal->seg[0] = frag[6]
1273 * oal->seg[1] = frag[7]
1274 * oal->seg[2] = frag[8]
1275 * oal->seg[3] = frag[9]
1276 * oal->seg[4] = frag[10]
1279 /* Tack on the OAL in the eighth segment of IOCB. */
1280 map
= pci_map_single(qdev
->pdev
, &tx_ring_desc
->oal
,
1283 err
= pci_dma_mapping_error(qdev
->pdev
, map
);
1285 QPRINTK(qdev
, TX_QUEUED
, ERR
,
1286 "PCI mapping outbound address list with error: %d\n",
1291 tbd
->addr
= cpu_to_le64(map
);
1293 * The length is the number of fragments
1294 * that remain to be mapped times the length
1295 * of our sglist (OAL).
1298 cpu_to_le32((sizeof(struct tx_buf_desc
) *
1299 (frag_cnt
- frag_idx
)) | TX_DESC_C
);
1300 pci_unmap_addr_set(&tx_ring_desc
->map
[map_idx
], mapaddr
,
1302 pci_unmap_len_set(&tx_ring_desc
->map
[map_idx
], maplen
,
1303 sizeof(struct oal
));
1304 tbd
= (struct tx_buf_desc
*)&tx_ring_desc
->oal
;
1309 pci_map_page(qdev
->pdev
, frag
->page
,
1310 frag
->page_offset
, frag
->size
,
1313 err
= pci_dma_mapping_error(qdev
->pdev
, map
);
1315 QPRINTK(qdev
, TX_QUEUED
, ERR
,
1316 "PCI mapping frags failed with error: %d.\n",
1321 tbd
->addr
= cpu_to_le64(map
);
1322 tbd
->len
= cpu_to_le32(frag
->size
);
1323 pci_unmap_addr_set(&tx_ring_desc
->map
[map_idx
], mapaddr
, map
);
1324 pci_unmap_len_set(&tx_ring_desc
->map
[map_idx
], maplen
,
1328 /* Save the number of segments we've mapped. */
1329 tx_ring_desc
->map_cnt
= map_idx
;
1330 /* Terminate the last segment. */
1331 tbd
->len
= cpu_to_le32(le32_to_cpu(tbd
->len
) | TX_DESC_E
);
1332 return NETDEV_TX_OK
;
1336 * If the first frag mapping failed, then i will be zero.
1337 * This causes the unmap of the skb->data area. Otherwise
1338 * we pass in the number of frags that mapped successfully
1339 * so they can be umapped.
1341 ql_unmap_send(qdev
, tx_ring_desc
, map_idx
);
1342 return NETDEV_TX_BUSY
;
1345 static void ql_realign_skb(struct sk_buff
*skb
, int len
)
1347 void *temp_addr
= skb
->data
;
1349 /* Undo the skb_reserve(skb,32) we did before
1350 * giving to hardware, and realign data on
1351 * a 2-byte boundary.
1353 skb
->data
-= QLGE_SB_PAD
- NET_IP_ALIGN
;
1354 skb
->tail
-= QLGE_SB_PAD
- NET_IP_ALIGN
;
1355 skb_copy_to_linear_data(skb
, temp_addr
,
1360 * This function builds an skb for the given inbound
1361 * completion. It will be rewritten for readability in the near
1362 * future, but for not it works well.
1364 static struct sk_buff
*ql_build_rx_skb(struct ql_adapter
*qdev
,
1365 struct rx_ring
*rx_ring
,
1366 struct ib_mac_iocb_rsp
*ib_mac_rsp
)
1368 struct bq_desc
*lbq_desc
;
1369 struct bq_desc
*sbq_desc
;
1370 struct sk_buff
*skb
= NULL
;
1371 u32 length
= le32_to_cpu(ib_mac_rsp
->data_len
);
1372 u32 hdr_len
= le32_to_cpu(ib_mac_rsp
->hdr_len
);
1375 * Handle the header buffer if present.
1377 if (ib_mac_rsp
->flags4
& IB_MAC_IOCB_RSP_HV
&&
1378 ib_mac_rsp
->flags4
& IB_MAC_IOCB_RSP_HS
) {
1379 QPRINTK(qdev
, RX_STATUS
, DEBUG
, "Header of %d bytes in small buffer.\n", hdr_len
);
1381 * Headers fit nicely into a small buffer.
1383 sbq_desc
= ql_get_curr_sbuf(rx_ring
);
1384 pci_unmap_single(qdev
->pdev
,
1385 pci_unmap_addr(sbq_desc
, mapaddr
),
1386 pci_unmap_len(sbq_desc
, maplen
),
1387 PCI_DMA_FROMDEVICE
);
1388 skb
= sbq_desc
->p
.skb
;
1389 ql_realign_skb(skb
, hdr_len
);
1390 skb_put(skb
, hdr_len
);
1391 sbq_desc
->p
.skb
= NULL
;
1395 * Handle the data buffer(s).
1397 if (unlikely(!length
)) { /* Is there data too? */
1398 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1399 "No Data buffer in this packet.\n");
1403 if (ib_mac_rsp
->flags3
& IB_MAC_IOCB_RSP_DS
) {
1404 if (ib_mac_rsp
->flags4
& IB_MAC_IOCB_RSP_HS
) {
1405 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1406 "Headers in small, data of %d bytes in small, combine them.\n", length
);
1408 * Data is less than small buffer size so it's
1409 * stuffed in a small buffer.
1410 * For this case we append the data
1411 * from the "data" small buffer to the "header" small
1414 sbq_desc
= ql_get_curr_sbuf(rx_ring
);
1415 pci_dma_sync_single_for_cpu(qdev
->pdev
,
1417 (sbq_desc
, mapaddr
),
1420 PCI_DMA_FROMDEVICE
);
1421 memcpy(skb_put(skb
, length
),
1422 sbq_desc
->p
.skb
->data
, length
);
1423 pci_dma_sync_single_for_device(qdev
->pdev
,
1430 PCI_DMA_FROMDEVICE
);
1432 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1433 "%d bytes in a single small buffer.\n", length
);
1434 sbq_desc
= ql_get_curr_sbuf(rx_ring
);
1435 skb
= sbq_desc
->p
.skb
;
1436 ql_realign_skb(skb
, length
);
1437 skb_put(skb
, length
);
1438 pci_unmap_single(qdev
->pdev
,
1439 pci_unmap_addr(sbq_desc
,
1441 pci_unmap_len(sbq_desc
,
1443 PCI_DMA_FROMDEVICE
);
1444 sbq_desc
->p
.skb
= NULL
;
1446 } else if (ib_mac_rsp
->flags3
& IB_MAC_IOCB_RSP_DL
) {
1447 if (ib_mac_rsp
->flags4
& IB_MAC_IOCB_RSP_HS
) {
1448 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1449 "Header in small, %d bytes in large. Chain large to small!\n", length
);
1451 * The data is in a single large buffer. We
1452 * chain it to the header buffer's skb and let
1455 lbq_desc
= ql_get_curr_lbuf(rx_ring
);
1456 pci_unmap_page(qdev
->pdev
,
1457 pci_unmap_addr(lbq_desc
,
1459 pci_unmap_len(lbq_desc
, maplen
),
1460 PCI_DMA_FROMDEVICE
);
1461 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1462 "Chaining page to skb.\n");
1463 skb_fill_page_desc(skb
, 0, lbq_desc
->p
.lbq_page
,
1466 skb
->data_len
+= length
;
1467 skb
->truesize
+= length
;
1468 lbq_desc
->p
.lbq_page
= NULL
;
1471 * The headers and data are in a single large buffer. We
1472 * copy it to a new skb and let it go. This can happen with
1473 * jumbo mtu on a non-TCP/UDP frame.
1475 lbq_desc
= ql_get_curr_lbuf(rx_ring
);
1476 skb
= netdev_alloc_skb(qdev
->ndev
, length
);
1478 QPRINTK(qdev
, PROBE
, DEBUG
,
1479 "No skb available, drop the packet.\n");
1482 pci_unmap_page(qdev
->pdev
,
1483 pci_unmap_addr(lbq_desc
,
1485 pci_unmap_len(lbq_desc
, maplen
),
1486 PCI_DMA_FROMDEVICE
);
1487 skb_reserve(skb
, NET_IP_ALIGN
);
1488 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1489 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length
);
1490 skb_fill_page_desc(skb
, 0, lbq_desc
->p
.lbq_page
,
1493 skb
->data_len
+= length
;
1494 skb
->truesize
+= length
;
1496 lbq_desc
->p
.lbq_page
= NULL
;
1497 __pskb_pull_tail(skb
,
1498 (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_V
) ?
1499 VLAN_ETH_HLEN
: ETH_HLEN
);
1503 * The data is in a chain of large buffers
1504 * pointed to by a small buffer. We loop
1505 * thru and chain them to the our small header
1507 * frags: There are 18 max frags and our small
1508 * buffer will hold 32 of them. The thing is,
1509 * we'll use 3 max for our 9000 byte jumbo
1510 * frames. If the MTU goes up we could
1511 * eventually be in trouble.
1513 int size
, offset
, i
= 0;
1514 __le64
*bq
, bq_array
[8];
1515 sbq_desc
= ql_get_curr_sbuf(rx_ring
);
1516 pci_unmap_single(qdev
->pdev
,
1517 pci_unmap_addr(sbq_desc
, mapaddr
),
1518 pci_unmap_len(sbq_desc
, maplen
),
1519 PCI_DMA_FROMDEVICE
);
1520 if (!(ib_mac_rsp
->flags4
& IB_MAC_IOCB_RSP_HS
)) {
1522 * This is an non TCP/UDP IP frame, so
1523 * the headers aren't split into a small
1524 * buffer. We have to use the small buffer
1525 * that contains our sg list as our skb to
1526 * send upstairs. Copy the sg list here to
1527 * a local buffer and use it to find the
1530 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1531 "%d bytes of headers & data in chain of large.\n", length
);
1532 skb
= sbq_desc
->p
.skb
;
1534 memcpy(bq
, skb
->data
, sizeof(bq_array
));
1535 sbq_desc
->p
.skb
= NULL
;
1536 skb_reserve(skb
, NET_IP_ALIGN
);
1538 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1539 "Headers in small, %d bytes of data in chain of large.\n", length
);
1540 bq
= (__le64
*)sbq_desc
->p
.skb
->data
;
1542 while (length
> 0) {
1543 lbq_desc
= ql_get_curr_lbuf(rx_ring
);
1544 pci_unmap_page(qdev
->pdev
,
1545 pci_unmap_addr(lbq_desc
,
1547 pci_unmap_len(lbq_desc
,
1549 PCI_DMA_FROMDEVICE
);
1550 size
= (length
< PAGE_SIZE
) ? length
: PAGE_SIZE
;
1553 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1554 "Adding page %d to skb for %d bytes.\n",
1556 skb_fill_page_desc(skb
, i
, lbq_desc
->p
.lbq_page
,
1559 skb
->data_len
+= size
;
1560 skb
->truesize
+= size
;
1562 lbq_desc
->p
.lbq_page
= NULL
;
1566 __pskb_pull_tail(skb
, (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_V
) ?
1567 VLAN_ETH_HLEN
: ETH_HLEN
);
1572 /* Process an inbound completion from an rx ring. */
1573 static void ql_process_mac_rx_intr(struct ql_adapter
*qdev
,
1574 struct rx_ring
*rx_ring
,
1575 struct ib_mac_iocb_rsp
*ib_mac_rsp
)
1577 struct net_device
*ndev
= qdev
->ndev
;
1578 struct sk_buff
*skb
= NULL
;
1579 u16 vlan_id
= (le16_to_cpu(ib_mac_rsp
->vlan_id
) &
1580 IB_MAC_IOCB_RSP_VLAN_MASK
)
1582 QL_DUMP_IB_MAC_RSP(ib_mac_rsp
);
1584 skb
= ql_build_rx_skb(qdev
, rx_ring
, ib_mac_rsp
);
1585 if (unlikely(!skb
)) {
1586 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1587 "No skb available, drop packet.\n");
1591 /* Frame error, so drop the packet. */
1592 if (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_ERR_MASK
) {
1593 QPRINTK(qdev
, DRV
, ERR
, "Receive error, flags2 = 0x%x\n",
1594 ib_mac_rsp
->flags2
);
1595 dev_kfree_skb_any(skb
);
1599 /* The max framesize filter on this chip is set higher than
1600 * MTU since FCoE uses 2k frames.
1602 if (skb
->len
> ndev
->mtu
+ ETH_HLEN
) {
1603 dev_kfree_skb_any(skb
);
1607 prefetch(skb
->data
);
1609 if (ib_mac_rsp
->flags1
& IB_MAC_IOCB_RSP_M_MASK
) {
1610 QPRINTK(qdev
, RX_STATUS
, DEBUG
, "%s%s%s Multicast.\n",
1611 (ib_mac_rsp
->flags1
& IB_MAC_IOCB_RSP_M_MASK
) ==
1612 IB_MAC_IOCB_RSP_M_HASH
? "Hash" : "",
1613 (ib_mac_rsp
->flags1
& IB_MAC_IOCB_RSP_M_MASK
) ==
1614 IB_MAC_IOCB_RSP_M_REG
? "Registered" : "",
1615 (ib_mac_rsp
->flags1
& IB_MAC_IOCB_RSP_M_MASK
) ==
1616 IB_MAC_IOCB_RSP_M_PROM
? "Promiscuous" : "");
1618 if (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_P
) {
1619 QPRINTK(qdev
, RX_STATUS
, DEBUG
, "Promiscuous Packet.\n");
1622 skb
->protocol
= eth_type_trans(skb
, ndev
);
1623 skb
->ip_summed
= CHECKSUM_NONE
;
1625 /* If rx checksum is on, and there are no
1626 * csum or frame errors.
