JBD: round commit timer up to avoid uncommitted transaction
[linux/fpc-iii.git] / drivers / net / wimax / i2400m / fw.c
blobe81750e54452b5d7b4384fb20c15fcead8e17332
1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Firmware uploader
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38 * - Initial implementation
41 * THE PROCEDURE
43 * (this is decribed for USB, but for SDIO is similar)
45 * The 2400m works in two modes: boot-mode or normal mode. In boot
46 * mode we can execute only a handful of commands targeted at
47 * uploading the firmware and launching it.
49 * The 2400m enters boot mode when it is first connected to the
50 * system, when it crashes and when you ask it to reboot. There are
51 * two submodes of the boot mode: signed and non-signed. Signed takes
52 * firmwares signed with a certain private key, non-signed takes any
53 * firmware. Normal hardware takes only signed firmware.
55 * Upon entrance to boot mode, the device sends a few zero length
56 * packets (ZLPs) on the notification endpoint, then a reboot barker
57 * (4 le32 words with value I2400M_{S,N}BOOT_BARKER). We ack it by
58 * sending the same barker on the bulk out endpoint. The device acks
59 * with a reboot ack barker (4 le32 words with value 0xfeedbabe) and
60 * then the device is fully rebooted. At this point we can upload the
61 * firmware.
63 * This process is accomplished by the i2400m_bootrom_init()
64 * function. All the device interaction happens through the
65 * i2400m_bm_cmd() [boot mode command]. Special return values will
66 * indicate if the device resets.
68 * After this, we read the MAC address and then (if needed)
69 * reinitialize the device. We need to read it ahead of time because
70 * in the future, we might not upload the firmware until userspace
71 * 'ifconfig up's the device.
73 * We can then upload the firmware file. The file is composed of a BCF
74 * header (basic data, keys and signatures) and a list of write
75 * commands and payloads. We first upload the header
76 * [i2400m_dnload_init()] and then pass the commands and payloads
77 * verbatim to the i2400m_bm_cmd() function
78 * [i2400m_dnload_bcf()]. Then we tell the device to jump to the new
79 * firmware [i2400m_dnload_finalize()].
81 * Once firmware is uploaded, we are good to go :)
83 * When we don't know in which mode we are, we first try by sending a
84 * warm reset request that will take us to boot-mode. If we time out
85 * waiting for a reboot barker, that means maybe we are already in
86 * boot mode, so we send a reboot barker.
88 * COMMAND EXECUTION
90 * This code (and process) is single threaded; for executing commands,
91 * we post a URB to the notification endpoint, post the command, wait
92 * for data on the notification buffer. We don't need to worry about
93 * others as we know we are the only ones in there.
95 * BACKEND IMPLEMENTATION
97 * This code is bus-generic; the bus-specific driver provides back end
98 * implementations to send a boot mode command to the device and to
99 * read an acknolwedgement from it (or an asynchronous notification)
100 * from it.
102 * ROADMAP
104 * i2400m_dev_bootstrap Called by __i2400m_dev_start()
105 * request_firmware
106 * i2400m_fw_check
107 * i2400m_fw_dnload
108 * release_firmware
110 * i2400m_fw_dnload
111 * i2400m_bootrom_init
112 * i2400m_bm_cmd
113 * i2400m->bus_reset
114 * i2400m_dnload_init
115 * i2400m_dnload_init_signed
116 * i2400m_dnload_init_nonsigned
117 * i2400m_download_chunk
118 * i2400m_bm_cmd
119 * i2400m_dnload_bcf
120 * i2400m_bm_cmd
121 * i2400m_dnload_finalize
122 * i2400m_bm_cmd
124 * i2400m_bm_cmd
125 * i2400m->bus_bm_cmd_send()
126 * i2400m->bus_bm_wait_for_ack
127 * __i2400m_bm_ack_verify
129 * i2400m_bm_cmd_prepare Used by bus-drivers to prep
130 * commands before sending
132 #include <linux/firmware.h>
133 #include <linux/sched.h>
134 #include <linux/usb.h>
135 #include "i2400m.h"
138 #define D_SUBMODULE fw
139 #include "debug-levels.h"
142 static const __le32 i2400m_ACK_BARKER[4] = {
143 cpu_to_le32(I2400M_ACK_BARKER),
144 cpu_to_le32(I2400M_ACK_BARKER),
145 cpu_to_le32(I2400M_ACK_BARKER),
146 cpu_to_le32(I2400M_ACK_BARKER)
151 * Prepare a boot-mode command for delivery
153 * @cmd: pointer to bootrom header to prepare
155 * Computes checksum if so needed. After calling this function, DO NOT
156 * modify the command or header as the checksum won't work anymore.
