JBD: round commit timer up to avoid uncommitted transaction
[linux/fpc-iii.git] / drivers / net / qlge / qlge_main.c
blob220529257828a690afc64e7ab2fc726f82a9e7d8
1 /*
2 * QLogic qlge NIC HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 * See LICENSE.qlge for copyright and licensing details.
5 * Author: Linux qlge network device driver by
6 * Ron Mercer <ron.mercer@qlogic.com>
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/skbuff.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/if_vlan.h>
39 #include <linux/delay.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <net/ip6_checksum.h>
44 #include "qlge.h"
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
54 static const u32 default_msg =
55 NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER | */
57 NETIF_MSG_IFDOWN |
58 NETIF_MSG_IFUP |
59 NETIF_MSG_RX_ERR |
60 NETIF_MSG_TX_ERR |
61 /* NETIF_MSG_TX_QUEUED | */
62 /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64 NETIF_MSG_HW | NETIF_MSG_WOL | 0;
66 static int debug = 0x00007fff; /* defaults above */
67 module_param(debug, int, 0);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int irq_type = MSIX_IRQ;
74 module_param(irq_type, int, MSIX_IRQ);
75 MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
77 static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
78 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
79 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
80 /* required last entry */
81 {0,}
84 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
86 /* This hardware semaphore causes exclusive access to
87 * resources shared between the NIC driver, MPI firmware,
88 * FCOE firmware and the FC driver.
90 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
92 u32 sem_bits = 0;
94 switch (sem_mask) {
95 case SEM_XGMAC0_MASK:
96 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
97 break;
98 case SEM_XGMAC1_MASK:
99 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
100 break;
101 case SEM_ICB_MASK:
102 sem_bits = SEM_SET << SEM_ICB_SHIFT;
103 break;
104 case SEM_MAC_ADDR_MASK:
105 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
106 break;
107 case SEM_FLASH_MASK:
108 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
109 break;
110 case SEM_PROBE_MASK:
111 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
112 break;
113 case SEM_RT_IDX_MASK:
114 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
115 break;
116 case SEM_PROC_REG_MASK:
117 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
118 break;
119 default:
120 QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
121 return -EINVAL;
124 ql_write32(qdev, SEM, sem_bits | sem_mask);
125 return !(ql_read32(qdev, SEM) & sem_bits);
128 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
130 unsigned int wait_count = 30;
131 do {
132 if (!ql_sem_trylock(qdev, sem_mask))
133 return 0;
134 udelay(100);
135 } while (--wait_count);
136 return -ETIMEDOUT;
139 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
141 ql_write32(qdev, SEM, sem_mask);
142 ql_read32(qdev, SEM); /* flush */
145 /* This function waits for a specific bit to come ready
146 * in a given register. It is used mostly by the initialize
147 * process, but is also used in kernel thread API such as
148 * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
150 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
152 u32 temp;
153 int count = UDELAY_COUNT;
155 while (count) {
156 temp = ql_read32(qdev, reg);
158 /* check for errors */
159 if (temp & err_bit) {
160 QPRINTK(qdev, PROBE, ALERT,
161 "register 0x%.08x access error, value = 0x%.08x!.\n",
162 reg, temp);
163 return -EIO;
164 } else if (temp & bit)
165 return 0;
166 udelay(UDELAY_DELAY);
167 count--;
169 QPRINTK(qdev, PROBE, ALERT,
170 "Timed out waiting for reg %x to come ready.\n", reg);
171 return -ETIMEDOUT;
174 /* The CFG register is used to download TX and RX control blocks
175 * to the chip. This function waits for an operation to complete.
177 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
179 int count = UDELAY_COUNT;
180 u32 temp;
182 while (count) {
183 temp = ql_read32(qdev, CFG);
184 if (temp & CFG_LE)
185 return -EIO;
186 if (!(temp & bit))
187 return 0;
188 udelay(UDELAY_DELAY);
189 count--;
191 return -ETIMEDOUT;
195 /* Used to issue init control blocks to hw. Maps control block,
196 * sets address, triggers download, waits for completion.
198 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
199 u16 q_id)
201 u64 map;
202 int status = 0;
203 int direction;
204 u32 mask;
205 u32 value;
207 direction =
208 (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
209 PCI_DMA_FROMDEVICE;
211 map = pci_map_single(qdev->pdev, ptr, size, direction);
212 if (pci_dma_mapping_error(qdev->pdev, map)) {
213 QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
214 return -ENOMEM;
217 status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
218 if (status)
219 return status;
221 status = ql_wait_cfg(qdev, bit);
222 if (status) {
223 QPRINTK(qdev, IFUP, ERR,
224 "Timed out waiting for CFG to come ready.\n");
225 goto exit;
228 ql_write32(qdev, ICB_L, (u32) map);
229 ql_write32(qdev, ICB_H, (u32) (map >> 32));
231 mask = CFG_Q_MASK | (bit << 16);
232 value = bit | (q_id << CFG_Q_SHIFT);
233 ql_write32(qdev, CFG, (mask | value));
236 * Wait for the bit to clear after signaling hw.
238 status = ql_wait_cfg(qdev, bit);
239 exit:
240 ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
241 pci_unmap_single(qdev->pdev, map, size, direction);
242 return status;
245 /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
246 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
247 u32 *value)
249 u32 offset = 0;
250 int status;
252 switch (type) {
253 case MAC_ADDR_TYPE_MULTI_MAC:
254 case MAC_ADDR_TYPE_CAM_MAC:
256 status =
257 ql_wait_reg_rdy(qdev,
258 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
259 if (status)
260 goto exit;
261 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
262 (index << MAC_ADDR_IDX_SHIFT) | /* index */
263 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
264 status =
265 ql_wait_reg_rdy(qdev,
266 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
267 if (status)
268 goto exit;
269 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
270 status =
271 ql_wait_reg_rdy(qdev,
272 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
273 if (status)
274 goto exit;
275 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
276 (index << MAC_ADDR_IDX_SHIFT) | /* index */
277 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
278 status =
279 ql_wait_reg_rdy(qdev,
280 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
281 if (status)
282 goto exit;
283 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
284 if (type == MAC_ADDR_TYPE_CAM_MAC) {
285 status =
286 ql_wait_reg_rdy(qdev,
287 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
288 if (status)
289 goto exit;
290 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
291 (index << MAC_ADDR_IDX_SHIFT) | /* index */
292 MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
293 status =
294 ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
295 MAC_ADDR_MR, 0);
296 if (status)
297 goto exit;
298 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
300 break;
302 case MAC_ADDR_TYPE_VLAN:
303 case MAC_ADDR_TYPE_MULTI_FLTR:
304 default:
305 QPRINTK(qdev, IFUP, CRIT,
306 "Address type %d not yet supported.\n", type);
307 status = -EPERM;
309 exit:
310 return status;
313 /* Set up a MAC, multicast or VLAN address for the
314 * inbound frame matching.
316 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
317 u16 index)
319 u32 offset = 0;
320 int status = 0;
322 switch (type) {
323 case MAC_ADDR_TYPE_MULTI_MAC:
324 case MAC_ADDR_TYPE_CAM_MAC:
326 u32 cam_output;
327 u32 upper = (addr[0] << 8) | addr[1];
328 u32 lower =
329 (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
330 (addr[5]);
332 QPRINTK(qdev, IFUP, DEBUG,
333 "Adding %s address %pM"
334 " at index %d in the CAM.\n",
335 ((type ==
336 MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
337 "UNICAST"), addr, index);
339 status =
340 ql_wait_reg_rdy(qdev,
341 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
342 if (status)
343 goto exit;
344 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
345 (index << MAC_ADDR_IDX_SHIFT) | /* index */
346 type); /* type */
347 ql_write32(qdev, MAC_ADDR_DATA, lower);
348 status =
349 ql_wait_reg_rdy(qdev,
350 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
351 if (status)
352 goto exit;
353 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
354 (index << MAC_ADDR_IDX_SHIFT) | /* index */
355 type); /* type */
356 ql_write32(qdev, MAC_ADDR_DATA, upper);
357 status =
358 ql_wait_reg_rdy(qdev,
359 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
360 if (status)
361 goto exit;
362 ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
363 (index << MAC_ADDR_IDX_SHIFT) | /* index */
364 type); /* type */
365 /* This field should also include the queue id
366 and possibly the function id. Right now we hardcode
367 the route field to NIC core.
369 if (type == MAC_ADDR_TYPE_CAM_MAC) {
370 cam_output = (CAM_OUT_ROUTE_NIC |
371 (qdev->
372 func << CAM_OUT_FUNC_SHIFT) |
373 (0 << CAM_OUT_CQ_ID_SHIFT));
374 if (qdev->vlgrp)
375 cam_output |= CAM_OUT_RV;
376 /* route to NIC core */
377 ql_write32(qdev, MAC_ADDR_DATA, cam_output);
379 break;
381 case MAC_ADDR_TYPE_VLAN:
383 u32 enable_bit = *((u32 *) &addr[0]);
384 /* For VLAN, the addr actually holds a bit that
385 * either enables or disables the vlan id we are
386 * addressing. It's either MAC_ADDR_E on or off.
387 * That's bit-27 we're talking about.
389 QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
390 (enable_bit ? "Adding" : "Removing"),
391 index, (enable_bit ? "to" : "from"));
393 status =
394 ql_wait_reg_rdy(qdev,
395 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
396 if (status)
397 goto exit;
398 ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
399 (index << MAC_ADDR_IDX_SHIFT) | /* index */
400 type | /* type */
401 enable_bit); /* enable/disable */
402 break;
404 case MAC_ADDR_TYPE_MULTI_FLTR:
405 default:
406 QPRINTK(qdev, IFUP, CRIT,
407 "Address type %d not yet supported.\n", type);
408 status = -EPERM;
410 exit:
411 return status;
414 /* Set or clear MAC address in hardware. We sometimes
415 * have to clear it to prevent wrong frame routing
416 * especially in a bonding environment.
418 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
420 int status;
421 char zero_mac_addr[ETH_ALEN];
422 char *addr;
424 if (set) {
425 addr = &qdev->ndev->dev_addr[0];
426 QPRINTK(qdev, IFUP, DEBUG,
427 "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
428 addr[0], addr[1], addr[2], addr[3],
429 addr[4], addr[5]);
430 } else {
431 memset(zero_mac_addr, 0, ETH_ALEN);
432 addr = &zero_mac_addr[0];
433 QPRINTK(qdev, IFUP, DEBUG,
434 "Clearing MAC address on %s\n",
435 qdev->ndev->name);
437 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
438 if (status)
439 return status;
440 status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
441 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
442 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
443 if (status)
444 QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
445 "address.\n");
446 return status;
449 void ql_link_on(struct ql_adapter *qdev)
451 QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
452 qdev->ndev->name);
453 netif_carrier_on(qdev->ndev);
454 ql_set_mac_addr(qdev, 1);
457 void ql_link_off(struct ql_adapter *qdev)
459 QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
460 qdev->ndev->name);
461 netif_carrier_off(qdev->ndev);
462 ql_set_mac_addr(qdev, 0);
465 /* Get a specific frame routing value from the CAM.
466 * Used for debug and reg dump.
468 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
470 int status = 0;
472 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
473 if (status)
474 goto exit;
476 ql_write32(qdev, RT_IDX,
477 RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
478 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
479 if (status)
480 goto exit;
481 *value = ql_read32(qdev, RT_DATA);
482 exit:
483 return status;
486 /* The NIC function for this chip has 16 routing indexes. Each one can be used
487 * to route different frame types to various inbound queues. We send broadcast/
488 * multicast/error frames to the default queue for slow handling,
489 * and CAM hit/RSS frames to the fast handling queues.
491 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
492 int enable)
494 int status = -EINVAL; /* Return error if no mask match. */
495 u32 value = 0;
497 QPRINTK(qdev, IFUP, DEBUG,
498 "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
499 (enable ? "Adding" : "Removing"),
500 ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
501 ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
502 ((index ==
503 RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
504 ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
505 ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
506 ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
507 ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
508 ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
509 ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
510 ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
511 ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
512 ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
513 ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
514 ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
515 ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
516 ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
517 (enable ? "to" : "from"));
519 switch (mask) {
520 case RT_IDX_CAM_HIT:
522 value = RT_IDX_DST_CAM_Q | /* dest */
523 RT_IDX_TYPE_NICQ | /* type */
524 (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
525 break;
527 case RT_IDX_VALID: /* Promiscuous Mode frames. */
529 value = RT_IDX_DST_DFLT_Q | /* dest */
530 RT_IDX_TYPE_NICQ | /* type */
531 (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
532 break;
534 case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
536 value = RT_IDX_DST_DFLT_Q | /* dest */
537 RT_IDX_TYPE_NICQ | /* type */
538 (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
539 break;
541 case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
543 value = RT_IDX_DST_DFLT_Q | /* dest */
544 RT_IDX_TYPE_NICQ | /* type */
545 (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
546 break;
548 case RT_IDX_MCAST: /* Pass up All Multicast frames. */
550 value = RT_IDX_DST_CAM_Q | /* dest */
551 RT_IDX_TYPE_NICQ | /* type */
552 (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
553 break;
555 case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
557 value = RT_IDX_DST_CAM_Q | /* dest */
558 RT_IDX_TYPE_NICQ | /* type */
559 (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
560 break;
562 case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
564 value = RT_IDX_DST_RSS | /* dest */
565 RT_IDX_TYPE_NICQ | /* type */
566 (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
567 break;
569 case 0: /* Clear the E-bit on an entry. */
571 value = RT_IDX_DST_DFLT_Q | /* dest */
572 RT_IDX_TYPE_NICQ | /* type */
573 (index << RT_IDX_IDX_SHIFT);/* index */
574 break;
576 default:
577 QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
578 mask);
579 status = -EPERM;
580 goto exit;
583 if (value) {
584 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
585 if (status)
586 goto exit;
587 value |= (enable ? RT_IDX_E : 0);
588 ql_write32(qdev, RT_IDX, value);
589 ql_write32(qdev, RT_DATA, enable ? mask : 0);
591 exit:
592 return status;
595 static void ql_enable_interrupts(struct ql_adapter *qdev)
597 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
600 static void ql_disable_interrupts(struct ql_adapter *qdev)
602 ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
605 /* If we're running with multiple MSI-X vectors then we enable on the fly.
606 * Otherwise, we may have multiple outstanding workers and don't want to
607 * enable until the last one finishes. In this case, the irq_cnt gets
608 * incremented everytime we queue a worker and decremented everytime
609 * a worker finishes. Once it hits zero we enable the interrupt.
611 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
613 u32 var = 0;
614 unsigned long hw_flags = 0;
615 struct intr_context *ctx = qdev->intr_context + intr;
617 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
618 /* Always enable if we're MSIX multi interrupts and
619 * it's not the default (zeroeth) interrupt.