1628 if (qdev
->rx_csum
&&
1629 !(ib_mac_rsp
->flags1
& IB_MAC_CSUM_ERR_MASK
)) {
1631 if (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_T
) {
1632 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1633 "TCP checksum done!\n");
1634 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1635 } else if ((ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_U
) &&
1636 (ib_mac_rsp
->flags3
& IB_MAC_IOCB_RSP_V4
)) {
1637 /* Unfragmented ipv4 UDP frame. */
1638 struct iphdr
*iph
= (struct iphdr
*) skb
->data
;
1639 if (!(iph
->frag_off
&
1640 cpu_to_be16(IP_MF
|IP_OFFSET
))) {
1641 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1642 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1643 "TCP checksum done!\n");
1648 qdev
->stats
.rx_packets
++;
1649 qdev
->stats
.rx_bytes
+= skb
->len
;
1650 skb_record_rx_queue(skb
, rx_ring
->cq_id
);
1651 if (skb
->ip_summed
== CHECKSUM_UNNECESSARY
) {
1653 (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_V
) &&
1655 vlan_gro_receive(&rx_ring
->napi
, qdev
->vlgrp
,
1658 napi_gro_receive(&rx_ring
->napi
, skb
);
1661 (ib_mac_rsp
->flags2
& IB_MAC_IOCB_RSP_V
) &&
1663 vlan_hwaccel_receive_skb(skb
, qdev
->vlgrp
, vlan_id
);
1665 netif_receive_skb(skb
);
1669 /* Process an outbound completion from an rx ring. */
1670 static void ql_process_mac_tx_intr(struct ql_adapter
*qdev
,
1671 struct ob_mac_iocb_rsp
*mac_rsp
)
1673 struct tx_ring
*tx_ring
;
1674 struct tx_ring_desc
*tx_ring_desc
;
1676 QL_DUMP_OB_MAC_RSP(mac_rsp
);
1677 tx_ring
= &qdev
->tx_ring
[mac_rsp
->txq_idx
];
1678 tx_ring_desc
= &tx_ring
->q
[mac_rsp
->tid
];
1679 ql_unmap_send(qdev
, tx_ring_desc
, tx_ring_desc
->map_cnt
);
1680 qdev
->stats
.tx_bytes
+= (tx_ring_desc
->skb
)->len
;
1681 qdev
->stats
.tx_packets
++;
1682 dev_kfree_skb(tx_ring_desc
->skb
);
1683 tx_ring_desc
->skb
= NULL
;
1685 if (unlikely(mac_rsp
->flags1
& (OB_MAC_IOCB_RSP_E
|
1688 OB_MAC_IOCB_RSP_P
| OB_MAC_IOCB_RSP_B
))) {
1689 if (mac_rsp
->flags1
& OB_MAC_IOCB_RSP_E
) {
1690 QPRINTK(qdev
, TX_DONE
, WARNING
,
1691 "Total descriptor length did not match transfer length.\n");
1693 if (mac_rsp
->flags1
& OB_MAC_IOCB_RSP_S
) {
1694 QPRINTK(qdev
, TX_DONE
, WARNING
,
1695 "Frame too short to be legal, not sent.\n");
1697 if (mac_rsp
->flags1
& OB_MAC_IOCB_RSP_L
) {
1698 QPRINTK(qdev
, TX_DONE
, WARNING
,
1699 "Frame too long, but sent anyway.\n");
1701 if (mac_rsp
->flags1
& OB_MAC_IOCB_RSP_B
) {
1702 QPRINTK(qdev
, TX_DONE
, WARNING
,
1703 "PCI backplane error. Frame not sent.\n");
1706 atomic_inc(&tx_ring
->tx_count
);
1709 /* Fire up a handler to reset the MPI processor. */
1710 void ql_queue_fw_error(struct ql_adapter
*qdev
)
1713 queue_delayed_work(qdev
->workqueue
, &qdev
->mpi_reset_work
, 0);
1716 void ql_queue_asic_error(struct ql_adapter
*qdev
)
1719 ql_disable_interrupts(qdev
);
1720 /* Clear adapter up bit to signal the recovery
1721 * process that it shouldn't kill the reset worker
1724 clear_bit(QL_ADAPTER_UP
, &qdev
->flags
);
1725 queue_delayed_work(qdev
->workqueue
, &qdev
->asic_reset_work
, 0);
1728 static void ql_process_chip_ae_intr(struct ql_adapter
*qdev
,
1729 struct ib_ae_iocb_rsp
*ib_ae_rsp
)
1731 switch (ib_ae_rsp
->event
) {
1732 case MGMT_ERR_EVENT
:
1733 QPRINTK(qdev
, RX_ERR
, ERR
,
1734 "Management Processor Fatal Error.\n");
1735 ql_queue_fw_error(qdev
);
1738 case CAM_LOOKUP_ERR_EVENT
:
1739 QPRINTK(qdev
, LINK
, ERR
,
1740 "Multiple CAM hits lookup occurred.\n");
1741 QPRINTK(qdev
, DRV
, ERR
, "This event shouldn't occur.\n");
1742 ql_queue_asic_error(qdev
);
1745 case SOFT_ECC_ERROR_EVENT
:
1746 QPRINTK(qdev
, RX_ERR
, ERR
, "Soft ECC error detected.\n");
1747 ql_queue_asic_error(qdev
);
1750 case PCI_ERR_ANON_BUF_RD
:
1751 QPRINTK(qdev
, RX_ERR
, ERR
,
1752 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1754 ql_queue_asic_error(qdev
);
1758 QPRINTK(qdev
, DRV
, ERR
, "Unexpected event %d.\n",
1760 ql_queue_asic_error(qdev
);
1765 static int ql_clean_outbound_rx_ring(struct rx_ring
*rx_ring
)
1767 struct ql_adapter
*qdev
= rx_ring
->qdev
;
1768 u32 prod
= ql_read_sh_reg(rx_ring
->prod_idx_sh_reg
);
1769 struct ob_mac_iocb_rsp
*net_rsp
= NULL
;
1772 struct tx_ring
*tx_ring
;
1773 /* While there are entries in the completion queue. */
1774 while (prod
!= rx_ring
->cnsmr_idx
) {
1776 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1777 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring
->cq_id
,
1778 prod
, rx_ring
->cnsmr_idx
);
1780 net_rsp
= (struct ob_mac_iocb_rsp
*)rx_ring
->curr_entry
;
1782 switch (net_rsp
->opcode
) {
1784 case OPCODE_OB_MAC_TSO_IOCB
:
1785 case OPCODE_OB_MAC_IOCB
:
1786 ql_process_mac_tx_intr(qdev
, net_rsp
);
1789 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1790 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1794 ql_update_cq(rx_ring
);
1795 prod
= ql_read_sh_reg(rx_ring
->prod_idx_sh_reg
);
1797 ql_write_cq_idx(rx_ring
);
1798 tx_ring
= &qdev
->tx_ring
[net_rsp
->txq_idx
];
1799 if (__netif_subqueue_stopped(qdev
->ndev
, tx_ring
->wq_id
) &&
1801 if (atomic_read(&tx_ring
->queue_stopped
) &&
1802 (atomic_read(&tx_ring
->tx_count
) > (tx_ring
->wq_len
/ 4)))
1804 * The queue got stopped because the tx_ring was full.
1805 * Wake it up, because it's now at least 25% empty.
1807 netif_wake_subqueue(qdev
->ndev
, tx_ring
->wq_id
);
1813 static int ql_clean_inbound_rx_ring(struct rx_ring
*rx_ring
, int budget
)
1815 struct ql_adapter
*qdev
= rx_ring
->qdev
;
1816 u32 prod
= ql_read_sh_reg(rx_ring
->prod_idx_sh_reg
);
1817 struct ql_net_rsp_iocb
*net_rsp
;
1820 /* While there are entries in the completion queue. */
1821 while (prod
!= rx_ring
->cnsmr_idx
) {
1823 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1824 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring
->cq_id
,
1825 prod
, rx_ring
->cnsmr_idx
);
1827 net_rsp
= rx_ring
->curr_entry
;
1829 switch (net_rsp
->opcode
) {
1830 case OPCODE_IB_MAC_IOCB
:
1831 ql_process_mac_rx_intr(qdev
, rx_ring
,
1832 (struct ib_mac_iocb_rsp
*)
1836 case OPCODE_IB_AE_IOCB
:
1837 ql_process_chip_ae_intr(qdev
, (struct ib_ae_iocb_rsp
*)
1842 QPRINTK(qdev
, RX_STATUS
, DEBUG
,
1843 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1848 ql_update_cq(rx_ring
);
1849 prod
= ql_read_sh_reg(rx_ring
->prod_idx_sh_reg
);
1850 if (count
== budget
)
1853 ql_update_buffer_queues(qdev
, rx_ring
);
1854 ql_write_cq_idx(rx_ring
);
1858 static int ql_napi_poll_msix(struct napi_struct
*napi
, int budget
)
1860 struct rx_ring
*rx_ring
= container_of(napi
, struct rx_ring
, napi
);
1861 struct ql_adapter
*qdev
= rx_ring
->qdev
;
1862 struct rx_ring
*trx_ring
;
1863 int i
, work_done
= 0;
1864 struct intr_context
*ctx
= &qdev
->intr_context
[rx_ring
->cq_id
];
1866 QPRINTK(qdev
, RX_STATUS
, DEBUG
, "Enter, NAPI POLL cq_id = %d.\n",
1869 /* Service the TX rings first. They start
1870 * right after the RSS rings. */
1871 for (i
= qdev
->rss_ring_count
; i
< qdev
->rx_ring_count
; i
++) {
1872 trx_ring
= &qdev
->rx_ring
[i
];
1873 /* If this TX completion ring belongs to this vector and
1874 * it's not empty then service it.
1876 if ((ctx
->irq_mask
& (1 << trx_ring
->cq_id
)) &&
1877 (ql_read_sh_reg(trx_ring
->prod_idx_sh_reg
) !=
1878 trx_ring
->cnsmr_idx
)) {
1879 QPRINTK(qdev
, INTR
, DEBUG
,
1880 "%s: Servicing TX completion ring %d.\n",
1881 __func__
, trx_ring
->cq_id
);
1882 ql_clean_outbound_rx_ring(trx_ring
);
1887 * Now service the RSS ring if it's active.
1889 if (ql_read_sh_reg(rx_ring
->prod_idx_sh_reg
) !=
1890 rx_ring
->cnsmr_idx
) {
1891 QPRINTK(qdev
, INTR
, DEBUG
,
1892 "%s: Servicing RX completion ring %d.\n",
1893 __func__
, rx_ring
->cq_id
);
1894 work_done
= ql_clean_inbound_rx_ring(rx_ring
, budget
);
1897 if (work_done
< budget
) {
1898 napi_complete(napi
);
1899 ql_enable_completion_interrupt(qdev
, rx_ring
->irq
);
1904 static void ql_vlan_rx_register(struct net_device
*ndev
, struct vlan_group
*grp
)
1906 struct ql_adapter
*qdev
= netdev_priv(ndev
);
1910 QPRINTK(qdev
, IFUP
, DEBUG
, "Turning on VLAN in NIC_RCV_CFG.\n");
1911 ql_write32(qdev
, NIC_RCV_CFG
, NIC_RCV_CFG_VLAN_MASK
|
1912 NIC_RCV_CFG_VLAN_MATCH_AND_NON
);
1914 QPRINTK(qdev
, IFUP
, DEBUG
,
1915 "Turning off VLAN in NIC_RCV_CFG.\n");
1916 ql_write32(qdev
, NIC_RCV_CFG
, NIC_RCV_CFG_VLAN_MASK
);
1920 static void ql_vlan_rx_add_vid(struct net_device
*ndev
, u16 vid
)
1922 struct ql_adapter
*qdev
= netdev_priv(ndev
);
1923 u32 enable_bit
= MAC_ADDR_E
;
1926 status
= ql_sem_spinlock(qdev
, SEM_MAC_ADDR_MASK
);
1929 spin_lock(&qdev
->hw_lock
);
1930 if (ql_set_mac_addr_reg
1931 (qdev
, (u8
*) &enable_bit
, MAC_ADDR_TYPE_VLAN
, vid
)) {
1932 QPRINTK(qdev
, IFUP
, ERR
, "Failed to init vlan address.\n");
1934 spin_unlock(&qdev
->hw_lock
);
1935 ql_sem_unlock(qdev
, SEM_MAC_ADDR_MASK
);
1938 static void ql_vlan_rx_kill_vid(struct net_device
*ndev
, u16 vid
)
1940 struct ql_adapter
*qdev
= netdev_priv(ndev
);
1944 status
= ql_sem_spinlock(qdev
, SEM_MAC_ADDR_MASK
);
1948 spin_lock(&qdev
->hw_lock
);
1949 if (ql_set_mac_addr_reg
1950 (qdev
, (u8
*) &enable_bit
, MAC_ADDR_TYPE_VLAN
, vid
)) {
1951 QPRINTK(qdev
, IFUP
, ERR
, "Failed to clear vlan address.\n");
1953 spin_unlock(&qdev
->hw_lock
);
1954 ql_sem_unlock(qdev
, SEM_MAC_ADDR_MASK
);
1958 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1959 static irqreturn_t
qlge_msix_rx_isr(int irq
, void *dev_id
)
1961 struct rx_ring
*rx_ring
= dev_id
;
1962 napi_schedule(&rx_ring
->napi
);
1966 /* This handles a fatal error, MPI activity, and the default
1967 * rx_ring in an MSI-X multiple vector environment.
1968 * In MSI/Legacy environment it also process the rest of
1971 static irqreturn_t
qlge_isr(int irq
, void *dev_id
)
1973 struct rx_ring
*rx_ring
= dev_id
;
1974 struct ql_adapter
*qdev
= rx_ring
->qdev
;
1975 struct intr_context
*intr_context
= &qdev
->intr_context
[0];
1979 spin_lock(&qdev
->hw_lock
);
1980 if (atomic_read(&qdev
->intr_context
[0].irq_cnt
)) {
1981 QPRINTK(qdev
, INTR
, DEBUG
, "Shared Interrupt, Not ours!\n");
1982 spin_unlock(&qdev
->hw_lock
);
1985 spin_unlock(&qdev
->hw_lock
);
1987 var
= ql_disable_completion_interrupt(qdev
, intr_context
->intr
);
1990 * Check for fatal error.
