JBD: round commit timer up to avoid uncommitted transaction
[linux/fpc-iii.git] / drivers / net / vxge / vxge-config.c
blob9e94c4b0fb180c1b3756c627e093d64097ee0978
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2009 Neterion Inc.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/pci_hotplug.h>
19 #include "vxge-traffic.h"
20 #include "vxge-config.h"
23 * __vxge_hw_channel_allocate - Allocate memory for channel
24 * This function allocates required memory for the channel and various arrays
25 * in the channel
27 struct __vxge_hw_channel*
28 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
29 enum __vxge_hw_channel_type type,
30 u32 length, u32 per_dtr_space, void *userdata)
32 struct __vxge_hw_channel *channel;
33 struct __vxge_hw_device *hldev;
34 int size = 0;
35 u32 vp_id;
37 hldev = vph->vpath->hldev;
38 vp_id = vph->vpath->vp_id;
40 switch (type) {
41 case VXGE_HW_CHANNEL_TYPE_FIFO:
42 size = sizeof(struct __vxge_hw_fifo);
43 break;
44 case VXGE_HW_CHANNEL_TYPE_RING:
45 size = sizeof(struct __vxge_hw_ring);
46 break;
47 default:
48 break;
51 channel = kzalloc(size, GFP_KERNEL);
52 if (channel == NULL)
53 goto exit0;
54 INIT_LIST_HEAD(&channel->item);
56 channel->common_reg = hldev->common_reg;
57 channel->first_vp_id = hldev->first_vp_id;
58 channel->type = type;
59 channel->devh = hldev;
60 channel->vph = vph;
61 channel->userdata = userdata;
62 channel->per_dtr_space = per_dtr_space;
63 channel->length = length;
64 channel->vp_id = vp_id;
66 channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
67 if (channel->work_arr == NULL)
68 goto exit1;
70 channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
71 if (channel->free_arr == NULL)
72 goto exit1;
73 channel->free_ptr = length;
75 channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
76 if (channel->reserve_arr == NULL)
77 goto exit1;
78 channel->reserve_ptr = length;
79 channel->reserve_top = 0;
81 channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
82 if (channel->orig_arr == NULL)
83 goto exit1;
85 return channel;
86 exit1:
87 __vxge_hw_channel_free(channel);
89 exit0:
90 return NULL;
94 * __vxge_hw_channel_free - Free memory allocated for channel
95 * This function deallocates memory from the channel and various arrays
96 * in the channel
98 void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
100 kfree(channel->work_arr);
101 kfree(channel->free_arr);
102 kfree(channel->reserve_arr);
103 kfree(channel->orig_arr);
104 kfree(channel);
108 * __vxge_hw_channel_initialize - Initialize a channel
109 * This function initializes a channel by properly setting the
110 * various references
112 enum vxge_hw_status
113 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
115 u32 i;
116 struct __vxge_hw_virtualpath *vpath;
118 vpath = channel->vph->vpath;
120 if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
121 for (i = 0; i < channel->length; i++)
122 channel->orig_arr[i] = channel->reserve_arr[i];
125 switch (channel->type) {
126 case VXGE_HW_CHANNEL_TYPE_FIFO:
127 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
128 channel->stats = &((struct __vxge_hw_fifo *)
129 channel)->stats->common_stats;
130 break;
131 case VXGE_HW_CHANNEL_TYPE_RING:
132 vpath->ringh = (struct __vxge_hw_ring *)channel;
133 channel->stats = &((struct __vxge_hw_ring *)
134 channel)->stats->common_stats;
135 break;
136 default:
137 break;
140 return VXGE_HW_OK;
144 * __vxge_hw_channel_reset - Resets a channel
145 * This function resets a channel by properly setting the various references
147 enum vxge_hw_status
148 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
150 u32 i;
152 for (i = 0; i < channel->length; i++) {
153 if (channel->reserve_arr != NULL)
154 channel->reserve_arr[i] = channel->orig_arr[i];
155 if (channel->free_arr != NULL)
156 channel->free_arr[i] = NULL;
157 if (channel->work_arr != NULL)
158 channel->work_arr[i] = NULL;
160 channel->free_ptr = channel->length;
161 channel->reserve_ptr = channel->length;
162 channel->reserve_top = 0;
163 channel->post_index = 0;
164 channel->compl_index = 0;
166 return VXGE_HW_OK;
170 * __vxge_hw_device_pci_e_init
171 * Initialize certain PCI/PCI-X configuration registers
172 * with recommended values. Save config space for future hw resets.
174 void
175 __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
177 u16 cmd = 0;
179 /* Set the PErr Repconse bit and SERR in PCI command register. */
180 pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
181 cmd |= 0x140;
182 pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
184 pci_save_state(hldev->pdev);
186 return;
190 * __vxge_hw_device_register_poll
191 * Will poll certain register for specified amount of time.
192 * Will poll until masked bit is not cleared.
194 enum vxge_hw_status
195 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
197 u64 val64;
198 u32 i = 0;
199 enum vxge_hw_status ret = VXGE_HW_FAIL;
201 udelay(10);
203 do {
204 val64 = readq(reg);
205 if (!(val64 & mask))
206 return VXGE_HW_OK;
207 udelay(100);
208 } while (++i <= 9);
210 i = 0;
211 do {
212 val64 = readq(reg);
213 if (!(val64 & mask))
214 return VXGE_HW_OK;
215 mdelay(1);
216 } while (++i <= max_millis);
218 return ret;
221 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
222 * in progress
223 * This routine checks the vpath reset in progress register is turned zero
225 enum vxge_hw_status
226 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
228 enum vxge_hw_status status;
229 status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
230 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
231 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
232 return status;
236 * __vxge_hw_device_toc_get
237 * This routine sets the swapper and reads the toc pointer and returns the
238 * memory mapped address of the toc
240 struct vxge_hw_toc_reg __iomem *
241 __vxge_hw_device_toc_get(void __iomem *bar0)
243 u64 val64;
244 struct vxge_hw_toc_reg __iomem *toc = NULL;
245 enum vxge_hw_status status;
247 struct vxge_hw_legacy_reg __iomem *legacy_reg =
248 (struct vxge_hw_legacy_reg __iomem *)bar0;
250 status = __vxge_hw_legacy_swapper_set(legacy_reg);
251 if (status != VXGE_HW_OK)
252 goto exit;
254 val64 = readq(&legacy_reg->toc_first_pointer);
255 toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64);
256 exit:
257 return toc;
261 * __vxge_hw_device_reg_addr_get
262 * This routine sets the swapper and reads the toc pointer and initializes the
263 * register location pointers in the device object. It waits until the ric is
264 * completed initializing registers.
266 enum vxge_hw_status
267 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
269 u64 val64;
270 u32 i;
271 enum vxge_hw_status status = VXGE_HW_OK;
273 hldev->legacy_reg = (struct vxge_hw_legacy_reg __iomem *)hldev->bar0;
275 hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
276 if (hldev->toc_reg == NULL) {
277 status = VXGE_HW_FAIL;
278 goto exit;
281 val64 = readq(&hldev->toc_reg->toc_common_pointer);
282 hldev->common_reg =
283 (struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64);
285 val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
286 hldev->mrpcim_reg =
287 (struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64);
289 for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
290 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
291 hldev->srpcim_reg[i] =
292 (struct vxge_hw_srpcim_reg __iomem *)
293 (hldev->bar0 + val64);
296 for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
297 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
298 hldev->vpmgmt_reg[i] =
299 (struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64);
302 for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
303 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
304 hldev->vpath_reg[i] =
305 (struct vxge_hw_vpath_reg __iomem *)
306 (hldev->bar0 + val64);
309 val64 = readq(&hldev->toc_reg->toc_kdfc);
311 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
312 case 0:
313 hldev->kdfc = (u8 __iomem *)(hldev->bar0 +
314 VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
315 break;
316 default:
317 break;
320 status = __vxge_hw_device_vpath_reset_in_prog_check(
321 (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
322 exit:
323 return status;
327 * __vxge_hw_device_id_get
328 * This routine returns sets the device id and revision numbers into the device
329 * structure
331 void __vxge_hw_device_id_get(struct __vxge_hw_device *hldev)
333 u64 val64;
335 val64 = readq(&hldev->common_reg->titan_asic_id);
336 hldev->device_id =
337 (u16)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_DEVICE_ID(val64);
339 hldev->major_revision =
340 (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MAJOR_REVISION(val64);
342 hldev->minor_revision =
343 (u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MINOR_REVISION(val64);
345 return;
349 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
350 * This routine returns the Access Rights of the driver
352 static u32
353 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
355 u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
357 switch (host_type) {
358 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
359 if (func_id == 0) {
360 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
361 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
363 break;
364 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
365 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
366 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
367 break;
368 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
369 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
370 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
371 break;
372 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
373 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
374 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
375 break;
376 case VXGE_HW_SR_VH_FUNCTION0:
377 case VXGE_HW_VH_NORMAL_FUNCTION:
378 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
379 break;
382 return access_rights;
385 * __vxge_hw_device_host_info_get
386 * This routine returns the host type assignments
388 void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
390 u64 val64;
391 u32 i;
393 val64 = readq(&hldev->common_reg->host_type_assignments);
395 hldev->host_type =
396 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
398 hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
400 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
402 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
403 continue;
405 hldev->func_id =
406 __vxge_hw_vpath_func_id_get(i, hldev->vpmgmt_reg[i]);
408 hldev->access_rights = __vxge_hw_device_access_rights_get(
409 hldev->host_type, hldev->func_id);
411 hldev->first_vp_id = i;
412 break;
415 return;
419 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
420 * link width and signalling rate.
422 static enum vxge_hw_status
423 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
425 int exp_cap;
426 u16 lnk;
428 /* Get the negotiated link width and speed from PCI config space */
429 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
430 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
432 if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
433 return VXGE_HW_ERR_INVALID_PCI_INFO;
435 switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
436 case PCIE_LNK_WIDTH_RESRV:
437 case PCIE_LNK_X1:
438 case PCIE_LNK_X2:
439 case PCIE_LNK_X4:
440 case PCIE_LNK_X8:
441 break;
442 default:
443 return VXGE_HW_ERR_INVALID_PCI_INFO;
446 return VXGE_HW_OK;
449 enum vxge_hw_status
450 __vxge_hw_device_is_privilaged(struct __vxge_hw_device *hldev)
452 if ((hldev->host_type == VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION ||
453 hldev->host_type == VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION ||
454 hldev->host_type == VXGE_HW_NO_MR_SR_VH0_FUNCTION0) &&
455 (hldev->func_id == 0))
456 return VXGE_HW_OK;
457 else
458 return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
462 * vxge_hw_wrr_rebalance - Rebalance the RX_WRR and KDFC_WRR calandars.
463 * Rebalance the RX_WRR and KDFC_WRR calandars.
465 static enum
466 vxge_hw_status vxge_hw_wrr_rebalance(struct __vxge_hw_device *hldev)
468 u64 val64;
469 u32 wrr_states[VXGE_HW_WEIGHTED_RR_SERVICE_STATES];
470 u32 i, j, how_often = 1;
471 enum vxge_hw_status status = VXGE_HW_OK;
473 status = __vxge_hw_device_is_privilaged(hldev);
474 if (status != VXGE_HW_OK)
475 goto exit;
477 /* Reset the priorities assigned to the WRR arbitration
478 phases for the receive traffic */
479 for (i = 0; i < VXGE_HW_WRR_RING_COUNT; i++)
480 writeq(0, ((&hldev->mrpcim_reg->rx_w_round_robin_0) + i));
482 /* Reset the transmit FIFO servicing calendar for FIFOs */
483 for (i = 0; i < VXGE_HW_WRR_FIFO_COUNT; i++) {
484 writeq(0, ((&hldev->mrpcim_reg->kdfc_w_round_robin_0) + i));
485 writeq(0, ((&hldev->mrpcim_reg->kdfc_w_round_robin_20) + i));
488 /* Assign WRR priority 0 for all FIFOs */
489 for (i = 1; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
490 writeq(VXGE_HW_KDFC_FIFO_0_CTRL_WRR_NUMBER(0),
491 ((&hldev->mrpcim_reg->kdfc_fifo_0_ctrl) + i));
493 writeq(VXGE_HW_KDFC_FIFO_17_CTRL_WRR_NUMBER(0),
494 ((&hldev->mrpcim_reg->kdfc_fifo_17_ctrl) + i));
497 /* Reset to service non-offload doorbells */
498 writeq(0, &hldev->mrpcim_reg->kdfc_entry_type_sel_0);
499 writeq(0, &hldev->mrpcim_reg->kdfc_entry_type_sel_1);
501 /* Set priority 0 to all receive queues */
502 writeq(0, &hldev->mrpcim_reg->rx_queue_priority_0);
503 writeq(0, &hldev->mrpcim_reg->rx_queue_priority_1);
504 writeq(0, &hldev->mrpcim_reg->rx_queue_priority_2);
506 /* Initialize all the slots as unused */
507 for (i = 0; i < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; i++)
508 wrr_states[i] = -1;
510 /* Prepare the Fifo service states */
511 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
513 if (!hldev->config.vp_config[i].min_bandwidth)
514 continue;
516 how_often = VXGE_HW_VPATH_BANDWIDTH_MAX /
517 hldev->config.vp_config[i].min_bandwidth;
518 if (how_often) {
520 for (j = 0; j < VXGE_HW_WRR_FIFO_SERVICE_STATES;) {
521 if (wrr_states[j] == -1) {
522 wrr_states[j] = i;
523 /* Make sure each fifo is serviced
524 * atleast once */
525 if (i == j)
526 j += VXGE_HW_MAX_VIRTUAL_PATHS;
527 else
528 j += how_often;
529 } else
530 j++;
535 /* Fill the unused slots with 0 */
536 for (j = 0; j < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; j++) {
537 if (wrr_states[j] == -1)
538 wrr_states[j] = 0;
541 /* Assign WRR priority number for FIFOs */
542 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
543 writeq(VXGE_HW_KDFC_FIFO_0_CTRL_WRR_NUMBER(i),
544 ((&hldev->mrpcim_reg->kdfc_fifo_0_ctrl) + i));
546 writeq(VXGE_HW_KDFC_FIFO_17_CTRL_WRR_NUMBER(i),
547 ((&hldev->mrpcim_reg->kdfc_fifo_17_ctrl) + i));
550 /* Modify the servicing algorithm applied to the 3 types of doorbells.
551 i.e, none-offload, message and offload */
552 writeq(VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_0(0) |
553 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_1(0) |
554 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_2(0) |
555 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_3(0) |
556 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_4(1) |
557 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_5(0) |
558 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_6(0) |
559 VXGE_HW_KDFC_ENTRY_TYPE_SEL_0_NUMBER_7(0),
560 &hldev->mrpcim_reg->kdfc_entry_type_sel_0);
562 writeq(VXGE_HW_KDFC_ENTRY_TYPE_SEL_1_NUMBER_8(1),
563 &hldev->mrpcim_reg->kdfc_entry_type_sel_1);
565 for (i = 0, j = 0; i < VXGE_HW_WRR_FIFO_COUNT; i++) {
567 val64 = VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_0(wrr_states[j++]);
568 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_1(wrr_states[j++]);
569 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_2(wrr_states[j++]);
570 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_3(wrr_states[j++]);
571 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_4(wrr_states[j++]);
572 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_5(wrr_states[j++]);
573 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_6(wrr_states[j++]);
574 val64 |= VXGE_HW_KDFC_W_ROUND_ROBIN_0_NUMBER_7(wrr_states[j++]);
576 writeq(val64, (&hldev->mrpcim_reg->kdfc_w_round_robin_0 + i));
577 writeq(val64, (&hldev->mrpcim_reg->kdfc_w_round_robin_20 + i));
580 /* Set up the priorities assigned to receive queues */
581 writeq(VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_0(0) |
582 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_1(1) |
583 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_2(2) |
584 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_3(3) |
585 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_4(4) |
586 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_5(5) |
587 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_6(6) |
588 VXGE_HW_RX_QUEUE_PRIORITY_0_RX_Q_NUMBER_7(7),
589 &hldev->mrpcim_reg->rx_queue_priority_0);
591 writeq(VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_8(8) |
592 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_9(9) |
593 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_10(10) |
594 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_11(11) |
595 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_12(12) |
596 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_13(13) |
597 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_14(14) |
598 VXGE_HW_RX_QUEUE_PRIORITY_1_RX_Q_NUMBER_15(15),
599 &hldev->mrpcim_reg->rx_queue_priority_1);
601 writeq(VXGE_HW_RX_QUEUE_PRIORITY_2_RX_Q_NUMBER_16(16),
602 &hldev->mrpcim_reg->rx_queue_priority_2);
604 /* Initialize all the slots as unused */
605 for (i = 0; i < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; i++)
606 wrr_states[i] = -1;
608 /* Prepare the Ring service states */
609 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
611 if (!hldev->config.vp_config[i].min_bandwidth)
612 continue;
614 how_often = VXGE_HW_VPATH_BANDWIDTH_MAX /
615 hldev->config.vp_config[i].min_bandwidth;
617 if (how_often) {
618 for (j = 0; j < VXGE_HW_WRR_RING_SERVICE_STATES;) {
619 if (wrr_states[j] == -1) {
620 wrr_states[j] = i;
621 /* Make sure each ring is
622 * serviced atleast once */
623 if (i == j)
624 j += VXGE_HW_MAX_VIRTUAL_PATHS;
625 else
626 j += how_often;
627 } else
628 j++;
633 /* Fill the unused slots with 0 */
634 for (j = 0; j < VXGE_HW_WEIGHTED_RR_SERVICE_STATES; j++) {
635 if (wrr_states[j] == -1)
636 wrr_states[j] = 0;
639 for (i = 0, j = 0; i < VXGE_HW_WRR_RING_COUNT; i++) {
640 val64 = VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_0(
641 wrr_states[j++]);
642 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_1(
643 wrr_states[j++]);
644 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_2(
645 wrr_states[j++]);
646 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_3(
647 wrr_states[j++]);
648 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_4(
649 wrr_states[j++]);
650 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_5(
651 wrr_states[j++]);
652 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_6(
653 wrr_states[j++]);
654 val64 |= VXGE_HW_RX_W_ROUND_ROBIN_0_RX_W_PRIORITY_SS_7(
655 wrr_states[j++]);
657 writeq(val64, ((&hldev->mrpcim_reg->rx_w_round_robin_0) + i));
659 exit:
660 return status;
664 * __vxge_hw_device_initialize
665 * Initialize Titan-V hardware.