621 ql_write32(qdev, INTR_EN,
622 ctx->intr_en_mask);
623 var = ql_read32(qdev, STS);
624 return var;
627 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
628 if (atomic_dec_and_test(&ctx->irq_cnt)) {
629 ql_write32(qdev, INTR_EN,
630 ctx->intr_en_mask);
631 var = ql_read32(qdev, STS);
633 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
634 return var;
637 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
639 u32 var = 0;
640 struct intr_context *ctx;
642 /* HW disables for us if we're MSIX multi interrupts and
643 * it's not the default (zeroeth) interrupt.
645 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
646 return 0;
648 ctx = qdev->intr_context + intr;
649 spin_lock(&qdev->hw_lock);
650 if (!atomic_read(&ctx->irq_cnt)) {
651 ql_write32(qdev, INTR_EN,
652 ctx->intr_dis_mask);
653 var = ql_read32(qdev, STS);
655 atomic_inc(&ctx->irq_cnt);
656 spin_unlock(&qdev->hw_lock);
657 return var;
660 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
662 int i;
663 for (i = 0; i < qdev->intr_count; i++) {
664 /* The enable call does a atomic_dec_and_test
665 * and enables only if the result is zero.
666 * So we precharge it here.
668 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
669 i == 0))
670 atomic_set(&qdev->intr_context[i].irq_cnt, 1);
671 ql_enable_completion_interrupt(qdev, i);
676 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
678 int status, i;
679 u16 csum = 0;
680 __le16 *flash = (__le16 *)&qdev->flash;
682 status = strncmp((char *)&qdev->flash, str, 4);
683 if (status) {
684 QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
685 return status;
688 for (i = 0; i < size; i++)
689 csum += le16_to_cpu(*flash++);
691 if (csum)
692 QPRINTK(qdev, IFUP, ERR,
693 "Invalid flash checksum, csum = 0x%.04x.\n", csum);
695 return csum;
698 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
700 int status = 0;
701 /* wait for reg to come ready */
702 status = ql_wait_reg_rdy(qdev,
703 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
704 if (status)
705 goto exit;
706 /* set up for reg read */
707 ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
708 /* wait for reg to come ready */
709 status = ql_wait_reg_rdy(qdev,
710 FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
711 if (status)
712 goto exit;
713 /* This data is stored on flash as an array of
714 * __le32. Since ql_read32() returns cpu endian
715 * we need to swap it back.
717 *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
718 exit:
719 return status;
722 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
724 u32 i, size;
725 int status;
726 __le32 *p = (__le32 *)&qdev->flash;
727 u32 offset;
728 u8 mac_addr[6];
730 /* Get flash offset for function and adjust
731 * for dword access.
733 if (!qdev->port)
734 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
735 else
736 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
738 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
739 return -ETIMEDOUT;
741 size = sizeof(struct flash_params_8000) / sizeof(u32);
742 for (i = 0; i < size; i++, p++) {
743 status = ql_read_flash_word(qdev, i+offset, p);
744 if (status) {
745 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
746 goto exit;
750 status = ql_validate_flash(qdev,
751 sizeof(struct flash_params_8000) / sizeof(u16),
752 "8000");
753 if (status) {
754 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
755 status = -EINVAL;
756 goto exit;
759 /* Extract either manufacturer or BOFM modified
760 * MAC address.
762 if (qdev->flash.flash_params_8000.data_type1 == 2)
763 memcpy(mac_addr,
764 qdev->flash.flash_params_8000.mac_addr1,
765 qdev->ndev->addr_len);
766 else
767 memcpy(mac_addr,
768 qdev->flash.flash_params_8000.mac_addr,
769 qdev->ndev->addr_len);
771 if (!is_valid_ether_addr(mac_addr)) {
772 QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
773 status = -EINVAL;
774 goto exit;
777 memcpy(qdev->ndev->dev_addr,
778 mac_addr,
779 qdev->ndev->addr_len);
781 exit:
782 ql_sem_unlock(qdev, SEM_FLASH_MASK);
783 return status;
786 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
788 int i;
789 int status;
790 __le32 *p = (__le32 *)&qdev->flash;
791 u32 offset = 0;
792 u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
794 /* Second function's parameters follow the first
795 * function's.
797 if (qdev->port)
798 offset = size;
800 if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
801 return -ETIMEDOUT;
803 for (i = 0; i < size; i++, p++) {
804 status = ql_read_flash_word(qdev, i+offset, p);
805 if (status) {
806 QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
807 goto exit;
812 status = ql_validate_flash(qdev,
813 sizeof(struct flash_params_8012) / sizeof(u16),
814 "8012");
815 if (status) {
816 QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
817 status = -EINVAL;
818 goto exit;
821 if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
822 status = -EINVAL;
823 goto exit;
826 memcpy(qdev->ndev->dev_addr,
827 qdev->flash.flash_params_8012.mac_addr,
828 qdev->ndev->addr_len);
830 exit:
831 ql_sem_unlock(qdev, SEM_FLASH_MASK);
832 return status;
835 /* xgmac register are located behind the xgmac_addr and xgmac_data
836 * register pair. Each read/write requires us to wait for the ready
837 * bit before reading/writing the data.
839 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
841 int status;
842 /* wait for reg to come ready */
843 status = ql_wait_reg_rdy(qdev,
844 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
845 if (status)
846 return status;
847 /* write the data to the data reg */
848 ql_write32(qdev, XGMAC_DATA, data);
849 /* trigger the write */
850 ql_write32(qdev, XGMAC_ADDR, reg);
851 return status;
854 /* xgmac register are located behind the xgmac_addr and xgmac_data
855 * register pair. Each read/write requires us to wait for the ready
856 * bit before reading/writing the data.
858 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
860 int status = 0;
861 /* wait for reg to come ready */
862 status = ql_wait_reg_rdy(qdev,
863 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
864 if (status)
865 goto exit;
866 /* set up for reg read */
867 ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
868 /* wait for reg to come ready */
869 status = ql_wait_reg_rdy(qdev,
870 XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
871 if (status)
872 goto exit;
873 /* get the data */
874 *data = ql_read32(qdev, XGMAC_DATA);
875 exit:
876 return status;
879 /* This is used for reading the 64-bit statistics regs. */
880 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
882 int status = 0;
883 u32 hi = 0;
884 u32 lo = 0;
886 status = ql_read_xgmac_reg(qdev, reg, &lo);
887 if (status)
888 goto exit;
890 status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
891 if (status)
892 goto exit;
894 *data = (u64) lo | ((u64) hi << 32);
896 exit:
897 return status;
900 static int ql_8000_port_initialize(struct ql_adapter *qdev)
902 int status;
904 * Get MPI firmware version for driver banner
905 * and ethool info.
907 status = ql_mb_about_fw(qdev);
908 if (status)
909 goto exit;
910 status = ql_mb_get_fw_state(qdev);
911 if (status)
912 goto exit;
913 /* Wake up a worker to get/set the TX/RX frame sizes. */
914 queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
915 exit:
916 return status;
919 /* Take the MAC Core out of reset.
920 * Enable statistics counting.
921 * Take the transmitter/receiver out of reset.
922 * This functionality may be done in the MPI firmware at a
923 * later date.
925 static int ql_8012_port_initialize(struct ql_adapter *qdev)
927 int status = 0;
928 u32 data;
930 if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
931 /* Another function has the semaphore, so
932 * wait for the port init bit to come ready.
934 QPRINTK(qdev, LINK, INFO,
935 "Another function has the semaphore, so wait for the port init bit to come ready.\n");
936 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
937 if (status) {
938 QPRINTK(qdev, LINK, CRIT,
939 "Port initialize timed out.\n");
941 return status;
944 QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
945 /* Set the core reset. */
946 status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
947 if (status)
948 goto end;
949 data |= GLOBAL_CFG_RESET;
950 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
951 if (status)
952 goto end;
954 /* Clear the core reset and turn on jumbo for receiver. */
955 data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
956 data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
957 data |= GLOBAL_CFG_TX_STAT_EN;
958 data |= GLOBAL_CFG_RX_STAT_EN;
959 status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
960 if (status)
961 goto end;
963 /* Enable transmitter, and clear it's reset. */
964 status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
965 if (status)
966 goto end;
967 data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
968 data |= TX_CFG_EN; /* Enable the transmitter. */
969 status = ql_write_xgmac_reg(qdev, TX_CFG, data);
970 if (status)
971 goto end;
973 /* Enable receiver and clear it's reset. */
974 status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
975 if (status)
976 goto end;
977 data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
978 data |= RX_CFG_EN; /* Enable the receiver. */
979 status = ql_write_xgmac_reg(qdev, RX_CFG, data);
980 if (status)
981 goto end;
983 /* Turn on jumbo. */
984 status =
985 ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
986 if (status)
987 goto end;
988 status =
989 ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
990 if (status)
991 goto end;
993 /* Signal to the world that the port is enabled. */
994 ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
995 end:
996 ql_sem_unlock(qdev, qdev->xg_sem_mask);
997 return status;
1000 /* Get the next large buffer. */
1001 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1003 struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1004 rx_ring->lbq_curr_idx++;
1005 if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1006 rx_ring->lbq_curr_idx = 0;
1007 rx_ring->lbq_free_cnt++;
1008 return lbq_desc;
1011 /* Get the next small buffer. */
1012 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1014 struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1015 rx_ring->sbq_curr_idx++;
1016 if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1017 rx_ring->sbq_curr_idx = 0;
1018 rx_ring->sbq_free_cnt++;
1019 return sbq_desc;
1022 /* Update an rx ring index. */
1023 static void ql_update_cq(struct rx_ring *rx_ring)
1025 rx_ring->cnsmr_idx++;
1026 rx_ring->curr_entry++;
1027 if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1028 rx_ring->cnsmr_idx = 0;
1029 rx_ring->curr_entry = rx_ring->cq_base;
1033 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1035 ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1038 /* Process (refill) a large buffer queue. */
1039 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1041 u32 clean_idx = rx_ring->lbq_clean_idx;
1042 u32 start_idx = clean_idx;
1043 struct bq_desc *lbq_desc;
1044 u64 map;
1045 int i;
1047 while (rx_ring->lbq_free_cnt > 16) {
1048 for (i = 0; i < 16; i++) {
1049 QPRINTK(qdev, RX_STATUS, DEBUG,
1050 "lbq: try cleaning clean_idx = %d.\n",
1051 clean_idx);
1052 lbq_desc = &rx_ring->lbq[clean_idx];
1053 if (lbq_desc->p.lbq_page == NULL) {
1054 QPRINTK(qdev, RX_STATUS, DEBUG,
1055 "lbq: getting new page for index %d.\n",
1056 lbq_desc->index);
1057 lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
1058 if (lbq_desc->p.lbq_page == NULL) {
1059 rx_ring->lbq_clean_idx = clean_idx;
1060 QPRINTK(qdev, RX_STATUS, ERR,
1061 "Couldn't get a page.\n");
1062 return;
1064 map = pci_map_page(qdev->pdev,
1065 lbq_desc->p.lbq_page,
1066 0, PAGE_SIZE,
1067 PCI_DMA_FROMDEVICE);
1068 if (pci_dma_mapping_error(qdev->pdev, map)) {
1069 rx_ring->lbq_clean_idx = clean_idx;
1070 put_page(lbq_desc->p.lbq_page);
1071 lbq_desc->p.lbq_page = NULL;
1072 QPRINTK(qdev, RX_STATUS, ERR,
1073 "PCI mapping failed.\n");
1074 return;
1076 pci_unmap_addr_set(lbq_desc, mapaddr, map);
1077 pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
1078 *lbq_desc->addr = cpu_to_le64(map);
1080 clean_idx++;
1081 if (clean_idx == rx_ring->lbq_len)
1082 clean_idx = 0;
1085 rx_ring->lbq_clean_idx = clean_idx;
1086 rx_ring->lbq_prod_idx += 16;
1087 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1088 rx_ring->lbq_prod_idx = 0;
1089 rx_ring->lbq_free_cnt -= 16;
1092 if (start_idx != clean_idx) {
1093 QPRINTK(qdev, RX_STATUS, DEBUG,
1094 "lbq: updating prod idx = %d.\n",
1095 rx_ring->lbq_prod_idx);
1096 ql_write_db_reg(rx_ring->lbq_prod_idx,
1097 rx_ring->lbq_prod_idx_db_reg);
1101 /* Process (refill) a small buffer queue. */
1102 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1104 u32 clean_idx = rx_ring->sbq_clean_idx;
1105 u32 start_idx = clean_idx;
1106 struct bq_desc *sbq_desc;
1107 u64 map;
1108 int i;
1110 while (rx_ring->sbq_free_cnt > 16) {
1111 for (i = 0; i < 16; i++) {
1112 sbq_desc = &rx_ring->sbq[clean_idx];
1113 QPRINTK(qdev, RX_STATUS, DEBUG,
1114 "sbq: try cleaning clean_idx = %d.\n",
1115 clean_idx);
1116 if (sbq_desc->p.skb == NULL) {
1117 QPRINTK(qdev, RX_STATUS, DEBUG,
1118 "sbq: getting new skb for index %d.\n",
1119 sbq_desc->index);
1120 sbq_desc->p.skb =
1121 netdev_alloc_skb(qdev->ndev,
1122 rx_ring->sbq_buf_size);
1123 if (sbq_desc->p.skb == NULL) {
1124 QPRINTK(qdev, PROBE, ERR,
1125 "Couldn't get an skb.\n");
1126 rx_ring->sbq_clean_idx = clean_idx;
1127 return;
1129 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1130 map = pci_map_single(qdev->pdev,
1131 sbq_desc->p.skb->data,
1132 rx_ring->sbq_buf_size /
1133 2, PCI_DMA_FROMDEVICE);
1134 if (pci_dma_mapping_error(qdev->pdev, map)) {
1135 QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
1136 rx_ring->sbq_clean_idx = clean_idx;
1137 dev_kfree_skb_any(sbq_desc->p.skb);
1138 sbq_desc->p.skb = NULL;
1139 return;
1141 pci_unmap_addr_set(sbq_desc, mapaddr, map);
1142 pci_unmap_len_set(sbq_desc, maplen,
1143 rx_ring->sbq_buf_size / 2);
1144 *sbq_desc->addr = cpu_to_le64(map);
1147 clean_idx++;
1148 if (clean_idx == rx_ring->sbq_len)
1149 clean_idx = 0;
1151 rx_ring->sbq_clean_idx = clean_idx;
1152 rx_ring->sbq_prod_idx += 16;
1153 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1154 rx_ring->sbq_prod_idx = 0;
1155 rx_ring->sbq_free_cnt -= 16;
1158 if (start_idx != clean_idx) {
1159 QPRINTK(qdev, RX_STATUS, DEBUG,
1160 "sbq: updating prod idx = %d.\n",
1161 rx_ring->sbq_prod_idx);
1162 ql_write_db_reg(rx_ring->sbq_prod_idx,
1163 rx_ring->sbq_prod_idx_db_reg);
1167 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1168 struct rx_ring *rx_ring)
1170 ql_update_sbq(qdev, rx_ring);
1171 ql_update_lbq(qdev, rx_ring);
1174 /* Unmaps tx buffers. Can be called from send() if a pci mapping
1175 * fails at some stage, or from the interrupt when a tx completes.
