JBD: round commit timer up to avoid uncommitted transaction
[linux/fpc-iii.git] / drivers / pci / dmar.c
blobab99783dccec9570c7aecd9e8141490a97cadc14
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24 * tables.
26 * These routines are used by both DMA-remapping and Interrupt-remapping
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
38 #undef PREFIX
39 #define PREFIX "DMAR:"
41 /* No locks are needed as DMA remapping hardware unit
42 * list is constructed at boot time and hotplug of
43 * these units are not supported by the architecture.
45 LIST_HEAD(dmar_drhd_units);
47 static struct acpi_table_header * __initdata dmar_tbl;
48 static acpi_size dmar_tbl_size;
50 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
53 * add INCLUDE_ALL at the tail, so scan the list will find it at
54 * the very end.
56 if (drhd->include_all)
57 list_add_tail(&drhd->list, &dmar_drhd_units);
58 else
59 list_add(&drhd->list, &dmar_drhd_units);
62 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
63 struct pci_dev **dev, u16 segment)
65 struct pci_bus *bus;
66 struct pci_dev *pdev = NULL;
67 struct acpi_dmar_pci_path *path;
68 int count;
70 bus = pci_find_bus(segment, scope->bus);
71 path = (struct acpi_dmar_pci_path *)(scope + 1);
72 count = (scope->length - sizeof(struct acpi_dmar_device_scope))
73 / sizeof(struct acpi_dmar_pci_path);
75 while (count) {
76 if (pdev)
77 pci_dev_put(pdev);
79 * Some BIOSes list non-exist devices in DMAR table, just
80 * ignore it
82 if (!bus) {
83 printk(KERN_WARNING
84 PREFIX "Device scope bus [%d] not found\n",
85 scope->bus);
86 break;
88 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
89 if (!pdev) {
90 printk(KERN_WARNING PREFIX
91 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
92 segment, bus->number, path->dev, path->fn);
93 break;
95 path ++;
96 count --;
97 bus = pdev->subordinate;
99 if (!pdev) {
100 printk(KERN_WARNING PREFIX
101 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
102 segment, scope->bus, path->dev, path->fn);
103 *dev = NULL;
104 return 0;
106 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
107 pdev->subordinate) || (scope->entry_type == \
108 ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
109 pci_dev_put(pdev);
110 printk(KERN_WARNING PREFIX
111 "Device scope type does not match for %s\n",
112 pci_name(pdev));
113 return -EINVAL;
115 *dev = pdev;
116 return 0;
119 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
120 struct pci_dev ***devices, u16 segment)
122 struct acpi_dmar_device_scope *scope;
123 void * tmp = start;
124 int index;
125 int ret;
127 *cnt = 0;
128 while (start < end) {
129 scope = start;
130 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
131 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
132 (*cnt)++;
133 else
134 printk(KERN_WARNING PREFIX
135 "Unsupported device scope\n");
136 start += scope->length;
138 if (*cnt == 0)
139 return 0;
141 *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
142 if (!*devices)
143 return -ENOMEM;
145 start = tmp;
146 index = 0;
147 while (start < end) {
148 scope = start;
149 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
150 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
151 ret = dmar_parse_one_dev_scope(scope,
152 &(*devices)[index], segment);
153 if (ret) {
154 kfree(*devices);
155 return ret;
157 index ++;
159 start += scope->length;
162 return 0;
166 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
167 * structure which uniquely represent one DMA remapping hardware unit
168 * present in the platform
170 static int __init
171 dmar_parse_one_drhd(struct acpi_dmar_header *header)
173 struct acpi_dmar_hardware_unit *drhd;
174 struct dmar_drhd_unit *dmaru;
175 int ret = 0;
177 drhd = (struct acpi_dmar_hardware_unit *)header;
178 if (!drhd->address) {
179 /* Promote an attitude of violence to a BIOS engineer today */
180 WARN(1, "Your BIOS is broken; DMAR reported at address zero!\n"