158 * We do it from here because some times we cannot do it in the
159 * original context the command was sent (it is a const), so when we
160 * copy it to our staging buffer, we add the checksum there.
162 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
164 if (i2400m_brh_get_use_checksum(cmd)) {
165 int i;
166 u32 checksum = 0;
167 const u32 *checksum_ptr = (void *) cmd->payload;
168 for (i = 0; i < cmd->data_size / 4; i++)
169 checksum += cpu_to_le32(*checksum_ptr++);
170 checksum += cmd->command + cmd->target_addr + cmd->data_size;
171 cmd->block_checksum = cpu_to_le32(checksum);
174 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
178 * Verify the ack data received
180 * Given a reply to a boot mode command, chew it and verify everything
181 * is ok.
183 * @opcode: opcode which generated this ack. For error messages.
184 * @ack: pointer to ack data we received
185 * @ack_size: size of that data buffer
186 * @flags: I2400M_BM_CMD_* flags we called the command with.
188 * Way too long function -- maybe it should be further split
190 static
191 ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
192 struct i2400m_bootrom_header *ack,
193 size_t ack_size, int flags)
195 ssize_t result = -ENOMEM;
196 struct device *dev = i2400m_dev(i2400m);
198 d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
199 i2400m, opcode, ack, ack_size);
200 if (ack_size < sizeof(*ack)) {
201 result = -EIO;
202 dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
203 "return enough data (%zu bytes vs %zu expected)\n",
204 opcode, ack_size, sizeof(*ack));
205 goto error_ack_short;
207 if (ack_size == sizeof(i2400m_NBOOT_BARKER)
208 && memcmp(ack, i2400m_NBOOT_BARKER, sizeof(*ack)) == 0) {
209 result = -ERESTARTSYS;
210 i2400m->sboot = 0;
211 d_printf(6, dev, "boot-mode cmd %d: "
212 "HW non-signed boot barker\n", opcode);
213 goto error_reboot;
215 if (ack_size == sizeof(i2400m_SBOOT_BARKER)
216 && memcmp(ack, i2400m_SBOOT_BARKER, sizeof(*ack)) == 0) {
217 result = -ERESTARTSYS;
218 i2400m->sboot = 1;
219 d_printf(6, dev, "boot-mode cmd %d: HW signed reboot barker\n",
220 opcode);
221 goto error_reboot;
223 if (ack_size == sizeof(i2400m_ACK_BARKER)
224 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
225 result = -EISCONN;
226 d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
227 opcode);
228 goto error_reboot_ack;
230 result = 0;
231 if (flags & I2400M_BM_CMD_RAW)
232 goto out_raw;
233 ack->data_size = le32_to_cpu(ack->data_size);
234 ack->target_addr = le32_to_cpu(ack->target_addr);
235 ack->block_checksum = le32_to_cpu(ack->block_checksum);
236 d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
237 "response %u csum %u rr %u da %u\n",
238 opcode, i2400m_brh_get_opcode(ack),
239 i2400m_brh_get_response(ack),
240 i2400m_brh_get_use_checksum(ack),
241 i2400m_brh_get_response_required(ack),
242 i2400m_brh_get_direct_access(ack));
243 result = -EIO;
244 if (i2400m_brh_get_signature(ack) != 0xcbbc) {
245 dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
246 "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
247 goto error_ack_signature;
249 if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
250 dev_err(dev, "boot-mode cmd %d: HW BUG? "
251 "received response for opcode %u, expected %u\n",
252 opcode, i2400m_brh_get_opcode(ack), opcode);
253 goto error_ack_opcode;
255 if (i2400m_brh_get_response(ack) != 0) { /* failed? */
256 dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
257 opcode, i2400m_brh_get_response(ack));
258 goto error_ack_failed;
260 if (ack_size < ack->data_size + sizeof(*ack)) {
261 dev_err(dev, "boot-mode cmd %d: SW BUG "
262 "driver provided only %zu bytes for %zu bytes "
263 "of data\n", opcode, ack_size,
264 (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
265 goto error_ack_short_buffer;
267 result = ack_size;
268 /* Don't you love this stack of empty targets? Well, I don't
269 * either, but it helps track exactly who comes in here and
270 * why :) */
271 error_ack_short_buffer:
272 error_ack_failed:
273 error_ack_opcode:
274 error_ack_signature:
275 out_raw:
276 error_reboot_ack:
277 error_reboot:
278 error_ack_short:
279 d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
280 i2400m, opcode, ack, ack_size, (int) result);
281 return result;
286 * i2400m_bm_cmd - Execute a boot mode command
288 * @cmd: buffer containing the command data (pointing at the header).