1177 static void ql_unmap_send(struct ql_adapter *qdev,
1178 struct tx_ring_desc *tx_ring_desc, int mapped)
1180 int i;
1181 for (i = 0; i < mapped; i++) {
1182 if (i == 0 || (i == 7 && mapped > 7)) {
1184 * Unmap the skb->data area, or the
1185 * external sglist (AKA the Outbound
1186 * Address List (OAL)).
1187 * If its the zeroeth element, then it's
1188 * the skb->data area. If it's the 7th
1189 * element and there is more than 6 frags,
1190 * then its an OAL.
1192 if (i == 7) {
1193 QPRINTK(qdev, TX_DONE, DEBUG,
1194 "unmapping OAL area.\n");
1196 pci_unmap_single(qdev->pdev,
1197 pci_unmap_addr(&tx_ring_desc->map[i],
1198 mapaddr),
1199 pci_unmap_len(&tx_ring_desc->map[i],
1200 maplen),
1201 PCI_DMA_TODEVICE);
1202 } else {
1203 QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
1205 pci_unmap_page(qdev->pdev,
1206 pci_unmap_addr(&tx_ring_desc->map[i],
1207 mapaddr),
1208 pci_unmap_len(&tx_ring_desc->map[i],
1209 maplen), PCI_DMA_TODEVICE);
1215 /* Map the buffers for this transmit. This will return
1216 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1218 static int ql_map_send(struct ql_adapter *qdev,
1219 struct ob_mac_iocb_req *mac_iocb_ptr,
1220 struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1222 int len = skb_headlen(skb);
1223 dma_addr_t map;
1224 int frag_idx, err, map_idx = 0;
1225 struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1226 int frag_cnt = skb_shinfo(skb)->nr_frags;
1228 if (frag_cnt) {
1229 QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
1232 * Map the skb buffer first.
1234 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1236 err = pci_dma_mapping_error(qdev->pdev, map);
1237 if (err) {
1238 QPRINTK(qdev, TX_QUEUED, ERR,
1239 "PCI mapping failed with error: %d\n", err);
1241 return NETDEV_TX_BUSY;
1244 tbd->len = cpu_to_le32(len);
1245 tbd->addr = cpu_to_le64(map);
1246 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1247 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1248 map_idx++;
1251 * This loop fills the remainder of the 8 address descriptors
1252 * in the IOCB. If there are more than 7 fragments, then the
1253 * eighth address desc will point to an external list (OAL).
1254 * When this happens, the remainder of the frags will be stored
1255 * in this list.
1257 for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1258 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1259 tbd++;
1260 if (frag_idx == 6 && frag_cnt > 7) {
1261 /* Let's tack on an sglist.
1262 * Our control block will now
1263 * look like this:
1264 * iocb->seg[0] = skb->data
1265 * iocb->seg[1] = frag[0]
1266 * iocb->seg[2] = frag[1]
1267 * iocb->seg[3] = frag[2]
1268 * iocb->seg[4] = frag[3]
1269 * iocb->seg[5] = frag[4]
1270 * iocb->seg[6] = frag[5]
1271 * iocb->seg[7] = ptr to OAL (external sglist)
1272 * oal->seg[0] = frag[6]
1273 * oal->seg[1] = frag[7]
1274 * oal->seg[2] = frag[8]
1275 * oal->seg[3] = frag[9]
1276 * oal->seg[4] = frag[10]
1277 * etc...
1279 /* Tack on the OAL in the eighth segment of IOCB. */
1280 map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1281 sizeof(struct oal),
1282 PCI_DMA_TODEVICE);
1283 err = pci_dma_mapping_error(qdev->pdev, map);
1284 if (err) {
1285 QPRINTK(qdev, TX_QUEUED, ERR,
1286 "PCI mapping outbound address list with error: %d\n",
1287 err);
1288 goto map_error;
1291 tbd->addr = cpu_to_le64(map);
1293 * The length is the number of fragments
1294 * that remain to be mapped times the length
1295 * of our sglist (OAL).
1297 tbd->len =
1298 cpu_to_le32((sizeof(struct tx_buf_desc) *
1299 (frag_cnt - frag_idx)) | TX_DESC_C);
1300 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1301 map);
1302 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1303 sizeof(struct oal));
1304 tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1305 map_idx++;
1308 map =
1309 pci_map_page(qdev->pdev, frag->page,
1310 frag->page_offset, frag->size,
1311 PCI_DMA_TODEVICE);
1313 err = pci_dma_mapping_error(qdev->pdev, map);
1314 if (err) {
1315 QPRINTK(qdev, TX_QUEUED, ERR,
1316 "PCI mapping frags failed with error: %d.\n",
1317 err);
1318 goto map_error;
1321 tbd->addr = cpu_to_le64(map);
1322 tbd->len = cpu_to_le32(frag->size);
1323 pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1324 pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1325 frag->size);
1328 /* Save the number of segments we've mapped. */
1329 tx_ring_desc->map_cnt = map_idx;
1330 /* Terminate the last segment. */
1331 tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1332 return NETDEV_TX_OK;
1334 map_error:
1336 * If the first frag mapping failed, then i will be zero.
1337 * This causes the unmap of the skb->data area. Otherwise
1338 * we pass in the number of frags that mapped successfully
1339 * so they can be umapped.
1341 ql_unmap_send(qdev, tx_ring_desc, map_idx);
1342 return NETDEV_TX_BUSY;
1345 static void ql_realign_skb(struct sk_buff *skb, int len)
1347 void *temp_addr = skb->data;
1349 /* Undo the skb_reserve(skb,32) we did before
1350 * giving to hardware, and realign data on
1351 * a 2-byte boundary.
1353 skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1354 skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1355 skb_copy_to_linear_data(skb, temp_addr,
1356 (unsigned int)len);
1360 * This function builds an skb for the given inbound
1361 * completion. It will be rewritten for readability in the near
1362 * future, but for not it works well.
1364 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1365 struct rx_ring *rx_ring,
1366 struct ib_mac_iocb_rsp *ib_mac_rsp)
1368 struct bq_desc *lbq_desc;
1369 struct bq_desc *sbq_desc;
1370 struct sk_buff *skb = NULL;
1371 u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1372 u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1375 * Handle the header buffer if present.
1377 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1378 ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1379 QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
1381 * Headers fit nicely into a small buffer.
1383 sbq_desc = ql_get_curr_sbuf(rx_ring);
1384 pci_unmap_single(qdev->pdev,
1385 pci_unmap_addr(sbq_desc, mapaddr),
1386 pci_unmap_len(sbq_desc, maplen),
1387 PCI_DMA_FROMDEVICE);
1388 skb = sbq_desc->p.skb;
1389 ql_realign_skb(skb, hdr_len);
1390 skb_put(skb, hdr_len);
1391 sbq_desc->p.skb = NULL;
1395 * Handle the data buffer(s).
1397 if (unlikely(!length)) { /* Is there data too? */
1398 QPRINTK(qdev, RX_STATUS, DEBUG,
1399 "No Data buffer in this packet.\n");
1400 return skb;
1403 if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1404 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1405 QPRINTK(qdev, RX_STATUS, DEBUG,
1406 "Headers in small, data of %d bytes in small, combine them.\n", length);
1408 * Data is less than small buffer size so it's
1409 * stuffed in a small buffer.
1410 * For this case we append the data
1411 * from the "data" small buffer to the "header" small
1412 * buffer.
1414 sbq_desc = ql_get_curr_sbuf(rx_ring);
1415 pci_dma_sync_single_for_cpu(qdev->pdev,
1416 pci_unmap_addr
1417 (sbq_desc, mapaddr),
1418 pci_unmap_len
1419 (sbq_desc, maplen),
1420 PCI_DMA_FROMDEVICE);
1421 memcpy(skb_put(skb, length),
1422 sbq_desc->p.skb->data, length);
1423 pci_dma_sync_single_for_device(qdev->pdev,
1424 pci_unmap_addr
1425 (sbq_desc,
1426 mapaddr),
1427 pci_unmap_len
1428 (sbq_desc,
1429 maplen),
1430 PCI_DMA_FROMDEVICE);
1431 } else {
1432 QPRINTK(qdev, RX_STATUS, DEBUG,
1433 "%d bytes in a single small buffer.\n", length);
1434 sbq_desc = ql_get_curr_sbuf(rx_ring);
1435 skb = sbq_desc->p.skb;
1436 ql_realign_skb(skb, length);
1437 skb_put(skb, length);
1438 pci_unmap_single(qdev->pdev,
1439 pci_unmap_addr(sbq_desc,
1440 mapaddr),
1441 pci_unmap_len(sbq_desc,
1442 maplen),
1443 PCI_DMA_FROMDEVICE);
1444 sbq_desc->p.skb = NULL;
1446 } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1447 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1448 QPRINTK(qdev, RX_STATUS, DEBUG,
1449 "Header in small, %d bytes in large. Chain large to small!\n", length);
1451 * The data is in a single large buffer. We
1452 * chain it to the header buffer's skb and let
1453 * it rip.
1455 lbq_desc = ql_get_curr_lbuf(rx_ring);
1456 pci_unmap_page(qdev->pdev,
1457 pci_unmap_addr(lbq_desc,
1458 mapaddr),
1459 pci_unmap_len(lbq_desc, maplen),
1460 PCI_DMA_FROMDEVICE);
1461 QPRINTK(qdev, RX_STATUS, DEBUG,
1462 "Chaining page to skb.\n");
1463 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1464 0, length);
1465 skb->len += length;
1466 skb->data_len += length;
1467 skb->truesize += length;
1468 lbq_desc->p.lbq_page = NULL;
1469 } else {
1471 * The headers and data are in a single large buffer. We
1472 * copy it to a new skb and let it go. This can happen with
1473 * jumbo mtu on a non-TCP/UDP frame.
1475 lbq_desc = ql_get_curr_lbuf(rx_ring);
1476 skb = netdev_alloc_skb(qdev->ndev, length);
1477 if (skb == NULL) {
1478 QPRINTK(qdev, PROBE, DEBUG,
1479 "No skb available, drop the packet.\n");
1480 return NULL;
1482 pci_unmap_page(qdev->pdev,
1483 pci_unmap_addr(lbq_desc,
1484 mapaddr),
1485 pci_unmap_len(lbq_desc, maplen),
1486 PCI_DMA_FROMDEVICE);
1487 skb_reserve(skb, NET_IP_ALIGN);
1488 QPRINTK(qdev, RX_STATUS, DEBUG,
1489 "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
1490 skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
1491 0, length);
1492 skb->len += length;
1493 skb->data_len += length;
1494 skb->truesize += length;
1495 length -= length;
1496 lbq_desc->p.lbq_page = NULL;
1497 __pskb_pull_tail(skb,
1498 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1499 VLAN_ETH_HLEN : ETH_HLEN);
1501 } else {
1503 * The data is in a chain of large buffers
1504 * pointed to by a small buffer. We loop
1505 * thru and chain them to the our small header
1506 * buffer's skb.
1507 * frags: There are 18 max frags and our small
1508 * buffer will hold 32 of them. The thing is,
1509 * we'll use 3 max for our 9000 byte jumbo
1510 * frames. If the MTU goes up we could
1511 * eventually be in trouble.
1513 int size, offset, i = 0;
1514 __le64 *bq, bq_array[8];
1515 sbq_desc = ql_get_curr_sbuf(rx_ring);
1516 pci_unmap_single(qdev->pdev,
1517 pci_unmap_addr(sbq_desc, mapaddr),
1518 pci_unmap_len(sbq_desc, maplen),
1519 PCI_DMA_FROMDEVICE);
1520 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1522 * This is an non TCP/UDP IP frame, so
1523 * the headers aren't split into a small
1524 * buffer. We have to use the small buffer
1525 * that contains our sg list as our skb to
1526 * send upstairs. Copy the sg list here to
1527 * a local buffer and use it to find the
1528 * pages to chain.
1530 QPRINTK(qdev, RX_STATUS, DEBUG,
1531 "%d bytes of headers & data in chain of large.\n", length);
1532 skb = sbq_desc->p.skb;
1533 bq = &bq_array[0];
1534 memcpy(bq, skb->data, sizeof(bq_array));
1535 sbq_desc->p.skb = NULL;
1536 skb_reserve(skb, NET_IP_ALIGN);
1537 } else {
1538 QPRINTK(qdev, RX_STATUS, DEBUG,
1539 "Headers in small, %d bytes of data in chain of large.\n", length);
1540 bq = (__le64 *)sbq_desc->p.skb->data;
1542 while (length > 0) {
1543 lbq_desc = ql_get_curr_lbuf(rx_ring);
1544 pci_unmap_page(qdev->pdev,
1545 pci_unmap_addr(lbq_desc,
1546 mapaddr),
1547 pci_unmap_len(lbq_desc,
1548 maplen),
1549 PCI_DMA_FROMDEVICE);
1550 size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
1551 offset = 0;
1553 QPRINTK(qdev, RX_STATUS, DEBUG,
1554 "Adding page %d to skb for %d bytes.\n",
1555 i, size);
1556 skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
1557 offset, size);
1558 skb->len += size;
1559 skb->data_len += size;
1560 skb->truesize += size;
1561 length -= size;
1562 lbq_desc->p.lbq_page = NULL;
1563 bq++;
1564 i++;
1566 __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
1567 VLAN_ETH_HLEN : ETH_HLEN);
1569 return skb;
1572 /* Process an inbound completion from an rx ring. */
1573 static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
1574 struct rx_ring *rx_ring,
1575 struct ib_mac_iocb_rsp *ib_mac_rsp)
1577 struct net_device *ndev = qdev->ndev;
1578 struct sk_buff *skb = NULL;
1579 u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
1580 IB_MAC_IOCB_RSP_VLAN_MASK)
1582 QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1584 skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1585 if (unlikely(!skb)) {
1586 QPRINTK(qdev, RX_STATUS, DEBUG,
1587 "No skb available, drop packet.\n");
1588 return;
1591 /* Frame error, so drop the packet. */
1592 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1593 QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
1594 ib_mac_rsp->flags2);
1595 dev_kfree_skb_any(skb);
1596 return;
1599 /* The max framesize filter on this chip is set higher than
1600 * MTU since FCoE uses 2k frames.
1602 if (skb->len > ndev->mtu + ETH_HLEN) {
1603 dev_kfree_skb_any(skb);
1604 return;
1607 prefetch(skb->data);
1608 skb->dev = ndev;
1609 if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1610 QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
1611 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1612 IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
1613 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1614 IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
1615 (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1616 IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1618 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
1619 QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
1622 skb->protocol = eth_type_trans(skb, ndev);
1623 skb->ip_summed = CHECKSUM_NONE;
1625 /* If rx checksum is on, and there are no
1626 * csum or frame errors.