1993 ql_queue_asic_error(qdev
);
1994 QPRINTK(qdev
, INTR
, ERR
, "Got fatal error, STS = %x.\n", var
);
1995 var
= ql_read32(qdev
, ERR_STS
);
1996 QPRINTK(qdev
, INTR
, ERR
,
1997 "Resetting chip. Error Status Register = 0x%x\n", var
);
2002 * Check MPI processor activity.
2006 * We've got an async event or mailbox completion.
2007 * Handle it and clear the source of the interrupt.
2009 QPRINTK(qdev
, INTR
, ERR
, "Got MPI processor interrupt.\n");
2010 ql_disable_completion_interrupt(qdev
, intr_context
->intr
);
2011 queue_delayed_work_on(smp_processor_id(), qdev
->workqueue
,
2012 &qdev
->mpi_work
, 0);
2017 * Get the bit-mask that shows the active queues for this
2018 * pass. Compare it to the queues that this irq services
2019 * and call napi if there's a match.
2021 var
= ql_read32(qdev
, ISR1
);
2022 if (var
& intr_context
->irq_mask
) {
2023 QPRINTK(qdev
, INTR
, INFO
,
2024 "Waking handler for rx_ring[0].\n");
2025 ql_disable_completion_interrupt(qdev
, intr_context
->intr
);
2026 napi_schedule(&rx_ring
->napi
);
2029 ql_enable_completion_interrupt(qdev
, intr_context
->intr
);
2030 return work_done
? IRQ_HANDLED
: IRQ_NONE
;
2033 static int ql_tso(struct sk_buff
*skb
, struct ob_mac_tso_iocb_req
*mac_iocb_ptr
)
2036 if (skb_is_gso(skb
)) {
2038 if (skb_header_cloned(skb
)) {
2039 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2044 mac_iocb_ptr
->opcode
= OPCODE_OB_MAC_TSO_IOCB
;
2045 mac_iocb_ptr
->flags3
|= OB_MAC_TSO_IOCB_IC
;
2046 mac_iocb_ptr
->frame_len
= cpu_to_le32((u32
) skb
->len
);
2047 mac_iocb_ptr
->total_hdrs_len
=
2048 cpu_to_le16(skb_transport_offset(skb
) + tcp_hdrlen(skb
));
2049 mac_iocb_ptr
->net_trans_offset
=
2050 cpu_to_le16(skb_network_offset(skb
) |
2051 skb_transport_offset(skb
)
2052 << OB_MAC_TRANSPORT_HDR_SHIFT
);
2053 mac_iocb_ptr
->mss
= cpu_to_le16(skb_shinfo(skb
)->gso_size
);
2054 mac_iocb_ptr
->flags2
|= OB_MAC_TSO_IOCB_LSO
;
2055 if (likely(skb
->protocol
== htons(ETH_P_IP
))) {
2056 struct iphdr
*iph
= ip_hdr(skb
);
2058 mac_iocb_ptr
->flags1
|= OB_MAC_TSO_IOCB_IP4
;
2059 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2063 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2064 mac_iocb_ptr
->flags1
|= OB_MAC_TSO_IOCB_IP6
;
2065 tcp_hdr(skb
)->check
=
2066 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2067 &ipv6_hdr(skb
)->daddr
,
2075 static void ql_hw_csum_setup(struct sk_buff
*skb
,
2076 struct ob_mac_tso_iocb_req
*mac_iocb_ptr
)
2079 struct iphdr
*iph
= ip_hdr(skb
);
2081 mac_iocb_ptr
->opcode
= OPCODE_OB_MAC_TSO_IOCB
;
2082 mac_iocb_ptr
->frame_len
= cpu_to_le32((u32
) skb
->len
);
2083 mac_iocb_ptr
->net_trans_offset
=
2084 cpu_to_le16(skb_network_offset(skb
) |
2085 skb_transport_offset(skb
) << OB_MAC_TRANSPORT_HDR_SHIFT
);
2087 mac_iocb_ptr
->flags1
|= OB_MAC_TSO_IOCB_IP4
;
2088 len
= (ntohs(iph
->tot_len
) - (iph
->ihl
<< 2));
2089 if (likely(iph
->protocol
== IPPROTO_TCP
)) {
2090 check
= &(tcp_hdr(skb
)->check
);
2091 mac_iocb_ptr
->flags2
|= OB_MAC_TSO_IOCB_TC
;
2092 mac_iocb_ptr
->total_hdrs_len
=
2093 cpu_to_le16(skb_transport_offset(skb
) +
2094 (tcp_hdr(skb
)->doff
<< 2));
2096 check
= &(udp_hdr(skb
)->check
);
2097 mac_iocb_ptr
->flags2
|= OB_MAC_TSO_IOCB_UC
;
2098 mac_iocb_ptr
->total_hdrs_len
=
2099 cpu_to_le16(skb_transport_offset(skb
) +
2100 sizeof(struct udphdr
));
2102 *check
= ~csum_tcpudp_magic(iph
->saddr
,
2103 iph
->daddr
, len
, iph
->protocol
, 0);
2106 static netdev_tx_t
qlge_send(struct sk_buff
*skb
, struct net_device
*ndev
)
2108 struct tx_ring_desc
*tx_ring_desc
;
2109 struct ob_mac_iocb_req
*mac_iocb_ptr
;
2110 struct ql_adapter
*qdev
= netdev_priv(ndev
);
2112 struct tx_ring
*tx_ring
;
2113 u32 tx_ring_idx
= (u32
) skb
->queue_mapping
;
2115 tx_ring
= &qdev
->tx_ring
[tx_ring_idx
];
2117 if (skb_padto(skb
, ETH_ZLEN
))
2118 return NETDEV_TX_OK
;
2120 if (unlikely(atomic_read(&tx_ring
->tx_count
) < 2)) {
2121 QPRINTK(qdev
, TX_QUEUED
, INFO
,
2122 "%s: shutting down tx queue %d du to lack of resources.\n",
2123 __func__
, tx_ring_idx
);
2124 netif_stop_subqueue(ndev
, tx_ring
->wq_id
);
2125 atomic_inc(&tx_ring
->queue_stopped
);
2126 return NETDEV_TX_BUSY
;
2128 tx_ring_desc
= &tx_ring
->q
[tx_ring
->prod_idx
];
2129 mac_iocb_ptr
= tx_ring_desc
->queue_entry
;
2130 memset((void *)mac_iocb_ptr
, 0, sizeof(*mac_iocb_ptr
));
2132 mac_iocb_ptr
->opcode
= OPCODE_OB_MAC_IOCB
;
2133 mac_iocb_ptr
->tid
= tx_ring_desc
->index
;
2134 /* We use the upper 32-bits to store the tx queue for this IO.
2135 * When we get the completion we can use it to establish the context.
2137 mac_iocb_ptr
->txq_idx
= tx_ring_idx
;
2138 tx_ring_desc
->skb
= skb
;
2140 mac_iocb_ptr
->frame_len
= cpu_to_le16((u16
) skb
->len
);
2142 if (qdev
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2143 QPRINTK(qdev
, TX_QUEUED
, DEBUG
, "Adding a vlan tag %d.\n",
2144 vlan_tx_tag_get(skb
));
2145 mac_iocb_ptr
->flags3
|= OB_MAC_IOCB_V
;
2146 mac_iocb_ptr
->vlan_tci
= cpu_to_le16(vlan_tx_tag_get(skb
));
2148 tso
= ql_tso(skb
, (struct ob_mac_tso_iocb_req
*)mac_iocb_ptr
);
2150 dev_kfree_skb_any(skb
);
2151 return NETDEV_TX_OK
;
2152 } else if (unlikely(!tso
) && (skb
->ip_summed
== CHECKSUM_PARTIAL
)) {
2153 ql_hw_csum_setup(skb
,
2154 (struct ob_mac_tso_iocb_req
*)mac_iocb_ptr
);
2156 if (ql_map_send(qdev
, mac_iocb_ptr
, skb
, tx_ring_desc
) !=
2158 QPRINTK(qdev
, TX_QUEUED
, ERR
,
2159 "Could not map the segments.\n");
2160 return NETDEV_TX_BUSY
;
2162 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr
);
2163 tx_ring
->prod_idx
++;
2164 if (tx_ring
->prod_idx
== tx_ring
->wq_len
)
2165 tx_ring
->prod_idx
= 0;
2168 ql_write_db_reg(tx_ring
->prod_idx
, tx_ring
->prod_idx_db_reg
);
2169 QPRINTK(qdev
, TX_QUEUED
, DEBUG
, "tx queued, slot %d, len %d\n",
2170 tx_ring
->prod_idx
, skb
->len
);
2172 atomic_dec(&tx_ring
->tx_count
);
2173 return NETDEV_TX_OK
;
2176 static void ql_free_shadow_space(struct ql_adapter
*qdev
)
2178 if (qdev
->rx_ring_shadow_reg_area
) {
2179 pci_free_consistent(qdev
->pdev
,
2181 qdev
->rx_ring_shadow_reg_area
,
2182 qdev
->rx_ring_shadow_reg_dma
);
2183 qdev
->rx_ring_shadow_reg_area
= NULL
;
2185 if (qdev
->tx_ring_shadow_reg_area
) {
2186 pci_free_consistent(qdev
->pdev
,
2188 qdev
->tx_ring_shadow_reg_area
,
2189 qdev
->tx_ring_shadow_reg_dma
);
2190 qdev
->tx_ring_shadow_reg_area
= NULL
;
2194 static int ql_alloc_shadow_space(struct ql_adapter
*qdev
)
2196 qdev
->rx_ring_shadow_reg_area
=
2197 pci_alloc_consistent(qdev
->pdev
,
2198 PAGE_SIZE
, &qdev
->rx_ring_shadow_reg_dma
);
2199 if (qdev
->rx_ring_shadow_reg_area
== NULL
) {
2200 QPRINTK(qdev
, IFUP
, ERR
,
2201 "Allocation of RX shadow space failed.\n");
2204 memset(qdev
->rx_ring_shadow_reg_area
, 0, PAGE_SIZE
);
2205 qdev
->tx_ring_shadow_reg_area
=
2206 pci_alloc_consistent(qdev
->pdev
, PAGE_SIZE
,
2207 &qdev
->tx_ring_shadow_reg_dma
);
2208 if (qdev
->tx_ring_shadow_reg_area
== NULL
) {
2209 QPRINTK(qdev
, IFUP
, ERR
,
2210 "Allocation of TX shadow space failed.\n");
2211 goto err_wqp_sh_area
;
2213 memset(qdev
->tx_ring_shadow_reg_area
, 0, PAGE_SIZE
);
2217 pci_free_consistent(qdev
->pdev
,
2219 qdev
->rx_ring_shadow_reg_area
,
2220 qdev
->rx_ring_shadow_reg_dma
);
2224 static void ql_init_tx_ring(struct ql_adapter
*qdev
, struct tx_ring
*tx_ring
)
2226 struct tx_ring_desc
*tx_ring_desc
;
2228 struct ob_mac_iocb_req
*mac_iocb_ptr
;
2230 mac_iocb_ptr
= tx_ring
->wq_base
;
2231 tx_ring_desc
= tx_ring
->q
;
2232 for (i
= 0; i
< tx_ring
->wq_len
; i
++) {
2233 tx_ring_desc
->index
= i
;
2234 tx_ring_desc
->skb
= NULL
;
2235 tx_ring_desc
->queue_entry
= mac_iocb_ptr
;
2239 atomic_set(&tx_ring
->tx_count
, tx_ring
->wq_len
);
2240 atomic_set(&tx_ring
->queue_stopped
, 0);
2243 static void ql_free_tx_resources(struct ql_adapter
*qdev
,
2244 struct tx_ring
*tx_ring
)
2246 if (tx_ring
->wq_base
) {
2247 pci_free_consistent(qdev
->pdev
, tx_ring
->wq_size
,
2248 tx_ring
->wq_base
, tx_ring
->wq_base_dma
);
2249 tx_ring
->wq_base
= NULL
;
2255 static int ql_alloc_tx_resources(struct ql_adapter
*qdev
,
2256 struct tx_ring
*tx_ring
)
2259 pci_alloc_consistent(qdev
->pdev
, tx_ring
->wq_size
,
2260 &tx_ring
->wq_base_dma
);
2262 if ((tx_ring
->wq_base
== NULL
)
2263 || tx_ring
->wq_base_dma
& WQ_ADDR_ALIGN
) {
2264 QPRINTK(qdev
, IFUP
, ERR
, "tx_ring alloc failed.\n");
2268 kmalloc(tx_ring
->wq_len
* sizeof(struct tx_ring_desc
), GFP_KERNEL
);
2269 if (tx_ring
->q
== NULL
)
2274 pci_free_consistent(qdev
->pdev
, tx_ring
->wq_size
,
2275 tx_ring
->wq_base
, tx_ring
->wq_base_dma
);
2279 static void ql_free_lbq_buffers(struct ql_adapter
*qdev
, struct rx_ring
*rx_ring
)
2282 struct bq_desc
*lbq_desc
;
2284 for (i
= 0; i
< rx_ring
->lbq_len
; i
++) {
2285 lbq_desc
= &rx_ring
->lbq
[i
];
2286 if (lbq_desc
->p
.lbq_page
) {
2287 pci_unmap_page(qdev
->pdev
,
2288 pci_unmap_addr(lbq_desc
, mapaddr
),
2289 pci_unmap_len(lbq_desc
, maplen
),
2290 PCI_DMA_FROMDEVICE
);
2292 put_page(lbq_desc
->p
.lbq_page
);
2293 lbq_desc
->p
.lbq_page
= NULL
;
2298 static void ql_free_sbq_buffers(struct ql_adapter
*qdev
, struct rx_ring
*rx_ring
)
2301 struct bq_desc
*sbq_desc
;
2303 for (i
= 0; i
< rx_ring
->sbq_len
; i
++) {
2304 sbq_desc
= &rx_ring
->sbq
[i
];
2305 if (sbq_desc
== NULL
) {
2306 QPRINTK(qdev
, IFUP
, ERR
, "sbq_desc %d is NULL.\n", i
);
2309 if (sbq_desc
->p
.skb
) {
2310 pci_unmap_single(qdev
->pdev
,
2311 pci_unmap_addr(sbq_desc
, mapaddr
),
2312 pci_unmap_len(sbq_desc
, maplen
),
2313 PCI_DMA_FROMDEVICE
);
2314 dev_kfree_skb(sbq_desc
->p
.skb
);
2315 sbq_desc
->p
.skb
= NULL
;
2320 /* Free all large and small rx buffers associated
2321 * with the completion queues for this device.