667 enum vxge_hw_status __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
669 enum vxge_hw_status status = VXGE_HW_OK;
671 if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev)) {
672 /* Validate the pci-e link width and speed */
673 status = __vxge_hw_verify_pci_e_info(hldev);
674 if (status != VXGE_HW_OK)
675 goto exit;
678 vxge_hw_wrr_rebalance(hldev);
679 exit:
680 return status;
684 * vxge_hw_device_hw_info_get - Get the hw information
685 * Returns the vpath mask that has the bits set for each vpath allocated
686 * for the driver, FW version information and the first mac addresse for
687 * each vpath
689 enum vxge_hw_status __devinit
690 vxge_hw_device_hw_info_get(void __iomem *bar0,
691 struct vxge_hw_device_hw_info *hw_info)
693 u32 i;
694 u64 val64;
695 struct vxge_hw_toc_reg __iomem *toc;
696 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
697 struct vxge_hw_common_reg __iomem *common_reg;
698 struct vxge_hw_vpath_reg __iomem *vpath_reg;
699 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
700 enum vxge_hw_status status;
702 memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
704 toc = __vxge_hw_device_toc_get(bar0);
705 if (toc == NULL) {
706 status = VXGE_HW_ERR_CRITICAL;
707 goto exit;
710 val64 = readq(&toc->toc_common_pointer);
711 common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64);
713 status = __vxge_hw_device_vpath_reset_in_prog_check(
714 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
715 if (status != VXGE_HW_OK)
716 goto exit;
718 hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
720 val64 = readq(&common_reg->host_type_assignments);
722 hw_info->host_type =
723 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
725 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
727 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
728 continue;
730 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
732 vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *)
733 (bar0 + val64);
735 hw_info->func_id = __vxge_hw_vpath_func_id_get(i, vpmgmt_reg);
736 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
737 hw_info->func_id) &
738 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
740 val64 = readq(&toc->toc_mrpcim_pointer);
742 mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)
743 (bar0 + val64);
745 writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
746 wmb();
749 val64 = readq(&toc->toc_vpath_pointer[i]);
751 vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
753 hw_info->function_mode =
754 __vxge_hw_vpath_pci_func_mode_get(i, vpath_reg);
756 status = __vxge_hw_vpath_fw_ver_get(i, vpath_reg, hw_info);
757 if (status != VXGE_HW_OK)
758 goto exit;
760 status = __vxge_hw_vpath_card_info_get(i, vpath_reg, hw_info);
761 if (status != VXGE_HW_OK)
762 goto exit;
764 break;
767 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
769 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
770 continue;
772 val64 = readq(&toc->toc_vpath_pointer[i]);
773 vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
775 status = __vxge_hw_vpath_addr_get(i, vpath_reg,
776 hw_info->mac_addrs[i],
777 hw_info->mac_addr_masks[i]);
778 if (status != VXGE_HW_OK)
779 goto exit;
781 exit:
782 return status;
786 * vxge_hw_device_initialize - Initialize Titan device.
787 * Initialize Titan device. Note that all the arguments of this public API
788 * are 'IN', including @hldev. Driver cooperates with
789 * OS to find new Titan device, locate its PCI and memory spaces.
791 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
792 * to enable the latter to perform Titan hardware initialization.
794 enum vxge_hw_status __devinit
795 vxge_hw_device_initialize(
796 struct __vxge_hw_device **devh,
797 struct vxge_hw_device_attr *attr,
798 struct vxge_hw_device_config *device_config)
800 u32 i;
801 u32 nblocks = 0;
802 struct __vxge_hw_device *hldev = NULL;
803 enum vxge_hw_status status = VXGE_HW_OK;
805 status = __vxge_hw_device_config_check(device_config);
806 if (status != VXGE_HW_OK)
807 goto exit;
809 hldev = (struct __vxge_hw_device *)
810 vmalloc(sizeof(struct __vxge_hw_device));
811 if (hldev == NULL) {
812 status = VXGE_HW_ERR_OUT_OF_MEMORY;
813 goto exit;
816 memset(hldev, 0, sizeof(struct __vxge_hw_device));
817 hldev->magic = VXGE_HW_DEVICE_MAGIC;
819 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
821 /* apply config */
822 memcpy(&hldev->config, device_config,
823 sizeof(struct vxge_hw_device_config));
825 hldev->bar0 = attr->bar0;
826 hldev->pdev = attr->pdev;
828 hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up;
829 hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down;
830 hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err;
832 __vxge_hw_device_pci_e_init(hldev);
834 status = __vxge_hw_device_reg_addr_get(hldev);
835 if (status != VXGE_HW_OK)
836 goto exit;
837 __vxge_hw_device_id_get(hldev);
839 __vxge_hw_device_host_info_get(hldev);
841 /* Incrementing for stats blocks */
842 nblocks++;
844 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
846 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
847 continue;
849 if (device_config->vp_config[i].ring.enable ==
850 VXGE_HW_RING_ENABLE)
851 nblocks += device_config->vp_config[i].ring.ring_blocks;
853 if (device_config->vp_config[i].fifo.enable ==
854 VXGE_HW_FIFO_ENABLE)
855 nblocks += device_config->vp_config[i].fifo.fifo_blocks;
856 nblocks++;
859 if (__vxge_hw_blockpool_create(hldev,
860 &hldev->block_pool,
861 device_config->dma_blockpool_initial + nblocks,
862 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
864 vxge_hw_device_terminate(hldev);
865 status = VXGE_HW_ERR_OUT_OF_MEMORY;
866 goto exit;
869 status = __vxge_hw_device_initialize(hldev);
871 if (status != VXGE_HW_OK) {
872 vxge_hw_device_terminate(hldev);
873 goto exit;
876 *devh = hldev;
877 exit:
878 return status;
882 * vxge_hw_device_terminate - Terminate Titan device.
883 * Terminate HW device.
885 void
886 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
888 vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
890 hldev->magic = VXGE_HW_DEVICE_DEAD;
891 __vxge_hw_blockpool_destroy(&hldev->block_pool);
892 vfree(hldev);
896 * vxge_hw_device_stats_get - Get the device hw statistics.
897 * Returns the vpath h/w stats for the device.
899 enum vxge_hw_status
900 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
901 struct vxge_hw_device_stats_hw_info *hw_stats)
903 u32 i;
904 enum vxge_hw_status status = VXGE_HW_OK;
906 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
908 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
909 (hldev->virtual_paths[i].vp_open ==
910 VXGE_HW_VP_NOT_OPEN))
911 continue;
913 memcpy(hldev->virtual_paths[i].hw_stats_sav,
914 hldev->virtual_paths[i].hw_stats,
915 sizeof(struct vxge_hw_vpath_stats_hw_info));
917 status = __vxge_hw_vpath_stats_get(
918 &hldev->virtual_paths[i],
919 hldev->virtual_paths[i].hw_stats);
922 memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
923 sizeof(struct vxge_hw_device_stats_hw_info));
925 return status;
929 * vxge_hw_driver_stats_get - Get the device sw statistics.
930 * Returns the vpath s/w stats for the device.
932 enum vxge_hw_status vxge_hw_driver_stats_get(
933 struct __vxge_hw_device *hldev,
934 struct vxge_hw_device_stats_sw_info *sw_stats)
936 enum vxge_hw_status status = VXGE_HW_OK;
938 memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
939 sizeof(struct vxge_hw_device_stats_sw_info));
941 return status;
945 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
946 * and offset and perform an operation
947 * Get the statistics from the given location and offset.
949 enum vxge_hw_status
950 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
951 u32 operation, u32 location, u32 offset, u64 *stat)
953 u64 val64;
954 enum vxge_hw_status status = VXGE_HW_OK;
956 status = __vxge_hw_device_is_privilaged(hldev);
957 if (status != VXGE_HW_OK)
958 goto exit;
960 val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
961 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
962 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
963 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
965 status = __vxge_hw_pio_mem_write64(val64,
966 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
967 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
968 hldev->config.device_poll_millis);
970 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
971 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
972 else
973 *stat = 0;
974 exit:
975 return status;
979 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
980 * Get the Statistics on aggregate port
982 enum vxge_hw_status
983 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
984 struct vxge_hw_xmac_aggr_stats *aggr_stats)
986 u64 *val64;
987 int i;
988 u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
989 enum vxge_hw_status status = VXGE_HW_OK;
991 val64 = (u64 *)aggr_stats;
993 status = __vxge_hw_device_is_privilaged(hldev);
994 if (status != VXGE_HW_OK)
995 goto exit;
997 for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
998 status = vxge_hw_mrpcim_stats_access(hldev,
999 VXGE_HW_STATS_OP_READ,
1000 VXGE_HW_STATS_LOC_AGGR,
1001 ((offset + (104 * port)) >> 3), val64);
1002 if (status != VXGE_HW_OK)
1003 goto exit;
1005 offset += 8;
1006 val64++;
1008 exit:
1009 return status;
1013 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1014 * Get the Statistics on port
1016 enum vxge_hw_status
1017 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1018 struct vxge_hw_xmac_port_stats *port_stats)
1020 u64 *val64;
1021 enum vxge_hw_status status = VXGE_HW_OK;
1022 int i;
1023 u32 offset = 0x0;
1024 val64 = (u64 *) port_stats;
1026 status = __vxge_hw_device_is_privilaged(hldev);
1027 if (status != VXGE_HW_OK)
1028 goto exit;
1030 for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1031 status = vxge_hw_mrpcim_stats_access(hldev,
1032 VXGE_HW_STATS_OP_READ,
1033 VXGE_HW_STATS_LOC_AGGR,
1034 ((offset + (608 * port)) >> 3), val64);
1035 if (status != VXGE_HW_OK)
1036 goto exit;
1038 offset += 8;
1039 val64++;
1042 exit:
1043 return status;
1047 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1048 * Get the XMAC Statistics
1050 enum vxge_hw_status
1051 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1052 struct vxge_hw_xmac_stats *xmac_stats)
1054 enum vxge_hw_status status = VXGE_HW_OK;
1055 u32 i;
1057 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1058 0, &xmac_stats->aggr_stats[0]);
1060 if (status != VXGE_HW_OK)
1061 goto exit;
1063 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1064 1, &xmac_stats->aggr_stats[1]);
1065 if (status != VXGE_HW_OK)
1066 goto exit;
1068 for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1070 status = vxge_hw_device_xmac_port_stats_get(hldev,
1071 i, &xmac_stats->port_stats[i]);
1072 if (status != VXGE_HW_OK)
1073 goto exit;
1076 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1078 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1079 continue;
1081 status = __vxge_hw_vpath_xmac_tx_stats_get(
1082 &hldev->virtual_paths[i],
1083 &xmac_stats->vpath_tx_stats[i]);
1084 if (status != VXGE_HW_OK)
1085 goto exit;
1087 status = __vxge_hw_vpath_xmac_rx_stats_get(
1088 &hldev->virtual_paths[i],
1089 &xmac_stats->vpath_rx_stats[i]);
1090 if (status != VXGE_HW_OK)
1091 goto exit;
1093 exit:
1094 return status;
1098 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1099 * This routine is used to dynamically change the debug output
1101 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1102 enum vxge_debug_level level, u32 mask)
1104 if (hldev == NULL)
1105 return;
1107 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1108 defined(VXGE_DEBUG_ERR_MASK)
1109 hldev->debug_module_mask = mask;
1110 hldev->debug_level = level;
1111 #endif
1113 #if defined(VXGE_DEBUG_ERR_MASK)
1114 hldev->level_err = level & VXGE_ERR;
1115 #endif
1117 #if defined(VXGE_DEBUG_TRACE_MASK)
1118 hldev->level_trace = level & VXGE_TRACE;
1119 #endif
1123 * vxge_hw_device_error_level_get - Get the error level
1124 * This routine returns the current error level set
1126 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1128 #if defined(VXGE_DEBUG_ERR_MASK)
1129 if (hldev == NULL)
1130 return VXGE_ERR;
1131 else
1132 return hldev->level_err;
1133 #else
1134 return 0;
1135 #endif
1139 * vxge_hw_device_trace_level_get - Get the trace level
1140 * This routine returns the current trace level set
1142 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1144 #if defined(VXGE_DEBUG_TRACE_MASK)
1145 if (hldev == NULL)
1146 return VXGE_TRACE;
1147 else
1148 return hldev->level_trace;
1149 #else
1150 return 0;
1151 #endif
1154 * vxge_hw_device_debug_mask_get - Get the debug mask
1155 * This routine returns the current debug mask set
1157 u32 vxge_hw_device_debug_mask_get(struct __vxge_hw_device *hldev)
1159 #if defined(VXGE_DEBUG_TRACE_MASK) || defined(VXGE_DEBUG_ERR_MASK)
1160 if (hldev == NULL)
1161 return 0;
1162 return hldev->debug_module_mask;
1163 #else
1164 return 0;
1165 #endif
1169 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1170 * Returns the Pause frame generation and reception capability of the NIC.
1172 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1173 u32 port, u32 *tx, u32 *rx)
1175 u64 val64;
1176 enum vxge_hw_status status = VXGE_HW_OK;
1178 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1179 status = VXGE_HW_ERR_INVALID_DEVICE;
1180 goto exit;
1183 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1184 status = VXGE_HW_ERR_INVALID_PORT;
1185 goto exit;
1188 if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1189 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
1190 goto exit;
1193 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1194 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1195 *tx = 1;
1196 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1197 *rx = 1;
1198 exit:
1199 return status;
1203 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1204 * It can be used to set or reset Pause frame generation or reception
1205 * support of the NIC.