1628 if (qdev->rx_csum &&
1629 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1630 /* TCP frame. */
1631 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1632 QPRINTK(qdev, RX_STATUS, DEBUG,
1633 "TCP checksum done!\n");
1634 skb->ip_summed = CHECKSUM_UNNECESSARY;
1635 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1636 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1637 /* Unfragmented ipv4 UDP frame. */
1638 struct iphdr *iph = (struct iphdr *) skb->data;
1639 if (!(iph->frag_off &
1640 cpu_to_be16(IP_MF|IP_OFFSET))) {
1641 skb->ip_summed = CHECKSUM_UNNECESSARY;
1642 QPRINTK(qdev, RX_STATUS, DEBUG,
1643 "TCP checksum done!\n");
1648 qdev->stats.rx_packets++;
1649 qdev->stats.rx_bytes += skb->len;
1650 skb_record_rx_queue(skb, rx_ring->cq_id);
1651 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
1652 if (qdev->vlgrp &&
1653 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1654 (vlan_id != 0))
1655 vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
1656 vlan_id, skb);
1657 else
1658 napi_gro_receive(&rx_ring->napi, skb);
1659 } else {
1660 if (qdev->vlgrp &&
1661 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
1662 (vlan_id != 0))
1663 vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
1664 else
1665 netif_receive_skb(skb);
1669 /* Process an outbound completion from an rx ring. */
1670 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
1671 struct ob_mac_iocb_rsp *mac_rsp)
1673 struct tx_ring *tx_ring;
1674 struct tx_ring_desc *tx_ring_desc;
1676 QL_DUMP_OB_MAC_RSP(mac_rsp);
1677 tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
1678 tx_ring_desc = &tx_ring->q[mac_rsp->tid];
1679 ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
1680 qdev->stats.tx_bytes += (tx_ring_desc->skb)->len;
1681 qdev->stats.tx_packets++;
1682 dev_kfree_skb(tx_ring_desc->skb);
1683 tx_ring_desc->skb = NULL;
1685 if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
1686 OB_MAC_IOCB_RSP_S |
1687 OB_MAC_IOCB_RSP_L |
1688 OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
1689 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
1690 QPRINTK(qdev, TX_DONE, WARNING,
1691 "Total descriptor length did not match transfer length.\n");
1693 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
1694 QPRINTK(qdev, TX_DONE, WARNING,
1695 "Frame too short to be legal, not sent.\n");
1697 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
1698 QPRINTK(qdev, TX_DONE, WARNING,
1699 "Frame too long, but sent anyway.\n");
1701 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
1702 QPRINTK(qdev, TX_DONE, WARNING,
1703 "PCI backplane error. Frame not sent.\n");
1706 atomic_inc(&tx_ring->tx_count);
1709 /* Fire up a handler to reset the MPI processor. */
1710 void ql_queue_fw_error(struct ql_adapter *qdev)
1712 ql_link_off(qdev);
1713 queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
1716 void ql_queue_asic_error(struct ql_adapter *qdev)
1718 ql_link_off(qdev);
1719 ql_disable_interrupts(qdev);
1720 /* Clear adapter up bit to signal the recovery
1721 * process that it shouldn't kill the reset worker
1722 * thread
1724 clear_bit(QL_ADAPTER_UP, &qdev->flags);
1725 queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
1728 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
1729 struct ib_ae_iocb_rsp *ib_ae_rsp)
1731 switch (ib_ae_rsp->event) {
1732 case MGMT_ERR_EVENT:
1733 QPRINTK(qdev, RX_ERR, ERR,
1734 "Management Processor Fatal Error.\n");
1735 ql_queue_fw_error(qdev);
1736 return;
1738 case CAM_LOOKUP_ERR_EVENT:
1739 QPRINTK(qdev, LINK, ERR,
1740 "Multiple CAM hits lookup occurred.\n");
1741 QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
1742 ql_queue_asic_error(qdev);
1743 return;
1745 case SOFT_ECC_ERROR_EVENT:
1746 QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
1747 ql_queue_asic_error(qdev);
1748 break;
1750 case PCI_ERR_ANON_BUF_RD:
1751 QPRINTK(qdev, RX_ERR, ERR,
1752 "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
1753 ib_ae_rsp->q_id);
1754 ql_queue_asic_error(qdev);
1755 break;
1757 default:
1758 QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
1759 ib_ae_rsp->event);
1760 ql_queue_asic_error(qdev);
1761 break;
1765 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
1767 struct ql_adapter *qdev = rx_ring->qdev;
1768 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1769 struct ob_mac_iocb_rsp *net_rsp = NULL;
1770 int count = 0;
1772 struct tx_ring *tx_ring;
1773 /* While there are entries in the completion queue. */
1774 while (prod != rx_ring->cnsmr_idx) {
1776 QPRINTK(qdev, RX_STATUS, DEBUG,
1777 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1778 prod, rx_ring->cnsmr_idx);
1780 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
1781 rmb();
1782 switch (net_rsp->opcode) {
1784 case OPCODE_OB_MAC_TSO_IOCB:
1785 case OPCODE_OB_MAC_IOCB:
1786 ql_process_mac_tx_intr(qdev, net_rsp);
1787 break;
1788 default:
1789 QPRINTK(qdev, RX_STATUS, DEBUG,
1790 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1791 net_rsp->opcode);
1793 count++;
1794 ql_update_cq(rx_ring);
1795 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1797 ql_write_cq_idx(rx_ring);
1798 tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
1799 if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
1800 net_rsp != NULL) {
1801 if (atomic_read(&tx_ring->queue_stopped) &&
1802 (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
1804 * The queue got stopped because the tx_ring was full.
1805 * Wake it up, because it's now at least 25% empty.
1807 netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
1810 return count;
1813 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
1815 struct ql_adapter *qdev = rx_ring->qdev;
1816 u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1817 struct ql_net_rsp_iocb *net_rsp;
1818 int count = 0;
1820 /* While there are entries in the completion queue. */
1821 while (prod != rx_ring->cnsmr_idx) {
1823 QPRINTK(qdev, RX_STATUS, DEBUG,
1824 "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
1825 prod, rx_ring->cnsmr_idx);
1827 net_rsp = rx_ring->curr_entry;
1828 rmb();
1829 switch (net_rsp->opcode) {
1830 case OPCODE_IB_MAC_IOCB:
1831 ql_process_mac_rx_intr(qdev, rx_ring,
1832 (struct ib_mac_iocb_rsp *)
1833 net_rsp);
1834 break;
1836 case OPCODE_IB_AE_IOCB:
1837 ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
1838 net_rsp);
1839 break;
1840 default:
1842 QPRINTK(qdev, RX_STATUS, DEBUG,
1843 "Hit default case, not handled! dropping the packet, opcode = %x.\n",
1844 net_rsp->opcode);
1847 count++;
1848 ql_update_cq(rx_ring);
1849 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
1850 if (count == budget)
1851 break;
1853 ql_update_buffer_queues(qdev, rx_ring);
1854 ql_write_cq_idx(rx_ring);
1855 return count;
1858 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
1860 struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
1861 struct ql_adapter *qdev = rx_ring->qdev;
1862 struct rx_ring *trx_ring;
1863 int i, work_done = 0;
1864 struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
1866 QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
1867 rx_ring->cq_id);
1869 /* Service the TX rings first. They start
1870 * right after the RSS rings. */
1871 for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
1872 trx_ring = &qdev->rx_ring[i];
1873 /* If this TX completion ring belongs to this vector and
1874 * it's not empty then service it.
1876 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
1877 (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
1878 trx_ring->cnsmr_idx)) {
1879 QPRINTK(qdev, INTR, DEBUG,
1880 "%s: Servicing TX completion ring %d.\n",
1881 __func__, trx_ring->cq_id);
1882 ql_clean_outbound_rx_ring(trx_ring);
1887 * Now service the RSS ring if it's active.
1889 if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
1890 rx_ring->cnsmr_idx) {
1891 QPRINTK(qdev, INTR, DEBUG,
1892 "%s: Servicing RX completion ring %d.\n",
1893 __func__, rx_ring->cq_id);
1894 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
1897 if (work_done < budget) {
1898 napi_complete(napi);
1899 ql_enable_completion_interrupt(qdev, rx_ring->irq);
1901 return work_done;
1904 static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
1906 struct ql_adapter *qdev = netdev_priv(ndev);
1908 qdev->vlgrp = grp;
1909 if (grp) {
1910 QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
1911 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
1912 NIC_RCV_CFG_VLAN_MATCH_AND_NON);
1913 } else {
1914 QPRINTK(qdev, IFUP, DEBUG,
1915 "Turning off VLAN in NIC_RCV_CFG.\n");
1916 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
1920 static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
1922 struct ql_adapter *qdev = netdev_priv(ndev);
1923 u32 enable_bit = MAC_ADDR_E;
1924 int status;
1926 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1927 if (status)
1928 return;
1929 spin_lock(&qdev->hw_lock);
1930 if (ql_set_mac_addr_reg
1931 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1932 QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
1934 spin_unlock(&qdev->hw_lock);
1935 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1938 static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
1940 struct ql_adapter *qdev = netdev_priv(ndev);
1941 u32 enable_bit = 0;
1942 int status;
1944 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
1945 if (status)
1946 return;
1948 spin_lock(&qdev->hw_lock);
1949 if (ql_set_mac_addr_reg
1950 (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
1951 QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
1953 spin_unlock(&qdev->hw_lock);
1954 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
1958 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
1959 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
1961 struct rx_ring *rx_ring = dev_id;
1962 napi_schedule(&rx_ring->napi);
1963 return IRQ_HANDLED;
1966 /* This handles a fatal error, MPI activity, and the default
1967 * rx_ring in an MSI-X multiple vector environment.
1968 * In MSI/Legacy environment it also process the rest of
1969 * the rx_rings.
1971 static irqreturn_t qlge_isr(int irq, void *dev_id)
1973 struct rx_ring *rx_ring = dev_id;
1974 struct ql_adapter *qdev = rx_ring->qdev;
1975 struct intr_context *intr_context = &qdev->intr_context[0];
1976 u32 var;
1977 int work_done = 0;
1979 spin_lock(&qdev->hw_lock);
1980 if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
1981 QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
1982 spin_unlock(&qdev->hw_lock);
1983 return IRQ_NONE;
1985 spin_unlock(&qdev->hw_lock);
1987 var = ql_disable_completion_interrupt(qdev, intr_context->intr);
1990 * Check for fatal error.
1992 if (var & STS_FE) {
1993 ql_queue_asic_error(qdev);
1994 QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
1995 var = ql_read32(qdev, ERR_STS);
1996 QPRINTK(qdev, INTR, ERR,
1997 "Resetting chip. Error Status Register = 0x%x\n", var);
1998 return IRQ_HANDLED;
2002 * Check MPI processor activity.
2004 if (var & STS_PI) {
2006 * We've got an async event or mailbox completion.
2007 * Handle it and clear the source of the interrupt.
2009 QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
2010 ql_disable_completion_interrupt(qdev, intr_context->intr);
2011 queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
2012 &qdev->mpi_work, 0);
2013 work_done++;
2017 * Get the bit-mask that shows the active queues for this
2018 * pass. Compare it to the queues that this irq services
2019 * and call napi if there's a match.
2021 var = ql_read32(qdev, ISR1);
2022 if (var & intr_context->irq_mask) {
2023 QPRINTK(qdev, INTR, INFO,
2024 "Waking handler for rx_ring[0].\n");
2025 ql_disable_completion_interrupt(qdev, intr_context->intr);
2026 napi_schedule(&rx_ring->napi);
2027 work_done++;
2029 ql_enable_completion_interrupt(qdev, intr_context->intr);
2030 return work_done ? IRQ_HANDLED : IRQ_NONE;
2033 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2036 if (skb_is_gso(skb)) {
2037 int err;
2038 if (skb_header_cloned(skb)) {
2039 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2040 if (err)
2041 return err;
2044 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2045 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2046 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2047 mac_iocb_ptr->total_hdrs_len =
2048 cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2049 mac_iocb_ptr->net_trans_offset =
2050 cpu_to_le16(skb_network_offset(skb) |
2051 skb_transport_offset(skb)
2052 << OB_MAC_TRANSPORT_HDR_SHIFT);
2053 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2054 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2055 if (likely(skb->protocol == htons(ETH_P_IP))) {
2056 struct iphdr *iph = ip_hdr(skb);
2057 iph->check = 0;
2058 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2059 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2060 iph->daddr, 0,
2061 IPPROTO_TCP,
2063 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2064 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2065 tcp_hdr(skb)->check =
2066 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2067 &ipv6_hdr(skb)->daddr,
2068 0, IPPROTO_TCP, 0);
2070 return 1;
2072 return 0;
2075 static void ql_hw_csum_setup(struct sk_buff *skb,
2076 struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2078 int len;
2079 struct iphdr *iph = ip_hdr(skb);
2080 __sum16 *check;
2081 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2082 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2083 mac_iocb_ptr->net_trans_offset =
2084 cpu_to_le16(skb_network_offset(skb) |
2085 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2087 mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2088 len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2089 if (likely(iph->protocol == IPPROTO_TCP)) {
2090 check = &(tcp_hdr(skb)->check);
2091 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2092 mac_iocb_ptr->total_hdrs_len =
2093 cpu_to_le16(skb_transport_offset(skb) +
2094 (tcp_hdr(skb)->doff << 2));
2095 } else {
2096 check = &(udp_hdr(skb)->check);
2097 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2098 mac_iocb_ptr->total_hdrs_len =
2099 cpu_to_le16(skb_transport_offset(skb) +
2100 sizeof(struct udphdr));
2102 *check = ~csum_tcpudp_magic(iph->saddr,
2103 iph->daddr, len, iph->protocol, 0);
2106 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2108 struct tx_ring_desc *tx_ring_desc;
2109 struct ob_mac_iocb_req *mac_iocb_ptr;
2110 struct ql_adapter *qdev = netdev_priv(ndev);
2111 int tso;
2112 struct tx_ring *tx_ring;
2113 u32 tx_ring_idx = (u32) skb->queue_mapping;
2115 tx_ring = &qdev->tx_ring[tx_ring_idx];
2117 if (skb_padto(skb, ETH_ZLEN))
2118 return NETDEV_TX_OK;
2120 if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2121 QPRINTK(qdev, TX_QUEUED, INFO,
2122 "%s: shutting down tx queue %d du to lack of resources.\n",
2123 __func__, tx_ring_idx);
2124 netif_stop_subqueue(ndev, tx_ring->wq_id);
2125 atomic_inc(&tx_ring->queue_stopped);
2126 return NETDEV_TX_BUSY;
2128 tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2129 mac_iocb_ptr = tx_ring_desc->queue_entry;
2130 memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2132 mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2133 mac_iocb_ptr->tid = tx_ring_desc->index;
2134 /* We use the upper 32-bits to store the tx queue for this IO.
2135 * When we get the completion we can use it to establish the context.