289 * This data can be ANYWHERE (for USB, we will copy it to an
290 * specific buffer). Make sure everything is in proper little
291 * endian.
293 * A raw buffer can be also sent, just cast it and set flags to
294 * I2400M_BM_CMD_RAW.
296 * This function will generate a checksum for you if the
297 * checksum bit in the command is set (unless I2400M_BM_CMD_RAW
298 * is set).
300 * You can use the i2400m->bm_cmd_buf to stage your commands and
301 * send them.
303 * If NULL, no command is sent (we just wait for an ack).
305 * @cmd_size: size of the command. Will be auto padded to the
306 * bus-specific drivers padding requirements.
308 * @ack: buffer where to place the acknowledgement. If it is a regular
309 * command response, all fields will be returned with the right,
310 * native endianess.
312 * You *cannot* use i2400m->bm_ack_buf for this buffer.
314 * @ack_size: size of @ack, 16 aligned; you need to provide at least
315 * sizeof(*ack) bytes and then enough to contain the return data
316 * from the command
318 * @flags: see I2400M_BM_CMD_* above.
320 * @returns: bytes received by the notification; if < 0, an errno code
321 * denoting an error or:
323 * -ERESTARTSYS The device has rebooted
325 * Executes a boot-mode command and waits for a response, doing basic
326 * validation on it; if a zero length response is received, it retries
327 * waiting for a response until a non-zero one is received (timing out
328 * after %I2400M_BOOT_RETRIES retries).
330 static
331 ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
332 const struct i2400m_bootrom_header *cmd, size_t cmd_size,
333 struct i2400m_bootrom_header *ack, size_t ack_size,
334 int flags)
336 ssize_t result = -ENOMEM, rx_bytes;
337 struct device *dev = i2400m_dev(i2400m);
338 int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
340 d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
341 i2400m, cmd, cmd_size, ack, ack_size);
342 BUG_ON(ack_size < sizeof(*ack));
343 BUG_ON(i2400m->boot_mode == 0);
345 if (cmd != NULL) { /* send the command */
346 memcpy(i2400m->bm_cmd_buf, cmd, cmd_size);
347 result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
348 if (result < 0)
349 goto error_cmd_send;
350 if ((flags & I2400M_BM_CMD_RAW) == 0)
351 d_printf(5, dev,
352 "boot-mode cmd %d csum %u rr %u da %u: "
353 "addr 0x%04x size %u block csum 0x%04x\n",
354 opcode, i2400m_brh_get_use_checksum(cmd),
355 i2400m_brh_get_response_required(cmd),
356 i2400m_brh_get_direct_access(cmd),
357 cmd->target_addr, cmd->data_size,
358 cmd->block_checksum);
360 result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
361 if (result < 0) {
362 dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
363 opcode, (int) result); /* bah, %zd doesn't work */
364 goto error_wait_for_ack;
366 rx_bytes = result;
367 /* verify the ack and read more if neccessary [result is the
368 * final amount of bytes we get in the ack] */
369 result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
370 if (result < 0)
371 goto error_bad_ack;
372 /* Don't you love this stack of empty targets? Well, I don't
373 * either, but it helps track exactly who comes in here and
374 * why :) */
375 result = rx_bytes;
376 error_bad_ack:
377 error_wait_for_ack:
378 error_cmd_send:
379 d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
380 i2400m, cmd, cmd_size, ack, ack_size, (int) result);
381 return result;
386 * i2400m_download_chunk - write a single chunk of data to the device's memory
388 * @i2400m: device descriptor
389 * @buf: the buffer to write
390 * @buf_len: length of the buffer to write
391 * @addr: address in the device memory space
392 * @direct: bootrom write mode
393 * @do_csum: should a checksum validation be performed
395 static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
396 size_t __chunk_len, unsigned long addr,
397 unsigned int direct, unsigned int do_csum)
399 int ret;
400 size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
401 struct device *dev = i2400m_dev(i2400m);
402 struct {
403 struct i2400m_bootrom_header cmd;
404 u8 cmd_payload[chunk_len];
405 } __attribute__((packed)) *buf;
406 struct i2400m_bootrom_header ack;
408 d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
409 "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
410 addr, direct, do_csum);
411 buf = i2400m->bm_cmd_buf;
412 memcpy(buf->cmd_payload, chunk, __chunk_len);
413 memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
415 buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
416 __chunk_len & 0x3 ? 0 : do_csum,
417 __chunk_len & 0xf ? 0 : direct);
418 buf->cmd.target_addr = cpu_to_le32(addr);
419 buf->cmd.data_size = cpu_to_le32(__chunk_len);
420 ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
421 &ack, sizeof(ack), 0);
422 if (ret >= 0)
423 ret = 0;
424 d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
425 "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
426 addr, direct, do_csum, ret);
427 return ret;
432 * Download a BCF file's sections to the device
434 * @i2400m: device descriptor
435 * @bcf: pointer to firmware data (followed by the payloads). Assumed
436 * verified and consistent.