2323 static void ql_free_rx_buffers(struct ql_adapter
*qdev
)
2326 struct rx_ring
*rx_ring
;
2328 for (i
= 0; i
< qdev
->rx_ring_count
; i
++) {
2329 rx_ring
= &qdev
->rx_ring
[i
];
2331 ql_free_lbq_buffers(qdev
, rx_ring
);
2333 ql_free_sbq_buffers(qdev
, rx_ring
);
2337 static void ql_alloc_rx_buffers(struct ql_adapter
*qdev
)
2339 struct rx_ring
*rx_ring
;
2342 for (i
= 0; i
< qdev
->rx_ring_count
; i
++) {
2343 rx_ring
= &qdev
->rx_ring
[i
];
2344 if (rx_ring
->type
!= TX_Q
)
2345 ql_update_buffer_queues(qdev
, rx_ring
);
2349 static void ql_init_lbq_ring(struct ql_adapter
*qdev
,
2350 struct rx_ring
*rx_ring
)
2353 struct bq_desc
*lbq_desc
;
2354 __le64
*bq
= rx_ring
->lbq_base
;
2356 memset(rx_ring
->lbq
, 0, rx_ring
->lbq_len
* sizeof(struct bq_desc
));
2357 for (i
= 0; i
< rx_ring
->lbq_len
; i
++) {
2358 lbq_desc
= &rx_ring
->lbq
[i
];
2359 memset(lbq_desc
, 0, sizeof(*lbq_desc
));
2360 lbq_desc
->index
= i
;
2361 lbq_desc
->addr
= bq
;
2366 static void ql_init_sbq_ring(struct ql_adapter
*qdev
,
2367 struct rx_ring
*rx_ring
)
2370 struct bq_desc
*sbq_desc
;
2371 __le64
*bq
= rx_ring
->sbq_base
;
2373 memset(rx_ring
->sbq
, 0, rx_ring
->sbq_len
* sizeof(struct bq_desc
));
2374 for (i
= 0; i
< rx_ring
->sbq_len
; i
++) {
2375 sbq_desc
= &rx_ring
->sbq
[i
];
2376 memset(sbq_desc
, 0, sizeof(*sbq_desc
));
2377 sbq_desc
->index
= i
;
2378 sbq_desc
->addr
= bq
;
2383 static void ql_free_rx_resources(struct ql_adapter
*qdev
,
2384 struct rx_ring
*rx_ring
)
2386 /* Free the small buffer queue. */
2387 if (rx_ring
->sbq_base
) {
2388 pci_free_consistent(qdev
->pdev
,
2390 rx_ring
->sbq_base
, rx_ring
->sbq_base_dma
);
2391 rx_ring
->sbq_base
= NULL
;
2394 /* Free the small buffer queue control blocks. */
2395 kfree(rx_ring
->sbq
);
2396 rx_ring
->sbq
= NULL
;
2398 /* Free the large buffer queue. */
2399 if (rx_ring
->lbq_base
) {
2400 pci_free_consistent(qdev
->pdev
,
2402 rx_ring
->lbq_base
, rx_ring
->lbq_base_dma
);
2403 rx_ring
->lbq_base
= NULL
;
2406 /* Free the large buffer queue control blocks. */
2407 kfree(rx_ring
->lbq
);
2408 rx_ring
->lbq
= NULL
;
2410 /* Free the rx queue. */
2411 if (rx_ring
->cq_base
) {
2412 pci_free_consistent(qdev
->pdev
,
2414 rx_ring
->cq_base
, rx_ring
->cq_base_dma
);
2415 rx_ring
->cq_base
= NULL
;
2419 /* Allocate queues and buffers for this completions queue based
2420 * on the values in the parameter structure. */
2421 static int ql_alloc_rx_resources(struct ql_adapter
*qdev
,
2422 struct rx_ring
*rx_ring
)
2426 * Allocate the completion queue for this rx_ring.
2429 pci_alloc_consistent(qdev
->pdev
, rx_ring
->cq_size
,
2430 &rx_ring
->cq_base_dma
);
2432 if (rx_ring
->cq_base
== NULL
) {
2433 QPRINTK(qdev
, IFUP
, ERR
, "rx_ring alloc failed.\n");
2437 if (rx_ring
->sbq_len
) {
2439 * Allocate small buffer queue.
2442 pci_alloc_consistent(qdev
->pdev
, rx_ring
->sbq_size
,
2443 &rx_ring
->sbq_base_dma
);
2445 if (rx_ring
->sbq_base
== NULL
) {
2446 QPRINTK(qdev
, IFUP
, ERR
,
2447 "Small buffer queue allocation failed.\n");
2452 * Allocate small buffer queue control blocks.
2455 kmalloc(rx_ring
->sbq_len
* sizeof(struct bq_desc
),
2457 if (rx_ring
->sbq
== NULL
) {
2458 QPRINTK(qdev
, IFUP
, ERR
,
2459 "Small buffer queue control block allocation failed.\n");
2463 ql_init_sbq_ring(qdev
, rx_ring
);
2466 if (rx_ring
->lbq_len
) {
2468 * Allocate large buffer queue.
2471 pci_alloc_consistent(qdev
->pdev
, rx_ring
->lbq_size
,
2472 &rx_ring
->lbq_base_dma
);
2474 if (rx_ring
->lbq_base
== NULL
) {
2475 QPRINTK(qdev
, IFUP
, ERR
,
2476 "Large buffer queue allocation failed.\n");
2480 * Allocate large buffer queue control blocks.
2483 kmalloc(rx_ring
->lbq_len
* sizeof(struct bq_desc
),
2485 if (rx_ring
->lbq
== NULL
) {
2486 QPRINTK(qdev
, IFUP
, ERR
,
2487 "Large buffer queue control block allocation failed.\n");
2491 ql_init_lbq_ring(qdev
, rx_ring
);
2497 ql_free_rx_resources(qdev
, rx_ring
);
2501 static void ql_tx_ring_clean(struct ql_adapter
*qdev
)
2503 struct tx_ring
*tx_ring
;
2504 struct tx_ring_desc
*tx_ring_desc
;
2508 * Loop through all queues and free
2511 for (j
= 0; j
< qdev
->tx_ring_count
; j
++) {
2512 tx_ring
= &qdev
->tx_ring
[j
];
2513 for (i
= 0; i
< tx_ring
->wq_len
; i
++) {
2514 tx_ring_desc
= &tx_ring
->q
[i
];
2515 if (tx_ring_desc
&& tx_ring_desc
->skb
) {
2516 QPRINTK(qdev
, IFDOWN
, ERR
,
2517 "Freeing lost SKB %p, from queue %d, index %d.\n",
2518 tx_ring_desc
->skb
, j
,
2519 tx_ring_desc
->index
);
2520 ql_unmap_send(qdev
, tx_ring_desc
,
2521 tx_ring_desc
->map_cnt
);
2522 dev_kfree_skb(tx_ring_desc
->skb
);
2523 tx_ring_desc
->skb
= NULL
;
2529 static void ql_free_mem_resources(struct ql_adapter
*qdev
)
2533 for (i
= 0; i
< qdev
->tx_ring_count
; i
++)
2534 ql_free_tx_resources(qdev
, &qdev
->tx_ring
[i
]);
2535 for (i
= 0; i
< qdev
->rx_ring_count
; i
++)
2536 ql_free_rx_resources(qdev
, &qdev
->rx_ring
[i
]);
2537 ql_free_shadow_space(qdev
);
2540 static int ql_alloc_mem_resources(struct ql_adapter
*qdev
)
2544 /* Allocate space for our shadow registers and such. */
2545 if (ql_alloc_shadow_space(qdev
))
2548 for (i
= 0; i
< qdev
->rx_ring_count
; i
++) {
2549 if (ql_alloc_rx_resources(qdev
, &qdev
->rx_ring
[i
]) != 0) {
2550 QPRINTK(qdev
, IFUP
, ERR
,
2551 "RX resource allocation failed.\n");
2555 /* Allocate tx queue resources */
2556 for (i
= 0; i
< qdev
->tx_ring_count
; i
++) {
2557 if (ql_alloc_tx_resources(qdev
, &qdev
->tx_ring
[i
]) != 0) {
2558 QPRINTK(qdev
, IFUP
, ERR
,
2559 "TX resource allocation failed.\n");
2566 ql_free_mem_resources(qdev
);
2570 /* Set up the rx ring control block and pass it to the chip.
2571 * The control block is defined as
2572 * "Completion Queue Initialization Control Block", or cqicb.
2574 static int ql_start_rx_ring(struct ql_adapter
*qdev
, struct rx_ring
*rx_ring
)
2576 struct cqicb
*cqicb
= &rx_ring
->cqicb
;
2577 void *shadow_reg
= qdev
->rx_ring_shadow_reg_area
+
2578 (rx_ring
->cq_id
* RX_RING_SHADOW_SPACE
);
2579 u64 shadow_reg_dma
= qdev
->rx_ring_shadow_reg_dma
+
2580 (rx_ring
->cq_id
* RX_RING_SHADOW_SPACE
);
2581 void __iomem
*doorbell_area
=
2582 qdev
->doorbell_area
+ (DB_PAGE_SIZE
* (128 + rx_ring
->cq_id
));
2586 __le64
*base_indirect_ptr
;
2589 /* Set up the shadow registers for this ring. */
2590 rx_ring
->prod_idx_sh_reg
= shadow_reg
;
2591 rx_ring
->prod_idx_sh_reg_dma
= shadow_reg_dma
;
2592 shadow_reg
+= sizeof(u64
);
2593 shadow_reg_dma
+= sizeof(u64
);
2594 rx_ring
->lbq_base_indirect
= shadow_reg
;
2595 rx_ring
->lbq_base_indirect_dma
= shadow_reg_dma
;
2596 shadow_reg
+= (sizeof(u64
) * MAX_DB_PAGES_PER_BQ(rx_ring
->lbq_len
));
2597 shadow_reg_dma
+= (sizeof(u64
) * MAX_DB_PAGES_PER_BQ(rx_ring
->lbq_len
));
2598 rx_ring
->sbq_base_indirect
= shadow_reg
;
2599 rx_ring
->sbq_base_indirect_dma
= shadow_reg_dma
;
2601 /* PCI doorbell mem area + 0x00 for consumer index register */
2602 rx_ring
->cnsmr_idx_db_reg
= (u32 __iomem
*) doorbell_area
;
2603 rx_ring
->cnsmr_idx
= 0;
2604 rx_ring
->curr_entry
= rx_ring
->cq_base
;
2606 /* PCI doorbell mem area + 0x04 for valid register */
2607 rx_ring
->valid_db_reg
= doorbell_area
+ 0x04;
2609 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2610 rx_ring
->lbq_prod_idx_db_reg
= (u32 __iomem
*) (doorbell_area
+ 0x18);
2612 /* PCI doorbell mem area + 0x1c */
2613 rx_ring
->sbq_prod_idx_db_reg
= (u32 __iomem
*) (doorbell_area
+ 0x1c);
2615 memset((void *)cqicb
, 0, sizeof(struct cqicb
));
2616 cqicb
->msix_vect
= rx_ring
->irq
;
2618 bq_len
= (rx_ring
->cq_len
== 65536) ? 0 : (u16
) rx_ring
->cq_len
;
2619 cqicb
->len
= cpu_to_le16(bq_len
| LEN_V
| LEN_CPP_CONT
);
2621 cqicb
->addr
= cpu_to_le64(rx_ring
->cq_base_dma
);
2623 cqicb
->prod_idx_addr
= cpu_to_le64(rx_ring
->prod_idx_sh_reg_dma
);
2626 * Set up the control block load flags.