2137 mac_iocb_ptr->txq_idx = tx_ring_idx;
2138 tx_ring_desc->skb = skb;
2140 mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2142 if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
2143 QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
2144 vlan_tx_tag_get(skb));
2145 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2146 mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
2148 tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2149 if (tso < 0) {
2150 dev_kfree_skb_any(skb);
2151 return NETDEV_TX_OK;
2152 } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2153 ql_hw_csum_setup(skb,
2154 (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2156 if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2157 NETDEV_TX_OK) {
2158 QPRINTK(qdev, TX_QUEUED, ERR,
2159 "Could not map the segments.\n");
2160 return NETDEV_TX_BUSY;
2162 QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2163 tx_ring->prod_idx++;
2164 if (tx_ring->prod_idx == tx_ring->wq_len)
2165 tx_ring->prod_idx = 0;
2166 wmb();
2168 ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2169 QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
2170 tx_ring->prod_idx, skb->len);
2172 atomic_dec(&tx_ring->tx_count);
2173 return NETDEV_TX_OK;
2176 static void ql_free_shadow_space(struct ql_adapter *qdev)
2178 if (qdev->rx_ring_shadow_reg_area) {
2179 pci_free_consistent(qdev->pdev,
2180 PAGE_SIZE,
2181 qdev->rx_ring_shadow_reg_area,
2182 qdev->rx_ring_shadow_reg_dma);
2183 qdev->rx_ring_shadow_reg_area = NULL;
2185 if (qdev->tx_ring_shadow_reg_area) {
2186 pci_free_consistent(qdev->pdev,
2187 PAGE_SIZE,
2188 qdev->tx_ring_shadow_reg_area,
2189 qdev->tx_ring_shadow_reg_dma);
2190 qdev->tx_ring_shadow_reg_area = NULL;
2194 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2196 qdev->rx_ring_shadow_reg_area =
2197 pci_alloc_consistent(qdev->pdev,
2198 PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
2199 if (qdev->rx_ring_shadow_reg_area == NULL) {
2200 QPRINTK(qdev, IFUP, ERR,
2201 "Allocation of RX shadow space failed.\n");
2202 return -ENOMEM;
2204 memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
2205 qdev->tx_ring_shadow_reg_area =
2206 pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
2207 &qdev->tx_ring_shadow_reg_dma);
2208 if (qdev->tx_ring_shadow_reg_area == NULL) {
2209 QPRINTK(qdev, IFUP, ERR,
2210 "Allocation of TX shadow space failed.\n");
2211 goto err_wqp_sh_area;
2213 memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
2214 return 0;
2216 err_wqp_sh_area:
2217 pci_free_consistent(qdev->pdev,
2218 PAGE_SIZE,
2219 qdev->rx_ring_shadow_reg_area,
2220 qdev->rx_ring_shadow_reg_dma);
2221 return -ENOMEM;
2224 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2226 struct tx_ring_desc *tx_ring_desc;
2227 int i;
2228 struct ob_mac_iocb_req *mac_iocb_ptr;
2230 mac_iocb_ptr = tx_ring->wq_base;
2231 tx_ring_desc = tx_ring->q;
2232 for (i = 0; i < tx_ring->wq_len; i++) {
2233 tx_ring_desc->index = i;
2234 tx_ring_desc->skb = NULL;
2235 tx_ring_desc->queue_entry = mac_iocb_ptr;
2236 mac_iocb_ptr++;
2237 tx_ring_desc++;
2239 atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2240 atomic_set(&tx_ring->queue_stopped, 0);
2243 static void ql_free_tx_resources(struct ql_adapter *qdev,
2244 struct tx_ring *tx_ring)
2246 if (tx_ring->wq_base) {
2247 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2248 tx_ring->wq_base, tx_ring->wq_base_dma);
2249 tx_ring->wq_base = NULL;
2251 kfree(tx_ring->q);
2252 tx_ring->q = NULL;
2255 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2256 struct tx_ring *tx_ring)
2258 tx_ring->wq_base =
2259 pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2260 &tx_ring->wq_base_dma);
2262 if ((tx_ring->wq_base == NULL)
2263 || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
2264 QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
2265 return -ENOMEM;
2267 tx_ring->q =
2268 kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
2269 if (tx_ring->q == NULL)
2270 goto err;
2272 return 0;
2273 err:
2274 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2275 tx_ring->wq_base, tx_ring->wq_base_dma);
2276 return -ENOMEM;
2279 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2281 int i;
2282 struct bq_desc *lbq_desc;
2284 for (i = 0; i < rx_ring->lbq_len; i++) {
2285 lbq_desc = &rx_ring->lbq[i];
2286 if (lbq_desc->p.lbq_page) {
2287 pci_unmap_page(qdev->pdev,
2288 pci_unmap_addr(lbq_desc, mapaddr),
2289 pci_unmap_len(lbq_desc, maplen),
2290 PCI_DMA_FROMDEVICE);
2292 put_page(lbq_desc->p.lbq_page);
2293 lbq_desc->p.lbq_page = NULL;
2298 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2300 int i;
2301 struct bq_desc *sbq_desc;
2303 for (i = 0; i < rx_ring->sbq_len; i++) {
2304 sbq_desc = &rx_ring->sbq[i];
2305 if (sbq_desc == NULL) {
2306 QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
2307 return;
2309 if (sbq_desc->p.skb) {
2310 pci_unmap_single(qdev->pdev,
2311 pci_unmap_addr(sbq_desc, mapaddr),
2312 pci_unmap_len(sbq_desc, maplen),
2313 PCI_DMA_FROMDEVICE);
2314 dev_kfree_skb(sbq_desc->p.skb);
2315 sbq_desc->p.skb = NULL;
2320 /* Free all large and small rx buffers associated
2321 * with the completion queues for this device.
2323 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2325 int i;
2326 struct rx_ring *rx_ring;
2328 for (i = 0; i < qdev->rx_ring_count; i++) {
2329 rx_ring = &qdev->rx_ring[i];
2330 if (rx_ring->lbq)
2331 ql_free_lbq_buffers(qdev, rx_ring);
2332 if (rx_ring->sbq)
2333 ql_free_sbq_buffers(qdev, rx_ring);
2337 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2339 struct rx_ring *rx_ring;
2340 int i;
2342 for (i = 0; i < qdev->rx_ring_count; i++) {
2343 rx_ring = &qdev->rx_ring[i];
2344 if (rx_ring->type != TX_Q)
2345 ql_update_buffer_queues(qdev, rx_ring);
2349 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2350 struct rx_ring *rx_ring)
2352 int i;
2353 struct bq_desc *lbq_desc;
2354 __le64 *bq = rx_ring->lbq_base;
2356 memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2357 for (i = 0; i < rx_ring->lbq_len; i++) {
2358 lbq_desc = &rx_ring->lbq[i];
2359 memset(lbq_desc, 0, sizeof(*lbq_desc));
2360 lbq_desc->index = i;
2361 lbq_desc->addr = bq;
2362 bq++;
2366 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2367 struct rx_ring *rx_ring)
2369 int i;
2370 struct bq_desc *sbq_desc;
2371 __le64 *bq = rx_ring->sbq_base;
2373 memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2374 for (i = 0; i < rx_ring->sbq_len; i++) {
2375 sbq_desc = &rx_ring->sbq[i];
2376 memset(sbq_desc, 0, sizeof(*sbq_desc));
2377 sbq_desc->index = i;
2378 sbq_desc->addr = bq;
2379 bq++;
2383 static void ql_free_rx_resources(struct ql_adapter *qdev,
2384 struct rx_ring *rx_ring)
2386 /* Free the small buffer queue. */
2387 if (rx_ring->sbq_base) {
2388 pci_free_consistent(qdev->pdev,
2389 rx_ring->sbq_size,
2390 rx_ring->sbq_base, rx_ring->sbq_base_dma);
2391 rx_ring->sbq_base = NULL;
2394 /* Free the small buffer queue control blocks. */
2395 kfree(rx_ring->sbq);
2396 rx_ring->sbq = NULL;
2398 /* Free the large buffer queue. */
2399 if (rx_ring->lbq_base) {
2400 pci_free_consistent(qdev->pdev,
2401 rx_ring->lbq_size,
2402 rx_ring->lbq_base, rx_ring->lbq_base_dma);
2403 rx_ring->lbq_base = NULL;
2406 /* Free the large buffer queue control blocks. */
2407 kfree(rx_ring->lbq);
2408 rx_ring->lbq = NULL;
2410 /* Free the rx queue. */
2411 if (rx_ring->cq_base) {
2412 pci_free_consistent(qdev->pdev,
2413 rx_ring->cq_size,
2414 rx_ring->cq_base, rx_ring->cq_base_dma);
2415 rx_ring->cq_base = NULL;
2419 /* Allocate queues and buffers for this completions queue based
2420 * on the values in the parameter structure. */
2421 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2422 struct rx_ring *rx_ring)
2426 * Allocate the completion queue for this rx_ring.
2428 rx_ring->cq_base =
2429 pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2430 &rx_ring->cq_base_dma);
2432 if (rx_ring->cq_base == NULL) {
2433 QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
2434 return -ENOMEM;
2437 if (rx_ring->sbq_len) {
2439 * Allocate small buffer queue.
2441 rx_ring->sbq_base =
2442 pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
2443 &rx_ring->sbq_base_dma);
2445 if (rx_ring->sbq_base == NULL) {
2446 QPRINTK(qdev, IFUP, ERR,
2447 "Small buffer queue allocation failed.\n");
2448 goto err_mem;
2452 * Allocate small buffer queue control blocks.
2454 rx_ring->sbq =
2455 kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
2456 GFP_KERNEL);
2457 if (rx_ring->sbq == NULL) {
2458 QPRINTK(qdev, IFUP, ERR,
2459 "Small buffer queue control block allocation failed.\n");
2460 goto err_mem;
2463 ql_init_sbq_ring(qdev, rx_ring);
2466 if (rx_ring->lbq_len) {
2468 * Allocate large buffer queue.
2470 rx_ring->lbq_base =
2471 pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
2472 &rx_ring->lbq_base_dma);
2474 if (rx_ring->lbq_base == NULL) {
2475 QPRINTK(qdev, IFUP, ERR,
2476 "Large buffer queue allocation failed.\n");
2477 goto err_mem;
2480 * Allocate large buffer queue control blocks.
2482 rx_ring->lbq =
2483 kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
2484 GFP_KERNEL);
2485 if (rx_ring->lbq == NULL) {
2486 QPRINTK(qdev, IFUP, ERR,
2487 "Large buffer queue control block allocation failed.\n");
2488 goto err_mem;
2491 ql_init_lbq_ring(qdev, rx_ring);
2494 return 0;
2496 err_mem:
2497 ql_free_rx_resources(qdev, rx_ring);
2498 return -ENOMEM;
2501 static void ql_tx_ring_clean(struct ql_adapter *qdev)
2503 struct tx_ring *tx_ring;
2504 struct tx_ring_desc *tx_ring_desc;
2505 int i, j;
2508 * Loop through all queues and free
2509 * any resources.
2511 for (j = 0; j < qdev->tx_ring_count; j++) {
2512 tx_ring = &qdev->tx_ring[j];
2513 for (i = 0; i < tx_ring->wq_len; i++) {
2514 tx_ring_desc = &tx_ring->q[i];
2515 if (tx_ring_desc && tx_ring_desc->skb) {
2516 QPRINTK(qdev, IFDOWN, ERR,
2517 "Freeing lost SKB %p, from queue %d, index %d.\n",
2518 tx_ring_desc->skb, j,
2519 tx_ring_desc->index);
2520 ql_unmap_send(qdev, tx_ring_desc,
2521 tx_ring_desc->map_cnt);
2522 dev_kfree_skb(tx_ring_desc->skb);
2523 tx_ring_desc->skb = NULL;
2529 static void ql_free_mem_resources(struct ql_adapter *qdev)
2531 int i;
2533 for (i = 0; i < qdev->tx_ring_count; i++)
2534 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
2535 for (i = 0; i < qdev->rx_ring_count; i++)
2536 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
2537 ql_free_shadow_space(qdev);
2540 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
2542 int i;
2544 /* Allocate space for our shadow registers and such. */
2545 if (ql_alloc_shadow_space(qdev))
2546 return -ENOMEM;
2548 for (i = 0; i < qdev->rx_ring_count; i++) {
2549 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
2550 QPRINTK(qdev, IFUP, ERR,
2551 "RX resource allocation failed.\n");
2552 goto err_mem;
2555 /* Allocate tx queue resources */
2556 for (i = 0; i < qdev->tx_ring_count; i++) {
2557 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
2558 QPRINTK(qdev, IFUP, ERR,
2559 "TX resource allocation failed.\n");
2560 goto err_mem;
2563 return 0;
2565 err_mem:
2566 ql_free_mem_resources(qdev);
2567 return -ENOMEM;
2570 /* Set up the rx ring control block and pass it to the chip.
2571 * The control block is defined as
2572 * "Completion Queue Initialization Control Block", or cqicb.
2574 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2576 struct cqicb *cqicb = &rx_ring->cqicb;
2577 void *shadow_reg = qdev->rx_ring_shadow_reg_area +
2578 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2579 u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
2580 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
2581 void __iomem *doorbell_area =
2582 qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
2583 int err = 0;
2584 u16 bq_len;
2585 u64 tmp;
2586 __le64 *base_indirect_ptr;
2587 int page_entries;
2589 /* Set up the shadow registers for this ring. */
2590 rx_ring->prod_idx_sh_reg = shadow_reg;
2591 rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
2592 shadow_reg += sizeof(u64);
2593 shadow_reg_dma += sizeof(u64);
2594 rx_ring->lbq_base_indirect = shadow_reg;
2595 rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
2596 shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2597 shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2598 rx_ring->sbq_base_indirect = shadow_reg;
2599 rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
2601 /* PCI doorbell mem area + 0x00 for consumer index register */
2602 rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
2603 rx_ring->cnsmr_idx = 0;
2604 rx_ring->curr_entry = rx_ring->cq_base;
2606 /* PCI doorbell mem area + 0x04 for valid register */
2607 rx_ring->valid_db_reg = doorbell_area + 0x04;
2609 /* PCI doorbell mem area + 0x18 for large buffer consumer */
2610 rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
2612 /* PCI doorbell mem area + 0x1c */
2613 rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
2615 memset((void *)cqicb, 0, sizeof(struct cqicb));
2616 cqicb->msix_vect = rx_ring->irq;
2618 bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
2619 cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
2621 cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
2623 cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
2626 * Set up the control block load flags.