437 * @bcf_len: length (in bytes) of the @bcf buffer.
439 * Returns: < 0 errno code on error or the offset to the jump instruction.
441 * Given a BCF file, downloads each section (a command and a payload)
442 * to the device's address space. Actually, it just executes each
443 * command i the BCF file.
445 * The section size has to be aligned to 4 bytes AND the padding has
446 * to be taken from the firmware file, as the signature takes it into
447 * account.
449 static
450 ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
451 const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
453 ssize_t ret;
454 struct device *dev = i2400m_dev(i2400m);
455 size_t offset, /* iterator offset */
456 data_size, /* Size of the data payload */
457 section_size, /* Size of the whole section (cmd + payload) */
458 section = 1;
459 const struct i2400m_bootrom_header *bh;
460 struct i2400m_bootrom_header ack;
462 d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
463 i2400m, bcf, bcf_len);
464 /* Iterate over the command blocks in the BCF file that start
465 * after the header */
466 offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
467 while (1) { /* start sending the file */
468 bh = (void *) bcf + offset;
469 data_size = le32_to_cpu(bh->data_size);
470 section_size = ALIGN(sizeof(*bh) + data_size, 4);
471 d_printf(7, dev,
472 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
473 section, offset, sizeof(*bh) + data_size,
474 le32_to_cpu(bh->target_addr));
475 if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP) {
476 /* Secure boot needs to stop here */
477 d_printf(5, dev, "signed jump found @%zu\n", offset);
478 break;
480 if (offset + section_size == bcf_len)
481 /* Non-secure boot stops here */
482 break;
483 if (offset + section_size > bcf_len) {
484 dev_err(dev, "fw %s: bad section #%zu, "
485 "end (@%zu) beyond EOF (@%zu)\n",
486 i2400m->fw_name, section,
487 offset + section_size, bcf_len);
488 ret = -EINVAL;
489 goto error_section_beyond_eof;
491 __i2400m_msleep(20);
492 ret = i2400m_bm_cmd(i2400m, bh, section_size,
493 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
494 if (ret < 0) {
495 dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
496 "failed %d\n", i2400m->fw_name, section,
497 offset, sizeof(*bh) + data_size, (int) ret);
498 goto error_send;
500 offset += section_size;
501 section++;
503 ret = offset;
504 error_section_beyond_eof:
505 error_send:
506 d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
507 i2400m, bcf, bcf_len, (int) ret);
508 return ret;
513 * Do the final steps of uploading firmware
515 * Depending on the boot mode (signed vs non-signed), different
516 * actions need to be taken.
518 static
519 int i2400m_dnload_finalize(struct i2400m *i2400m,
520 const struct i2400m_bcf_hdr *bcf, size_t offset)
522 int ret = 0;
523 struct device *dev = i2400m_dev(i2400m);
524 struct i2400m_bootrom_header *cmd, ack;
525 struct {
526 struct i2400m_bootrom_header cmd;
527 u8 cmd_pl[0];
528 } __attribute__((packed)) *cmd_buf;
529 size_t signature_block_offset, signature_block_size;
531 d_fnstart(3, dev, "offset %zu\n", offset);
532 cmd = (void *) bcf + offset;
533 if (i2400m->sboot == 0) {
534 struct i2400m_bootrom_header jump_ack;
535 d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
536 le32_to_cpu(cmd->target_addr));
537 i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
538 cmd->data_size = 0;
539 ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
540 &jump_ack, sizeof(jump_ack), 0);
541 } else {
542 d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
543 le32_to_cpu(cmd->target_addr));
544 cmd_buf = i2400m->bm_cmd_buf;
545 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
546 signature_block_offset =
547 sizeof(*bcf)
548 + le32_to_cpu(bcf->key_size) * sizeof(u32)
549 + le32_to_cpu(bcf->exponent_size) * sizeof(u32);
550 signature_block_size =
551 le32_to_cpu(bcf->modulus_size) * sizeof(u32);
552 memcpy(cmd_buf->cmd_pl, (void *) bcf + signature_block_offset,
553 signature_block_size);
554 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
555 sizeof(cmd_buf->cmd) + signature_block_size,
556 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
558 d_fnend(3, dev, "returning %d\n", ret);
559 return ret;
564 * i2400m_bootrom_init - Reboots a powered device into boot mode
566 * @i2400m: device descriptor
567 * @flags:
568 * I2400M_BRI_SOFT: a reboot notification has been seen
569 * already, so don't wait for it.