181 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
182 dmi_get_system_info(DMI_BIOS_VENDOR),
183 dmi_get_system_info(DMI_BIOS_VERSION),
184 dmi_get_system_info(DMI_PRODUCT_VERSION));
185 return -ENODEV;
187 dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
188 if (!dmaru)
189 return -ENOMEM;
191 dmaru->hdr = header;
192 dmaru->reg_base_addr = drhd->address;
193 dmaru->segment = drhd->segment;
194 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
196 ret = alloc_iommu(dmaru);
197 if (ret) {
198 kfree(dmaru);
199 return ret;
201 dmar_register_drhd_unit(dmaru);
202 return 0;
205 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
207 struct acpi_dmar_hardware_unit *drhd;
208 int ret = 0;
210 drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
212 if (dmaru->include_all)
213 return 0;
215 ret = dmar_parse_dev_scope((void *)(drhd + 1),
216 ((void *)drhd) + drhd->header.length,
217 &dmaru->devices_cnt, &dmaru->devices,
218 drhd->segment);
219 if (ret) {
220 list_del(&dmaru->list);
221 kfree(dmaru);
223 return ret;
226 #ifdef CONFIG_DMAR
227 LIST_HEAD(dmar_rmrr_units);
229 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
231 list_add(&rmrr->list, &dmar_rmrr_units);
235 static int __init
236 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
238 struct acpi_dmar_reserved_memory *rmrr;
239 struct dmar_rmrr_unit *rmrru;
241 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
242 if (!rmrru)
243 return -ENOMEM;
245 rmrru->hdr = header;
246 rmrr = (struct acpi_dmar_reserved_memory *)header;
247 rmrru->base_address = rmrr->base_address;
248 rmrru->end_address = rmrr->end_address;
250 dmar_register_rmrr_unit(rmrru);
251 return 0;
254 static int __init
255 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
257 struct acpi_dmar_reserved_memory *rmrr;
258 int ret;
260 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
261 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
262 ((void *)rmrr) + rmrr->header.length,
263 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
265 if (ret || (rmrru->devices_cnt == 0)) {
266 list_del(&rmrru->list);
267 kfree(rmrru);
269 return ret;
272 static LIST_HEAD(dmar_atsr_units);
274 static int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
276 struct acpi_dmar_atsr *atsr;
277 struct dmar_atsr_unit *atsru;
279 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
280 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
281 if (!atsru)
282 return -ENOMEM;
284 atsru->hdr = hdr;
285 atsru->include_all = atsr->flags & 0x1;
287 list_add(&atsru->list, &dmar_atsr_units);
289 return 0;
292 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
294 int rc;
295 struct acpi_dmar_atsr *atsr;
297 if (atsru->include_all)
298 return 0;
300 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
301 rc = dmar_parse_dev_scope((void *)(atsr + 1),
302 (void *)atsr + atsr->header.length,
303 &atsru->devices_cnt, &atsru->devices,
304 atsr->segment);
305 if (rc || !atsru->devices_cnt) {
306 list_del(&atsru->list);
307 kfree(atsru);
310 return rc;
313 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
315 int i;
316 struct pci_bus *bus;
317 struct acpi_dmar_atsr *atsr;
318 struct dmar_atsr_unit *atsru;
320 list_for_each_entry(atsru, &dmar_atsr_units, list) {
321 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
322 if (atsr->segment == pci_domain_nr(dev->bus))
323 goto found;
326 return 0;
328 found:
329 for (bus = dev->bus; bus; bus = bus->parent) {
330 struct pci_dev *bridge = bus->self;
332 if (!bridge || !bridge->is_pcie ||
333 bridge->pcie_type == PCI_EXP_TYPE_PCI_BRIDGE)
334 return 0;
336 if (bridge->pcie_type == PCI_EXP_TYPE_ROOT_PORT) {
337 for (i = 0; i < atsru->devices_cnt; i++)
338 if (atsru->devices[i] == bridge)
339 return 1;
340 break;
344 if (atsru->include_all)
345 return 1;
347 return 0;
349 #endif
351 static void __init
352 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
354 struct acpi_dmar_hardware_unit *drhd;