2628 cqicb
->flags
= FLAGS_LC
| /* Load queue base address */
2629 FLAGS_LV
| /* Load MSI-X vector */
2630 FLAGS_LI
; /* Load irq delay values */
2631 if (rx_ring
->lbq_len
) {
2632 cqicb
->flags
|= FLAGS_LL
; /* Load lbq values */
2633 tmp
= (u64
)rx_ring
->lbq_base_dma
;;
2634 base_indirect_ptr
= (__le64
*) rx_ring
->lbq_base_indirect
;
2637 *base_indirect_ptr
= cpu_to_le64(tmp
);
2638 tmp
+= DB_PAGE_SIZE
;
2639 base_indirect_ptr
++;
2641 } while (page_entries
< MAX_DB_PAGES_PER_BQ(rx_ring
->lbq_len
));
2643 cpu_to_le64(rx_ring
->lbq_base_indirect_dma
);
2644 bq_len
= (rx_ring
->lbq_buf_size
== 65536) ? 0 :
2645 (u16
) rx_ring
->lbq_buf_size
;
2646 cqicb
->lbq_buf_size
= cpu_to_le16(bq_len
);
2647 bq_len
= (rx_ring
->lbq_len
== 65536) ? 0 :
2648 (u16
) rx_ring
->lbq_len
;
2649 cqicb
->lbq_len
= cpu_to_le16(bq_len
);
2650 rx_ring
->lbq_prod_idx
= 0;
2651 rx_ring
->lbq_curr_idx
= 0;
2652 rx_ring
->lbq_clean_idx
= 0;
2653 rx_ring
->lbq_free_cnt
= rx_ring
->lbq_len
;
2655 if (rx_ring
->sbq_len
) {
2656 cqicb
->flags
|= FLAGS_LS
; /* Load sbq values */
2657 tmp
= (u64
)rx_ring
->sbq_base_dma
;;
2658 base_indirect_ptr
= (__le64
*) rx_ring
->sbq_base_indirect
;
2661 *base_indirect_ptr
= cpu_to_le64(tmp
);
2662 tmp
+= DB_PAGE_SIZE
;
2663 base_indirect_ptr
++;
2665 } while (page_entries
< MAX_DB_PAGES_PER_BQ(rx_ring
->sbq_len
));
2667 cpu_to_le64(rx_ring
->sbq_base_indirect_dma
);
2668 cqicb
->sbq_buf_size
=
2669 cpu_to_le16((u16
)(rx_ring
->sbq_buf_size
/2));
2670 bq_len
= (rx_ring
->sbq_len
== 65536) ? 0 :
2671 (u16
) rx_ring
->sbq_len
;
2672 cqicb
->sbq_len
= cpu_to_le16(bq_len
);
2673 rx_ring
->sbq_prod_idx
= 0;
2674 rx_ring
->sbq_curr_idx
= 0;
2675 rx_ring
->sbq_clean_idx
= 0;
2676 rx_ring
->sbq_free_cnt
= rx_ring
->sbq_len
;
2678 switch (rx_ring
->type
) {
2680 cqicb
->irq_delay
= cpu_to_le16(qdev
->tx_coalesce_usecs
);
2681 cqicb
->pkt_delay
= cpu_to_le16(qdev
->tx_max_coalesced_frames
);
2684 /* Inbound completion handling rx_rings run in
2685 * separate NAPI contexts.
2687 netif_napi_add(qdev
->ndev
, &rx_ring
->napi
, ql_napi_poll_msix
,
2689 cqicb
->irq_delay
= cpu_to_le16(qdev
->rx_coalesce_usecs
);
2690 cqicb
->pkt_delay
= cpu_to_le16(qdev
->rx_max_coalesced_frames
);
2693 QPRINTK(qdev
, IFUP
, DEBUG
, "Invalid rx_ring->type = %d.\n",
2696 QPRINTK(qdev
, IFUP
, DEBUG
, "Initializing rx work queue.\n");
2697 err
= ql_write_cfg(qdev
, cqicb
, sizeof(struct cqicb
),
2698 CFG_LCQ
, rx_ring
->cq_id
);
2700 QPRINTK(qdev
, IFUP
, ERR
, "Failed to load CQICB.\n");
2706 static int ql_start_tx_ring(struct ql_adapter
*qdev
, struct tx_ring
*tx_ring
)
2708 struct wqicb
*wqicb
= (struct wqicb
*)tx_ring
;
2709 void __iomem
*doorbell_area
=
2710 qdev
->doorbell_area
+ (DB_PAGE_SIZE
* tx_ring
->wq_id
);
2711 void *shadow_reg
= qdev
->tx_ring_shadow_reg_area
+
2712 (tx_ring
->wq_id
* sizeof(u64
));
2713 u64 shadow_reg_dma
= qdev
->tx_ring_shadow_reg_dma
+
2714 (tx_ring
->wq_id
* sizeof(u64
));
2718 * Assign doorbell registers for this tx_ring.
2720 /* TX PCI doorbell mem area for tx producer index */
2721 tx_ring
->prod_idx_db_reg
= (u32 __iomem
*) doorbell_area
;
2722 tx_ring
->prod_idx
= 0;
2723 /* TX PCI doorbell mem area + 0x04 */
2724 tx_ring
->valid_db_reg
= doorbell_area
+ 0x04;
2727 * Assign shadow registers for this tx_ring.
2729 tx_ring
->cnsmr_idx_sh_reg
= shadow_reg
;
2730 tx_ring
->cnsmr_idx_sh_reg_dma
= shadow_reg_dma
;
2732 wqicb
->len
= cpu_to_le16(tx_ring
->wq_len
| Q_LEN_V
| Q_LEN_CPP_CONT
);
2733 wqicb
->flags
= cpu_to_le16(Q_FLAGS_LC
|
2734 Q_FLAGS_LB
| Q_FLAGS_LI
| Q_FLAGS_LO
);
2735 wqicb
->cq_id_rss
= cpu_to_le16(tx_ring
->cq_id
);
2737 wqicb
->addr
= cpu_to_le64(tx_ring
->wq_base_dma
);
2739 wqicb
->cnsmr_idx_addr
= cpu_to_le64(tx_ring
->cnsmr_idx_sh_reg_dma
);
2741 ql_init_tx_ring(qdev
, tx_ring
);
2743 err
= ql_write_cfg(qdev
, wqicb
, sizeof(*wqicb
), CFG_LRQ
,
2744 (u16
) tx_ring
->wq_id
);
2746 QPRINTK(qdev
, IFUP
, ERR
, "Failed to load tx_ring.\n");
2749 QPRINTK(qdev
, IFUP
, DEBUG
, "Successfully loaded WQICB.\n");
2753 static void ql_disable_msix(struct ql_adapter
*qdev
)
2755 if (test_bit(QL_MSIX_ENABLED
, &qdev
->flags
)) {
2756 pci_disable_msix(qdev
->pdev
);
2757 clear_bit(QL_MSIX_ENABLED
, &qdev
->flags
);
2758 kfree(qdev
->msi_x_entry
);
2759 qdev
->msi_x_entry
= NULL
;
2760 } else if (test_bit(QL_MSI_ENABLED
, &qdev
->flags
)) {
2761 pci_disable_msi(qdev
->pdev
);
2762 clear_bit(QL_MSI_ENABLED
, &qdev
->flags
);
2766 /* We start by trying to get the number of vectors
2767 * stored in qdev->intr_count. If we don't get that
2768 * many then we reduce the count and try again.
2770 static void ql_enable_msix(struct ql_adapter
*qdev
)
2774 /* Get the MSIX vectors. */
2775 if (irq_type
== MSIX_IRQ
) {
2776 /* Try to alloc space for the msix struct,
2777 * if it fails then go to MSI/legacy.
2779 qdev
->msi_x_entry
= kcalloc(qdev
->intr_count
,
2780 sizeof(struct msix_entry
),
2782 if (!qdev
->msi_x_entry
) {
2787 for (i
= 0; i
< qdev
->intr_count
; i
++)
2788 qdev
->msi_x_entry
[i
].entry
= i
;
2790 /* Loop to get our vectors. We start with
2791 * what we want and settle for what we get.
2794 err
= pci_enable_msix(qdev
->pdev
,
2795 qdev
->msi_x_entry
, qdev
->intr_count
);
2797 qdev
->intr_count
= err
;
2801 kfree(qdev
->msi_x_entry
);
2802 qdev
->msi_x_entry
= NULL
;
2803 QPRINTK(qdev
, IFUP
, WARNING
,
2804 "MSI-X Enable failed, trying MSI.\n");
2805 qdev
->intr_count
= 1;
2807 } else if (err
== 0) {
2808 set_bit(QL_MSIX_ENABLED
, &qdev
->flags
);
2809 QPRINTK(qdev
, IFUP
, INFO
,
2810 "MSI-X Enabled, got %d vectors.\n",
2816 qdev
->intr_count
= 1;
2817 if (irq_type
== MSI_IRQ
) {
2818 if (!pci_enable_msi(qdev
->pdev
)) {
2819 set_bit(QL_MSI_ENABLED
, &qdev
->flags
);
2820 QPRINTK(qdev
, IFUP
, INFO
,
2821 "Running with MSI interrupts.\n");
2826 QPRINTK(qdev
, IFUP
, DEBUG
, "Running with legacy interrupts.\n");
2829 /* Each vector services 1 RSS ring and and 1 or more
2830 * TX completion rings. This function loops through
2831 * the TX completion rings and assigns the vector that
2832 * will service it. An example would be if there are
2833 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
2834 * This would mean that vector 0 would service RSS ring 0
2835 * and TX competion rings 0,1,2 and 3. Vector 1 would
2836 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
2838 static void ql_set_tx_vect(struct ql_adapter
*qdev
)
2841 u32 tx_rings_per_vector
= qdev
->tx_ring_count
/ qdev
->intr_count
;
2843 if (likely(test_bit(QL_MSIX_ENABLED
, &qdev
->flags
))) {
2844 /* Assign irq vectors to TX rx_rings.*/
2845 for (vect
= 0, j
= 0, i
= qdev
->rss_ring_count
;
2846 i
< qdev
->rx_ring_count
; i
++) {
2847 if (j
== tx_rings_per_vector
) {
2851 qdev
->rx_ring
[i
].irq
= vect
;
2855 /* For single vector all rings have an irq
2858 for (i
= 0; i
< qdev
->rx_ring_count
; i
++)
2859 qdev
->rx_ring
[i
].irq
= 0;
2863 /* Set the interrupt mask for this vector. Each vector
2864 * will service 1 RSS ring and 1 or more TX completion
2865 * rings. This function sets up a bit mask per vector
2866 * that indicates which rings it services.
2868 static void ql_set_irq_mask(struct ql_adapter
*qdev
, struct intr_context
*ctx
)
2870 int j
, vect
= ctx
->intr
;
2871 u32 tx_rings_per_vector
= qdev
->tx_ring_count
/ qdev
->intr_count
;
2873 if (likely(test_bit(QL_MSIX_ENABLED
, &qdev
->flags
))) {
2874 /* Add the RSS ring serviced by this vector
2877 ctx
->irq_mask
= (1 << qdev
->rx_ring
[vect
].cq_id
);
2878 /* Add the TX ring(s) serviced by this vector
2880 for (j
= 0; j
< tx_rings_per_vector
; j
++) {
2882 (1 << qdev
->rx_ring
[qdev
->rss_ring_count
+
2883 (vect
* tx_rings_per_vector
) + j
].cq_id
);
2886 /* For single vector we just shift each queue's
2889 for (j
= 0; j
< qdev
->rx_ring_count
; j
++)
2890 ctx
->irq_mask
|= (1 << qdev
->rx_ring
[j
].cq_id
);
2895 * Here we build the intr_context structures based on
2896 * our rx_ring count and intr vector count.
2897 * The intr_context structure is used to hook each vector
2898 * to possibly different handlers.
2900 static void ql_resolve_queues_to_irqs(struct ql_adapter
*qdev
)
2903 struct intr_context
*intr_context
= &qdev
->intr_context
[0];
2905 if (likely(test_bit(QL_MSIX_ENABLED
, &qdev
->flags
))) {
2906 /* Each rx_ring has it's
2907 * own intr_context since we have separate
2908 * vectors for each queue.
2910 for (i
= 0; i
< qdev
->intr_count
; i
++, intr_context
++) {
2911 qdev
->rx_ring
[i
].irq
= i
;
2912 intr_context
->intr
= i
;
2913 intr_context
->qdev
= qdev
;
2914 /* Set up this vector's bit-mask that indicates
2915 * which queues it services.
2917 ql_set_irq_mask(qdev
, intr_context
);
2919 * We set up each vectors enable/disable/read bits so
2920 * there's no bit/mask calculations in the critical path.
2922 intr_context
->intr_en_mask
=
2923 INTR_EN_TYPE_MASK
| INTR_EN_INTR_MASK
|
2924 INTR_EN_TYPE_ENABLE
| INTR_EN_IHD_MASK
| INTR_EN_IHD
2926 intr_context
->intr_dis_mask
=
2927 INTR_EN_TYPE_MASK
| INTR_EN_INTR_MASK
|
2928 INTR_EN_TYPE_DISABLE
| INTR_EN_IHD_MASK
|
2930 intr_context
->intr_read_mask
=
2931 INTR_EN_TYPE_MASK
| INTR_EN_INTR_MASK
|
2932 INTR_EN_TYPE_READ
| INTR_EN_IHD_MASK
| INTR_EN_IHD
|
2935 /* The first vector/queue handles
2936 * broadcast/multicast, fatal errors,
2937 * and firmware events. This in addition
2938 * to normal inbound NAPI processing.
2940 intr_context
->handler
= qlge_isr
;
2941 sprintf(intr_context
->name
, "%s-rx-%d",
2942 qdev
->ndev
->name
, i
);
2945 * Inbound queues handle unicast frames only.
2947 intr_context
->handler
= qlge_msix_rx_isr
;
2948 sprintf(intr_context
->name
, "%s-rx-%d",
2949 qdev
->ndev
->name
, i
);
2954 * All rx_rings use the same intr_context since
2955 * there is only one vector.
2957 intr_context
->intr
= 0;
2958 intr_context
->qdev
= qdev
;
2960 * We set up each vectors enable/disable/read bits so
2961 * there's no bit/mask calculations in the critical path.
2963 intr_context
->intr_en_mask
=
2964 INTR_EN_TYPE_MASK
| INTR_EN_INTR_MASK
| INTR_EN_TYPE_ENABLE
;
2965 intr_context
->intr_dis_mask
=
2966 INTR_EN_TYPE_MASK
| INTR_EN_INTR_MASK
|
2967 INTR_EN_TYPE_DISABLE
;
2968 intr_context
->intr_read_mask
=
2969 INTR_EN_TYPE_MASK
| INTR_EN_INTR_MASK
| INTR_EN_TYPE_READ
;
2971 * Single interrupt means one handler for all rings.
2973 intr_context
->handler
= qlge_isr
;
2974 sprintf(intr_context
->name
, "%s-single_irq", qdev
->ndev
->name
);
2975 /* Set up this vector's bit-mask that indicates
2976 * which queues it services. In this case there is
2977 * a single vector so it will service all RSS and
2978 * TX completion rings.
2980 ql_set_irq_mask(qdev
, intr_context
);
2982 /* Tell the TX completion rings which MSIx vector
2983 * they will be using.