2628 cqicb->flags = FLAGS_LC | /* Load queue base address */
2629 FLAGS_LV | /* Load MSI-X vector */
2630 FLAGS_LI; /* Load irq delay values */
2631 if (rx_ring->lbq_len) {
2632 cqicb->flags |= FLAGS_LL; /* Load lbq values */
2633 tmp = (u64)rx_ring->lbq_base_dma;;
2634 base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
2635 page_entries = 0;
2636 do {
2637 *base_indirect_ptr = cpu_to_le64(tmp);
2638 tmp += DB_PAGE_SIZE;
2639 base_indirect_ptr++;
2640 page_entries++;
2641 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
2642 cqicb->lbq_addr =
2643 cpu_to_le64(rx_ring->lbq_base_indirect_dma);
2644 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
2645 (u16) rx_ring->lbq_buf_size;
2646 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
2647 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
2648 (u16) rx_ring->lbq_len;
2649 cqicb->lbq_len = cpu_to_le16(bq_len);
2650 rx_ring->lbq_prod_idx = 0;
2651 rx_ring->lbq_curr_idx = 0;
2652 rx_ring->lbq_clean_idx = 0;
2653 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
2655 if (rx_ring->sbq_len) {
2656 cqicb->flags |= FLAGS_LS; /* Load sbq values */
2657 tmp = (u64)rx_ring->sbq_base_dma;;
2658 base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
2659 page_entries = 0;
2660 do {
2661 *base_indirect_ptr = cpu_to_le64(tmp);
2662 tmp += DB_PAGE_SIZE;
2663 base_indirect_ptr++;
2664 page_entries++;
2665 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
2666 cqicb->sbq_addr =
2667 cpu_to_le64(rx_ring->sbq_base_indirect_dma);
2668 cqicb->sbq_buf_size =
2669 cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
2670 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
2671 (u16) rx_ring->sbq_len;
2672 cqicb->sbq_len = cpu_to_le16(bq_len);
2673 rx_ring->sbq_prod_idx = 0;
2674 rx_ring->sbq_curr_idx = 0;
2675 rx_ring->sbq_clean_idx = 0;
2676 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
2678 switch (rx_ring->type) {
2679 case TX_Q:
2680 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
2681 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
2682 break;
2683 case RX_Q:
2684 /* Inbound completion handling rx_rings run in
2685 * separate NAPI contexts.
2687 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
2688 64);
2689 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
2690 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
2691 break;
2692 default:
2693 QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
2694 rx_ring->type);
2696 QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
2697 err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
2698 CFG_LCQ, rx_ring->cq_id);
2699 if (err) {
2700 QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
2701 return err;
2703 return err;
2706 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2708 struct wqicb *wqicb = (struct wqicb *)tx_ring;
2709 void __iomem *doorbell_area =
2710 qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
2711 void *shadow_reg = qdev->tx_ring_shadow_reg_area +
2712 (tx_ring->wq_id * sizeof(u64));
2713 u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
2714 (tx_ring->wq_id * sizeof(u64));
2715 int err = 0;
2718 * Assign doorbell registers for this tx_ring.
2720 /* TX PCI doorbell mem area for tx producer index */
2721 tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
2722 tx_ring->prod_idx = 0;
2723 /* TX PCI doorbell mem area + 0x04 */
2724 tx_ring->valid_db_reg = doorbell_area + 0x04;
2727 * Assign shadow registers for this tx_ring.
2729 tx_ring->cnsmr_idx_sh_reg = shadow_reg;
2730 tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
2732 wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
2733 wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
2734 Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
2735 wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
2736 wqicb->rid = 0;
2737 wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
2739 wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
2741 ql_init_tx_ring(qdev, tx_ring);
2743 err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
2744 (u16) tx_ring->wq_id);
2745 if (err) {
2746 QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
2747 return err;
2749 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
2750 return err;
2753 static void ql_disable_msix(struct ql_adapter *qdev)
2755 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2756 pci_disable_msix(qdev->pdev);
2757 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
2758 kfree(qdev->msi_x_entry);
2759 qdev->msi_x_entry = NULL;
2760 } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
2761 pci_disable_msi(qdev->pdev);
2762 clear_bit(QL_MSI_ENABLED, &qdev->flags);
2766 /* We start by trying to get the number of vectors
2767 * stored in qdev->intr_count. If we don't get that
2768 * many then we reduce the count and try again.
2770 static void ql_enable_msix(struct ql_adapter *qdev)
2772 int i, err;
2774 /* Get the MSIX vectors. */
2775 if (irq_type == MSIX_IRQ) {
2776 /* Try to alloc space for the msix struct,
2777 * if it fails then go to MSI/legacy.
2779 qdev->msi_x_entry = kcalloc(qdev->intr_count,
2780 sizeof(struct msix_entry),
2781 GFP_KERNEL);
2782 if (!qdev->msi_x_entry) {
2783 irq_type = MSI_IRQ;
2784 goto msi;
2787 for (i = 0; i < qdev->intr_count; i++)
2788 qdev->msi_x_entry[i].entry = i;
2790 /* Loop to get our vectors. We start with
2791 * what we want and settle for what we get.
2793 do {
2794 err = pci_enable_msix(qdev->pdev,
2795 qdev->msi_x_entry, qdev->intr_count);
2796 if (err > 0)
2797 qdev->intr_count = err;
2798 } while (err > 0);
2800 if (err < 0) {
2801 kfree(qdev->msi_x_entry);
2802 qdev->msi_x_entry = NULL;
2803 QPRINTK(qdev, IFUP, WARNING,
2804 "MSI-X Enable failed, trying MSI.\n");
2805 qdev->intr_count = 1;
2806 irq_type = MSI_IRQ;
2807 } else if (err == 0) {
2808 set_bit(QL_MSIX_ENABLED, &qdev->flags);
2809 QPRINTK(qdev, IFUP, INFO,
2810 "MSI-X Enabled, got %d vectors.\n",
2811 qdev->intr_count);
2812 return;
2815 msi:
2816 qdev->intr_count = 1;
2817 if (irq_type == MSI_IRQ) {
2818 if (!pci_enable_msi(qdev->pdev)) {
2819 set_bit(QL_MSI_ENABLED, &qdev->flags);
2820 QPRINTK(qdev, IFUP, INFO,
2821 "Running with MSI interrupts.\n");
2822 return;
2825 irq_type = LEG_IRQ;
2826 QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
2829 /* Each vector services 1 RSS ring and and 1 or more
2830 * TX completion rings. This function loops through
2831 * the TX completion rings and assigns the vector that
2832 * will service it. An example would be if there are
2833 * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
2834 * This would mean that vector 0 would service RSS ring 0
2835 * and TX competion rings 0,1,2 and 3. Vector 1 would
2836 * service RSS ring 1 and TX completion rings 4,5,6 and 7.
2838 static void ql_set_tx_vect(struct ql_adapter *qdev)
2840 int i, j, vect;
2841 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2843 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2844 /* Assign irq vectors to TX rx_rings.*/
2845 for (vect = 0, j = 0, i = qdev->rss_ring_count;
2846 i < qdev->rx_ring_count; i++) {
2847 if (j == tx_rings_per_vector) {
2848 vect++;
2849 j = 0;
2851 qdev->rx_ring[i].irq = vect;
2852 j++;
2854 } else {
2855 /* For single vector all rings have an irq
2856 * of zero.
2858 for (i = 0; i < qdev->rx_ring_count; i++)
2859 qdev->rx_ring[i].irq = 0;
2863 /* Set the interrupt mask for this vector. Each vector
2864 * will service 1 RSS ring and 1 or more TX completion
2865 * rings. This function sets up a bit mask per vector
2866 * that indicates which rings it services.
2868 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
2870 int j, vect = ctx->intr;
2871 u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
2873 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2874 /* Add the RSS ring serviced by this vector
2875 * to the mask.
2877 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
2878 /* Add the TX ring(s) serviced by this vector
2879 * to the mask. */
2880 for (j = 0; j < tx_rings_per_vector; j++) {
2881 ctx->irq_mask |=
2882 (1 << qdev->rx_ring[qdev->rss_ring_count +
2883 (vect * tx_rings_per_vector) + j].cq_id);
2885 } else {
2886 /* For single vector we just shift each queue's
2887 * ID into the mask.
2889 for (j = 0; j < qdev->rx_ring_count; j++)
2890 ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
2895 * Here we build the intr_context structures based on
2896 * our rx_ring count and intr vector count.
2897 * The intr_context structure is used to hook each vector
2898 * to possibly different handlers.
2900 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
2902 int i = 0;
2903 struct intr_context *intr_context = &qdev->intr_context[0];
2905 if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
2906 /* Each rx_ring has it's
2907 * own intr_context since we have separate
2908 * vectors for each queue.
2910 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2911 qdev->rx_ring[i].irq = i;
2912 intr_context->intr = i;
2913 intr_context->qdev = qdev;
2914 /* Set up this vector's bit-mask that indicates
2915 * which queues it services.
2917 ql_set_irq_mask(qdev, intr_context);
2919 * We set up each vectors enable/disable/read bits so
2920 * there's no bit/mask calculations in the critical path.
2922 intr_context->intr_en_mask =
2923 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2924 INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
2925 | i;
2926 intr_context->intr_dis_mask =
2927 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2928 INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
2929 INTR_EN_IHD | i;
2930 intr_context->intr_read_mask =
2931 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2932 INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
2934 if (i == 0) {
2935 /* The first vector/queue handles
2936 * broadcast/multicast, fatal errors,
2937 * and firmware events. This in addition
2938 * to normal inbound NAPI processing.
2940 intr_context->handler = qlge_isr;
2941 sprintf(intr_context->name, "%s-rx-%d",
2942 qdev->ndev->name, i);
2943 } else {
2945 * Inbound queues handle unicast frames only.
2947 intr_context->handler = qlge_msix_rx_isr;
2948 sprintf(intr_context->name, "%s-rx-%d",
2949 qdev->ndev->name, i);
2952 } else {
2954 * All rx_rings use the same intr_context since
2955 * there is only one vector.
2957 intr_context->intr = 0;
2958 intr_context->qdev = qdev;
2960 * We set up each vectors enable/disable/read bits so
2961 * there's no bit/mask calculations in the critical path.
2963 intr_context->intr_en_mask =
2964 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
2965 intr_context->intr_dis_mask =
2966 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
2967 INTR_EN_TYPE_DISABLE;
2968 intr_context->intr_read_mask =
2969 INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
2971 * Single interrupt means one handler for all rings.
2973 intr_context->handler = qlge_isr;
2974 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
2975 /* Set up this vector's bit-mask that indicates
2976 * which queues it services. In this case there is
2977 * a single vector so it will service all RSS and
2978 * TX completion rings.
2980 ql_set_irq_mask(qdev, intr_context);
2982 /* Tell the TX completion rings which MSIx vector
2983 * they will be using.
2985 ql_set_tx_vect(qdev);
2988 static void ql_free_irq(struct ql_adapter *qdev)
2990 int i;
2991 struct intr_context *intr_context = &qdev->intr_context[0];
2993 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
2994 if (intr_context->hooked) {
2995 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
2996 free_irq(qdev->msi_x_entry[i].vector,
2997 &qdev->rx_ring[i]);
2998 QPRINTK(qdev, IFDOWN, DEBUG,
2999 "freeing msix interrupt %d.\n", i);
3000 } else {
3001 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3002 QPRINTK(qdev, IFDOWN, DEBUG,
3003 "freeing msi interrupt %d.\n", i);
3007 ql_disable_msix(qdev);
3010 static int ql_request_irq(struct ql_adapter *qdev)
3012 int i;
3013 int status = 0;
3014 struct pci_dev *pdev = qdev->pdev;
3015 struct intr_context *intr_context = &qdev->intr_context[0];
3017 ql_resolve_queues_to_irqs(qdev);
3019 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3020 atomic_set(&intr_context->irq_cnt, 0);
3021 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3022 status = request_irq(qdev->msi_x_entry[i].vector,
3023 intr_context->handler,
3025 intr_context->name,
3026 &qdev->rx_ring[i]);
3027 if (status) {
3028 QPRINTK(qdev, IFUP, ERR,
3029 "Failed request for MSIX interrupt %d.\n",
3031 goto err_irq;
3032 } else {
3033 QPRINTK(qdev, IFUP, DEBUG,
3034 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3036 qdev->rx_ring[i].type ==
3037 DEFAULT_Q ? "DEFAULT_Q" : "",
3038 qdev->rx_ring[i].type ==
3039 TX_Q ? "TX_Q" : "",
3040 qdev->rx_ring[i].type ==
3041 RX_Q ? "RX_Q" : "", intr_context->name);
3043 } else {
3044 QPRINTK(qdev, IFUP, DEBUG,
3045 "trying msi or legacy interrupts.\n");
3046 QPRINTK(qdev, IFUP, DEBUG,
3047 "%s: irq = %d.\n", __func__, pdev->irq);
3048 QPRINTK(qdev, IFUP, DEBUG,
3049 "%s: context->name = %s.\n", __func__,
3050 intr_context->name);
3051 QPRINTK(qdev, IFUP, DEBUG,
3052 "%s: dev_id = 0x%p.\n", __func__,
3053 &qdev->rx_ring[0]);
3054 status =
3055 request_irq(pdev->irq, qlge_isr,
3056 test_bit(QL_MSI_ENABLED,
3057 &qdev->
3058 flags) ? 0 : IRQF_SHARED,
3059 intr_context->name, &qdev->rx_ring[0]);
3060 if (status)
3061 goto err_irq;
3063 QPRINTK(qdev, IFUP, ERR,
3064 "Hooked intr %d, queue type %s%s%s, with name %s.\n",
3066 qdev->rx_ring[0].type ==
3067 DEFAULT_Q ? "DEFAULT_Q" : "",
3068 qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
3069 qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3070 intr_context->name);
3072 intr_context->hooked = 1;
3074 return status;
3075 err_irq:
3076 QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
3077 ql_free_irq(qdev);
3078 return status;
3081 static int ql_start_rss(struct ql_adapter *qdev)
3083 struct ricb *ricb = &qdev->ricb;
3084 int status = 0;
3085 int i;
3086 u8 *hash_id = (u8 *) ricb->hash_cq_id;
3088 memset((void *)ricb, 0, sizeof(*ricb));
3090 ricb->base_cq = RSS_L4K;
3091 ricb->flags =
3092 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
3093 RSS_RT6);
3094 ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
3097 * Fill out the Indirection Table.
3099 for (i = 0; i < 256; i++)
3100 hash_id[i] = i & (qdev->rss_ring_count - 1);
3103 * Random values for the IPv6 and IPv4 Hash Keys.
3105 get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
3106 get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
3108 QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
3110 status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3111 if (status) {
3112 QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
3113 return status;
3115 QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
3116 return status;
3119 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3121 int i, status = 0;
3123 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3124 if (status)
3125 return status;
3126 /* Clear all the entries in the routing table. */
3127 for (i = 0; i < 16; i++) {
3128 status = ql_set_routing_reg(qdev, i, 0, 0);
3129 if (status) {
3130 QPRINTK(qdev, IFUP, ERR,
3131 "Failed to init routing register for CAM "
3132 "packets.\n");
3133 break;
3136 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3137 return status;
3140 /* Initialize the frame-to-queue routing. */
3141 static int ql_route_initialize(struct ql_adapter *qdev)
3143 int status = 0;
3145 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3146 if (status)
3147 return status;
3149 /* Clear all the entries in the routing table. */
3150 status = ql_clear_routing_entries(qdev);
3151 if (status)
3152 goto exit;
3154 status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
3155 if (status) {
3156 QPRINTK(qdev, IFUP, ERR,
3157 "Failed to init routing register for error packets.\n");
3158 goto exit;
3160 status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3161 if (status) {
3162 QPRINTK(qdev, IFUP, ERR,
3163 "Failed to init routing register for broadcast packets.\n");
3164 goto exit;
3166 /* If we have more than one inbound queue, then turn on RSS in the
3167 * routing block.