571 * I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
572 * for a reboot barker notification. This is a one shot; if
573 * the state machine needs to send a reboot command it will.
575 * Returns:
577 * < 0 errno code on error, 0 if ok.
579 * i2400m->sboot set to 0 for unsecure boot process, 1 for secure
580 * boot process.
582 * Description:
584 * Tries hard enough to put the device in boot-mode. There are two
585 * main phases to this:
587 * a. (1) send a reboot command and (2) get a reboot barker
588 * b. (1) ack the reboot sending a reboot barker and (2) getting an
589 * ack barker in return
591 * We want to skip (a) in some cases [soft]. The state machine is
592 * horrible, but it is basically: on each phase, send what has to be
593 * sent (if any), wait for the answer and act on the answer. We might
594 * have to backtrack and retry, so we keep a max tries counter for
595 * that.
597 * If we get a timeout after sending a warm reset, we do it again.
599 int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
601 int result;
602 struct device *dev = i2400m_dev(i2400m);
603 struct i2400m_bootrom_header *cmd;
604 struct i2400m_bootrom_header ack;
605 int count = I2400M_BOOT_RETRIES;
606 int ack_timeout_cnt = 1;
608 BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_NBOOT_BARKER));
609 BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
611 d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
612 result = -ENOMEM;
613 cmd = i2400m->bm_cmd_buf;
614 if (flags & I2400M_BRI_SOFT)
615 goto do_reboot_ack;
616 do_reboot:
617 if (--count < 0)
618 goto error_timeout;
619 d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
620 count);
621 if ((flags & I2400M_BRI_NO_REBOOT) == 0)
622 i2400m->bus_reset(i2400m, I2400M_RT_WARM);
623 result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
624 I2400M_BM_CMD_RAW);
625 flags &= ~I2400M_BRI_NO_REBOOT;
626 switch (result) {
627 case -ERESTARTSYS:
628 d_printf(4, dev, "device reboot: got reboot barker\n");
629 break;
630 case -EISCONN: /* we don't know how it got here...but we follow it */
631 d_printf(4, dev, "device reboot: got ack barker - whatever\n");
632 goto do_reboot;
633 case -ETIMEDOUT: /* device has timed out, we might be in boot
634 * mode already and expecting an ack, let's try
635 * that */
636 dev_info(dev, "warm reset timed out, trying an ack\n");
637 goto do_reboot_ack;
638 case -EPROTO:
639 case -ESHUTDOWN: /* dev is gone */
640 case -EINTR: /* user cancelled */
641 goto error_dev_gone;
642 default:
643 dev_err(dev, "device reboot: error %d while waiting "
644 "for reboot barker - rebooting\n", result);
645 goto do_reboot;
647 /* At this point we ack back with 4 REBOOT barkers and expect
648 * 4 ACK barkers. This is ugly, as we send a raw command --
649 * hence the cast. _bm_cmd() will catch the reboot ack
650 * notification and report it as -EISCONN. */
651 do_reboot_ack:
652 d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
653 if (i2400m->sboot == 0)
654 memcpy(cmd, i2400m_NBOOT_BARKER,
655 sizeof(i2400m_NBOOT_BARKER));
656 else
657 memcpy(cmd, i2400m_SBOOT_BARKER,
658 sizeof(i2400m_SBOOT_BARKER));
659 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
660 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
661 switch (result) {
662 case -ERESTARTSYS:
663 d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
664 if (--count < 0)
665 goto error_timeout;
666 goto do_reboot_ack;
667 case -EISCONN:
668 d_printf(4, dev, "reboot ack: got ack barker - good\n");
669 break;
670 case -ETIMEDOUT: /* no response, maybe it is the other type? */
671 if (ack_timeout_cnt-- >= 0) {
672 d_printf(4, dev, "reboot ack timedout: "
673 "trying the other type?\n");
674 i2400m->sboot = !i2400m->sboot;
675 goto do_reboot_ack;
676 } else {
677 dev_err(dev, "reboot ack timedout too long: "
678 "trying reboot\n");
679 goto do_reboot;
681 break;
682 case -EPROTO:
683 case -ESHUTDOWN: /* dev is gone */
684 goto error_dev_gone;
685 default:
686 dev_err(dev, "device reboot ack: error %d while waiting for "
687 "reboot ack barker - rebooting\n", result);
688 goto do_reboot;
690 d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
691 result = 0;
692 exit_timeout:
693 error_dev_gone:
694 d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
695 i2400m, flags, result);
696 return result;
698 error_timeout:
699 dev_err(dev, "Timed out waiting for reboot ack\n");
700 result = -ETIMEDOUT;
701 goto exit_timeout;
706 * Read the MAC addr
708 * The position this function reads is fixed in device memory and
709 * always available, even without firmware.