2985 ql_set_tx_vect(qdev
);
2988 static void ql_free_irq(struct ql_adapter
*qdev
)
2991 struct intr_context
*intr_context
= &qdev
->intr_context
[0];
2993 for (i
= 0; i
< qdev
->intr_count
; i
++, intr_context
++) {
2994 if (intr_context
->hooked
) {
2995 if (test_bit(QL_MSIX_ENABLED
, &qdev
->flags
)) {
2996 free_irq(qdev
->msi_x_entry
[i
].vector
,
2998 QPRINTK(qdev
, IFDOWN
, DEBUG
,
2999 "freeing msix interrupt %d.\n", i
);
3001 free_irq(qdev
->pdev
->irq
, &qdev
->rx_ring
[0]);
3002 QPRINTK(qdev
, IFDOWN
, DEBUG
,
3003 "freeing msi interrupt %d.\n", i
);
3007 ql_disable_msix(qdev
);
3010 static int ql_request_irq(struct ql_adapter
*qdev
)
3014 struct pci_dev
*pdev
= qdev
->pdev
;
3015 struct intr_context
*intr_context
= &qdev
->intr_context
[0];
3017 ql_resolve_queues_to_irqs(qdev
);
3019 for (i
= 0; i
< qdev
->intr_count
; i
++, intr_context
++) {
3020 atomic_set(&intr_context
->irq_cnt
, 0);
3021 if (test_bit(QL_MSIX_ENABLED
, &qdev
->flags
)) {
3022 status
= request_irq(qdev
->msi_x_entry
[i
].vector
,
3023 intr_context
->handler
,
3028 QPRINTK(qdev
, IFUP
, ERR
,
3029 "Failed request for MSIX interrupt %d.\n",
3033 QPRINTK(qdev
, IFUP
, DEBUG
,
3034 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3036 qdev
->rx_ring
[i
].type
==
3037 DEFAULT_Q
? "DEFAULT_Q" : "",
3038 qdev
->rx_ring
[i
].type
==
3040 qdev
->rx_ring
[i
].type
==
3041 RX_Q
? "RX_Q" : "", intr_context
->name
);
3044 QPRINTK(qdev
, IFUP
, DEBUG
,
3045 "trying msi or legacy interrupts.\n");
3046 QPRINTK(qdev
, IFUP
, DEBUG
,
3047 "%s: irq = %d.\n", __func__
, pdev
->irq
);
3048 QPRINTK(qdev
, IFUP
, DEBUG
,
3049 "%s: context->name = %s.\n", __func__
,
3050 intr_context
->name
);
3051 QPRINTK(qdev
, IFUP
, DEBUG
,
3052 "%s: dev_id = 0x%p.\n", __func__
,
3055 request_irq(pdev
->irq
, qlge_isr
,
3056 test_bit(QL_MSI_ENABLED
,
3058 flags
) ? 0 : IRQF_SHARED
,
3059 intr_context
->name
, &qdev
->rx_ring
[0]);
3063 QPRINTK(qdev
, IFUP
, ERR
,
3064 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3066 qdev
->rx_ring
[0].type
==
3067 DEFAULT_Q
? "DEFAULT_Q" : "",
3068 qdev
->rx_ring
[0].type
== TX_Q
? "TX_Q" : "",
3069 qdev
->rx_ring
[0].type
== RX_Q
? "RX_Q" : "",
3070 intr_context
->name
);
3072 intr_context
->hooked
= 1;
3076 QPRINTK(qdev
, IFUP
, ERR
, "Failed to get the interrupts!!!/n");
3081 static int ql_start_rss(struct ql_adapter
*qdev
)
3083 struct ricb
*ricb
= &qdev
->ricb
;
3086 u8
*hash_id
= (u8
*) ricb
->hash_cq_id
;
3088 memset((void *)ricb
, 0, sizeof(*ricb
));
3090 ricb
->base_cq
= RSS_L4K
;
3092 (RSS_L6K
| RSS_LI
| RSS_LB
| RSS_LM
| RSS_RI4
| RSS_RI6
| RSS_RT4
|
3094 ricb
->mask
= cpu_to_le16(qdev
->rss_ring_count
- 1);
3097 * Fill out the Indirection Table.
3099 for (i
= 0; i
< 256; i
++)
3100 hash_id
[i
] = i
& (qdev
->rss_ring_count
- 1);
3103 * Random values for the IPv6 and IPv4 Hash Keys.
3105 get_random_bytes((void *)&ricb
->ipv6_hash_key
[0], 40);
3106 get_random_bytes((void *)&ricb
->ipv4_hash_key
[0], 16);
3108 QPRINTK(qdev
, IFUP
, DEBUG
, "Initializing RSS.\n");
3110 status
= ql_write_cfg(qdev
, ricb
, sizeof(*ricb
), CFG_LR
, 0);
3112 QPRINTK(qdev
, IFUP
, ERR
, "Failed to load RICB.\n");
3115 QPRINTK(qdev
, IFUP
, DEBUG
, "Successfully loaded RICB.\n");
3119 static int ql_clear_routing_entries(struct ql_adapter
*qdev
)
3123 status
= ql_sem_spinlock(qdev
, SEM_RT_IDX_MASK
);
3126 /* Clear all the entries in the routing table. */
3127 for (i
= 0; i
< 16; i
++) {
3128 status
= ql_set_routing_reg(qdev
, i
, 0, 0);
3130 QPRINTK(qdev
, IFUP
, ERR
,
3131 "Failed to init routing register for CAM "
3136 ql_sem_unlock(qdev
, SEM_RT_IDX_MASK
);
3140 /* Initialize the frame-to-queue routing. */
3141 static int ql_route_initialize(struct ql_adapter
*qdev
)
3145 status
= ql_sem_spinlock(qdev
, SEM_RT_IDX_MASK
);
3149 /* Clear all the entries in the routing table. */
3150 status
= ql_clear_routing_entries(qdev
);
3154 status
= ql_set_routing_reg(qdev
, RT_IDX_ALL_ERR_SLOT
, RT_IDX_ERR
, 1);
3156 QPRINTK(qdev
, IFUP
, ERR
,
3157 "Failed to init routing register for error packets.\n");
3160 status
= ql_set_routing_reg(qdev
, RT_IDX_BCAST_SLOT
, RT_IDX_BCAST
, 1);
3162 QPRINTK(qdev
, IFUP
, ERR
,
3163 "Failed to init routing register for broadcast packets.\n");
3166 /* If we have more than one inbound queue, then turn on RSS in the
3169 if (qdev
->rss_ring_count
> 1) {
3170 status
= ql_set_routing_reg(qdev
, RT_IDX_RSS_MATCH_SLOT
,
3171 RT_IDX_RSS_MATCH
, 1);
3173 QPRINTK(qdev
, IFUP
, ERR
,
3174 "Failed to init routing register for MATCH RSS packets.\n");
3179 status
= ql_set_routing_reg(qdev
, RT_IDX_CAM_HIT_SLOT
,
3182 QPRINTK(qdev
, IFUP
, ERR
,
3183 "Failed to init routing register for CAM packets.\n");
3185 ql_sem_unlock(qdev
, SEM_RT_IDX_MASK
);
3189 int ql_cam_route_initialize(struct ql_adapter
*qdev
)
3193 /* If check if the link is up and use to
3194 * determine if we are setting or clearing
3195 * the MAC address in the CAM.
3197 set
= ql_read32(qdev
, STS
);
3198 set
&= qdev
->port_link_up
;
3199 status
= ql_set_mac_addr(qdev
, set
);
3201 QPRINTK(qdev
, IFUP
, ERR
, "Failed to init mac address.\n");
3205 status
= ql_route_initialize(qdev
);
3207 QPRINTK(qdev
, IFUP
, ERR
, "Failed to init routing table.\n");
3212 static int ql_adapter_initialize(struct ql_adapter
*qdev
)
3219 * Set up the System register to halt on errors.
3221 value
= SYS_EFE
| SYS_FAE
;
3223 ql_write32(qdev
, SYS
, mask
| value
);
3225 /* Set the default queue, and VLAN behavior. */
3226 value
= NIC_RCV_CFG_DFQ
| NIC_RCV_CFG_RV
;
3227 mask
= NIC_RCV_CFG_DFQ_MASK
| (NIC_RCV_CFG_RV
<< 16);
3228 ql_write32(qdev
, NIC_RCV_CFG
, (mask
| value
));
3230 /* Set the MPI interrupt to enabled. */
3231 ql_write32(qdev
, INTR_MASK
, (INTR_MASK_PI
<< 16) | INTR_MASK_PI
);
3233 /* Enable the function, set pagesize, enable error checking. */
3234 value
= FSC_FE
| FSC_EPC_INBOUND
| FSC_EPC_OUTBOUND
|
3235 FSC_EC
| FSC_VM_PAGE_4K
| FSC_SH
;
3237 /* Set/clear header splitting. */
3238 mask
= FSC_VM_PAGESIZE_MASK
|
3239 FSC_DBL_MASK
| FSC_DBRST_MASK
| (value
<< 16);
3240 ql_write32(qdev
, FSC
, mask
| value
);
3242 ql_write32(qdev
, SPLT_HDR
, SPLT_HDR_EP
|
3243 min(SMALL_BUFFER_SIZE
, MAX_SPLIT_SIZE
));
3245 /* Start up the rx queues. */
3246 for (i
= 0; i
< qdev
->rx_ring_count
; i
++) {
3247 status
= ql_start_rx_ring(qdev
, &qdev
->rx_ring
[i
]);
3249 QPRINTK(qdev
, IFUP
, ERR
,
3250 "Failed to start rx ring[%d].\n", i
);
3255 /* If there is more than one inbound completion queue
3256 * then download a RICB to configure RSS.
3258 if (qdev
->rss_ring_count
> 1) {
3259 status
= ql_start_rss(qdev
);
3261 QPRINTK(qdev
, IFUP
, ERR
, "Failed to start RSS.\n");
3266 /* Start up the tx queues. */
3267 for (i
= 0; i
< qdev
->tx_ring_count
; i
++) {
3268 status
= ql_start_tx_ring(qdev
, &qdev
->tx_ring
[i
]);
3270 QPRINTK(qdev
, IFUP
, ERR
,
3271 "Failed to start tx ring[%d].\n", i
);
3276 /* Initialize the port and set the max framesize. */
3277 status
= qdev
->nic_ops
->port_initialize(qdev
);
3279 QPRINTK(qdev
, IFUP
, ERR
, "Failed to start port.\n");
3283 /* Set up the MAC address and frame routing filter. */
3284 status
= ql_cam_route_initialize(qdev
);
3286 QPRINTK(qdev
, IFUP
, ERR
,
3287 "Failed to init CAM/Routing tables.\n");
3291 /* Start NAPI for the RSS queues. */
3292 for (i
= 0; i
< qdev
->rss_ring_count
; i
++) {
3293 QPRINTK(qdev
, IFUP
, DEBUG
, "Enabling NAPI for rx_ring[%d].\n",
3295 napi_enable(&qdev
->rx_ring
[i
].napi
);
3301 /* Issue soft reset to chip. */
3302 static int ql_adapter_reset(struct ql_adapter
*qdev
)
3306 unsigned long end_jiffies
;
3308 /* Clear all the entries in the routing table. */
3309 status
= ql_clear_routing_entries(qdev
);
3311 QPRINTK(qdev
, IFUP
, ERR
, "Failed to clear routing bits.\n");
3315 end_jiffies
= jiffies
+
3316 max((unsigned long)1, usecs_to_jiffies(30));
3317 ql_write32(qdev
, RST_FO
, (RST_FO_FR
<< 16) | RST_FO_FR
);
3320 value
= ql_read32(qdev
, RST_FO
);
3321 if ((value
& RST_FO_FR
) == 0)
3324 } while (time_before(jiffies
, end_jiffies
));
3326 if (value
& RST_FO_FR
) {
3327 QPRINTK(qdev
, IFDOWN
, ERR
,
3328 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3329 status
= -ETIMEDOUT
;
3335 static void ql_display_dev_info(struct net_device
*ndev
)
3337 struct ql_adapter
*qdev
= (struct ql_adapter
*)netdev_priv(ndev
);
3339 QPRINTK(qdev
, PROBE
, INFO
,
3340 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3341 "XG Roll = %d, XG Rev = %d.\n",
3344 qdev
->chip_rev_id
& 0x0000000f,
3345 qdev
->chip_rev_id
>> 4 & 0x0000000f,
3346 qdev
->chip_rev_id
>> 8 & 0x0000000f,
3347 qdev
->chip_rev_id
>> 12 & 0x0000000f);
3348 QPRINTK(qdev
, PROBE
, INFO
, "MAC address %pM\n", ndev
->dev_addr
);
3351 static int ql_adapter_down(struct ql_adapter
*qdev
)
3357 /* Don't kill the reset worker thread if we
3358 * are in the process of recovery.
3360 if (test_bit(QL_ADAPTER_UP
, &qdev
->flags
))
3361 cancel_delayed_work_sync(&qdev
->asic_reset_work
);
3362 cancel_delayed_work_sync(&qdev
->mpi_reset_work
);
3363 cancel_delayed_work_sync(&qdev
->mpi_work
);
3364 cancel_delayed_work_sync(&qdev
->mpi_idc_work
);
3365 cancel_delayed_work_sync(&qdev
->mpi_port_cfg_work
);
3367 for (i
= 0; i
< qdev
->rss_ring_count
; i
++)
3368 napi_disable(&qdev
->rx_ring
[i
].napi
);
3370 clear_bit(QL_ADAPTER_UP
, &qdev
->flags
);
3372 ql_disable_interrupts(qdev
);
3374 ql_tx_ring_clean(qdev
);
3376 /* Call netif_napi_del() from common point.