3169 if (qdev->rss_ring_count > 1) {
3170 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3171 RT_IDX_RSS_MATCH, 1);
3172 if (status) {
3173 QPRINTK(qdev, IFUP, ERR,
3174 "Failed to init routing register for MATCH RSS packets.\n");
3175 goto exit;
3179 status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3180 RT_IDX_CAM_HIT, 1);
3181 if (status)
3182 QPRINTK(qdev, IFUP, ERR,
3183 "Failed to init routing register for CAM packets.\n");
3184 exit:
3185 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3186 return status;
3189 int ql_cam_route_initialize(struct ql_adapter *qdev)
3191 int status, set;
3193 /* If check if the link is up and use to
3194 * determine if we are setting or clearing
3195 * the MAC address in the CAM.
3197 set = ql_read32(qdev, STS);
3198 set &= qdev->port_link_up;
3199 status = ql_set_mac_addr(qdev, set);
3200 if (status) {
3201 QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
3202 return status;
3205 status = ql_route_initialize(qdev);
3206 if (status)
3207 QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
3209 return status;
3212 static int ql_adapter_initialize(struct ql_adapter *qdev)
3214 u32 value, mask;
3215 int i;
3216 int status = 0;
3219 * Set up the System register to halt on errors.
3221 value = SYS_EFE | SYS_FAE;
3222 mask = value << 16;
3223 ql_write32(qdev, SYS, mask | value);
3225 /* Set the default queue, and VLAN behavior. */
3226 value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
3227 mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
3228 ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3230 /* Set the MPI interrupt to enabled. */
3231 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3233 /* Enable the function, set pagesize, enable error checking. */
3234 value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3235 FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
3237 /* Set/clear header splitting. */
3238 mask = FSC_VM_PAGESIZE_MASK |
3239 FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3240 ql_write32(qdev, FSC, mask | value);
3242 ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
3243 min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
3245 /* Start up the rx queues. */
3246 for (i = 0; i < qdev->rx_ring_count; i++) {
3247 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3248 if (status) {
3249 QPRINTK(qdev, IFUP, ERR,
3250 "Failed to start rx ring[%d].\n", i);
3251 return status;
3255 /* If there is more than one inbound completion queue
3256 * then download a RICB to configure RSS.
3258 if (qdev->rss_ring_count > 1) {
3259 status = ql_start_rss(qdev);
3260 if (status) {
3261 QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
3262 return status;
3266 /* Start up the tx queues. */
3267 for (i = 0; i < qdev->tx_ring_count; i++) {
3268 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3269 if (status) {
3270 QPRINTK(qdev, IFUP, ERR,
3271 "Failed to start tx ring[%d].\n", i);
3272 return status;
3276 /* Initialize the port and set the max framesize. */
3277 status = qdev->nic_ops->port_initialize(qdev);
3278 if (status) {
3279 QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
3280 return status;
3283 /* Set up the MAC address and frame routing filter. */
3284 status = ql_cam_route_initialize(qdev);
3285 if (status) {
3286 QPRINTK(qdev, IFUP, ERR,
3287 "Failed to init CAM/Routing tables.\n");
3288 return status;
3291 /* Start NAPI for the RSS queues. */
3292 for (i = 0; i < qdev->rss_ring_count; i++) {
3293 QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
3295 napi_enable(&qdev->rx_ring[i].napi);
3298 return status;
3301 /* Issue soft reset to chip. */
3302 static int ql_adapter_reset(struct ql_adapter *qdev)
3304 u32 value;
3305 int status = 0;
3306 unsigned long end_jiffies;
3308 /* Clear all the entries in the routing table. */
3309 status = ql_clear_routing_entries(qdev);
3310 if (status) {
3311 QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
3312 return status;
3315 end_jiffies = jiffies +
3316 max((unsigned long)1, usecs_to_jiffies(30));
3317 ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3319 do {
3320 value = ql_read32(qdev, RST_FO);
3321 if ((value & RST_FO_FR) == 0)
3322 break;
3323 cpu_relax();
3324 } while (time_before(jiffies, end_jiffies));
3326 if (value & RST_FO_FR) {
3327 QPRINTK(qdev, IFDOWN, ERR,
3328 "ETIMEDOUT!!! errored out of resetting the chip!\n");
3329 status = -ETIMEDOUT;
3332 return status;
3335 static void ql_display_dev_info(struct net_device *ndev)
3337 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3339 QPRINTK(qdev, PROBE, INFO,
3340 "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3341 "XG Roll = %d, XG Rev = %d.\n",
3342 qdev->func,
3343 qdev->port,
3344 qdev->chip_rev_id & 0x0000000f,
3345 qdev->chip_rev_id >> 4 & 0x0000000f,
3346 qdev->chip_rev_id >> 8 & 0x0000000f,
3347 qdev->chip_rev_id >> 12 & 0x0000000f);
3348 QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
3351 static int ql_adapter_down(struct ql_adapter *qdev)
3353 int i, status = 0;
3355 ql_link_off(qdev);
3357 /* Don't kill the reset worker thread if we
3358 * are in the process of recovery.
3360 if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3361 cancel_delayed_work_sync(&qdev->asic_reset_work);
3362 cancel_delayed_work_sync(&qdev->mpi_reset_work);
3363 cancel_delayed_work_sync(&qdev->mpi_work);
3364 cancel_delayed_work_sync(&qdev->mpi_idc_work);
3365 cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3367 for (i = 0; i < qdev->rss_ring_count; i++)
3368 napi_disable(&qdev->rx_ring[i].napi);
3370 clear_bit(QL_ADAPTER_UP, &qdev->flags);
3372 ql_disable_interrupts(qdev);
3374 ql_tx_ring_clean(qdev);
3376 /* Call netif_napi_del() from common point.
3378 for (i = 0; i < qdev->rss_ring_count; i++)
3379 netif_napi_del(&qdev->rx_ring[i].napi);
3381 ql_free_rx_buffers(qdev);
3383 spin_lock(&qdev->hw_lock);
3384 status = ql_adapter_reset(qdev);
3385 if (status)
3386 QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
3387 qdev->func);
3388 spin_unlock(&qdev->hw_lock);
3389 return status;
3392 static int ql_adapter_up(struct ql_adapter *qdev)
3394 int err = 0;
3396 err = ql_adapter_initialize(qdev);
3397 if (err) {
3398 QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
3399 goto err_init;
3401 set_bit(QL_ADAPTER_UP, &qdev->flags);
3402 ql_alloc_rx_buffers(qdev);
3403 /* If the port is initialized and the
3404 * link is up the turn on the carrier.
3406 if ((ql_read32(qdev, STS) & qdev->port_init) &&
3407 (ql_read32(qdev, STS) & qdev->port_link_up))
3408 ql_link_on(qdev);
3409 ql_enable_interrupts(qdev);
3410 ql_enable_all_completion_interrupts(qdev);
3411 netif_tx_start_all_queues(qdev->ndev);
3413 return 0;
3414 err_init:
3415 ql_adapter_reset(qdev);
3416 return err;
3419 static void ql_release_adapter_resources(struct ql_adapter *qdev)
3421 ql_free_mem_resources(qdev);
3422 ql_free_irq(qdev);
3425 static int ql_get_adapter_resources(struct ql_adapter *qdev)
3427 int status = 0;
3429 if (ql_alloc_mem_resources(qdev)) {
3430 QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
3431 return -ENOMEM;
3433 status = ql_request_irq(qdev);
3434 return status;
3437 static int qlge_close(struct net_device *ndev)
3439 struct ql_adapter *qdev = netdev_priv(ndev);
3442 * Wait for device to recover from a reset.
3443 * (Rarely happens, but possible.)
3445 while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3446 msleep(1);
3447 ql_adapter_down(qdev);
3448 ql_release_adapter_resources(qdev);
3449 return 0;
3452 static int ql_configure_rings(struct ql_adapter *qdev)
3454 int i;
3455 struct rx_ring *rx_ring;
3456 struct tx_ring *tx_ring;
3457 int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
3459 /* In a perfect world we have one RSS ring for each CPU
3460 * and each has it's own vector. To do that we ask for
3461 * cpu_cnt vectors. ql_enable_msix() will adjust the
3462 * vector count to what we actually get. We then
3463 * allocate an RSS ring for each.
3464 * Essentially, we are doing min(cpu_count, msix_vector_count).
3466 qdev->intr_count = cpu_cnt;
3467 ql_enable_msix(qdev);
3468 /* Adjust the RSS ring count to the actual vector count. */
3469 qdev->rss_ring_count = qdev->intr_count;
3470 qdev->tx_ring_count = cpu_cnt;
3471 qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
3473 for (i = 0; i < qdev->tx_ring_count; i++) {
3474 tx_ring = &qdev->tx_ring[i];
3475 memset((void *)tx_ring, 0, sizeof(*tx_ring));
3476 tx_ring->qdev = qdev;
3477 tx_ring->wq_id = i;
3478 tx_ring->wq_len = qdev->tx_ring_size;
3479 tx_ring->wq_size =
3480 tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
3483 * The completion queue ID for the tx rings start
3484 * immediately after the rss rings.
3486 tx_ring->cq_id = qdev->rss_ring_count + i;
3489 for (i = 0; i < qdev->rx_ring_count; i++) {
3490 rx_ring = &qdev->rx_ring[i];
3491 memset((void *)rx_ring, 0, sizeof(*rx_ring));
3492 rx_ring->qdev = qdev;
3493 rx_ring->cq_id = i;
3494 rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
3495 if (i < qdev->rss_ring_count) {
3497 * Inbound (RSS) queues.
3499 rx_ring->cq_len = qdev->rx_ring_size;
3500 rx_ring->cq_size =
3501 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3502 rx_ring->lbq_len = NUM_LARGE_BUFFERS;
3503 rx_ring->lbq_size =
3504 rx_ring->lbq_len * sizeof(__le64);
3505 rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
3506 rx_ring->sbq_len = NUM_SMALL_BUFFERS;
3507 rx_ring->sbq_size =
3508 rx_ring->sbq_len * sizeof(__le64);
3509 rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
3510 rx_ring->type = RX_Q;
3511 } else {
3513 * Outbound queue handles outbound completions only.
3515 /* outbound cq is same size as tx_ring it services. */
3516 rx_ring->cq_len = qdev->tx_ring_size;
3517 rx_ring->cq_size =
3518 rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
3519 rx_ring->lbq_len = 0;
3520 rx_ring->lbq_size = 0;
3521 rx_ring->lbq_buf_size = 0;
3522 rx_ring->sbq_len = 0;
3523 rx_ring->sbq_size = 0;
3524 rx_ring->sbq_buf_size = 0;
3525 rx_ring->type = TX_Q;
3528 return 0;
3531 static int qlge_open(struct net_device *ndev)
3533 int err = 0;
3534 struct ql_adapter *qdev = netdev_priv(ndev);
3536 err = ql_configure_rings(qdev);
3537 if (err)
3538 return err;
3540 err = ql_get_adapter_resources(qdev);
3541 if (err)
3542 goto error_up;
3544 err = ql_adapter_up(qdev);
3545 if (err)
3546 goto error_up;
3548 return err;
3550 error_up:
3551 ql_release_adapter_resources(qdev);
3552 return err;
3555 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
3557 struct ql_adapter *qdev = netdev_priv(ndev);
3559 if (ndev->mtu == 1500 && new_mtu == 9000) {
3560 QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
3561 queue_delayed_work(qdev->workqueue,
3562 &qdev->mpi_port_cfg_work, 0);
3563 } else if (ndev->mtu == 9000 && new_mtu == 1500) {
3564 QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
3565 } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
3566 (ndev->mtu == 9000 && new_mtu == 9000)) {
3567 return 0;
3568 } else
3569 return -EINVAL;
3570 ndev->mtu = new_mtu;
3571 return 0;
3574 static struct net_device_stats *qlge_get_stats(struct net_device
3575 *ndev)
3577 struct ql_adapter *qdev = netdev_priv(ndev);
3578 return &qdev->stats;
3581 static void qlge_set_multicast_list(struct net_device *ndev)
3583 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3584 struct dev_mc_list *mc_ptr;
3585 int i, status;
3587 status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3588 if (status)
3589 return;
3590 spin_lock(&qdev->hw_lock);
3592 * Set or clear promiscuous mode if a
3593 * transition is taking place.
3595 if (ndev->flags & IFF_PROMISC) {
3596 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3597 if (ql_set_routing_reg
3598 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
3599 QPRINTK(qdev, HW, ERR,
3600 "Failed to set promiscous mode.\n");
3601 } else {
3602 set_bit(QL_PROMISCUOUS, &qdev->flags);
3605 } else {
3606 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
3607 if (ql_set_routing_reg
3608 (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
3609 QPRINTK(qdev, HW, ERR,
3610 "Failed to clear promiscous mode.\n");
3611 } else {
3612 clear_bit(QL_PROMISCUOUS, &qdev->flags);
3618 * Set or clear all multicast mode if a
3619 * transition is taking place.