1208 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1209 u32 port, u32 tx, u32 rx)
1211 u64 val64;
1212 enum vxge_hw_status status = VXGE_HW_OK;
1214 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1215 status = VXGE_HW_ERR_INVALID_DEVICE;
1216 goto exit;
1219 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1220 status = VXGE_HW_ERR_INVALID_PORT;
1221 goto exit;
1224 status = __vxge_hw_device_is_privilaged(hldev);
1225 if (status != VXGE_HW_OK)
1226 goto exit;
1228 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1229 if (tx)
1230 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1231 else
1232 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1233 if (rx)
1234 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1235 else
1236 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1238 writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1239 exit:
1240 return status;
1243 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1245 int link_width, exp_cap;
1246 u16 lnk;
1248 exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
1249 pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
1250 link_width = (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1251 return link_width;
1255 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1256 * This function returns the index of memory block
1258 static inline u32
1259 __vxge_hw_ring_block_memblock_idx(u8 *block)
1261 return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1265 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1266 * This function sets index to a memory block
1268 static inline void
1269 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
1271 *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
1275 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
1276 * in RxD block
1277 * Sets the next block pointer in RxD block
1279 static inline void
1280 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
1282 *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
1286 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
1287 * first block
1288 * Returns the dma address of the first RxD block
1290 u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
1292 struct vxge_hw_mempool_dma *dma_object;
1294 dma_object = ring->mempool->memblocks_dma_arr;
1295 vxge_assert(dma_object != NULL);
1297 return dma_object->addr;
1301 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
1302 * This function returns the dma address of a given item
1304 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
1305 void *item)
1307 u32 memblock_idx;
1308 void *memblock;
1309 struct vxge_hw_mempool_dma *memblock_dma_object;
1310 ptrdiff_t dma_item_offset;
1312 /* get owner memblock index */
1313 memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
1315 /* get owner memblock by memblock index */
1316 memblock = mempoolh->memblocks_arr[memblock_idx];
1318 /* get memblock DMA object by memblock index */
1319 memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
1321 /* calculate offset in the memblock of this item */
1322 dma_item_offset = (u8 *)item - (u8 *)memblock;
1324 return memblock_dma_object->addr + dma_item_offset;
1328 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
1329 * This function returns the dma address of a given item
1331 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
1332 struct __vxge_hw_ring *ring, u32 from,
1333 u32 to)
1335 u8 *to_item , *from_item;
1336 dma_addr_t to_dma;
1338 /* get "from" RxD block */
1339 from_item = mempoolh->items_arr[from];
1340 vxge_assert(from_item);
1342 /* get "to" RxD block */
1343 to_item = mempoolh->items_arr[to];
1344 vxge_assert(to_item);
1346 /* return address of the beginning of previous RxD block */
1347 to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
1349 /* set next pointer for this RxD block to point on
1350 * previous item's DMA start address */
1351 __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
1355 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
1356 * block callback
1357 * This function is callback passed to __vxge_hw_mempool_create to create memory
1358 * pool for RxD block
1360 static void
1361 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
1362 u32 memblock_index,
1363 struct vxge_hw_mempool_dma *dma_object,
1364 u32 index, u32 is_last)
1366 u32 i;
1367 void *item = mempoolh->items_arr[index];
1368 struct __vxge_hw_ring *ring =
1369 (struct __vxge_hw_ring *)mempoolh->userdata;
1371 /* format rxds array */
1372 for (i = 0; i < ring->rxds_per_block; i++) {
1373 void *rxdblock_priv;
1374 void *uld_priv;
1375 struct vxge_hw_ring_rxd_1 *rxdp;
1377 u32 reserve_index = ring->channel.reserve_ptr -
1378 (index * ring->rxds_per_block + i + 1);
1379 u32 memblock_item_idx;
1381 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
1382 i * ring->rxd_size;
1384 /* Note: memblock_item_idx is index of the item within
1385 * the memblock. For instance, in case of three RxD-blocks
1386 * per memblock this value can be 0, 1 or 2. */
1387 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
1388 memblock_index, item,
1389 &memblock_item_idx);
1391 rxdp = (struct vxge_hw_ring_rxd_1 *)
1392 ring->channel.reserve_arr[reserve_index];
1394 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
1396 /* pre-format Host_Control */
1397 rxdp->host_control = (u64)(size_t)uld_priv;
1400 __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
1402 if (is_last) {
1403 /* link last one with first one */
1404 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
1407 if (index > 0) {
1408 /* link this RxD block with previous one */
1409 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
1412 return;
1416 * __vxge_hw_ring_initial_replenish - Initial replenish of RxDs
1417 * This function replenishes the RxDs from reserve array to work array
1419 enum vxge_hw_status
1420 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring, u16 min_flag)
1422 void *rxd;
1423 int i = 0;
1424 struct __vxge_hw_channel *channel;
1425 enum vxge_hw_status status = VXGE_HW_OK;
1427 channel = &ring->channel;
1429 while (vxge_hw_channel_dtr_count(channel) > 0) {
1431 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
1433 vxge_assert(status == VXGE_HW_OK);
1435 if (ring->rxd_init) {
1436 status = ring->rxd_init(rxd, channel->userdata);
1437 if (status != VXGE_HW_OK) {
1438 vxge_hw_ring_rxd_free(ring, rxd);
1439 goto exit;
1443 vxge_hw_ring_rxd_post(ring, rxd);
1444 if (min_flag) {
1445 i++;
1446 if (i == VXGE_HW_RING_MIN_BUFF_ALLOCATION)
1447 break;
1450 status = VXGE_HW_OK;
1451 exit:
1452 return status;
1456 * __vxge_hw_ring_create - Create a Ring
1457 * This function creates Ring and initializes it.
1460 enum vxge_hw_status
1461 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
1462 struct vxge_hw_ring_attr *attr)
1464 enum vxge_hw_status status = VXGE_HW_OK;
1465 struct __vxge_hw_ring *ring;
1466 u32 ring_length;
1467 struct vxge_hw_ring_config *config;
1468 struct __vxge_hw_device *hldev;
1469 u32 vp_id;
1470 struct vxge_hw_mempool_cbs ring_mp_callback;
1472 if ((vp == NULL) || (attr == NULL)) {
1473 status = VXGE_HW_FAIL;
1474 goto exit;
1477 hldev = vp->vpath->hldev;
1478 vp_id = vp->vpath->vp_id;
1480 config = &hldev->config.vp_config[vp_id].ring;
1482 ring_length = config->ring_blocks *
1483 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
1485 ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
1486 VXGE_HW_CHANNEL_TYPE_RING,
1487 ring_length,
1488 attr->per_rxd_space,
1489 attr->userdata);
1491 if (ring == NULL) {
1492 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1493 goto exit;
1496 vp->vpath->ringh = ring;
1497 ring->vp_id = vp_id;
1498 ring->vp_reg = vp->vpath->vp_reg;
1499 ring->common_reg = hldev->common_reg;
1500 ring->stats = &vp->vpath->sw_stats->ring_stats;
1501 ring->config = config;
1502 ring->callback = attr->callback;
1503 ring->rxd_init = attr->rxd_init;
1504 ring->rxd_term = attr->rxd_term;
1505 ring->buffer_mode = config->buffer_mode;
1506 ring->rxds_limit = config->rxds_limit;
1508 ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
1509 ring->rxd_priv_size =
1510 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
1511 ring->per_rxd_space = attr->per_rxd_space;
1513 ring->rxd_priv_size =
1514 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
1515 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
1517 /* how many RxDs can fit into one block. Depends on configured
1518 * buffer_mode. */
1519 ring->rxds_per_block =
1520 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
1522 /* calculate actual RxD block private size */
1523 ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
1524 ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc;
1525 ring->mempool = __vxge_hw_mempool_create(hldev,
1526 VXGE_HW_BLOCK_SIZE,
1527 VXGE_HW_BLOCK_SIZE,
1528 ring->rxdblock_priv_size,
1529 ring->config->ring_blocks,
1530 ring->config->ring_blocks,
1531 &ring_mp_callback,
1532 ring);
1534 if (ring->mempool == NULL) {
1535 __vxge_hw_ring_delete(vp);
1536 return VXGE_HW_ERR_OUT_OF_MEMORY;
1539 status = __vxge_hw_channel_initialize(&ring->channel);
1540 if (status != VXGE_HW_OK) {
1541 __vxge_hw_ring_delete(vp);
1542 goto exit;
1545 /* Note:
1546 * Specifying rxd_init callback means two things:
1547 * 1) rxds need to be initialized by driver at channel-open time;
1548 * 2) rxds need to be posted at channel-open time
1549 * (that's what the initial_replenish() below does)
1550 * Currently we don't have a case when the 1) is done without the 2).
1552 if (ring->rxd_init) {
1553 status = vxge_hw_ring_replenish(ring, 1);
1554 if (status != VXGE_HW_OK) {
1555 __vxge_hw_ring_delete(vp);
1556 goto exit;
1560 /* initial replenish will increment the counter in its post() routine,
1561 * we have to reset it */
1562 ring->stats->common_stats.usage_cnt = 0;
1563 exit:
1564 return status;
1568 * __vxge_hw_ring_abort - Returns the RxD
1569 * This function terminates the RxDs of ring
1571 enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
1573 void *rxdh;
1574 struct __vxge_hw_channel *channel;
1576 channel = &ring->channel;
1578 for (;;) {
1579 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
1581 if (rxdh == NULL)
1582 break;
1584 vxge_hw_channel_dtr_complete(channel);
1586 if (ring->rxd_term)
1587 ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
1588 channel->userdata);
1590 vxge_hw_channel_dtr_free(channel, rxdh);
1593 return VXGE_HW_OK;
1597 * __vxge_hw_ring_reset - Resets the ring
1598 * This function resets the ring during vpath reset operation
1600 enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
1602 enum vxge_hw_status status = VXGE_HW_OK;
1603 struct __vxge_hw_channel *channel;
1605 channel = &ring->channel;
1607 __vxge_hw_ring_abort(ring);
1609 status = __vxge_hw_channel_reset(channel);
1611 if (status != VXGE_HW_OK)
1612 goto exit;
1614 if (ring->rxd_init) {
1615 status = vxge_hw_ring_replenish(ring, 1);
1616 if (status != VXGE_HW_OK)
1617 goto exit;
1619 exit:
1620 return status;
1624 * __vxge_hw_ring_delete - Removes the ring
1625 * This function freeup the memory pool and removes the ring
1627 enum vxge_hw_status __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
1629 struct __vxge_hw_ring *ring = vp->vpath->ringh;
1631 __vxge_hw_ring_abort(ring);
1633 if (ring->mempool)
1634 __vxge_hw_mempool_destroy(ring->mempool);
1636 vp->vpath->ringh = NULL;
1637 __vxge_hw_channel_free(&ring->channel);
1639 return VXGE_HW_OK;
1643 * __vxge_hw_mempool_grow
1644 * Will resize mempool up to %num_allocate value.
1646 enum vxge_hw_status
1647 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
1648 u32 *num_allocated)
1650 u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
1651 u32 n_items = mempool->items_per_memblock;
1652 u32 start_block_idx = mempool->memblocks_allocated;
1653 u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
1654 enum vxge_hw_status status = VXGE_HW_OK;
1656 *num_allocated = 0;
1658 if (end_block_idx > mempool->memblocks_max) {
1659 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1660 goto exit;
1663 for (i = start_block_idx; i < end_block_idx; i++) {
1664 u32 j;
1665 u32 is_last = ((end_block_idx - 1) == i);
1666 struct vxge_hw_mempool_dma *dma_object =
1667 mempool->memblocks_dma_arr + i;
1668 void *the_memblock;
1670 /* allocate memblock's private part. Each DMA memblock
1671 * has a space allocated for item's private usage upon
1672 * mempool's user request. Each time mempool grows, it will
1673 * allocate new memblock and its private part at once.
1674 * This helps to minimize memory usage a lot. */
1675 mempool->memblocks_priv_arr[i] =
1676 vmalloc(mempool->items_priv_size * n_items);
1677 if (mempool->memblocks_priv_arr[i] == NULL) {
1678 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1679 goto exit;
1682 memset(mempool->memblocks_priv_arr[i], 0,
1683 mempool->items_priv_size * n_items);
1685 /* allocate DMA-capable memblock */
1686 mempool->memblocks_arr[i] =
1687 __vxge_hw_blockpool_malloc(mempool->devh,
1688 mempool->memblock_size, dma_object);
1689 if (mempool->memblocks_arr[i] == NULL) {
1690 vfree(mempool->memblocks_priv_arr[i]);
1691 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1692 goto exit;
1695 (*num_allocated)++;
1696 mempool->memblocks_allocated++;
1698 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
1700 the_memblock = mempool->memblocks_arr[i];
1702 /* fill the items hash array */
1703 for (j = 0; j < n_items; j++) {
1704 u32 index = i * n_items + j;
1706 if (first_time && index >= mempool->items_initial)
1707 break;
1709 mempool->items_arr[index] =
1710 ((char *)the_memblock + j*mempool->item_size);
1712 /* let caller to do more job on each item */
1713 if (mempool->item_func_alloc != NULL)
1714 mempool->item_func_alloc(mempool, i,
1715 dma_object, index, is_last);
1717 mempool->items_current = index + 1;
1720 if (first_time && mempool->items_current ==
1721 mempool->items_initial)
1722 break;
1724 exit:
1725 return status;
1729 * vxge_hw_mempool_create
1730 * This function will create memory pool object. Pool may grow but will
1731 * never shrink. Pool consists of number of dynamically allocated blocks
1732 * with size enough to hold %items_initial number of items. Memory is
1733 * DMA-able but client must map/unmap before interoperating with the device.
1735 struct vxge_hw_mempool*
1736 __vxge_hw_mempool_create(
1737 struct __vxge_hw_device *devh,
1738 u32 memblock_size,
1739 u32 item_size,
1740 u32 items_priv_size,
1741 u32 items_initial,
1742 u32 items_max,
1743 struct vxge_hw_mempool_cbs *mp_callback,
1744 void *userdata)
1746 enum vxge_hw_status status = VXGE_HW_OK;
1747 u32 memblocks_to_allocate;
1748 struct vxge_hw_mempool *mempool = NULL;
1749 u32 allocated;
1751 if (memblock_size < item_size) {
1752 status = VXGE_HW_FAIL;
1753 goto exit;
1756 mempool = (struct vxge_hw_mempool *)
1757 vmalloc(sizeof(struct vxge_hw_mempool));
1758 if (mempool == NULL) {
1759 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1760 goto exit;
1762 memset(mempool, 0, sizeof(struct vxge_hw_mempool));
1764 mempool->devh = devh;
1765 mempool->memblock_size = memblock_size;
1766 mempool->items_max = items_max;
1767 mempool->items_initial = items_initial;
1768 mempool->item_size = item_size;
1769 mempool->items_priv_size = items_priv_size;
1770 mempool->item_func_alloc = mp_callback->item_func_alloc;
1771 mempool->userdata = userdata;
1773 mempool->memblocks_allocated = 0;
1775 mempool->items_per_memblock = memblock_size / item_size;
1777 mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
1778 mempool->items_per_memblock;
1780 /* allocate array of memblocks */
1781 mempool->memblocks_arr =
1782 (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
1783 if (mempool->memblocks_arr == NULL) {
1784 __vxge_hw_mempool_destroy(mempool);
1785 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1786 mempool = NULL;
1787 goto exit;
1789 memset(mempool->memblocks_arr, 0,
1790 sizeof(void *) * mempool->memblocks_max);
1792 /* allocate array of private parts of items per memblocks */
1793 mempool->memblocks_priv_arr =
1794 (void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
1795 if (mempool->memblocks_priv_arr == NULL) {
1796 __vxge_hw_mempool_destroy(mempool);
1797 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1798 mempool = NULL;
1799 goto exit;
1801 memset(mempool->memblocks_priv_arr, 0,
1802 sizeof(void *) * mempool->memblocks_max);
1804 /* allocate array of memblocks DMA objects */
1805 mempool->memblocks_dma_arr = (struct vxge_hw_mempool_dma *)
1806 vmalloc(sizeof(struct vxge_hw_mempool_dma) *
1807 mempool->memblocks_max);
1809 if (mempool->memblocks_dma_arr == NULL) {
1810 __vxge_hw_mempool_destroy(mempool);
1811 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1812 mempool = NULL;
1813 goto exit;
1815 memset(mempool->memblocks_dma_arr, 0,
1816 sizeof(struct vxge_hw_mempool_dma) *
1817 mempool->memblocks_max);
1819 /* allocate hash array of items */
1820 mempool->items_arr =
1821 (void **) vmalloc(sizeof(void *) * mempool->items_max);
1822 if (mempool->items_arr == NULL) {
1823 __vxge_hw_mempool_destroy(mempool);
1824 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1825 mempool = NULL;
1826 goto exit;
1828 memset(mempool->items_arr, 0, sizeof(void *) * mempool->items_max);
1830 /* calculate initial number of memblocks */
1831 memblocks_to_allocate = (mempool->items_initial +
1832 mempool->items_per_memblock - 1) /
1833 mempool->items_per_memblock;
1835 /* pre-allocate the mempool */
1836 status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
1837 &allocated);
1838 if (status != VXGE_HW_OK) {
1839 __vxge_hw_mempool_destroy(mempool);
1840 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1841 mempool = NULL;
1842 goto exit;
1845 exit:
1846 return mempool;
1850 * vxge_hw_mempool_destroy
1852 void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
1854 u32 i, j;
1855 struct __vxge_hw_device *devh = mempool->devh;
1857 for (i = 0; i < mempool->memblocks_allocated; i++) {
1858 struct vxge_hw_mempool_dma *dma_object;
1860 vxge_assert(mempool->memblocks_arr[i]);
1861 vxge_assert(mempool->memblocks_dma_arr + i);
1863 dma_object = mempool->memblocks_dma_arr + i;
1865 for (j = 0; j < mempool->items_per_memblock; j++) {
1866 u32 index = i * mempool->items_per_memblock + j;
1868 /* to skip last partially filled(if any) memblock */
1869 if (index >= mempool->items_current)
1870 break;
1873 vfree(mempool->memblocks_priv_arr[i]);
1875 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
1876 mempool->memblock_size, dma_object);
1879 vfree(mempool->items_arr);
1881 vfree(mempool->memblocks_dma_arr);
1883 vfree(mempool->memblocks_priv_arr);
1885 vfree(mempool->memblocks_arr);
1887 vfree(mempool);
1891 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1892 * Check the fifo configuration
1894 enum vxge_hw_status
1895 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1897 if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1898 (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1899 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1901 return VXGE_HW_OK;
1905 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1906 * Check the vpath configuration
1908 enum vxge_hw_status
1909 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1911 enum vxge_hw_status status;
1913 if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1914 (vp_config->min_bandwidth >
1915 VXGE_HW_VPATH_BANDWIDTH_MAX))
1916 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1918 status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1919 if (status != VXGE_HW_OK)
1920 return status;
1922 if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1923 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1924 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1925 return VXGE_HW_BADCFG_VPATH_MTU;
1927 if ((vp_config->rpa_strip_vlan_tag !=
1928 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1929 (vp_config->rpa_strip_vlan_tag !=
1930 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1931 (vp_config->rpa_strip_vlan_tag !=
1932 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1933 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1935 return VXGE_HW_OK;
1939 * __vxge_hw_device_config_check - Check device configuration.