711 * Note we specify we want to read only six bytes, but provide space
712 * for 16, as we always get it rounded up.
714 int i2400m_read_mac_addr(struct i2400m *i2400m)
716 int result;
717 struct device *dev = i2400m_dev(i2400m);
718 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
719 struct i2400m_bootrom_header *cmd;
720 struct {
721 struct i2400m_bootrom_header ack;
722 u8 ack_pl[16];
723 } __attribute__((packed)) ack_buf;
725 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
726 cmd = i2400m->bm_cmd_buf;
727 cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
728 cmd->target_addr = cpu_to_le32(0x00203fe8);
729 cmd->data_size = cpu_to_le32(6);
730 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
731 &ack_buf.ack, sizeof(ack_buf), 0);
732 if (result < 0) {
733 dev_err(dev, "BM: read mac addr failed: %d\n", result);
734 goto error_read_mac;
736 d_printf(2, dev,
737 "mac addr is %02x:%02x:%02x:%02x:%02x:%02x\n",
738 ack_buf.ack_pl[0], ack_buf.ack_pl[1],
739 ack_buf.ack_pl[2], ack_buf.ack_pl[3],
740 ack_buf.ack_pl[4], ack_buf.ack_pl[5]);
741 if (i2400m->bus_bm_mac_addr_impaired == 1) {
742 ack_buf.ack_pl[0] = 0x00;
743 ack_buf.ack_pl[1] = 0x16;
744 ack_buf.ack_pl[2] = 0xd3;
745 get_random_bytes(&ack_buf.ack_pl[3], 3);
746 dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
747 "mac addr is %02x:%02x:%02x:%02x:%02x:%02x\n",
748 ack_buf.ack_pl[0], ack_buf.ack_pl[1],
749 ack_buf.ack_pl[2], ack_buf.ack_pl[3],
750 ack_buf.ack_pl[4], ack_buf.ack_pl[5]);
751 result = 0;
753 net_dev->addr_len = ETH_ALEN;
754 memcpy(net_dev->perm_addr, ack_buf.ack_pl, ETH_ALEN);
755 memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
756 error_read_mac:
757 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
758 return result;
763 * Initialize a non signed boot
765 * This implies sending some magic values to the device's memory. Note
766 * we convert the values to little endian in the same array
767 * declaration.
769 static
770 int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
772 unsigned i = 0;
773 int ret = 0;
774 struct device *dev = i2400m_dev(i2400m);
775 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
776 if (i2400m->bus_bm_pokes_table) {
777 while (i2400m->bus_bm_pokes_table[i].address) {
778 ret = i2400m_download_chunk(
779 i2400m,
780 &i2400m->bus_bm_pokes_table[i].data,
781 sizeof(i2400m->bus_bm_pokes_table[i].data),
782 i2400m->bus_bm_pokes_table[i].address, 1, 1);
783 if (ret < 0)
784 break;
785 i++;
788 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
789 return ret;
794 * Initialize the signed boot process
796 * @i2400m: device descriptor
798 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
799 * memory (it has gone through basic validation).
801 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
802 * rebooted.
804 * This writes the firmware BCF header to the device using the
805 * HASH_PAYLOAD_ONLY command.
807 static
808 int i2400m_dnload_init_signed(struct i2400m *i2400m,
809 const struct i2400m_bcf_hdr *bcf_hdr)
811 int ret;
812 struct device *dev = i2400m_dev(i2400m);
813 struct {
814 struct i2400m_bootrom_header cmd;
815 struct i2400m_bcf_hdr cmd_pl;
816 } __attribute__((packed)) *cmd_buf;
817 struct i2400m_bootrom_header ack;
819 d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
820 cmd_buf = i2400m->bm_cmd_buf;
821 cmd_buf->cmd.command =
822 i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
823 cmd_buf->cmd.target_addr = 0;
824 cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
825 memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
826 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
827 &ack, sizeof(ack), 0);
828 if (ret >= 0)
829 ret = 0;
830 d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
831 return ret;
836 * Initialize the firmware download at the device size
838 * Multiplex to the one that matters based on the device's mode
839 * (signed or non-signed).