3378 for (i
= 0; i
< qdev
->rss_ring_count
; i
++)
3379 netif_napi_del(&qdev
->rx_ring
[i
].napi
);
3381 ql_free_rx_buffers(qdev
);
3383 spin_lock(&qdev
->hw_lock
);
3384 status
= ql_adapter_reset(qdev
);
3386 QPRINTK(qdev
, IFDOWN
, ERR
, "reset(func #%d) FAILED!\n",
3388 spin_unlock(&qdev
->hw_lock
);
3392 static int ql_adapter_up(struct ql_adapter
*qdev
)
3396 err
= ql_adapter_initialize(qdev
);
3398 QPRINTK(qdev
, IFUP
, INFO
, "Unable to initialize adapter.\n");
3401 set_bit(QL_ADAPTER_UP
, &qdev
->flags
);
3402 ql_alloc_rx_buffers(qdev
);
3403 /* If the port is initialized and the
3404 * link is up the turn on the carrier.
3406 if ((ql_read32(qdev
, STS
) & qdev
->port_init
) &&
3407 (ql_read32(qdev
, STS
) & qdev
->port_link_up
))
3409 ql_enable_interrupts(qdev
);
3410 ql_enable_all_completion_interrupts(qdev
);
3411 netif_tx_start_all_queues(qdev
->ndev
);
3415 ql_adapter_reset(qdev
);
3419 static void ql_release_adapter_resources(struct ql_adapter
*qdev
)
3421 ql_free_mem_resources(qdev
);
3425 static int ql_get_adapter_resources(struct ql_adapter
*qdev
)
3429 if (ql_alloc_mem_resources(qdev
)) {
3430 QPRINTK(qdev
, IFUP
, ERR
, "Unable to allocate memory.\n");
3433 status
= ql_request_irq(qdev
);
3437 static int qlge_close(struct net_device
*ndev
)
3439 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3442 * Wait for device to recover from a reset.
3443 * (Rarely happens, but possible.)
3445 while (!test_bit(QL_ADAPTER_UP
, &qdev
->flags
))
3447 ql_adapter_down(qdev
);
3448 ql_release_adapter_resources(qdev
);
3452 static int ql_configure_rings(struct ql_adapter
*qdev
)
3455 struct rx_ring
*rx_ring
;
3456 struct tx_ring
*tx_ring
;
3457 int cpu_cnt
= min(MAX_CPUS
, (int)num_online_cpus());
3459 /* In a perfect world we have one RSS ring for each CPU
3460 * and each has it's own vector. To do that we ask for
3461 * cpu_cnt vectors. ql_enable_msix() will adjust the
3462 * vector count to what we actually get. We then
3463 * allocate an RSS ring for each.
3464 * Essentially, we are doing min(cpu_count, msix_vector_count).
3466 qdev
->intr_count
= cpu_cnt
;
3467 ql_enable_msix(qdev
);
3468 /* Adjust the RSS ring count to the actual vector count. */
3469 qdev
->rss_ring_count
= qdev
->intr_count
;
3470 qdev
->tx_ring_count
= cpu_cnt
;
3471 qdev
->rx_ring_count
= qdev
->tx_ring_count
+ qdev
->rss_ring_count
;
3473 for (i
= 0; i
< qdev
->tx_ring_count
; i
++) {
3474 tx_ring
= &qdev
->tx_ring
[i
];
3475 memset((void *)tx_ring
, 0, sizeof(*tx_ring
));
3476 tx_ring
->qdev
= qdev
;
3478 tx_ring
->wq_len
= qdev
->tx_ring_size
;
3480 tx_ring
->wq_len
* sizeof(struct ob_mac_iocb_req
);
3483 * The completion queue ID for the tx rings start
3484 * immediately after the rss rings.
3486 tx_ring
->cq_id
= qdev
->rss_ring_count
+ i
;
3489 for (i
= 0; i
< qdev
->rx_ring_count
; i
++) {
3490 rx_ring
= &qdev
->rx_ring
[i
];
3491 memset((void *)rx_ring
, 0, sizeof(*rx_ring
));
3492 rx_ring
->qdev
= qdev
;
3494 rx_ring
->cpu
= i
% cpu_cnt
; /* CPU to run handler on. */
3495 if (i
< qdev
->rss_ring_count
) {
3497 * Inbound (RSS) queues.
3499 rx_ring
->cq_len
= qdev
->rx_ring_size
;
3501 rx_ring
->cq_len
* sizeof(struct ql_net_rsp_iocb
);
3502 rx_ring
->lbq_len
= NUM_LARGE_BUFFERS
;
3504 rx_ring
->lbq_len
* sizeof(__le64
);
3505 rx_ring
->lbq_buf_size
= LARGE_BUFFER_SIZE
;
3506 rx_ring
->sbq_len
= NUM_SMALL_BUFFERS
;
3508 rx_ring
->sbq_len
* sizeof(__le64
);
3509 rx_ring
->sbq_buf_size
= SMALL_BUFFER_SIZE
* 2;
3510 rx_ring
->type
= RX_Q
;
3513 * Outbound queue handles outbound completions only.
3515 /* outbound cq is same size as tx_ring it services. */
3516 rx_ring
->cq_len
= qdev
->tx_ring_size
;
3518 rx_ring
->cq_len
* sizeof(struct ql_net_rsp_iocb
);
3519 rx_ring
->lbq_len
= 0;
3520 rx_ring
->lbq_size
= 0;
3521 rx_ring
->lbq_buf_size
= 0;
3522 rx_ring
->sbq_len
= 0;
3523 rx_ring
->sbq_size
= 0;
3524 rx_ring
->sbq_buf_size
= 0;
3525 rx_ring
->type
= TX_Q
;
3531 static int qlge_open(struct net_device
*ndev
)
3534 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3536 err
= ql_configure_rings(qdev
);
3540 err
= ql_get_adapter_resources(qdev
);
3544 err
= ql_adapter_up(qdev
);
3551 ql_release_adapter_resources(qdev
);
3555 static int qlge_change_mtu(struct net_device
*ndev
, int new_mtu
)
3557 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3559 if (ndev
->mtu
== 1500 && new_mtu
== 9000) {
3560 QPRINTK(qdev
, IFUP
, ERR
, "Changing to jumbo MTU.\n");
3561 queue_delayed_work(qdev
->workqueue
,
3562 &qdev
->mpi_port_cfg_work
, 0);
3563 } else if (ndev
->mtu
== 9000 && new_mtu
== 1500) {
3564 QPRINTK(qdev
, IFUP
, ERR
, "Changing to normal MTU.\n");
3565 } else if ((ndev
->mtu
== 1500 && new_mtu
== 1500) ||
3566 (ndev
->mtu
== 9000 && new_mtu
== 9000)) {
3570 ndev
->mtu
= new_mtu
;
3574 static struct net_device_stats
*qlge_get_stats(struct net_device
3577 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3578 return &qdev
->stats
;
3581 static void qlge_set_multicast_list(struct net_device
*ndev
)
3583 struct ql_adapter
*qdev
= (struct ql_adapter
*)netdev_priv(ndev
);
3584 struct dev_mc_list
*mc_ptr
;
3587 status
= ql_sem_spinlock(qdev
, SEM_RT_IDX_MASK
);
3590 spin_lock(&qdev
->hw_lock
);
3592 * Set or clear promiscuous mode if a
3593 * transition is taking place.
3595 if (ndev
->flags
& IFF_PROMISC
) {
3596 if (!test_bit(QL_PROMISCUOUS
, &qdev
->flags
)) {
3597 if (ql_set_routing_reg
3598 (qdev
, RT_IDX_PROMISCUOUS_SLOT
, RT_IDX_VALID
, 1)) {
3599 QPRINTK(qdev
, HW
, ERR
,
3600 "Failed to set promiscous mode.\n");
3602 set_bit(QL_PROMISCUOUS
, &qdev
->flags
);
3606 if (test_bit(QL_PROMISCUOUS
, &qdev
->flags
)) {
3607 if (ql_set_routing_reg
3608 (qdev
, RT_IDX_PROMISCUOUS_SLOT
, RT_IDX_VALID
, 0)) {
3609 QPRINTK(qdev
, HW
, ERR
,
3610 "Failed to clear promiscous mode.\n");
3612 clear_bit(QL_PROMISCUOUS
, &qdev
->flags
);
3618 * Set or clear all multicast mode if a
3619 * transition is taking place.
3621 if ((ndev
->flags
& IFF_ALLMULTI
) ||
3622 (ndev
->mc_count
> MAX_MULTICAST_ENTRIES
)) {
3623 if (!test_bit(QL_ALLMULTI
, &qdev
->flags
)) {
3624 if (ql_set_routing_reg
3625 (qdev
, RT_IDX_ALLMULTI_SLOT
, RT_IDX_MCAST
, 1)) {
3626 QPRINTK(qdev
, HW
, ERR
,
3627 "Failed to set all-multi mode.\n");
3629 set_bit(QL_ALLMULTI
, &qdev
->flags
);
3633 if (test_bit(QL_ALLMULTI
, &qdev
->flags
)) {
3634 if (ql_set_routing_reg
3635 (qdev
, RT_IDX_ALLMULTI_SLOT
, RT_IDX_MCAST
, 0)) {
3636 QPRINTK(qdev
, HW
, ERR
,
3637 "Failed to clear all-multi mode.\n");
3639 clear_bit(QL_ALLMULTI
, &qdev
->flags
);
3644 if (ndev
->mc_count
) {
3645 status
= ql_sem_spinlock(qdev
, SEM_MAC_ADDR_MASK
);
3648 for (i
= 0, mc_ptr
= ndev
->mc_list
; mc_ptr
;
3649 i
++, mc_ptr
= mc_ptr
->next
)
3650 if (ql_set_mac_addr_reg(qdev
, (u8
*) mc_ptr
->dmi_addr
,
3651 MAC_ADDR_TYPE_MULTI_MAC
, i
)) {
3652 QPRINTK(qdev
, HW
, ERR
,
3653 "Failed to loadmulticast address.\n");
3654 ql_sem_unlock(qdev
, SEM_MAC_ADDR_MASK
);
3657 ql_sem_unlock(qdev
, SEM_MAC_ADDR_MASK
);
3658 if (ql_set_routing_reg
3659 (qdev
, RT_IDX_MCAST_MATCH_SLOT
, RT_IDX_MCAST_MATCH
, 1)) {
3660 QPRINTK(qdev
, HW
, ERR
,
3661 "Failed to set multicast match mode.\n");
3663 set_bit(QL_ALLMULTI
, &qdev
->flags
);
3667 spin_unlock(&qdev
->hw_lock
);
3668 ql_sem_unlock(qdev
, SEM_RT_IDX_MASK
);
3671 static int qlge_set_mac_address(struct net_device
*ndev
, void *p
)
3673 struct ql_adapter
*qdev
= (struct ql_adapter
*)netdev_priv(ndev
);
3674 struct sockaddr
*addr
= p
;
3677 if (netif_running(ndev
))
3680 if (!is_valid_ether_addr(addr
->sa_data
))
3681 return -EADDRNOTAVAIL
;
3682 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
3684 status
= ql_sem_spinlock(qdev
, SEM_MAC_ADDR_MASK
);
3687 spin_lock(&qdev
->hw_lock
);
3688 status
= ql_set_mac_addr_reg(qdev
, (u8
*) ndev
->dev_addr
,
3689 MAC_ADDR_TYPE_CAM_MAC
, qdev
->func
* MAX_CQ
);
3690 spin_unlock(&qdev
->hw_lock
);
3692 QPRINTK(qdev
, HW
, ERR
, "Failed to load MAC address.\n");
3693 ql_sem_unlock(qdev
, SEM_MAC_ADDR_MASK
);
3697 static void qlge_tx_timeout(struct net_device
*ndev
)
3699 struct ql_adapter
*qdev
= (struct ql_adapter
*)netdev_priv(ndev
);
3700 ql_queue_asic_error(qdev
);
3703 static void ql_asic_reset_work(struct work_struct
*work
)
3705 struct ql_adapter
*qdev
=
3706 container_of(work
, struct ql_adapter
, asic_reset_work
.work
);
3709 status
= ql_adapter_down(qdev
);
3713 status
= ql_adapter_up(qdev
);
3719 QPRINTK(qdev
, IFUP
, ALERT
,
3720 "Driver up/down cycle failed, closing device\n");
3722 set_bit(QL_ADAPTER_UP
, &qdev
->flags
);
3723 dev_close(qdev
->ndev
);
3727 static struct nic_operations qla8012_nic_ops
= {
3728 .get_flash
= ql_get_8012_flash_params
,
3729 .port_initialize
= ql_8012_port_initialize
,
3732 static struct nic_operations qla8000_nic_ops
= {
3733 .get_flash
= ql_get_8000_flash_params
,
3734 .port_initialize
= ql_8000_port_initialize
,
3737 /* Find the pcie function number for the other NIC
3738 * on this chip. Since both NIC functions share a
3739 * common firmware we have the lowest enabled function
3740 * do any common work. Examples would be resetting
3741 * after a fatal firmware error, or doing a firmware
3744 static int ql_get_alt_pcie_func(struct ql_adapter
*qdev
)
3748 u32 nic_func1
, nic_func2
;
3750 status
= ql_read_mpi_reg(qdev
, MPI_TEST_FUNC_PORT_CFG
,
3755 nic_func1
= ((temp
>> MPI_TEST_NIC1_FUNC_SHIFT
) &
3756 MPI_TEST_NIC_FUNC_MASK
);
3757 nic_func2
= ((temp
>> MPI_TEST_NIC2_FUNC_SHIFT
) &
3758 MPI_TEST_NIC_FUNC_MASK
);
3760 if (qdev
->func
== nic_func1
)
3761 qdev
->alt_func
= nic_func2
;
3762 else if (qdev
->func
== nic_func2
)
3763 qdev
->alt_func
= nic_func1
;
3770 static int ql_get_board_info(struct ql_adapter
*qdev
)
3774 (ql_read32(qdev
, STS
) & STS_FUNC_ID_MASK
) >> STS_FUNC_ID_SHIFT
;
3778 status
= ql_get_alt_pcie_func(qdev
);
3782 qdev
->port
= (qdev
->func
< qdev
->alt_func
) ? 0 : 1;
3784 qdev
->xg_sem_mask
= SEM_XGMAC1_MASK
;
3785 qdev
->port_link_up
= STS_PL1
;
3786 qdev
->port_init
= STS_PI1
;
3787 qdev
->mailbox_in
= PROC_ADDR_MPI_RISC
| PROC_ADDR_FUNC2_MBI
;