1940 * Check the device configuration
1942 enum vxge_hw_status
1943 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1945 u32 i;
1946 enum vxge_hw_status status;
1948 if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1949 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1950 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1951 (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1952 return VXGE_HW_BADCFG_INTR_MODE;
1954 if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1955 (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1956 return VXGE_HW_BADCFG_RTS_MAC_EN;
1958 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1959 status = __vxge_hw_device_vpath_config_check(
1960 &new_config->vp_config[i]);
1961 if (status != VXGE_HW_OK)
1962 return status;
1965 return VXGE_HW_OK;
1969 * vxge_hw_device_config_default_get - Initialize device config with defaults.
1970 * Initialize Titan device config with default values.
1972 enum vxge_hw_status __devinit
1973 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
1975 u32 i;
1977 device_config->dma_blockpool_initial =
1978 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
1979 device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
1980 device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
1981 device_config->rth_en = VXGE_HW_RTH_DEFAULT;
1982 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
1983 device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
1984 device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
1986 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1988 device_config->vp_config[i].vp_id = i;
1990 device_config->vp_config[i].min_bandwidth =
1991 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
1993 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
1995 device_config->vp_config[i].ring.ring_blocks =
1996 VXGE_HW_DEF_RING_BLOCKS;
1998 device_config->vp_config[i].ring.buffer_mode =
1999 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2001 device_config->vp_config[i].ring.scatter_mode =
2002 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2004 device_config->vp_config[i].ring.rxds_limit =
2005 VXGE_HW_DEF_RING_RXDS_LIMIT;
2007 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2009 device_config->vp_config[i].fifo.fifo_blocks =
2010 VXGE_HW_MIN_FIFO_BLOCKS;
2012 device_config->vp_config[i].fifo.max_frags =
2013 VXGE_HW_MAX_FIFO_FRAGS;
2015 device_config->vp_config[i].fifo.memblock_size =
2016 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2018 device_config->vp_config[i].fifo.alignment_size =
2019 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2021 device_config->vp_config[i].fifo.intr =
2022 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2024 device_config->vp_config[i].fifo.no_snoop_bits =
2025 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2026 device_config->vp_config[i].tti.intr_enable =
2027 VXGE_HW_TIM_INTR_DEFAULT;
2029 device_config->vp_config[i].tti.btimer_val =
2030 VXGE_HW_USE_FLASH_DEFAULT;
2032 device_config->vp_config[i].tti.timer_ac_en =
2033 VXGE_HW_USE_FLASH_DEFAULT;
2035 device_config->vp_config[i].tti.timer_ci_en =
2036 VXGE_HW_USE_FLASH_DEFAULT;
2038 device_config->vp_config[i].tti.timer_ri_en =
2039 VXGE_HW_USE_FLASH_DEFAULT;
2041 device_config->vp_config[i].tti.rtimer_val =
2042 VXGE_HW_USE_FLASH_DEFAULT;
2044 device_config->vp_config[i].tti.util_sel =
2045 VXGE_HW_USE_FLASH_DEFAULT;
2047 device_config->vp_config[i].tti.ltimer_val =
2048 VXGE_HW_USE_FLASH_DEFAULT;
2050 device_config->vp_config[i].tti.urange_a =
2051 VXGE_HW_USE_FLASH_DEFAULT;
2053 device_config->vp_config[i].tti.uec_a =
2054 VXGE_HW_USE_FLASH_DEFAULT;
2056 device_config->vp_config[i].tti.urange_b =
2057 VXGE_HW_USE_FLASH_DEFAULT;
2059 device_config->vp_config[i].tti.uec_b =
2060 VXGE_HW_USE_FLASH_DEFAULT;
2062 device_config->vp_config[i].tti.urange_c =
2063 VXGE_HW_USE_FLASH_DEFAULT;
2065 device_config->vp_config[i].tti.uec_c =
2066 VXGE_HW_USE_FLASH_DEFAULT;
2068 device_config->vp_config[i].tti.uec_d =
2069 VXGE_HW_USE_FLASH_DEFAULT;
2071 device_config->vp_config[i].rti.intr_enable =
2072 VXGE_HW_TIM_INTR_DEFAULT;
2074 device_config->vp_config[i].rti.btimer_val =
2075 VXGE_HW_USE_FLASH_DEFAULT;
2077 device_config->vp_config[i].rti.timer_ac_en =
2078 VXGE_HW_USE_FLASH_DEFAULT;
2080 device_config->vp_config[i].rti.timer_ci_en =
2081 VXGE_HW_USE_FLASH_DEFAULT;
2083 device_config->vp_config[i].rti.timer_ri_en =
2084 VXGE_HW_USE_FLASH_DEFAULT;
2086 device_config->vp_config[i].rti.rtimer_val =
2087 VXGE_HW_USE_FLASH_DEFAULT;
2089 device_config->vp_config[i].rti.util_sel =
2090 VXGE_HW_USE_FLASH_DEFAULT;
2092 device_config->vp_config[i].rti.ltimer_val =
2093 VXGE_HW_USE_FLASH_DEFAULT;
2095 device_config->vp_config[i].rti.urange_a =
2096 VXGE_HW_USE_FLASH_DEFAULT;
2098 device_config->vp_config[i].rti.uec_a =
2099 VXGE_HW_USE_FLASH_DEFAULT;
2101 device_config->vp_config[i].rti.urange_b =
2102 VXGE_HW_USE_FLASH_DEFAULT;
2104 device_config->vp_config[i].rti.uec_b =
2105 VXGE_HW_USE_FLASH_DEFAULT;
2107 device_config->vp_config[i].rti.urange_c =
2108 VXGE_HW_USE_FLASH_DEFAULT;
2110 device_config->vp_config[i].rti.uec_c =
2111 VXGE_HW_USE_FLASH_DEFAULT;
2113 device_config->vp_config[i].rti.uec_d =
2114 VXGE_HW_USE_FLASH_DEFAULT;
2116 device_config->vp_config[i].mtu =
2117 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
2119 device_config->vp_config[i].rpa_strip_vlan_tag =
2120 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
2123 return VXGE_HW_OK;
2127 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
2128 * Set the swapper bits appropriately for the lagacy section.
2130 enum vxge_hw_status
2131 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
2133 u64 val64;
2134 enum vxge_hw_status status = VXGE_HW_OK;
2136 val64 = readq(&legacy_reg->toc_swapper_fb);
2138 wmb();
2140 switch (val64) {
2142 case VXGE_HW_SWAPPER_INITIAL_VALUE:
2143 return status;
2145 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
2146 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
2147 &legacy_reg->pifm_rd_swap_en);
2148 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
2149 &legacy_reg->pifm_rd_flip_en);
2150 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
2151 &legacy_reg->pifm_wr_swap_en);
2152 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
2153 &legacy_reg->pifm_wr_flip_en);
2154 break;
2156 case VXGE_HW_SWAPPER_BYTE_SWAPPED:
2157 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
2158 &legacy_reg->pifm_rd_swap_en);
2159 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
2160 &legacy_reg->pifm_wr_swap_en);
2161 break;
2163 case VXGE_HW_SWAPPER_BIT_FLIPPED:
2164 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
2165 &legacy_reg->pifm_rd_flip_en);
2166 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
2167 &legacy_reg->pifm_wr_flip_en);
2168 break;
2171 wmb();
2173 val64 = readq(&legacy_reg->toc_swapper_fb);
2175 if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
2176 status = VXGE_HW_ERR_SWAPPER_CTRL;
2178 return status;
2182 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
2183 * Set the swapper bits appropriately for the vpath.
2185 enum vxge_hw_status
2186 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
2188 #ifndef __BIG_ENDIAN
2189 u64 val64;
2191 val64 = readq(&vpath_reg->vpath_general_cfg1);
2192 wmb();
2193 val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
2194 writeq(val64, &vpath_reg->vpath_general_cfg1);
2195 wmb();
2196 #endif
2197 return VXGE_HW_OK;
2201 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
2202 * Set the swapper bits appropriately for the vpath.
2204 enum vxge_hw_status
2205 __vxge_hw_kdfc_swapper_set(
2206 struct vxge_hw_legacy_reg __iomem *legacy_reg,
2207 struct vxge_hw_vpath_reg __iomem *vpath_reg)
2209 u64 val64;
2211 val64 = readq(&legacy_reg->pifm_wr_swap_en);
2213 if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
2214 val64 = readq(&vpath_reg->kdfcctl_cfg0);
2215 wmb();
2217 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
2218 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
2219 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
2221 writeq(val64, &vpath_reg->kdfcctl_cfg0);
2222 wmb();
2225 return VXGE_HW_OK;
2229 * vxge_hw_mgmt_device_config - Retrieve device configuration.
2230 * Get device configuration. Permits to retrieve at run-time configuration
2231 * values that were used to initialize and configure the device.
2233 enum vxge_hw_status
2234 vxge_hw_mgmt_device_config(struct __vxge_hw_device *hldev,
2235 struct vxge_hw_device_config *dev_config, int size)
2238 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC))
2239 return VXGE_HW_ERR_INVALID_DEVICE;
2241 if (size != sizeof(struct vxge_hw_device_config))
2242 return VXGE_HW_ERR_VERSION_CONFLICT;
2244 memcpy(dev_config, &hldev->config,
2245 sizeof(struct vxge_hw_device_config));
2247 return VXGE_HW_OK;
2251 * vxge_hw_mgmt_reg_read - Read Titan register.
2253 enum vxge_hw_status
2254 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
2255 enum vxge_hw_mgmt_reg_type type,
2256 u32 index, u32 offset, u64 *value)
2258 enum vxge_hw_status status = VXGE_HW_OK;
2260 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
2261 status = VXGE_HW_ERR_INVALID_DEVICE;
2262 goto exit;
2265 switch (type) {
2266 case vxge_hw_mgmt_reg_type_legacy:
2267 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
2268 status = VXGE_HW_ERR_INVALID_OFFSET;
2269 break;
2271 *value = readq((void __iomem *)hldev->legacy_reg + offset);
2272 break;
2273 case vxge_hw_mgmt_reg_type_toc:
2274 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
2275 status = VXGE_HW_ERR_INVALID_OFFSET;
2276 break;
2278 *value = readq((void __iomem *)hldev->toc_reg + offset);
2279 break;
2280 case vxge_hw_mgmt_reg_type_common:
2281 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
2282 status = VXGE_HW_ERR_INVALID_OFFSET;
2283 break;
2285 *value = readq((void __iomem *)hldev->common_reg + offset);
2286 break;
2287 case vxge_hw_mgmt_reg_type_mrpcim:
2288 if (!(hldev->access_rights &
2289 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
2290 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2291 break;
2293 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
2294 status = VXGE_HW_ERR_INVALID_OFFSET;
2295 break;
2297 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
2298 break;
2299 case vxge_hw_mgmt_reg_type_srpcim:
2300 if (!(hldev->access_rights &
2301 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
2302 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2303 break;
2305 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
2306 status = VXGE_HW_ERR_INVALID_INDEX;
2307 break;
2309 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
2310 status = VXGE_HW_ERR_INVALID_OFFSET;
2311 break;
2313 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
2314 offset);
2315 break;
2316 case vxge_hw_mgmt_reg_type_vpmgmt:
2317 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
2318 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2319 status = VXGE_HW_ERR_INVALID_INDEX;
2320 break;
2322 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
2323 status = VXGE_HW_ERR_INVALID_OFFSET;
2324 break;
2326 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
2327 offset);
2328 break;
2329 case vxge_hw_mgmt_reg_type_vpath:
2330 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
2331 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2332 status = VXGE_HW_ERR_INVALID_INDEX;
2333 break;
2335 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
2336 status = VXGE_HW_ERR_INVALID_INDEX;
2337 break;
2339 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
2340 status = VXGE_HW_ERR_INVALID_OFFSET;
2341 break;
2343 *value = readq((void __iomem *)hldev->vpath_reg[index] +
2344 offset);
2345 break;
2346 default:
2347 status = VXGE_HW_ERR_INVALID_TYPE;
2348 break;
2351 exit:
2352 return status;
2356 * vxge_hw_mgmt_reg_Write - Write Titan register.
2358 enum vxge_hw_status
2359 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
2360 enum vxge_hw_mgmt_reg_type type,
2361 u32 index, u32 offset, u64 value)
2363 enum vxge_hw_status status = VXGE_HW_OK;
2365 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
2366 status = VXGE_HW_ERR_INVALID_DEVICE;
2367 goto exit;
2370 switch (type) {
2371 case vxge_hw_mgmt_reg_type_legacy:
2372 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
2373 status = VXGE_HW_ERR_INVALID_OFFSET;
2374 break;
2376 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
2377 break;
2378 case vxge_hw_mgmt_reg_type_toc:
2379 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
2380 status = VXGE_HW_ERR_INVALID_OFFSET;
2381 break;
2383 writeq(value, (void __iomem *)hldev->toc_reg + offset);
2384 break;
2385 case vxge_hw_mgmt_reg_type_common:
2386 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
2387 status = VXGE_HW_ERR_INVALID_OFFSET;
2388 break;
2390 writeq(value, (void __iomem *)hldev->common_reg + offset);
2391 break;
2392 case vxge_hw_mgmt_reg_type_mrpcim:
2393 if (!(hldev->access_rights &
2394 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
2395 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2396 break;
2398 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
2399 status = VXGE_HW_ERR_INVALID_OFFSET;
2400 break;
2402 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
2403 break;
2404 case vxge_hw_mgmt_reg_type_srpcim:
2405 if (!(hldev->access_rights &
2406 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
2407 status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
2408 break;
2410 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
2411 status = VXGE_HW_ERR_INVALID_INDEX;
2412 break;
2414 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
2415 status = VXGE_HW_ERR_INVALID_OFFSET;
2416 break;
2418 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
2419 offset);
2421 break;
2422 case vxge_hw_mgmt_reg_type_vpmgmt:
2423 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
2424 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2425 status = VXGE_HW_ERR_INVALID_INDEX;
2426 break;
2428 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
2429 status = VXGE_HW_ERR_INVALID_OFFSET;
2430 break;
2432 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
2433 offset);
2434 break;
2435 case vxge_hw_mgmt_reg_type_vpath:
2436 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
2437 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
2438 status = VXGE_HW_ERR_INVALID_INDEX;
2439 break;
2441 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
2442 status = VXGE_HW_ERR_INVALID_OFFSET;
2443 break;
2445 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
2446 offset);
2447 break;
2448 default:
2449 status = VXGE_HW_ERR_INVALID_TYPE;
2450 break;
2452 exit:
2453 return status;
2457 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
2458 * list callback
2459 * This function is callback passed to __vxge_hw_mempool_create to create memory
2460 * pool for TxD list
2462 static void
2463 __vxge_hw_fifo_mempool_item_alloc(
2464 struct vxge_hw_mempool *mempoolh,
2465 u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
2466 u32 index, u32 is_last)
2468 u32 memblock_item_idx;
2469 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
2470 struct vxge_hw_fifo_txd *txdp =
2471 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
2472 struct __vxge_hw_fifo *fifo =
2473 (struct __vxge_hw_fifo *)mempoolh->userdata;
2474 void *memblock = mempoolh->memblocks_arr[memblock_index];
2476 vxge_assert(txdp);
2478 txdp->host_control = (u64) (size_t)
2479 __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
2480 &memblock_item_idx);
2482 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
2484 vxge_assert(txdl_priv);
2486 fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
2488 /* pre-format HW's TxDL's private */
2489 txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
2490 txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
2491 txdl_priv->dma_handle = dma_object->handle;
2492 txdl_priv->memblock = memblock;
2493 txdl_priv->first_txdp = txdp;
2494 txdl_priv->next_txdl_priv = NULL;
2495 txdl_priv->alloc_frags = 0;
2497 return;
2501 * __vxge_hw_fifo_create - Create a FIFO
2502 * This function creates FIFO and initializes it.