841 static
842 int i2400m_dnload_init(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf)
844 int result;
845 struct device *dev = i2400m_dev(i2400m);
846 u32 module_id = le32_to_cpu(bcf->module_id);
848 if (i2400m->sboot == 0
849 && (module_id & I2400M_BCF_MOD_ID_POKES) == 0) {
850 /* non-signed boot process without pokes */
851 result = i2400m_dnload_init_nonsigned(i2400m);
852 if (result == -ERESTARTSYS)
853 return result;
854 if (result < 0)
855 dev_err(dev, "fw %s: non-signed download "
856 "initialization failed: %d\n",
857 i2400m->fw_name, result);
858 } else if (i2400m->sboot == 0
859 && (module_id & I2400M_BCF_MOD_ID_POKES)) {
860 /* non-signed boot process with pokes, nothing to do */
861 result = 0;
862 } else { /* signed boot process */
863 result = i2400m_dnload_init_signed(i2400m, bcf);
864 if (result == -ERESTARTSYS)
865 return result;
866 if (result < 0)
867 dev_err(dev, "fw %s: signed boot download "
868 "initialization failed: %d\n",
869 i2400m->fw_name, result);
871 return result;
876 * Run quick consistency tests on the firmware file
878 * Check for the firmware being made for the i2400m device,
879 * etc...These checks are mostly informative, as the device will make
880 * them too; but the driver's response is more informative on what
881 * went wrong.
883 static
884 int i2400m_fw_check(struct i2400m *i2400m,
885 const struct i2400m_bcf_hdr *bcf,
886 size_t bcf_size)
888 int result;
889 struct device *dev = i2400m_dev(i2400m);
890 unsigned module_type, header_len, major_version, minor_version,
891 module_id, module_vendor, date, size;
893 /* Check hard errors */
894 result = -EINVAL;
895 if (bcf_size < sizeof(*bcf)) { /* big enough header? */
896 dev_err(dev, "firmware %s too short: "
897 "%zu B vs %zu (at least) expected\n",
898 i2400m->fw_name, bcf_size, sizeof(*bcf));
899 goto error;
902 module_type = bcf->module_type;
903 header_len = sizeof(u32) * le32_to_cpu(bcf->header_len);
904 major_version = le32_to_cpu(bcf->header_version) & 0xffff0000 >> 16;
905 minor_version = le32_to_cpu(bcf->header_version) & 0x0000ffff;
906 module_id = le32_to_cpu(bcf->module_id);
907 module_vendor = le32_to_cpu(bcf->module_vendor);
908 date = le32_to_cpu(bcf->date);
909 size = sizeof(u32) * le32_to_cpu(bcf->size);
911 if (bcf_size != size) { /* annoyingly paranoid */
912 dev_err(dev, "firmware %s: bad size, got "
913 "%zu B vs %u expected\n",
914 i2400m->fw_name, bcf_size, size);
915 goto error;
918 d_printf(2, dev, "type 0x%x id 0x%x vendor 0x%x; header v%u.%u (%zu B) "
919 "date %08x (%zu B)\n",
920 module_type, module_id, module_vendor,
921 major_version, minor_version, (size_t) header_len,
922 date, (size_t) size);
924 if (module_type != 6) { /* built for the right hardware? */
925 dev_err(dev, "bad fw %s: unexpected module type 0x%x; "
926 "aborting\n", i2400m->fw_name, module_type);
927 goto error;
930 /* Check soft-er errors */
931 result = 0;
932 if (module_vendor != 0x8086)
933 dev_err(dev, "bad fw %s? unexpected vendor 0x%04x\n",
934 i2400m->fw_name, module_vendor);
935 if (date < 0x20080300)
936 dev_err(dev, "bad fw %s? build date too old %08x\n",
937 i2400m->fw_name, date);
938 error:
939 return result;
944 * Download the firmware to the device
946 * @i2400m: device descriptor
947 * @bcf: pointer to loaded (and minimally verified for consistency)
948 * firmware
949 * @bcf_size: size of the @bcf buffer (header plus payloads)
951 * The process for doing this is described in this file's header.