3621 if ((ndev->flags & IFF_ALLMULTI) ||
3622 (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
3623 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
3624 if (ql_set_routing_reg
3625 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
3626 QPRINTK(qdev, HW, ERR,
3627 "Failed to set all-multi mode.\n");
3628 } else {
3629 set_bit(QL_ALLMULTI, &qdev->flags);
3632 } else {
3633 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
3634 if (ql_set_routing_reg
3635 (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
3636 QPRINTK(qdev, HW, ERR,
3637 "Failed to clear all-multi mode.\n");
3638 } else {
3639 clear_bit(QL_ALLMULTI, &qdev->flags);
3644 if (ndev->mc_count) {
3645 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3646 if (status)
3647 goto exit;
3648 for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
3649 i++, mc_ptr = mc_ptr->next)
3650 if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
3651 MAC_ADDR_TYPE_MULTI_MAC, i)) {
3652 QPRINTK(qdev, HW, ERR,
3653 "Failed to loadmulticast address.\n");
3654 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3655 goto exit;
3657 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3658 if (ql_set_routing_reg
3659 (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
3660 QPRINTK(qdev, HW, ERR,
3661 "Failed to set multicast match mode.\n");
3662 } else {
3663 set_bit(QL_ALLMULTI, &qdev->flags);
3666 exit:
3667 spin_unlock(&qdev->hw_lock);
3668 ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3671 static int qlge_set_mac_address(struct net_device *ndev, void *p)
3673 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3674 struct sockaddr *addr = p;
3675 int status;
3677 if (netif_running(ndev))
3678 return -EBUSY;
3680 if (!is_valid_ether_addr(addr->sa_data))
3681 return -EADDRNOTAVAIL;
3682 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3684 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
3685 if (status)
3686 return status;
3687 spin_lock(&qdev->hw_lock);
3688 status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
3689 MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
3690 spin_unlock(&qdev->hw_lock);
3691 if (status)
3692 QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
3693 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
3694 return status;
3697 static void qlge_tx_timeout(struct net_device *ndev)
3699 struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
3700 ql_queue_asic_error(qdev);
3703 static void ql_asic_reset_work(struct work_struct *work)
3705 struct ql_adapter *qdev =
3706 container_of(work, struct ql_adapter, asic_reset_work.work);
3707 int status;
3709 status = ql_adapter_down(qdev);
3710 if (status)
3711 goto error;
3713 status = ql_adapter_up(qdev);
3714 if (status)
3715 goto error;
3717 return;
3718 error:
3719 QPRINTK(qdev, IFUP, ALERT,
3720 "Driver up/down cycle failed, closing device\n");
3721 rtnl_lock();
3722 set_bit(QL_ADAPTER_UP, &qdev->flags);
3723 dev_close(qdev->ndev);
3724 rtnl_unlock();
3727 static struct nic_operations qla8012_nic_ops = {
3728 .get_flash = ql_get_8012_flash_params,
3729 .port_initialize = ql_8012_port_initialize,
3732 static struct nic_operations qla8000_nic_ops = {
3733 .get_flash = ql_get_8000_flash_params,
3734 .port_initialize = ql_8000_port_initialize,
3737 /* Find the pcie function number for the other NIC
3738 * on this chip. Since both NIC functions share a
3739 * common firmware we have the lowest enabled function
3740 * do any common work. Examples would be resetting
3741 * after a fatal firmware error, or doing a firmware
3742 * coredump.
3744 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
3746 int status = 0;
3747 u32 temp;
3748 u32 nic_func1, nic_func2;
3750 status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
3751 &temp);
3752 if (status)
3753 return status;
3755 nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
3756 MPI_TEST_NIC_FUNC_MASK);
3757 nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
3758 MPI_TEST_NIC_FUNC_MASK);
3760 if (qdev->func == nic_func1)
3761 qdev->alt_func = nic_func2;
3762 else if (qdev->func == nic_func2)
3763 qdev->alt_func = nic_func1;
3764 else
3765 status = -EIO;
3767 return status;
3770 static int ql_get_board_info(struct ql_adapter *qdev)
3772 int status;
3773 qdev->func =
3774 (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
3775 if (qdev->func > 3)
3776 return -EIO;
3778 status = ql_get_alt_pcie_func(qdev);
3779 if (status)
3780 return status;
3782 qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
3783 if (qdev->port) {
3784 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
3785 qdev->port_link_up = STS_PL1;
3786 qdev->port_init = STS_PI1;
3787 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
3788 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
3789 } else {
3790 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
3791 qdev->port_link_up = STS_PL0;
3792 qdev->port_init = STS_PI0;
3793 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
3794 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
3796 qdev->chip_rev_id = ql_read32(qdev, REV_ID);
3797 qdev->device_id = qdev->pdev->device;
3798 if (qdev->device_id == QLGE_DEVICE_ID_8012)
3799 qdev->nic_ops = &qla8012_nic_ops;
3800 else if (qdev->device_id == QLGE_DEVICE_ID_8000)
3801 qdev->nic_ops = &qla8000_nic_ops;
3802 return status;
3805 static void ql_release_all(struct pci_dev *pdev)
3807 struct net_device *ndev = pci_get_drvdata(pdev);
3808 struct ql_adapter *qdev = netdev_priv(ndev);
3810 if (qdev->workqueue) {
3811 destroy_workqueue(qdev->workqueue);
3812 qdev->workqueue = NULL;
3815 if (qdev->reg_base)
3816 iounmap(qdev->reg_base);
3817 if (qdev->doorbell_area)
3818 iounmap(qdev->doorbell_area);
3819 pci_release_regions(pdev);
3820 pci_set_drvdata(pdev, NULL);
3823 static int __devinit ql_init_device(struct pci_dev *pdev,
3824 struct net_device *ndev, int cards_found)
3826 struct ql_adapter *qdev = netdev_priv(ndev);
3827 int pos, err = 0;
3828 u16 val16;
3830 memset((void *)qdev, 0, sizeof(*qdev));
3831 err = pci_enable_device(pdev);
3832 if (err) {
3833 dev_err(&pdev->dev, "PCI device enable failed.\n");
3834 return err;
3837 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
3838 if (pos <= 0) {
3839 dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
3840 "aborting.\n");
3841 goto err_out;
3842 } else {
3843 pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
3844 val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
3845 val16 |= (PCI_EXP_DEVCTL_CERE |
3846 PCI_EXP_DEVCTL_NFERE |
3847 PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
3848 pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
3851 err = pci_request_regions(pdev, DRV_NAME);
3852 if (err) {
3853 dev_err(&pdev->dev, "PCI region request failed.\n");
3854 goto err_out;
3857 pci_set_master(pdev);
3858 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3859 set_bit(QL_DMA64, &qdev->flags);
3860 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3861 } else {
3862 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3863 if (!err)
3864 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3867 if (err) {
3868 dev_err(&pdev->dev, "No usable DMA configuration.\n");
3869 goto err_out;
3872 pci_set_drvdata(pdev, ndev);
3873 qdev->reg_base =
3874 ioremap_nocache(pci_resource_start(pdev, 1),
3875 pci_resource_len(pdev, 1));
3876 if (!qdev->reg_base) {
3877 dev_err(&pdev->dev, "Register mapping failed.\n");
3878 err = -ENOMEM;
3879 goto err_out;
3882 qdev->doorbell_area_size = pci_resource_len(pdev, 3);
3883 qdev->doorbell_area =
3884 ioremap_nocache(pci_resource_start(pdev, 3),
3885 pci_resource_len(pdev, 3));
3886 if (!qdev->doorbell_area) {
3887 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
3888 err = -ENOMEM;
3889 goto err_out;
3892 qdev->ndev = ndev;
3893 qdev->pdev = pdev;
3894 err = ql_get_board_info(qdev);
3895 if (err) {
3896 dev_err(&pdev->dev, "Register access failed.\n");
3897 err = -EIO;
3898 goto err_out;
3900 qdev->msg_enable = netif_msg_init(debug, default_msg);
3901 spin_lock_init(&qdev->hw_lock);
3902 spin_lock_init(&qdev->stats_lock);
3904 /* make sure the EEPROM is good */
3905 err = qdev->nic_ops->get_flash(qdev);
3906 if (err) {
3907 dev_err(&pdev->dev, "Invalid FLASH.\n");
3908 goto err_out;
3911 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
3913 /* Set up the default ring sizes. */
3914 qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
3915 qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
3917 /* Set up the coalescing parameters. */
3918 qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
3919 qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
3920 qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3921 qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
3924 * Set up the operating parameters.
3926 qdev->rx_csum = 1;
3927 qdev->workqueue = create_singlethread_workqueue(ndev->name);
3928 INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
3929 INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
3930 INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
3931 INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
3932 INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
3933 mutex_init(&qdev->mpi_mutex);
3934 init_completion(&qdev->ide_completion);
3936 if (!cards_found) {
3937 dev_info(&pdev->dev, "%s\n", DRV_STRING);
3938 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
3939 DRV_NAME, DRV_VERSION);
3941 return 0;
3942 err_out:
3943 ql_release_all(pdev);
3944 pci_disable_device(pdev);
3945 return err;
3949 static const struct net_device_ops qlge_netdev_ops = {
3950 .ndo_open = qlge_open,
3951 .ndo_stop = qlge_close,
3952 .ndo_start_xmit = qlge_send,
3953 .ndo_change_mtu = qlge_change_mtu,
3954 .ndo_get_stats = qlge_get_stats,
3955 .ndo_set_multicast_list = qlge_set_multicast_list,
3956 .ndo_set_mac_address = qlge_set_mac_address,
3957 .ndo_validate_addr = eth_validate_addr,
3958 .ndo_tx_timeout = qlge_tx_timeout,
3959 .ndo_vlan_rx_register = ql_vlan_rx_register,
3960 .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
3961 .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
3964 static int __devinit qlge_probe(struct pci_dev *pdev,
3965 const struct pci_device_id *pci_entry)
3967 struct net_device *ndev = NULL;
3968 struct ql_adapter *qdev = NULL;
3969 static int cards_found = 0;
3970 int err = 0;
3972 ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
3973 min(MAX_CPUS, (int)num_online_cpus()));
3974 if (!ndev)
3975 return -ENOMEM;
3977 err = ql_init_device(pdev, ndev, cards_found);
3978 if (err < 0) {
3979 free_netdev(ndev);
3980 return err;
3983 qdev = netdev_priv(ndev);
3984 SET_NETDEV_DEV(ndev, &pdev->dev);
3985 ndev->features = (0
3986 | NETIF_F_IP_CSUM
3987 | NETIF_F_SG
3988 | NETIF_F_TSO
3989 | NETIF_F_TSO6
3990 | NETIF_F_TSO_ECN
3991 | NETIF_F_HW_VLAN_TX
3992 | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
3993 ndev->features |= NETIF_F_GRO;
3995 if (test_bit(QL_DMA64, &qdev->flags))
3996 ndev->features |= NETIF_F_HIGHDMA;
3999 * Set up net_device structure.
4001 ndev->tx_queue_len = qdev->tx_ring_size;
4002 ndev->irq = pdev->irq;
4004 ndev->netdev_ops = &qlge_netdev_ops;
4005 SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
4006 ndev->watchdog_timeo = 10 * HZ;
4008 err = register_netdev(ndev);
4009 if (err) {
4010 dev_err(&pdev->dev, "net device registration failed.\n");
4011 ql_release_all(pdev);
4012 pci_disable_device(pdev);
4013 return err;
4015 ql_link_off(qdev);
4016 ql_display_dev_info(ndev);
4017 cards_found++;
4018 return 0;
4021 static void __devexit qlge_remove(struct pci_dev *pdev)
4023 struct net_device *ndev = pci_get_drvdata(pdev);
4024 unregister_netdev(ndev);
4025 ql_release_all(pdev);
4026 pci_disable_device(pdev);
4027 free_netdev(ndev);
4031 * This callback is called by the PCI subsystem whenever
4032 * a PCI bus error is detected.
4034 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4035 enum pci_channel_state state)
4037 struct net_device *ndev = pci_get_drvdata(pdev);
4038 struct ql_adapter *qdev = netdev_priv(ndev);
4040 netif_device_detach(ndev);
4042 if (state == pci_channel_io_perm_failure)
4043 return PCI_ERS_RESULT_DISCONNECT;
4045 if (netif_running(ndev))
4046 ql_adapter_down(qdev);
4048 pci_disable_device(pdev);
4050 /* Request a slot reset. */
4051 return PCI_ERS_RESULT_NEED_RESET;
4055 * This callback is called after the PCI buss has been reset.
4056 * Basically, this tries to restart the card from scratch.
4057 * This is a shortened version of the device probe/discovery code,
4058 * it resembles the first-half of the () routine.
4060 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4062 struct net_device *ndev = pci_get_drvdata(pdev);
4063 struct ql_adapter *qdev = netdev_priv(ndev);
4065 if (pci_enable_device(pdev)) {
4066 QPRINTK(qdev, IFUP, ERR,
4067 "Cannot re-enable PCI device after reset.\n");
4068 return PCI_ERS_RESULT_DISCONNECT;
4071 pci_set_master(pdev);
4073 netif_carrier_off(ndev);
4074 ql_adapter_reset(qdev);
4076 /* Make sure the EEPROM is good */
4077 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4079 if (!is_valid_ether_addr(ndev->perm_addr)) {
4080 QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
4081 return PCI_ERS_RESULT_DISCONNECT;
4084 return PCI_ERS_RESULT_RECOVERED;
4087 static void qlge_io_resume(struct pci_dev *pdev)
4089 struct net_device *ndev = pci_get_drvdata(pdev);
4090 struct ql_adapter *qdev = netdev_priv(ndev);
4092 pci_set_master(pdev);
4094 if (netif_running(ndev)) {
4095 if (ql_adapter_up(qdev)) {
4096 QPRINTK(qdev, IFUP, ERR,
4097 "Device initialization failed after reset.\n");
4098 return;
4102 netif_device_attach(ndev);
4105 static struct pci_error_handlers qlge_err_handler = {
4106 .error_detected = qlge_io_error_detected,
4107 .slot_reset = qlge_io_slot_reset,
4108 .resume = qlge_io_resume,
4111 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4113 struct net_device *ndev = pci_get_drvdata(pdev);
4114 struct ql_adapter *qdev = netdev_priv(ndev);
4115 int err;
4117 netif_device_detach(ndev);
4119 if (netif_running(ndev)) {
4120 err = ql_adapter_down(qdev);
4121 if (!err)
4122 return err;
4125 err = pci_save_state(pdev);
4126 if (err)
4127 return err;
4129 pci_disable_device(pdev);
4131 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4133 return 0;
4136 #ifdef CONFIG_PM
4137 static int qlge_resume(struct pci_dev *pdev)
4139 struct net_device *ndev = pci_get_drvdata(pdev);
4140 struct ql_adapter *qdev = netdev_priv(ndev);
4141 int err;
4143 pci_set_power_state(pdev, PCI_D0);
4144 pci_restore_state(pdev);
4145 err = pci_enable_device(pdev);
4146 if (err) {
4147 QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
4148 return err;
4150 pci_set_master(pdev);
4152 pci_enable_wake(pdev, PCI_D3hot, 0);
4153 pci_enable_wake(pdev, PCI_D3cold, 0);
4155 if (netif_running(ndev)) {
4156 err = ql_adapter_up(qdev);
4157 if (err)
4158 return err;
4161 netif_device_attach(ndev);
4163 return 0;
4165 #endif /* CONFIG_PM */
4167 static void qlge_shutdown(struct pci_dev *pdev)
4169 qlge_suspend(pdev, PMSG_SUSPEND);
4172 static struct pci_driver qlge_driver = {
4173 .name = DRV_NAME,
4174 .id_table = qlge_pci_tbl,
4175 .probe = qlge_probe,
4176 .remove = __devexit_p(qlge_remove),
4177 #ifdef CONFIG_PM
4178 .suspend = qlge_suspend,
4179 .resume = qlge_resume,
4180 #endif
4181 .shutdown = qlge_shutdown,
4182 .err_handler = &qlge_err_handler
4185 static int __init qlge_init_module(void)
4187 return pci_register_driver(&qlge_driver);
4190 static void __exit qlge_exit(void)
4192 pci_unregister_driver(&qlge_driver);
4195 module_init(qlge_init_module);
4196 module_exit(qlge_exit);