2504 enum vxge_hw_status
2505 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
2506 struct vxge_hw_fifo_attr *attr)
2508 enum vxge_hw_status status = VXGE_HW_OK;
2509 struct __vxge_hw_fifo *fifo;
2510 struct vxge_hw_fifo_config *config;
2511 u32 txdl_size, txdl_per_memblock;
2512 struct vxge_hw_mempool_cbs fifo_mp_callback;
2513 struct __vxge_hw_virtualpath *vpath;
2515 if ((vp == NULL) || (attr == NULL)) {
2516 status = VXGE_HW_ERR_INVALID_HANDLE;
2517 goto exit;
2519 vpath = vp->vpath;
2520 config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
2522 txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
2524 txdl_per_memblock = config->memblock_size / txdl_size;
2526 fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
2527 VXGE_HW_CHANNEL_TYPE_FIFO,
2528 config->fifo_blocks * txdl_per_memblock,
2529 attr->per_txdl_space, attr->userdata);
2531 if (fifo == NULL) {
2532 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2533 goto exit;
2536 vpath->fifoh = fifo;
2537 fifo->nofl_db = vpath->nofl_db;
2539 fifo->vp_id = vpath->vp_id;
2540 fifo->vp_reg = vpath->vp_reg;
2541 fifo->stats = &vpath->sw_stats->fifo_stats;
2543 fifo->config = config;
2545 /* apply "interrupts per txdl" attribute */
2546 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
2548 if (fifo->config->intr)
2549 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
2551 fifo->no_snoop_bits = config->no_snoop_bits;
2554 * FIFO memory management strategy:
2556 * TxDL split into three independent parts:
2557 * - set of TxD's
2558 * - TxD HW private part
2559 * - driver private part
2561 * Adaptative memory allocation used. i.e. Memory allocated on
2562 * demand with the size which will fit into one memory block.
2563 * One memory block may contain more than one TxDL.
2565 * During "reserve" operations more memory can be allocated on demand
2566 * for example due to FIFO full condition.
2568 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
2569 * routine which will essentially stop the channel and free resources.
2572 /* TxDL common private size == TxDL private + driver private */
2573 fifo->priv_size =
2574 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
2575 fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2576 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2578 fifo->per_txdl_space = attr->per_txdl_space;
2580 /* recompute txdl size to be cacheline aligned */
2581 fifo->txdl_size = txdl_size;
2582 fifo->txdl_per_memblock = txdl_per_memblock;
2584 fifo->txdl_term = attr->txdl_term;
2585 fifo->callback = attr->callback;
2587 if (fifo->txdl_per_memblock == 0) {
2588 __vxge_hw_fifo_delete(vp);
2589 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
2590 goto exit;
2593 fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
2595 fifo->mempool =
2596 __vxge_hw_mempool_create(vpath->hldev,
2597 fifo->config->memblock_size,
2598 fifo->txdl_size,
2599 fifo->priv_size,
2600 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
2601 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
2602 &fifo_mp_callback,
2603 fifo);
2605 if (fifo->mempool == NULL) {
2606 __vxge_hw_fifo_delete(vp);
2607 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2608 goto exit;
2611 status = __vxge_hw_channel_initialize(&fifo->channel);
2612 if (status != VXGE_HW_OK) {
2613 __vxge_hw_fifo_delete(vp);
2614 goto exit;
2617 vxge_assert(fifo->channel.reserve_ptr);
2618 exit:
2619 return status;
2623 * __vxge_hw_fifo_abort - Returns the TxD
2624 * This function terminates the TxDs of fifo
2626 enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
2628 void *txdlh;
2630 for (;;) {
2631 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
2633 if (txdlh == NULL)
2634 break;
2636 vxge_hw_channel_dtr_complete(&fifo->channel);
2638 if (fifo->txdl_term) {
2639 fifo->txdl_term(txdlh,
2640 VXGE_HW_TXDL_STATE_POSTED,
2641 fifo->channel.userdata);
2644 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
2647 return VXGE_HW_OK;
2651 * __vxge_hw_fifo_reset - Resets the fifo
2652 * This function resets the fifo during vpath reset operation
2654 enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
2656 enum vxge_hw_status status = VXGE_HW_OK;
2658 __vxge_hw_fifo_abort(fifo);
2659 status = __vxge_hw_channel_reset(&fifo->channel);
2661 return status;
2665 * __vxge_hw_fifo_delete - Removes the FIFO
2666 * This function freeup the memory pool and removes the FIFO
2668 enum vxge_hw_status __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
2670 struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
2672 __vxge_hw_fifo_abort(fifo);
2674 if (fifo->mempool)
2675 __vxge_hw_mempool_destroy(fifo->mempool);
2677 vp->vpath->fifoh = NULL;
2679 __vxge_hw_channel_free(&fifo->channel);
2681 return VXGE_HW_OK;
2685 * __vxge_hw_vpath_pci_read - Read the content of given address
2686 * in pci config space.
2687 * Read from the vpath pci config space.
2689 enum vxge_hw_status
2690 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
2691 u32 phy_func_0, u32 offset, u32 *val)
2693 u64 val64;
2694 enum vxge_hw_status status = VXGE_HW_OK;
2695 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2697 val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
2699 if (phy_func_0)
2700 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
2702 writeq(val64, &vp_reg->pci_config_access_cfg1);
2703 wmb();
2704 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
2705 &vp_reg->pci_config_access_cfg2);
2706 wmb();
2708 status = __vxge_hw_device_register_poll(
2709 &vp_reg->pci_config_access_cfg2,
2710 VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2712 if (status != VXGE_HW_OK)
2713 goto exit;
2715 val64 = readq(&vp_reg->pci_config_access_status);
2717 if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
2718 status = VXGE_HW_FAIL;
2719 *val = 0;
2720 } else
2721 *val = (u32)vxge_bVALn(val64, 32, 32);
2722 exit:
2723 return status;
2727 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
2728 * Returns the function number of the vpath.
2731 __vxge_hw_vpath_func_id_get(u32 vp_id,
2732 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
2734 u64 val64;
2736 val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
2738 return
2739 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
2743 * __vxge_hw_read_rts_ds - Program RTS steering critieria
2745 static inline void
2746 __vxge_hw_read_rts_ds(struct vxge_hw_vpath_reg __iomem *vpath_reg,
2747 u64 dta_struct_sel)
2749 writeq(0, &vpath_reg->rts_access_steer_ctrl);
2750 wmb();
2751 writeq(dta_struct_sel, &vpath_reg->rts_access_steer_data0);
2752 writeq(0, &vpath_reg->rts_access_steer_data1);
2753 wmb();
2754 return;
2759 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
2760 * part number and product description.
2762 enum vxge_hw_status
2763 __vxge_hw_vpath_card_info_get(
2764 u32 vp_id,
2765 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2766 struct vxge_hw_device_hw_info *hw_info)
2768 u32 i, j;
2769 u64 val64;
2770 u64 data1 = 0ULL;
2771 u64 data2 = 0ULL;
2772 enum vxge_hw_status status = VXGE_HW_OK;
2773 u8 *serial_number = hw_info->serial_number;
2774 u8 *part_number = hw_info->part_number;
2775 u8 *product_desc = hw_info->product_desc;
2777 __vxge_hw_read_rts_ds(vpath_reg,
2778 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER);
2780 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2781 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2782 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2783 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2784 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2785 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2787 status = __vxge_hw_pio_mem_write64(val64,
2788 &vpath_reg->rts_access_steer_ctrl,
2789 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2790 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2792 if (status != VXGE_HW_OK)
2793 return status;
2795 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2797 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2798 data1 = readq(&vpath_reg->rts_access_steer_data0);
2799 ((u64 *)serial_number)[0] = be64_to_cpu(data1);
2801 data2 = readq(&vpath_reg->rts_access_steer_data1);
2802 ((u64 *)serial_number)[1] = be64_to_cpu(data2);
2803 status = VXGE_HW_OK;
2804 } else
2805 *serial_number = 0;
2807 __vxge_hw_read_rts_ds(vpath_reg,
2808 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER);
2810 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2811 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2812 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2813 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2814 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2815 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2817 status = __vxge_hw_pio_mem_write64(val64,
2818 &vpath_reg->rts_access_steer_ctrl,
2819 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2820 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2822 if (status != VXGE_HW_OK)
2823 return status;
2825 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2827 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2829 data1 = readq(&vpath_reg->rts_access_steer_data0);
2830 ((u64 *)part_number)[0] = be64_to_cpu(data1);
2832 data2 = readq(&vpath_reg->rts_access_steer_data1);
2833 ((u64 *)part_number)[1] = be64_to_cpu(data2);
2835 status = VXGE_HW_OK;
2837 } else
2838 *part_number = 0;
2840 j = 0;
2842 for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
2843 i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
2845 __vxge_hw_read_rts_ds(vpath_reg, i);
2847 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2848 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2849 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2850 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2851 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2852 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2854 status = __vxge_hw_pio_mem_write64(val64,
2855 &vpath_reg->rts_access_steer_ctrl,
2856 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2857 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2859 if (status != VXGE_HW_OK)
2860 return status;
2862 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2864 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2866 data1 = readq(&vpath_reg->rts_access_steer_data0);
2867 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
2869 data2 = readq(&vpath_reg->rts_access_steer_data1);
2870 ((u64 *)product_desc)[j++] = be64_to_cpu(data2);
2872 status = VXGE_HW_OK;
2873 } else
2874 *product_desc = 0;
2877 return status;
2881 * __vxge_hw_vpath_fw_ver_get - Get the fw version
2882 * Returns FW Version
2884 enum vxge_hw_status
2885 __vxge_hw_vpath_fw_ver_get(
2886 u32 vp_id,
2887 struct vxge_hw_vpath_reg __iomem *vpath_reg,
2888 struct vxge_hw_device_hw_info *hw_info)
2890 u64 val64;
2891 u64 data1 = 0ULL;
2892 u64 data2 = 0ULL;
2893 struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
2894 struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
2895 struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
2896 struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
2897 enum vxge_hw_status status = VXGE_HW_OK;
2899 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2900 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY) |
2901 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2902 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2903 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2904 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2906 status = __vxge_hw_pio_mem_write64(val64,
2907 &vpath_reg->rts_access_steer_ctrl,
2908 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
2909 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
2911 if (status != VXGE_HW_OK)
2912 goto exit;
2914 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
2916 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
2918 data1 = readq(&vpath_reg->rts_access_steer_data0);
2919 data2 = readq(&vpath_reg->rts_access_steer_data1);
2921 fw_date->day =
2922 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(
2923 data1);
2924 fw_date->month =
2925 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(
2926 data1);
2927 fw_date->year =
2928 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(
2929 data1);
2931 snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
2932 fw_date->month, fw_date->day, fw_date->year);
2934 fw_version->major =
2935 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data1);
2936 fw_version->minor =
2937 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data1);
2938 fw_version->build =
2939 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data1);
2941 snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
2942 fw_version->major, fw_version->minor, fw_version->build);
2944 flash_date->day =
2945 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data2);
2946 flash_date->month =
2947 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data2);
2948 flash_date->year =
2949 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data2);
2951 snprintf(flash_date->date, VXGE_HW_FW_STRLEN,
2952 "%2.2d/%2.2d/%4.4d",
2953 flash_date->month, flash_date->day, flash_date->year);
2955 flash_version->major =
2956 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data2);
2957 flash_version->minor =
2958 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data2);
2959 flash_version->build =
2960 (u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data2);
2962 snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
2963 flash_version->major, flash_version->minor,
2964 flash_version->build);
2966 status = VXGE_HW_OK;
2968 } else
2969 status = VXGE_HW_FAIL;
2970 exit:
2971 return status;
2975 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
2976 * Returns pci function mode
2979 __vxge_hw_vpath_pci_func_mode_get(
2980 u32 vp_id,
2981 struct vxge_hw_vpath_reg __iomem *vpath_reg)
2983 u64 val64;
2984 u64 data1 = 0ULL;
2985 enum vxge_hw_status status = VXGE_HW_OK;
2987 __vxge_hw_read_rts_ds(vpath_reg,
2988 VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PCI_MODE);
2990 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
2991 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
2992 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
2993 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
2994 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
2995 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
2997 status = __vxge_hw_pio_mem_write64(val64,
2998 &vpath_reg->rts_access_steer_ctrl,
2999 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3000 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3002 if (status != VXGE_HW_OK)
3003 goto exit;
3005 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
3007 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3008 data1 = readq(&vpath_reg->rts_access_steer_data0);
3009 status = VXGE_HW_OK;
3010 } else {
3011 data1 = 0;
3012 status = VXGE_HW_FAIL;
3014 exit:
3015 return data1;
3019 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3020 * @hldev: HW device.
3021 * @on_off: TRUE if flickering to be on, FALSE to be off
3023 * Flicker the link LED.
3025 enum vxge_hw_status
3026 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev,
3027 u64 on_off)
3029 u64 val64;
3030 enum vxge_hw_status status = VXGE_HW_OK;
3031 struct vxge_hw_vpath_reg __iomem *vp_reg;
3033 if (hldev == NULL) {
3034 status = VXGE_HW_ERR_INVALID_DEVICE;
3035 goto exit;
3038 vp_reg = hldev->vpath_reg[hldev->first_vp_id];
3040 writeq(0, &vp_reg->rts_access_steer_ctrl);
3041 wmb();
3042 writeq(on_off, &vp_reg->rts_access_steer_data0);
3043 writeq(0, &vp_reg->rts_access_steer_data1);
3044 wmb();
3046 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
3047 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL) |
3048 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
3049 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
3050 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3051 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
3053 status = __vxge_hw_pio_mem_write64(val64,
3054 &vp_reg->rts_access_steer_ctrl,
3055 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3056 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3057 exit:
3058 return status;
3062 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3064 enum vxge_hw_status
3065 __vxge_hw_vpath_rts_table_get(
3066 struct __vxge_hw_vpath_handle *vp,
3067 u32 action, u32 rts_table, u32 offset, u64 *data1, u64 *data2)
3069 u64 val64;
3070 struct __vxge_hw_virtualpath *vpath;
3071 struct vxge_hw_vpath_reg __iomem *vp_reg;
3073 enum vxge_hw_status status = VXGE_HW_OK;
3075 if (vp == NULL) {
3076 status = VXGE_HW_ERR_INVALID_HANDLE;
3077 goto exit;
3080 vpath = vp->vpath;
3081 vp_reg = vpath->vp_reg;
3083 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
3084 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
3085 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3086 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
3088 if ((rts_table ==
3089 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3090 (rts_table ==
3091 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3092 (rts_table ==
3093 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3094 (rts_table ==
3095 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3096 val64 = val64 | VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3099 status = __vxge_hw_pio_mem_write64(val64,
3100 &vp_reg->rts_access_steer_ctrl,
3101 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3102 vpath->hldev->config.device_poll_millis);
3104 if (status != VXGE_HW_OK)
3105 goto exit;
3107 val64 = readq(&vp_reg->rts_access_steer_ctrl);
3109 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3111 *data1 = readq(&vp_reg->rts_access_steer_data0);
3113 if ((rts_table ==
3114 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3115 (rts_table ==
3116 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
3117 *data2 = readq(&vp_reg->rts_access_steer_data1);
3119 status = VXGE_HW_OK;
3120 } else
3121 status = VXGE_HW_FAIL;
3122 exit:
3123 return status;
3127 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3129 enum vxge_hw_status
3130 __vxge_hw_vpath_rts_table_set(
3131 struct __vxge_hw_vpath_handle *vp, u32 action, u32 rts_table,
3132 u32 offset, u64 data1, u64 data2)
3134 u64 val64;
3135 struct __vxge_hw_virtualpath *vpath;
3136 enum vxge_hw_status status = VXGE_HW_OK;
3137 struct vxge_hw_vpath_reg __iomem *vp_reg;
3139 if (vp == NULL) {
3140 status = VXGE_HW_ERR_INVALID_HANDLE;
3141 goto exit;
3144 vpath = vp->vpath;
3145 vp_reg = vpath->vp_reg;
3147 writeq(data1, &vp_reg->rts_access_steer_data0);
3148 wmb();
3150 if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3151 (rts_table ==
3152 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
3153 writeq(data2, &vp_reg->rts_access_steer_data1);
3154 wmb();
3157 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
3158 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
3159 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3160 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
3162 status = __vxge_hw_pio_mem_write64(val64,
3163 &vp_reg->rts_access_steer_ctrl,
3164 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3165 vpath->hldev->config.device_poll_millis);
3167 if (status != VXGE_HW_OK)
3168 goto exit;
3170 val64 = readq(&vp_reg->rts_access_steer_ctrl);
3172 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS)
3173 status = VXGE_HW_OK;
3174 else
3175 status = VXGE_HW_FAIL;
3176 exit:
3177 return status;
3181 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
3182 * from MAC address table.