3788 qdev
->mailbox_out
= PROC_ADDR_MPI_RISC
| PROC_ADDR_FUNC2_MBO
;
3790 qdev
->xg_sem_mask
= SEM_XGMAC0_MASK
;
3791 qdev
->port_link_up
= STS_PL0
;
3792 qdev
->port_init
= STS_PI0
;
3793 qdev
->mailbox_in
= PROC_ADDR_MPI_RISC
| PROC_ADDR_FUNC0_MBI
;
3794 qdev
->mailbox_out
= PROC_ADDR_MPI_RISC
| PROC_ADDR_FUNC0_MBO
;
3796 qdev
->chip_rev_id
= ql_read32(qdev
, REV_ID
);
3797 qdev
->device_id
= qdev
->pdev
->device
;
3798 if (qdev
->device_id
== QLGE_DEVICE_ID_8012
)
3799 qdev
->nic_ops
= &qla8012_nic_ops
;
3800 else if (qdev
->device_id
== QLGE_DEVICE_ID_8000
)
3801 qdev
->nic_ops
= &qla8000_nic_ops
;
3805 static void ql_release_all(struct pci_dev
*pdev
)
3807 struct net_device
*ndev
= pci_get_drvdata(pdev
);
3808 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3810 if (qdev
->workqueue
) {
3811 destroy_workqueue(qdev
->workqueue
);
3812 qdev
->workqueue
= NULL
;
3816 iounmap(qdev
->reg_base
);
3817 if (qdev
->doorbell_area
)
3818 iounmap(qdev
->doorbell_area
);
3819 pci_release_regions(pdev
);
3820 pci_set_drvdata(pdev
, NULL
);
3823 static int __devinit
ql_init_device(struct pci_dev
*pdev
,
3824 struct net_device
*ndev
, int cards_found
)
3826 struct ql_adapter
*qdev
= netdev_priv(ndev
);
3830 memset((void *)qdev
, 0, sizeof(*qdev
));
3831 err
= pci_enable_device(pdev
);
3833 dev_err(&pdev
->dev
, "PCI device enable failed.\n");
3837 pos
= pci_find_capability(pdev
, PCI_CAP_ID_EXP
);
3839 dev_err(&pdev
->dev
, PFX
"Cannot find PCI Express capability, "
3843 pci_read_config_word(pdev
, pos
+ PCI_EXP_DEVCTL
, &val16
);
3844 val16
&= ~PCI_EXP_DEVCTL_NOSNOOP_EN
;
3845 val16
|= (PCI_EXP_DEVCTL_CERE
|
3846 PCI_EXP_DEVCTL_NFERE
|
3847 PCI_EXP_DEVCTL_FERE
| PCI_EXP_DEVCTL_URRE
);
3848 pci_write_config_word(pdev
, pos
+ PCI_EXP_DEVCTL
, val16
);
3851 err
= pci_request_regions(pdev
, DRV_NAME
);
3853 dev_err(&pdev
->dev
, "PCI region request failed.\n");
3857 pci_set_master(pdev
);
3858 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3859 set_bit(QL_DMA64
, &qdev
->flags
);
3860 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3862 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
3864 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3868 dev_err(&pdev
->dev
, "No usable DMA configuration.\n");
3872 pci_set_drvdata(pdev
, ndev
);
3874 ioremap_nocache(pci_resource_start(pdev
, 1),
3875 pci_resource_len(pdev
, 1));
3876 if (!qdev
->reg_base
) {
3877 dev_err(&pdev
->dev
, "Register mapping failed.\n");
3882 qdev
->doorbell_area_size
= pci_resource_len(pdev
, 3);
3883 qdev
->doorbell_area
=
3884 ioremap_nocache(pci_resource_start(pdev
, 3),
3885 pci_resource_len(pdev
, 3));
3886 if (!qdev
->doorbell_area
) {
3887 dev_err(&pdev
->dev
, "Doorbell register mapping failed.\n");
3894 err
= ql_get_board_info(qdev
);
3896 dev_err(&pdev
->dev
, "Register access failed.\n");
3900 qdev
->msg_enable
= netif_msg_init(debug
, default_msg
);
3901 spin_lock_init(&qdev
->hw_lock
);
3902 spin_lock_init(&qdev
->stats_lock
);
3904 /* make sure the EEPROM is good */
3905 err
= qdev
->nic_ops
->get_flash(qdev
);
3907 dev_err(&pdev
->dev
, "Invalid FLASH.\n");
3911 memcpy(ndev
->perm_addr
, ndev
->dev_addr
, ndev
->addr_len
);
3913 /* Set up the default ring sizes. */
3914 qdev
->tx_ring_size
= NUM_TX_RING_ENTRIES
;
3915 qdev
->rx_ring_size
= NUM_RX_RING_ENTRIES
;
3917 /* Set up the coalescing parameters. */
3918 qdev
->rx_coalesce_usecs
= DFLT_COALESCE_WAIT
;
3919 qdev
->tx_coalesce_usecs
= DFLT_COALESCE_WAIT
;
3920 qdev
->rx_max_coalesced_frames
= DFLT_INTER_FRAME_WAIT
;
3921 qdev
->tx_max_coalesced_frames
= DFLT_INTER_FRAME_WAIT
;
3924 * Set up the operating parameters.
3927 qdev
->workqueue
= create_singlethread_workqueue(ndev
->name
);
3928 INIT_DELAYED_WORK(&qdev
->asic_reset_work
, ql_asic_reset_work
);
3929 INIT_DELAYED_WORK(&qdev
->mpi_reset_work
, ql_mpi_reset_work
);
3930 INIT_DELAYED_WORK(&qdev
->mpi_work
, ql_mpi_work
);
3931 INIT_DELAYED_WORK(&qdev
->mpi_port_cfg_work
, ql_mpi_port_cfg_work
);
3932 INIT_DELAYED_WORK(&qdev
->mpi_idc_work
, ql_mpi_idc_work
);
3933 mutex_init(&qdev
->mpi_mutex
);
3934 init_completion(&qdev
->ide_completion
);
3937 dev_info(&pdev
->dev
, "%s\n", DRV_STRING
);
3938 dev_info(&pdev
->dev
, "Driver name: %s, Version: %s.\n",
3939 DRV_NAME
, DRV_VERSION
);
3943 ql_release_all(pdev
);
3944 pci_disable_device(pdev
);
3949 static const struct net_device_ops qlge_netdev_ops
= {
3950 .ndo_open
= qlge_open
,
3951 .ndo_stop
= qlge_close
,
3952 .ndo_start_xmit
= qlge_send
,
3953 .ndo_change_mtu
= qlge_change_mtu
,
3954 .ndo_get_stats
= qlge_get_stats
,
3955 .ndo_set_multicast_list
= qlge_set_multicast_list
,
3956 .ndo_set_mac_address
= qlge_set_mac_address
,
3957 .ndo_validate_addr
= eth_validate_addr
,
3958 .ndo_tx_timeout
= qlge_tx_timeout
,
3959 .ndo_vlan_rx_register
= ql_vlan_rx_register
,
3960 .ndo_vlan_rx_add_vid
= ql_vlan_rx_add_vid
,
3961 .ndo_vlan_rx_kill_vid
= ql_vlan_rx_kill_vid
,
3964 static int __devinit
qlge_probe(struct pci_dev
*pdev
,
3965 const struct pci_device_id
*pci_entry
)
3967 struct net_device
*ndev
= NULL
;
3968 struct ql_adapter
*qdev
= NULL
;
3969 static int cards_found
= 0;
3972 ndev
= alloc_etherdev_mq(sizeof(struct ql_adapter
),
3973 min(MAX_CPUS
, (int)num_online_cpus()));
3977 err
= ql_init_device(pdev
, ndev
, cards_found
);
3983 qdev
= netdev_priv(ndev
);
3984 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
3991 | NETIF_F_HW_VLAN_TX
3992 | NETIF_F_HW_VLAN_RX
| NETIF_F_HW_VLAN_FILTER
);
3993 ndev
->features
|= NETIF_F_GRO
;
3995 if (test_bit(QL_DMA64
, &qdev
->flags
))
3996 ndev
->features
|= NETIF_F_HIGHDMA
;
3999 * Set up net_device structure.
4001 ndev
->tx_queue_len
= qdev
->tx_ring_size
;
4002 ndev
->irq
= pdev
->irq
;
4004 ndev
->netdev_ops
= &qlge_netdev_ops
;
4005 SET_ETHTOOL_OPS(ndev
, &qlge_ethtool_ops
);
4006 ndev
->watchdog_timeo
= 10 * HZ
;
4008 err
= register_netdev(ndev
);
4010 dev_err(&pdev
->dev
, "net device registration failed.\n");
4011 ql_release_all(pdev
);
4012 pci_disable_device(pdev
);
4016 ql_display_dev_info(ndev
);
4021 static void __devexit
qlge_remove(struct pci_dev
*pdev
)
4023 struct net_device
*ndev
= pci_get_drvdata(pdev
);
4024 unregister_netdev(ndev
);
4025 ql_release_all(pdev
);
4026 pci_disable_device(pdev
);
4031 * This callback is called by the PCI subsystem whenever
4032 * a PCI bus error is detected.
4034 static pci_ers_result_t
qlge_io_error_detected(struct pci_dev
*pdev
,
4035 enum pci_channel_state state
)
4037 struct net_device
*ndev
= pci_get_drvdata(pdev
);
4038 struct ql_adapter
*qdev
= netdev_priv(ndev
);
4040 netif_device_detach(ndev
);
4042 if (state
== pci_channel_io_perm_failure
)
4043 return PCI_ERS_RESULT_DISCONNECT
;
4045 if (netif_running(ndev
))
4046 ql_adapter_down(qdev
);
4048 pci_disable_device(pdev
);
4050 /* Request a slot reset. */
4051 return PCI_ERS_RESULT_NEED_RESET
;
4055 * This callback is called after the PCI buss has been reset.
4056 * Basically, this tries to restart the card from scratch.
4057 * This is a shortened version of the device probe/discovery code,
4058 * it resembles the first-half of the () routine.
4060 static pci_ers_result_t
qlge_io_slot_reset(struct pci_dev
*pdev
)
4062 struct net_device
*ndev
= pci_get_drvdata(pdev
);
4063 struct ql_adapter
*qdev
= netdev_priv(ndev
);
4065 if (pci_enable_device(pdev
)) {
4066 QPRINTK(qdev
, IFUP
, ERR
,
4067 "Cannot re-enable PCI device after reset.\n");
4068 return PCI_ERS_RESULT_DISCONNECT
;
4071 pci_set_master(pdev
);
4073 netif_carrier_off(ndev
);
4074 ql_adapter_reset(qdev
);
4076 /* Make sure the EEPROM is good */
4077 memcpy(ndev
->perm_addr
, ndev
->dev_addr
, ndev
->addr_len
);
4079 if (!is_valid_ether_addr(ndev
->perm_addr
)) {
4080 QPRINTK(qdev
, IFUP
, ERR
, "After reset, invalid MAC address.\n");
4081 return PCI_ERS_RESULT_DISCONNECT
;
4084 return PCI_ERS_RESULT_RECOVERED
;
4087 static void qlge_io_resume(struct pci_dev
*pdev
)
4089 struct net_device
*ndev
= pci_get_drvdata(pdev
);
4090 struct ql_adapter
*qdev
= netdev_priv(ndev
);
4092 pci_set_master(pdev
);
4094 if (netif_running(ndev
)) {
4095 if (ql_adapter_up(qdev
)) {
4096 QPRINTK(qdev
, IFUP
, ERR
,
4097 "Device initialization failed after reset.\n");
4102 netif_device_attach(ndev
);
4105 static struct pci_error_handlers qlge_err_handler
= {
4106 .error_detected
= qlge_io_error_detected
,
4107 .slot_reset
= qlge_io_slot_reset
,
4108 .resume
= qlge_io_resume
,
4111 static int qlge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4113 struct net_device
*ndev
= pci_get_drvdata(pdev
);
4114 struct ql_adapter
*qdev
= netdev_priv(ndev
);
4117 netif_device_detach(ndev
);
4119 if (netif_running(ndev
)) {
4120 err
= ql_adapter_down(qdev
);
4125 err
= pci_save_state(pdev
);
4129 pci_disable_device(pdev
);
4131 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4137 static int qlge_resume(struct pci_dev
*pdev
)
4139 struct net_device
*ndev
= pci_get_drvdata(pdev
);
4140 struct ql_adapter
*qdev
= netdev_priv(ndev
);
4143 pci_set_power_state(pdev
, PCI_D0
);
4144 pci_restore_state(pdev
);
4145 err
= pci_enable_device(pdev
);
4147 QPRINTK(qdev
, IFUP
, ERR
, "Cannot enable PCI device from suspend\n");
4150 pci_set_master(pdev
);
4152 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4153 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4155 if (netif_running(ndev
)) {
4156 err
= ql_adapter_up(qdev
);
4161 netif_device_attach(ndev
);
4165 #endif /* CONFIG_PM */
4167 static void qlge_shutdown(struct pci_dev
*pdev
)
4169 qlge_suspend(pdev
, PMSG_SUSPEND
);
4172 static struct pci_driver qlge_driver
= {
4174 .id_table
= qlge_pci_tbl
,
4175 .probe
= qlge_probe
,
4176 .remove
= __devexit_p(qlge_remove
),
4178 .suspend
= qlge_suspend
,
4179 .resume
= qlge_resume
,
4181 .shutdown
= qlge_shutdown
,
4182 .err_handler
= &qlge_err_handler
4185 static int __init
qlge_init_module(void)
4187 return pci_register_driver(&qlge_driver
);
4190 static void __exit
qlge_exit(void)
4192 pci_unregister_driver(&qlge_driver
);
4195 module_init(qlge_init_module
);
4196 module_exit(qlge_exit
);