953 * Note we only reinitialize boot-mode if the flags say so. Some hw
954 * iterations need it, some don't. In any case, if we loop, we always
955 * need to reinitialize the boot room, hence the flags modification.
957 static
958 int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
959 size_t bcf_size, enum i2400m_bri flags)
961 int ret = 0;
962 struct device *dev = i2400m_dev(i2400m);
963 int count = i2400m->bus_bm_retries;
965 d_fnstart(5, dev, "(i2400m %p bcf %p size %zu)\n",
966 i2400m, bcf, bcf_size);
967 i2400m->boot_mode = 1;
968 wmb(); /* Make sure other readers see it */
969 hw_reboot:
970 if (count-- == 0) {
971 ret = -ERESTARTSYS;
972 dev_err(dev, "device rebooted too many times, aborting\n");
973 goto error_too_many_reboots;
975 if (flags & I2400M_BRI_MAC_REINIT) {
976 ret = i2400m_bootrom_init(i2400m, flags);
977 if (ret < 0) {
978 dev_err(dev, "bootrom init failed: %d\n", ret);
979 goto error_bootrom_init;
982 flags |= I2400M_BRI_MAC_REINIT;
985 * Initialize the download, push the bytes to the device and
986 * then jump to the new firmware. Note @ret is passed with the
987 * offset of the jump instruction to _dnload_finalize()
989 ret = i2400m_dnload_init(i2400m, bcf); /* Init device's dnload */
990 if (ret == -ERESTARTSYS)
991 goto error_dev_rebooted;
992 if (ret < 0)
993 goto error_dnload_init;
995 ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
996 if (ret == -ERESTARTSYS)
997 goto error_dev_rebooted;
998 if (ret < 0) {
999 dev_err(dev, "fw %s: download failed: %d\n",
1000 i2400m->fw_name, ret);
1001 goto error_dnload_bcf;
1004 ret = i2400m_dnload_finalize(i2400m, bcf, ret);
1005 if (ret == -ERESTARTSYS)
1006 goto error_dev_rebooted;
1007 if (ret < 0) {
1008 dev_err(dev, "fw %s: "
1009 "download finalization failed: %d\n",
1010 i2400m->fw_name, ret);
1011 goto error_dnload_finalize;
1014 d_printf(2, dev, "fw %s successfully uploaded\n",
1015 i2400m->fw_name);
1016 i2400m->boot_mode = 0;
1017 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
1018 error_dnload_finalize:
1019 error_dnload_bcf:
1020 error_dnload_init:
1021 error_bootrom_init:
1022 error_too_many_reboots:
1023 d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1024 i2400m, bcf, bcf_size, ret);
1025 return ret;
1027 error_dev_rebooted:
1028 dev_err(dev, "device rebooted, %d tries left\n", count);
1029 /* we got the notification already, no need to wait for it again */
1030 flags |= I2400M_BRI_SOFT;
1031 goto hw_reboot;
1036 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1038 * @i2400m: device descriptor
1040 * Returns: >= 0 if ok, < 0 errno code on error.
1042 * This sets up the firmware upload environment, loads the firmware
1043 * file from disk, verifies and then calls the firmware upload process
1044 * per se.
1046 * Can be called either from probe, or after a warm reset. Can not be
1047 * called from within an interrupt. All the flow in this code is
1048 * single-threade; all I/Os are synchronous.
1050 int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1052 int ret = 0, itr = 0;
1053 struct device *dev = i2400m_dev(i2400m);
1054 const struct firmware *fw;
1055 const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1056 const char *fw_name;
1058 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1060 /* Load firmware files to memory. */
1061 itr = 0;
1062 while(1) {
1063 fw_name = i2400m->bus_fw_names[itr];
1064 if (fw_name == NULL) {
1065 dev_err(dev, "Could not find a usable firmware image\n");
1066 ret = -ENOENT;
1067 goto error_no_fw;
1069 ret = request_firmware(&fw, fw_name, dev);
1070 if (ret == 0)
1071 break; /* got it */
1072 if (ret < 0)
1073 dev_err(dev, "fw %s: cannot load file: %d\n",
1074 fw_name, ret);
1075 itr++;
1078 bcf = (void *) fw->data;
1079 i2400m->fw_name = fw_name;
1080 ret = i2400m_fw_check(i2400m, bcf, fw->size);
1081 if (ret < 0)
1082 goto error_fw_bad;
1083 ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1084 error_fw_bad:
1085 release_firmware(fw);
1086 error_no_fw:
1087 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1088 return ret;
1090 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);