3184 enum vxge_hw_status
3185 __vxge_hw_vpath_addr_get(
3186 u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg,
3187 u8 (macaddr)[ETH_ALEN], u8 (macaddr_mask)[ETH_ALEN])
3189 u32 i;
3190 u64 val64;
3191 u64 data1 = 0ULL;
3192 u64 data2 = 0ULL;
3193 enum vxge_hw_status status = VXGE_HW_OK;
3195 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
3196 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY) |
3197 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
3198 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) |
3199 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
3200 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
3202 status = __vxge_hw_pio_mem_write64(val64,
3203 &vpath_reg->rts_access_steer_ctrl,
3204 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
3205 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3207 if (status != VXGE_HW_OK)
3208 goto exit;
3210 val64 = readq(&vpath_reg->rts_access_steer_ctrl);
3212 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
3214 data1 = readq(&vpath_reg->rts_access_steer_data0);
3215 data2 = readq(&vpath_reg->rts_access_steer_data1);
3217 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
3218 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
3219 data2);
3221 for (i = ETH_ALEN; i > 0; i--) {
3222 macaddr[i-1] = (u8)(data1 & 0xFF);
3223 data1 >>= 8;
3225 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
3226 data2 >>= 8;
3228 status = VXGE_HW_OK;
3229 } else
3230 status = VXGE_HW_FAIL;
3231 exit:
3232 return status;
3236 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3238 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3239 struct __vxge_hw_vpath_handle *vp,
3240 enum vxge_hw_rth_algoritms algorithm,
3241 struct vxge_hw_rth_hash_types *hash_type,
3242 u16 bucket_size)
3244 u64 data0, data1;
3245 enum vxge_hw_status status = VXGE_HW_OK;
3247 if (vp == NULL) {
3248 status = VXGE_HW_ERR_INVALID_HANDLE;
3249 goto exit;
3252 status = __vxge_hw_vpath_rts_table_get(vp,
3253 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3254 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3255 0, &data0, &data1);
3257 data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3258 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3260 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3261 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3262 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3264 if (hash_type->hash_type_tcpipv4_en)
3265 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3267 if (hash_type->hash_type_ipv4_en)
3268 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3270 if (hash_type->hash_type_tcpipv6_en)
3271 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3273 if (hash_type->hash_type_ipv6_en)
3274 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3276 if (hash_type->hash_type_tcpipv6ex_en)
3277 data0 |=
3278 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3280 if (hash_type->hash_type_ipv6ex_en)
3281 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3283 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3284 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3285 else
3286 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3288 status = __vxge_hw_vpath_rts_table_set(vp,
3289 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3290 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3291 0, data0, 0);
3292 exit:
3293 return status;
3296 static void
3297 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3298 u16 flag, u8 *itable)
3300 switch (flag) {
3301 case 1:
3302 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3303 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3304 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3305 itable[j]);
3306 case 2:
3307 *data0 |=
3308 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3309 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3310 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3311 itable[j]);
3312 case 3:
3313 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3314 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3315 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3316 itable[j]);
3317 case 4:
3318 *data1 |=
3319 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3320 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3321 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3322 itable[j]);
3323 default:
3324 return;
3328 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3330 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3331 struct __vxge_hw_vpath_handle **vpath_handles,
3332 u32 vpath_count,
3333 u8 *mtable,
3334 u8 *itable,
3335 u32 itable_size)
3337 u32 i, j, action, rts_table;
3338 u64 data0;
3339 u64 data1;
3340 u32 max_entries;
3341 enum vxge_hw_status status = VXGE_HW_OK;
3342 struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3344 if (vp == NULL) {
3345 status = VXGE_HW_ERR_INVALID_HANDLE;
3346 goto exit;
3349 max_entries = (((u32)1) << itable_size);
3351 if (vp->vpath->hldev->config.rth_it_type
3352 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3353 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3354 rts_table =
3355 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3357 for (j = 0; j < max_entries; j++) {
3359 data1 = 0;
3361 data0 =
3362 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3363 itable[j]);
3365 status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3366 action, rts_table, j, data0, data1);
3368 if (status != VXGE_HW_OK)
3369 goto exit;
3372 for (j = 0; j < max_entries; j++) {
3374 data1 = 0;
3376 data0 =
3377 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3378 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3379 itable[j]);
3381 status = __vxge_hw_vpath_rts_table_set(
3382 vpath_handles[mtable[itable[j]]], action,
3383 rts_table, j, data0, data1);
3385 if (status != VXGE_HW_OK)
3386 goto exit;
3388 } else {
3389 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3390 rts_table =
3391 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3392 for (i = 0; i < vpath_count; i++) {
3394 for (j = 0; j < max_entries;) {
3396 data0 = 0;
3397 data1 = 0;
3399 while (j < max_entries) {
3400 if (mtable[itable[j]] != i) {
3401 j++;
3402 continue;
3404 vxge_hw_rts_rth_data0_data1_get(j,
3405 &data0, &data1, 1, itable);
3406 j++;
3407 break;
3410 while (j < max_entries) {
3411 if (mtable[itable[j]] != i) {
3412 j++;
3413 continue;
3415 vxge_hw_rts_rth_data0_data1_get(j,
3416 &data0, &data1, 2, itable);
3417 j++;
3418 break;
3421 while (j < max_entries) {
3422 if (mtable[itable[j]] != i) {
3423 j++;
3424 continue;
3426 vxge_hw_rts_rth_data0_data1_get(j,
3427 &data0, &data1, 3, itable);
3428 j++;
3429 break;
3432 while (j < max_entries) {
3433 if (mtable[itable[j]] != i) {
3434 j++;
3435 continue;
3437 vxge_hw_rts_rth_data0_data1_get(j,
3438 &data0, &data1, 4, itable);
3439 j++;
3440 break;
3443 if (data0 != 0) {
3444 status = __vxge_hw_vpath_rts_table_set(
3445 vpath_handles[i],
3446 action, rts_table,
3447 0, data0, data1);
3449 if (status != VXGE_HW_OK)
3450 goto exit;
3455 exit:
3456 return status;
3460 * vxge_hw_vpath_check_leak - Check for memory leak
3461 * @ringh: Handle to the ring object used for receive
3463 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3464 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3465 * Returns: VXGE_HW_FAIL, if leak has occurred.
3468 enum vxge_hw_status
3469 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3471 enum vxge_hw_status status = VXGE_HW_OK;
3472 u64 rxd_new_count, rxd_spat;
3474 if (ring == NULL)
3475 return status;
3477 rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3478 rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3479 rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3481 if (rxd_new_count >= rxd_spat)
3482 status = VXGE_HW_FAIL;
3484 return status;
3488 * __vxge_hw_vpath_mgmt_read
3489 * This routine reads the vpath_mgmt registers
3491 static enum vxge_hw_status
3492 __vxge_hw_vpath_mgmt_read(
3493 struct __vxge_hw_device *hldev,
3494 struct __vxge_hw_virtualpath *vpath)
3496 u32 i, mtu = 0, max_pyld = 0;
3497 u64 val64;
3498 enum vxge_hw_status status = VXGE_HW_OK;
3500 for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3502 val64 = readq(&vpath->vpmgmt_reg->
3503 rxmac_cfg0_port_vpmgmt_clone[i]);
3504 max_pyld =
3505 (u32)
3506 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3507 (val64);
3508 if (mtu < max_pyld)
3509 mtu = max_pyld;
3512 vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3514 val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3516 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3517 if (val64 & vxge_mBIT(i))
3518 vpath->vsport_number = i;
3521 val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3523 if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3524 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3525 else
3526 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3528 return status;
3532 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
3533 * This routine checks the vpath_rst_in_prog register to see if
3534 * adapter completed the reset process for the vpath
3536 enum vxge_hw_status
3537 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
3539 enum vxge_hw_status status;
3541 status = __vxge_hw_device_register_poll(
3542 &vpath->hldev->common_reg->vpath_rst_in_prog,
3543 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
3544 1 << (16 - vpath->vp_id)),
3545 vpath->hldev->config.device_poll_millis);
3547 return status;
3551 * __vxge_hw_vpath_reset
3552 * This routine resets the vpath on the device
3554 enum vxge_hw_status
3555 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
3557 u64 val64;
3558 enum vxge_hw_status status = VXGE_HW_OK;
3560 val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
3562 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
3563 &hldev->common_reg->cmn_rsthdlr_cfg0);
3565 return status;
3569 * __vxge_hw_vpath_sw_reset
3570 * This routine resets the vpath structures
3572 enum vxge_hw_status
3573 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
3575 enum vxge_hw_status status = VXGE_HW_OK;
3576 struct __vxge_hw_virtualpath *vpath;
3578 vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
3580 if (vpath->ringh) {
3581 status = __vxge_hw_ring_reset(vpath->ringh);
3582 if (status != VXGE_HW_OK)
3583 goto exit;
3586 if (vpath->fifoh)
3587 status = __vxge_hw_fifo_reset(vpath->fifoh);
3588 exit:
3589 return status;
3593 * __vxge_hw_vpath_prc_configure
3594 * This routine configures the prc registers of virtual path using the config
3595 * passed
3597 void
3598 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3600 u64 val64;
3601 struct __vxge_hw_virtualpath *vpath;
3602 struct vxge_hw_vp_config *vp_config;
3603 struct vxge_hw_vpath_reg __iomem *vp_reg;
3605 vpath = &hldev->virtual_paths[vp_id];
3606 vp_reg = vpath->vp_reg;
3607 vp_config = vpath->vp_config;
3609 if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
3610 return;
3612 val64 = readq(&vp_reg->prc_cfg1);
3613 val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
3614 writeq(val64, &vp_reg->prc_cfg1);
3616 val64 = readq(&vpath->vp_reg->prc_cfg6);
3617 val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
3618 writeq(val64, &vpath->vp_reg->prc_cfg6);
3620 val64 = readq(&vp_reg->prc_cfg7);
3622 if (vpath->vp_config->ring.scatter_mode !=
3623 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
3625 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
3627 switch (vpath->vp_config->ring.scatter_mode) {
3628 case VXGE_HW_RING_SCATTER_MODE_A:
3629 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3630 VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
3631 break;
3632 case VXGE_HW_RING_SCATTER_MODE_B:
3633 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3634 VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
3635 break;
3636 case VXGE_HW_RING_SCATTER_MODE_C:
3637 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
3638 VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
3639 break;
3643 writeq(val64, &vp_reg->prc_cfg7);
3645 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
3646 __vxge_hw_ring_first_block_address_get(
3647 vpath->ringh) >> 3), &vp_reg->prc_cfg5);
3649 val64 = readq(&vp_reg->prc_cfg4);
3650 val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
3651 val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
3653 val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
3654 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
3656 if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
3657 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
3658 else
3659 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
3661 writeq(val64, &vp_reg->prc_cfg4);
3662 return;
3666 * __vxge_hw_vpath_kdfc_configure
3667 * This routine configures the kdfc registers of virtual path using the
3668 * config passed
3670 enum vxge_hw_status
3671 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3673 u64 val64;
3674 u64 vpath_stride;
3675 enum vxge_hw_status status = VXGE_HW_OK;
3676 struct __vxge_hw_virtualpath *vpath;
3677 struct vxge_hw_vpath_reg __iomem *vp_reg;
3679 vpath = &hldev->virtual_paths[vp_id];
3680 vp_reg = vpath->vp_reg;
3681 status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
3683 if (status != VXGE_HW_OK)
3684 goto exit;
3686 val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
3688 vpath->max_kdfc_db =
3689 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
3690 val64+1)/2;
3692 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3694 vpath->max_nofl_db = vpath->max_kdfc_db;
3696 if (vpath->max_nofl_db <
3697 ((vpath->vp_config->fifo.memblock_size /
3698 (vpath->vp_config->fifo.max_frags *
3699 sizeof(struct vxge_hw_fifo_txd))) *
3700 vpath->vp_config->fifo.fifo_blocks)) {
3702 return VXGE_HW_BADCFG_FIFO_BLOCKS;
3704 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
3705 (vpath->max_nofl_db*2)-1);
3708 writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
3710 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
3711 &vp_reg->kdfc_fifo_trpl_ctrl);
3713 val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
3715 val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
3716 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
3718 val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
3719 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
3720 #ifndef __BIG_ENDIAN
3721 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
3722 #endif
3723 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
3725 writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
3726 writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
3727 wmb();
3728 vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
3730 vpath->nofl_db =
3731 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
3732 (hldev->kdfc + (vp_id *
3733 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
3734 vpath_stride)));
3735 exit:
3736 return status;
3740 * __vxge_hw_vpath_mac_configure
3741 * This routine configures the mac of virtual path using the config passed
3743 enum vxge_hw_status
3744 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3746 u64 val64;
3747 enum vxge_hw_status status = VXGE_HW_OK;
3748 struct __vxge_hw_virtualpath *vpath;
3749 struct vxge_hw_vp_config *vp_config;
3750 struct vxge_hw_vpath_reg __iomem *vp_reg;
3752 vpath = &hldev->virtual_paths[vp_id];
3753 vp_reg = vpath->vp_reg;
3754 vp_config = vpath->vp_config;
3756 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
3757 vpath->vsport_number), &vp_reg->xmac_vsport_choice);
3759 if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
3761 val64 = readq(&vp_reg->xmac_rpa_vcfg);
3763 if (vp_config->rpa_strip_vlan_tag !=
3764 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
3765 if (vp_config->rpa_strip_vlan_tag)
3766 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
3767 else
3768 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
3771 writeq(val64, &vp_reg->xmac_rpa_vcfg);
3772 val64 = readq(&vp_reg->rxmac_vcfg0);
3774 if (vp_config->mtu !=
3775 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
3776 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
3777 if ((vp_config->mtu +
3778 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
3779 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
3780 vp_config->mtu +
3781 VXGE_HW_MAC_HEADER_MAX_SIZE);
3782 else
3783 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
3784 vpath->max_mtu);
3787 writeq(val64, &vp_reg->rxmac_vcfg0);
3789 val64 = readq(&vp_reg->rxmac_vcfg1);
3791 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
3792 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
3794 if (hldev->config.rth_it_type ==
3795 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
3796 val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
3797 0x2) |
3798 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
3801 writeq(val64, &vp_reg->rxmac_vcfg1);
3803 return status;
3807 * __vxge_hw_vpath_tim_configure
3808 * This routine configures the tim registers of virtual path using the config
3809 * passed
3811 enum vxge_hw_status
3812 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
3814 u64 val64;
3815 enum vxge_hw_status status = VXGE_HW_OK;
3816 struct __vxge_hw_virtualpath *vpath;
3817 struct vxge_hw_vpath_reg __iomem *vp_reg;
3818 struct vxge_hw_vp_config *config;
3820 vpath = &hldev->virtual_paths[vp_id];
3821 vp_reg = vpath->vp_reg;
3822 config = vpath->vp_config;
3824 writeq((u64)0, &vp_reg->tim_dest_addr);
3825 writeq((u64)0, &vp_reg->tim_vpath_map);
3826 writeq((u64)0, &vp_reg->tim_bitmap);
3827 writeq((u64)0, &vp_reg->tim_remap);
3829 if (config->ring.enable == VXGE_HW_RING_ENABLE)
3830 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
3831 (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
3832 VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
3834 val64 = readq(&vp_reg->tim_pci_cfg);
3835 val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
3836 writeq(val64, &vp_reg->tim_pci_cfg);
3838 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
3840 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3842 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3843 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3844 0x3ffffff);
3845 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3846 config->tti.btimer_val);
3849 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
3851 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
3852 if (config->tti.timer_ac_en)
3853 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3854 else
3855 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3858 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
3859 if (config->tti.timer_ci_en)
3860 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3861 else
3862 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3865 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
3866 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
3867 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
3868 config->tti.urange_a);
3871 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
3872 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
3873 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
3874 config->tti.urange_b);
3877 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
3878 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
3879 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
3880 config->tti.urange_c);
3883 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
3884 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
3886 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
3887 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
3888 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
3889 config->tti.uec_a);
3892 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
3893 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
3894 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
3895 config->tti.uec_b);
3898 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
3899 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
3900 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
3901 config->tti.uec_c);
3904 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
3905 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
3906 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
3907 config->tti.uec_d);
3910 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
3911 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
3913 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
3914 if (config->tti.timer_ri_en)
3915 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3916 else
3917 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
3920 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3921 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3922 0x3ffffff);
3923 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
3924 config->tti.rtimer_val);
3927 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
3928 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
3929 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
3930 config->tti.util_sel);
3933 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3934 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3935 0x3ffffff);
3936 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
3937 config->tti.ltimer_val);
3940 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
3943 if (config->ring.enable == VXGE_HW_RING_ENABLE) {
3945 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
3947 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
3948 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3949 0x3ffffff);
3950 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
3951 config->rti.btimer_val);
3954 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
3956 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
3957 if (config->rti.timer_ac_en)
3958 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3959 else
3960 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
3963 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
3964 if (config->rti.timer_ci_en)
3965 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3966 else
3967 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
3970 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
3971 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
3972 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
3973 config->rti.urange_a);
3976 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
3977 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
3978 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
3979 config->rti.urange_b);
3982 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
3983 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
3984 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
3985 config->rti.urange_c);
3988 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
3989 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
3991 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
3992 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
3993 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
3994 config->rti.uec_a);
3997 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
3998 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
3999 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4000 config->rti.uec_b);
4003 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4004 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4005 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4006 config->rti.uec_c);
4009 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4010 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4011 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4012 config->rti.uec_d);
4015 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4016 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4018 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4019 if (config->rti.timer_ri_en)
4020 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4021 else
4022 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4025 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4026 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4027 0x3ffffff);
4028 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4029 config->rti.rtimer_val);
4032 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4033 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4034 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
4035 config->rti.util_sel);
4038 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4039 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4040 0x3ffffff);
4041 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4042 config->rti.ltimer_val);
4045 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4048 val64 = 0;
4049 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4050 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4051 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4052 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4053 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4054 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4056 return status;
4060 * __vxge_hw_vpath_initialize
4061 * This routine is the final phase of init which initializes the
4062 * registers of the vpath using the configuration passed.
4064 enum vxge_hw_status
4065 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4067 u64 val64;
4068 u32 val32;
4069 enum vxge_hw_status status = VXGE_HW_OK;
4070 struct __vxge_hw_virtualpath *vpath;
4071 struct vxge_hw_vpath_reg __iomem *vp_reg;
4073 vpath = &hldev->virtual_paths[vp_id];
4075 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4076 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4077 goto exit;
4079 vp_reg = vpath->vp_reg;
4081 status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4083 if (status != VXGE_HW_OK)
4084 goto exit;
4086 status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
4088 if (status != VXGE_HW_OK)
4089 goto exit;
4091 status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4093 if (status != VXGE_HW_OK)
4094 goto exit;
4096 status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4098 if (status != VXGE_HW_OK)
4099 goto exit;
4101 writeq(0, &vp_reg->gendma_int);
4103 val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4105 /* Get MRRS value from device control */
4106 status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4108 if (status == VXGE_HW_OK) {
4109 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4110 val64 &=
4111 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4112 val64 |=
4113 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4115 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4118 val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4119 val64 |=
4120 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4121 VXGE_HW_MAX_PAYLOAD_SIZE_512);
4123 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4124 writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4126 exit:
4127 return status;
4131 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4132 * This routine is the initial phase of init which resets the vpath and
4133 * initializes the software support structures.
4135 enum vxge_hw_status
4136 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4137 struct vxge_hw_vp_config *config)
4139 struct __vxge_hw_virtualpath *vpath;
4140 enum vxge_hw_status status = VXGE_HW_OK;
4142 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4143 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4144 goto exit;
4147 vpath = &hldev->virtual_paths[vp_id];
4149 vpath->vp_id = vp_id;
4150 vpath->vp_open = VXGE_HW_VP_OPEN;
4151 vpath->hldev = hldev;
4152 vpath->vp_config = config;
4153 vpath->vp_reg = hldev->vpath_reg[vp_id];
4154 vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4156 __vxge_hw_vpath_reset(hldev, vp_id);
4158 status = __vxge_hw_vpath_reset_check(vpath);
4160 if (status != VXGE_HW_OK) {
4161 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4162 goto exit;
4165 status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4167 if (status != VXGE_HW_OK) {
4168 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4169 goto exit;
4172 INIT_LIST_HEAD(&vpath->vpath_handles);
4174 vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4176 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4177 hldev->tim_int_mask1, vp_id);
4179 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4181 if (status != VXGE_HW_OK)
4182 __vxge_hw_vp_terminate(hldev, vp_id);
4183 exit:
4184 return status;
4188 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4189 * This routine closes all channels it opened and freeup memory
4191 void
4192 __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4194 struct __vxge_hw_virtualpath *vpath;
4196 vpath = &hldev->virtual_paths[vp_id];
4198 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4199 goto exit;
4201 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4202 vpath->hldev->tim_int_mask1, vpath->vp_id);
4203 hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4205 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4206 exit:
4207 return;
4211 * vxge_hw_vpath_mtu_set - Set MTU.
4212 * Set new MTU value. Example, to use jumbo frames:
4213 * vxge_hw_vpath_mtu_set(my_device, 9600);
4215 enum vxge_hw_status
4216 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4218 u64 val64;
4219 enum vxge_hw_status status = VXGE_HW_OK;
4220 struct __vxge_hw_virtualpath *vpath;
4222 if (vp == NULL) {
4223 status = VXGE_HW_ERR_INVALID_HANDLE;
4224 goto exit;
4226 vpath = vp->vpath;
4228 new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4230 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4231 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4233 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4235 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4236 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4238 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4240 vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4242 exit:
4243 return status;
4247 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4248 * This function is used to open access to virtual path of an
4249 * adapter for offload, GRO operations. This function returns
4250 * synchronously.
4252 enum vxge_hw_status
4253 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4254 struct vxge_hw_vpath_attr *attr,
4255 struct __vxge_hw_vpath_handle **vpath_handle)
4257 struct __vxge_hw_virtualpath *vpath;
4258 struct __vxge_hw_vpath_handle *vp;
4259 enum vxge_hw_status status;
4261 vpath = &hldev->virtual_paths[attr->vp_id];
4263 if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4264 status = VXGE_HW_ERR_INVALID_STATE;
4265 goto vpath_open_exit1;
4268 status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4269 &hldev->config.vp_config[attr->vp_id]);
4271 if (status != VXGE_HW_OK)
4272 goto vpath_open_exit1;
4274 vp = (struct __vxge_hw_vpath_handle *)
4275 vmalloc(sizeof(struct __vxge_hw_vpath_handle));
4276 if (vp == NULL) {
4277 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4278 goto vpath_open_exit2;
4281 memset(vp, 0, sizeof(struct __vxge_hw_vpath_handle));
4283 vp->vpath = vpath;
4285 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4286 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4287 if (status != VXGE_HW_OK)
4288 goto vpath_open_exit6;
4291 if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4292 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4293 if (status != VXGE_HW_OK)
4294 goto vpath_open_exit7;
4296 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4299 vpath->fifoh->tx_intr_num =
4300 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4301 VXGE_HW_VPATH_INTR_TX;
4303 vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4304 VXGE_HW_BLOCK_SIZE);
4306 if (vpath->stats_block == NULL) {
4307 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4308 goto vpath_open_exit8;
4311 vpath->hw_stats = (struct vxge_hw_vpath_stats_hw_info *)vpath->
4312 stats_block->memblock;
4313 memset(vpath->hw_stats, 0,
4314 sizeof(struct vxge_hw_vpath_stats_hw_info));
4316 hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4317 vpath->hw_stats;
4319 vpath->hw_stats_sav =
4320 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4321 memset(vpath->hw_stats_sav, 0,
4322 sizeof(struct vxge_hw_vpath_stats_hw_info));
4324 writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4326 status = vxge_hw_vpath_stats_enable(vp);
4327 if (status != VXGE_HW_OK)
4328 goto vpath_open_exit8;
4330 list_add(&vp->item, &vpath->vpath_handles);
4332 hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4334 *vpath_handle = vp;
4336 attr->fifo_attr.userdata = vpath->fifoh;
4337 attr->ring_attr.userdata = vpath->ringh;
4339 return VXGE_HW_OK;
4341 vpath_open_exit8:
4342 if (vpath->ringh != NULL)
4343 __vxge_hw_ring_delete(vp);
4344 vpath_open_exit7:
4345 if (vpath->fifoh != NULL)
4346 __vxge_hw_fifo_delete(vp);
4347 vpath_open_exit6:
4348 vfree(vp);
4349 vpath_open_exit2:
4350 __vxge_hw_vp_terminate(hldev, attr->vp_id);
4351 vpath_open_exit1:
4353 return status;
4357 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4358 * (vpath) open
4359 * @vp: Handle got from previous vpath open
4361 * This function is used to close access to virtual path opened
4362 * earlier.
4364 void
4365 vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4367 struct __vxge_hw_virtualpath *vpath = NULL;
4368 u64 new_count, val64, val164;
4369 struct __vxge_hw_ring *ring;
4371 vpath = vp->vpath;
4372 ring = vpath->ringh;
4374 new_count = readq(&vpath->vp_reg->rxdmem_size);
4375 new_count &= 0x1fff;
4376 val164 = (VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count));
4378 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4379 &vpath->vp_reg->prc_rxd_doorbell);
4380 readl(&vpath->vp_reg->prc_rxd_doorbell);
4382 val164 /= 2;
4383 val64 = readq(&vpath->vp_reg->prc_cfg6);
4384 val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4385 val64 &= 0x1ff;
4388 * Each RxD is of 4 qwords
4390 new_count -= (val64 + 1);
4391 val64 = min(val164, new_count) / 4;
4393 ring->rxds_limit = min(ring->rxds_limit, val64);
4394 if (ring->rxds_limit < 4)
4395 ring->rxds_limit = 4;
4399 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4400 * This function is used to close access to virtual path opened
4401 * earlier.
4403 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4405 struct __vxge_hw_virtualpath *vpath = NULL;
4406 struct __vxge_hw_device *devh = NULL;
4407 u32 vp_id = vp->vpath->vp_id;
4408 u32 is_empty = TRUE;
4409 enum vxge_hw_status status = VXGE_HW_OK;
4411 vpath = vp->vpath;
4412 devh = vpath->hldev;
4414 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4415 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4416 goto vpath_close_exit;
4419 list_del(&vp->item);
4421 if (!list_empty(&vpath->vpath_handles)) {
4422 list_add(&vp->item, &vpath->vpath_handles);
4423 is_empty = FALSE;
4426 if (!is_empty) {
4427 status = VXGE_HW_FAIL;
4428 goto vpath_close_exit;
4431 devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4433 if (vpath->ringh != NULL)
4434 __vxge_hw_ring_delete(vp);
4436 if (vpath->fifoh != NULL)
4437 __vxge_hw_fifo_delete(vp);
4439 if (vpath->stats_block != NULL)
4440 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
4442 vfree(vp);
4444 __vxge_hw_vp_terminate(devh, vp_id);
4446 vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4448 vpath_close_exit:
4449 return status;
4453 * vxge_hw_vpath_reset - Resets vpath
4454 * This function is used to request a reset of vpath
4456 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
4458 enum vxge_hw_status status;
4459 u32 vp_id;
4460 struct __vxge_hw_virtualpath *vpath = vp->vpath;
4462 vp_id = vpath->vp_id;
4464 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4465 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4466 goto exit;
4469 status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
4470 if (status == VXGE_HW_OK)
4471 vpath->sw_stats->soft_reset_cnt++;
4472 exit:
4473 return status;
4477 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
4478 * This function poll's for the vpath reset completion and re initializes
4479 * the vpath.
4481 enum vxge_hw_status
4482 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
4484 struct __vxge_hw_virtualpath *vpath = NULL;
4485 enum vxge_hw_status status;
4486 struct __vxge_hw_device *hldev;
4487 u32 vp_id;
4489 vp_id = vp->vpath->vp_id;
4490 vpath = vp->vpath;
4491 hldev = vpath->hldev;
4493 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4494 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4495 goto exit;
4498 status = __vxge_hw_vpath_reset_check(vpath);
4499 if (status != VXGE_HW_OK)
4500 goto exit;
4502 status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
4503 if (status != VXGE_HW_OK)
4504 goto exit;
4506 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4507 if (status != VXGE_HW_OK)
4508 goto exit;
4510 if (vpath->ringh != NULL)
4511 __vxge_hw_vpath_prc_configure(hldev, vp_id);
4513 memset(vpath->hw_stats, 0,
4514 sizeof(struct vxge_hw_vpath_stats_hw_info));
4516 memset(vpath->hw_stats_sav, 0,
4517 sizeof(struct vxge_hw_vpath_stats_hw_info));
4519 writeq(vpath->stats_block->dma_addr,
4520 &vpath->vp_reg->stats_cfg);
4522 status = vxge_hw_vpath_stats_enable(vp);
4524 exit:
4525 return status;
4529 * vxge_hw_vpath_enable - Enable vpath.
4530 * This routine clears the vpath reset thereby enabling a vpath
4531 * to start forwarding frames and generating interrupts.
4533 void
4534 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
4536 struct __vxge_hw_device *hldev;
4537 u64 val64;
4539 hldev = vp->vpath->hldev;
4541 val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
4542 1 << (16 - vp->vpath->vp_id));
4544 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4545 &hldev->common_reg->cmn_rsthdlr_cfg1);
4549 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4550 * Enable the DMA vpath statistics. The function is to be called to re-enable
4551 * the adapter to update stats into the host memory
4553 enum vxge_hw_status
4554 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4556 enum vxge_hw_status status = VXGE_HW_OK;
4557 struct __vxge_hw_virtualpath *vpath;
4559 vpath = vp->vpath;
4561 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4562 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4563 goto exit;
4566 memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4567 sizeof(struct vxge_hw_vpath_stats_hw_info));
4569 status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4570 exit:
4571 return status;
4575 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
4576 * and offset and perform an operation
4578 enum vxge_hw_status
4579 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
4580 u32 operation, u32 offset, u64 *stat)
4582 u64 val64;
4583 enum vxge_hw_status status = VXGE_HW_OK;
4584 struct vxge_hw_vpath_reg __iomem *vp_reg;
4586 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4587 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4588 goto vpath_stats_access_exit;
4591 vp_reg = vpath->vp_reg;
4593 val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
4594 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
4595 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
4597 status = __vxge_hw_pio_mem_write64(val64,
4598 &vp_reg->xmac_stats_access_cmd,
4599 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
4600 vpath->hldev->config.device_poll_millis);
4602 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
4603 *stat = readq(&vp_reg->xmac_stats_access_data);
4604 else
4605 *stat = 0;
4607 vpath_stats_access_exit:
4608 return status;
4612 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
4614 enum vxge_hw_status
4615 __vxge_hw_vpath_xmac_tx_stats_get(
4616 struct __vxge_hw_virtualpath *vpath,
4617 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
4619 u64 *val64;
4620 int i;
4621 u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
4622 enum vxge_hw_status status = VXGE_HW_OK;
4624 val64 = (u64 *) vpath_tx_stats;
4626 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4627 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4628 goto exit;
4631 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
4632 status = __vxge_hw_vpath_stats_access(vpath,
4633 VXGE_HW_STATS_OP_READ,
4634 offset, val64);
4635 if (status != VXGE_HW_OK)
4636 goto exit;
4637 offset++;
4638 val64++;
4640 exit:
4641 return status;
4645 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
4647 enum vxge_hw_status
4648 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
4649 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
4651 u64 *val64;
4652 enum vxge_hw_status status = VXGE_HW_OK;
4653 int i;
4654 u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
4655 val64 = (u64 *) vpath_rx_stats;
4657 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4658 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4659 goto exit;
4661 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
4662 status = __vxge_hw_vpath_stats_access(vpath,
4663 VXGE_HW_STATS_OP_READ,
4664 offset >> 3, val64);
4665 if (status != VXGE_HW_OK)
4666 goto exit;
4668 offset += 8;
4669 val64++;
4671 exit:
4672 return status;
4676 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
4678 enum vxge_hw_status __vxge_hw_vpath_stats_get(
4679 struct __vxge_hw_virtualpath *vpath,
4680 struct vxge_hw_vpath_stats_hw_info *hw_stats)
4682 u64 val64;
4683 enum vxge_hw_status status = VXGE_HW_OK;
4684 struct vxge_hw_vpath_reg __iomem *vp_reg;
4686 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4687 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4688 goto exit;
4690 vp_reg = vpath->vp_reg;
4692 val64 = readq(&vp_reg->vpath_debug_stats0);
4693 hw_stats->ini_num_mwr_sent =
4694 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
4696 val64 = readq(&vp_reg->vpath_debug_stats1);
4697 hw_stats->ini_num_mrd_sent =
4698 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
4700 val64 = readq(&vp_reg->vpath_debug_stats2);
4701 hw_stats->ini_num_cpl_rcvd =
4702 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
4704 val64 = readq(&vp_reg->vpath_debug_stats3);
4705 hw_stats->ini_num_mwr_byte_sent =
4706 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
4708 val64 = readq(&vp_reg->vpath_debug_stats4);
4709 hw_stats->ini_num_cpl_byte_rcvd =
4710 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
4712 val64 = readq(&vp_reg->vpath_debug_stats5);
4713 hw_stats->wrcrdtarb_xoff =
4714 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
4716 val64 = readq(&vp_reg->vpath_debug_stats6);
4717 hw_stats->rdcrdtarb_xoff =
4718 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
4720 val64 = readq(&vp_reg->vpath_genstats_count01);
4721 hw_stats->vpath_genstats_count0 =
4722 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
4723 val64);
4725 val64 = readq(&vp_reg->vpath_genstats_count01);
4726 hw_stats->vpath_genstats_count1 =
4727 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
4728 val64);
4730 val64 = readq(&vp_reg->vpath_genstats_count23);
4731 hw_stats->vpath_genstats_count2 =
4732 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
4733 val64);
4735 val64 = readq(&vp_reg->vpath_genstats_count01);
4736 hw_stats->vpath_genstats_count3 =
4737 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
4738 val64);
4740 val64 = readq(&vp_reg->vpath_genstats_count4);
4741 hw_stats->vpath_genstats_count4 =
4742 (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
4743 val64);
4745 val64 = readq(&vp_reg->vpath_genstats_count5);
4746 hw_stats->vpath_genstats_count5 =
4747 (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
4748 val64);
4750 status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
4751 if (status != VXGE_HW_OK)
4752 goto exit;
4754 status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
4755 if (status != VXGE_HW_OK)
4756 goto exit;
4758 VXGE_HW_VPATH_STATS_PIO_READ(
4759 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
4761 hw_stats->prog_event_vnum0 =
4762 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
4764 hw_stats->prog_event_vnum1 =
4765 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
4767 VXGE_HW_VPATH_STATS_PIO_READ(
4768 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
4770 hw_stats->prog_event_vnum2 =
4771 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
4773 hw_stats->prog_event_vnum3 =
4774 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
4776 val64 = readq(&vp_reg->rx_multi_cast_stats);
4777 hw_stats->rx_multi_cast_frame_discard =
4778 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
4780 val64 = readq(&vp_reg->rx_frm_transferred);
4781 hw_stats->rx_frm_transferred =
4782 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
4784 val64 = readq(&vp_reg->rxd_returned);
4785 hw_stats->rxd_returned =
4786 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
4788 val64 = readq(&vp_reg->dbg_stats_rx_mpa);
4789 hw_stats->rx_mpa_len_fail_frms =
4790 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
4791 hw_stats->rx_mpa_mrk_fail_frms =
4792 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
4793 hw_stats->rx_mpa_crc_fail_frms =
4794 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
4796 val64 = readq(&vp_reg->dbg_stats_rx_fau);
4797 hw_stats->rx_permitted_frms =
4798 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
4799 hw_stats->rx_vp_reset_discarded_frms =
4800 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
4801 hw_stats->rx_wol_frms =
4802 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
4804 val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
4805 hw_stats->tx_vp_reset_discarded_frms =
4806 (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
4807 val64);
4808 exit:
4809 return status;
4813 * __vxge_hw_blockpool_create - Create block pool
4816 enum vxge_hw_status
4817 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
4818 struct __vxge_hw_blockpool *blockpool,
4819 u32 pool_size,
4820 u32 pool_max)
4822 u32 i;
4823 struct __vxge_hw_blockpool_entry *entry = NULL;
4824 void *memblock;
4825 dma_addr_t dma_addr;
4826 struct pci_dev *dma_handle;
4827 struct pci_dev *acc_handle;
4828 enum vxge_hw_status status = VXGE_HW_OK;
4830 if (blockpool == NULL) {
4831 status = VXGE_HW_FAIL;
4832 goto blockpool_create_exit;
4835 blockpool->hldev = hldev;
4836 blockpool->block_size = VXGE_HW_BLOCK_SIZE;
4837 blockpool->pool_size = 0;
4838 blockpool->pool_max = pool_max;
4839 blockpool->req_out = 0;
4841 INIT_LIST_HEAD(&blockpool->free_block_list);
4842 INIT_LIST_HEAD(&blockpool->free_entry_list);
4844 for (i = 0; i < pool_size + pool_max; i++) {
4845 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
4846 GFP_KERNEL);
4847 if (entry == NULL) {
4848 __vxge_hw_blockpool_destroy(blockpool);
4849 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4850 goto blockpool_create_exit;
4852 list_add(&entry->item, &blockpool->free_entry_list);
4855 for (i = 0; i < pool_size; i++) {
4857 memblock = vxge_os_dma_malloc(
4858 hldev->pdev,
4859 VXGE_HW_BLOCK_SIZE,
4860 &dma_handle,
4861 &acc_handle);
4863 if (memblock == NULL) {
4864 __vxge_hw_blockpool_destroy(blockpool);
4865 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4866 goto blockpool_create_exit;
4869 dma_addr = pci_map_single(hldev->pdev, memblock,
4870 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
4872 if (unlikely(pci_dma_mapping_error(hldev->pdev,
4873 dma_addr))) {
4875 vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
4876 __vxge_hw_blockpool_destroy(blockpool);
4877 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4878 goto blockpool_create_exit;
4881 if (!list_empty(&blockpool->free_entry_list))
4882 entry = (struct __vxge_hw_blockpool_entry *)
4883 list_first_entry(&blockpool->free_entry_list,
4884 struct __vxge_hw_blockpool_entry,
4885 item);
4887 if (entry == NULL)
4888 entry =
4889 kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
4890 GFP_KERNEL);
4891 if (entry != NULL) {
4892 list_del(&entry->item);
4893 entry->length = VXGE_HW_BLOCK_SIZE;
4894 entry->memblock = memblock;
4895 entry->dma_addr = dma_addr;
4896 entry->acc_handle = acc_handle;
4897 entry->dma_handle = dma_handle;
4898 list_add(&entry->item,
4899 &blockpool->free_block_list);
4900 blockpool->pool_size++;
4901 } else {
4902 __vxge_hw_blockpool_destroy(blockpool);
4903 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4904 goto blockpool_create_exit;
4908 blockpool_create_exit:
4909 return status;
4913 * __vxge_hw_blockpool_destroy - Deallocates the block pool
4916 void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
4919 struct __vxge_hw_device *hldev;
4920 struct list_head *p, *n;
4921 u16 ret;
4923 if (blockpool == NULL) {
4924 ret = 1;
4925 goto exit;
4928 hldev = blockpool->hldev;
4930 list_for_each_safe(p, n, &blockpool->free_block_list) {
4932 pci_unmap_single(hldev->pdev,
4933 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
4934 ((struct __vxge_hw_blockpool_entry *)p)->length,
4935 PCI_DMA_BIDIRECTIONAL);
4937 vxge_os_dma_free(hldev->pdev,
4938 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
4939 &((struct __vxge_hw_blockpool_entry *) p)->acc_handle);
4941 list_del(
4942 &((struct __vxge_hw_blockpool_entry *)p)->item);
4943 kfree(p);
4944 blockpool->pool_size--;
4947 list_for_each_safe(p, n, &blockpool->free_entry_list) {
4948 list_del(
4949 &((struct __vxge_hw_blockpool_entry *)p)->item);
4950 kfree((void *)p);
4952 ret = 0;
4953 exit:
4954 return;
4958 * __vxge_hw_blockpool_blocks_add - Request additional blocks
4960 static
4961 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
4963 u32 nreq = 0, i;
4965 if ((blockpool->pool_size + blockpool->req_out) <
4966 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
4967 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
4968 blockpool->req_out += nreq;
4971 for (i = 0; i < nreq; i++)
4972 vxge_os_dma_malloc_async(
4973 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4974 blockpool->hldev, VXGE_HW_BLOCK_SIZE);
4978 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
4980 static
4981 void __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
4983 struct list_head *p, *n;
4985 list_for_each_safe(p, n, &blockpool->free_block_list) {
4987 if (blockpool->pool_size < blockpool->pool_max)
4988 break;
4990 pci_unmap_single(
4991 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4992 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
4993 ((struct __vxge_hw_blockpool_entry *)p)->length,
4994 PCI_DMA_BIDIRECTIONAL);
4996 vxge_os_dma_free(
4997 ((struct __vxge_hw_device *)blockpool->hldev)->pdev,
4998 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
4999 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
5001 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
5003 list_add(p, &blockpool->free_entry_list);
5005 blockpool->pool_size--;
5011 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
5012 * Adds a block to block pool
5014 void vxge_hw_blockpool_block_add(
5015 struct __vxge_hw_device *devh,
5016 void *block_addr,
5017 u32 length,
5018 struct pci_dev *dma_h,
5019 struct pci_dev *acc_handle)
5021 struct __vxge_hw_blockpool *blockpool;
5022 struct __vxge_hw_blockpool_entry *entry = NULL;
5023 dma_addr_t dma_addr;
5024 enum vxge_hw_status status = VXGE_HW_OK;
5025 u32 req_out;
5027 blockpool = &devh->block_pool;
5029 if (block_addr == NULL) {
5030 blockpool->req_out--;
5031 status = VXGE_HW_FAIL;
5032 goto exit;
5035 dma_addr = pci_map_single(devh->pdev, block_addr, length,
5036 PCI_DMA_BIDIRECTIONAL);
5038 if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
5040 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
5041 blockpool->req_out--;
5042 status = VXGE_HW_FAIL;
5043 goto exit;
5047 if (!list_empty(&blockpool->free_entry_list))
5048 entry = (struct __vxge_hw_blockpool_entry *)
5049 list_first_entry(&blockpool->free_entry_list,
5050 struct __vxge_hw_blockpool_entry,
5051 item);
5053 if (entry == NULL)
5054 entry = (struct __vxge_hw_blockpool_entry *)
5055 vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
5056 else
5057 list_del(&entry->item);
5059 if (entry != NULL) {
5060 entry->length = length;
5061 entry->memblock = block_addr;
5062 entry->dma_addr = dma_addr;
5063 entry->acc_handle = acc_handle;
5064 entry->dma_handle = dma_h;
5065 list_add(&entry->item, &blockpool->free_block_list);
5066 blockpool->pool_size++;
5067 status = VXGE_HW_OK;
5068 } else
5069 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5071 blockpool->req_out--;
5073 req_out = blockpool->req_out;
5074 exit:
5075 return;
5079 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
5080 * Allocates a block of memory of given size, either from block pool
5081 * or by calling vxge_os_dma_malloc()
5083 void *
5084 __vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
5085 struct vxge_hw_mempool_dma *dma_object)
5087 struct __vxge_hw_blockpool_entry *entry = NULL;
5088 struct __vxge_hw_blockpool *blockpool;
5089 void *memblock = NULL;
5090 enum vxge_hw_status status = VXGE_HW_OK;
5092 blockpool = &devh->block_pool;
5094 if (size != blockpool->block_size) {
5096 memblock = vxge_os_dma_malloc(devh->pdev, size,
5097 &dma_object->handle,
5098 &dma_object->acc_handle);
5100 if (memblock == NULL) {
5101 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5102 goto exit;
5105 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
5106 PCI_DMA_BIDIRECTIONAL);
5108 if (unlikely(pci_dma_mapping_error(devh->pdev,
5109 dma_object->addr))) {
5110 vxge_os_dma_free(devh->pdev, memblock,
5111 &dma_object->acc_handle);
5112 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5113 goto exit;
5116 } else {
5118 if (!list_empty(&blockpool->free_block_list))
5119 entry = (struct __vxge_hw_blockpool_entry *)
5120 list_first_entry(&blockpool->free_block_list,
5121 struct __vxge_hw_blockpool_entry,
5122 item);
5124 if (entry != NULL) {
5125 list_del(&entry->item);
5126 dma_object->addr = entry->dma_addr;
5127 dma_object->handle = entry->dma_handle;
5128 dma_object->acc_handle = entry->acc_handle;
5129 memblock = entry->memblock;
5131 list_add(&entry->item,
5132 &blockpool->free_entry_list);
5133 blockpool->pool_size--;
5136 if (memblock != NULL)
5137 __vxge_hw_blockpool_blocks_add(blockpool);
5139 exit:
5140 return memblock;
5144 * __vxge_hw_blockpool_free - Frees the memory allcoated with
5145 __vxge_hw_blockpool_malloc
5147 void
5148 __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
5149 void *memblock, u32 size,
5150 struct vxge_hw_mempool_dma *dma_object)
5152 struct __vxge_hw_blockpool_entry *entry = NULL;
5153 struct __vxge_hw_blockpool *blockpool;
5154 enum vxge_hw_status status = VXGE_HW_OK;
5156 blockpool = &devh->block_pool;
5158 if (size != blockpool->block_size) {
5159 pci_unmap_single(devh->pdev, dma_object->addr, size,
5160 PCI_DMA_BIDIRECTIONAL);
5161 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
5162 } else {
5164 if (!list_empty(&blockpool->free_entry_list))
5165 entry = (struct __vxge_hw_blockpool_entry *)
5166 list_first_entry(&blockpool->free_entry_list,
5167 struct __vxge_hw_blockpool_entry,
5168 item);
5170 if (entry == NULL)
5171 entry = (struct __vxge_hw_blockpool_entry *)
5172 vmalloc(sizeof(
5173 struct __vxge_hw_blockpool_entry));
5174 else
5175 list_del(&entry->item);
5177 if (entry != NULL) {
5178 entry->length = size;
5179 entry->memblock = memblock;
5180 entry->dma_addr = dma_object->addr;
5181 entry->acc_handle = dma_object->acc_handle;
5182 entry->dma_handle = dma_object->handle;
5183 list_add(&entry->item,
5184 &blockpool->free_block_list);
5185 blockpool->pool_size++;
5186 status = VXGE_HW_OK;
5187 } else
5188 status = VXGE_HW_ERR_OUT_OF_MEMORY;
5190 if (status == VXGE_HW_OK)
5191 __vxge_hw_blockpool_blocks_remove(blockpool);
5194 return;
5198 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
5199 * This function allocates a block from block pool or from the system
5201 struct __vxge_hw_blockpool_entry *
5202 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
5204 struct __vxge_hw_blockpool_entry *entry = NULL;
5205 struct __vxge_hw_blockpool *blockpool;
5207 blockpool = &devh->block_pool;
5209 if (size == blockpool->block_size) {
5211 if (!list_empty(&blockpool->free_block_list))
5212 entry = (struct __vxge_hw_blockpool_entry *)
5213 list_first_entry(&blockpool->free_block_list,
5214 struct __vxge_hw_blockpool_entry,
5215 item);
5217 if (entry != NULL) {
5218 list_del(&entry->item);
5219 blockpool->pool_size--;
5223 if (entry != NULL)
5224 __vxge_hw_blockpool_blocks_add(blockpool);
5226 return entry;
5230 * __vxge_hw_blockpool_block_free - Frees a block from block pool
5231 * @devh: Hal device
5232 * @entry: Entry of block to be freed
5234 * This function frees a block from block pool
5236 void
5237 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
5238 struct __vxge_hw_blockpool_entry *entry)
5240 struct __vxge_hw_blockpool *blockpool;
5242 blockpool = &devh->block_pool;
5244 if (entry->length == blockpool->block_size) {
5245 list_add(&entry->item, &blockpool->free_block_list);
5246 blockpool->pool_size++;
5249 __vxge_hw_blockpool_blocks_remove(blockpool);
5251 return;