355 struct acpi_dmar_reserved_memory *rmrr;
356 struct acpi_dmar_atsr *atsr;
358 switch (header->type) {
359 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
360 drhd = container_of(header, struct acpi_dmar_hardware_unit,
361 header);
362 printk (KERN_INFO PREFIX
363 "DRHD base: %#016Lx flags: %#x\n",
364 (unsigned long long)drhd->address, drhd->flags);
365 break;
366 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
367 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
368 header);
369 printk (KERN_INFO PREFIX
370 "RMRR base: %#016Lx end: %#016Lx\n",
371 (unsigned long long)rmrr->base_address,
372 (unsigned long long)rmrr->end_address);
373 break;
374 case ACPI_DMAR_TYPE_ATSR:
375 atsr = container_of(header, struct acpi_dmar_atsr, header);
376 printk(KERN_INFO PREFIX "ATSR flags: %#x\n", atsr->flags);
377 break;
382 * dmar_table_detect - checks to see if the platform supports DMAR devices
384 static int __init dmar_table_detect(void)
386 acpi_status status = AE_OK;
388 /* if we could find DMAR table, then there are DMAR devices */
389 status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
390 (struct acpi_table_header **)&dmar_tbl,
391 &dmar_tbl_size);
393 if (ACPI_SUCCESS(status) && !dmar_tbl) {
394 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
395 status = AE_NOT_FOUND;
398 return (ACPI_SUCCESS(status) ? 1 : 0);
402 * parse_dmar_table - parses the DMA reporting table
404 static int __init
405 parse_dmar_table(void)
407 struct acpi_table_dmar *dmar;
408 struct acpi_dmar_header *entry_header;
409 int ret = 0;
412 * Do it again, earlier dmar_tbl mapping could be mapped with
413 * fixed map.
415 dmar_table_detect();
418 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
419 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
421 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
423 dmar = (struct acpi_table_dmar *)dmar_tbl;
424 if (!dmar)
425 return -ENODEV;
427 if (dmar->width < PAGE_SHIFT - 1) {
428 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
429 return -EINVAL;
432 printk (KERN_INFO PREFIX "Host address width %d\n",
433 dmar->width + 1);
435 entry_header = (struct acpi_dmar_header *)(dmar + 1);
436 while (((unsigned long)entry_header) <
437 (((unsigned long)dmar) + dmar_tbl->length)) {
438 /* Avoid looping forever on bad ACPI tables */
439 if (entry_header->length == 0) {
440 printk(KERN_WARNING PREFIX
441 "Invalid 0-length structure\n");
442 ret = -EINVAL;
443 break;
446 dmar_table_print_dmar_entry(entry_header);
448 switch (entry_header->type) {
449 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
450 ret = dmar_parse_one_drhd(entry_header);
451 break;
452 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
453 #ifdef CONFIG_DMAR
454 ret = dmar_parse_one_rmrr(entry_header);
455 #endif
456 break;
457 case ACPI_DMAR_TYPE_ATSR:
458 #ifdef CONFIG_DMAR
459 ret = dmar_parse_one_atsr(entry_header);
460 #endif
461 break;
462 default:
463 printk(KERN_WARNING PREFIX
464 "Unknown DMAR structure type\n");
465 ret = 0; /* for forward compatibility */
466 break;
468 if (ret)
469 break;
471 entry_header = ((void *)entry_header + entry_header->length);
473 return ret;
476 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
477 struct pci_dev *dev)
479 int index;
481 while (dev) {
482 for (index = 0; index < cnt; index++)
483 if (dev == devices[index])
484 return 1;
486 /* Check our parent */
487 dev = dev->bus->self;
490 return 0;
493 struct dmar_drhd_unit *
494 dmar_find_matched_drhd_unit(struct pci_dev *dev)
496 struct dmar_drhd_unit *dmaru = NULL;
497 struct acpi_dmar_hardware_unit *drhd;
499 list_for_each_entry(dmaru, &dmar_drhd_units, list) {
500 drhd = container_of(dmaru->hdr,
501 struct acpi_dmar_hardware_unit,
502 header);
504 if (dmaru->include_all &&
505 drhd->segment == pci_domain_nr(dev->bus))
506 return dmaru;
508 if (dmar_pci_device_match(dmaru->devices,
509 dmaru->devices_cnt, dev))
510 return dmaru;
513 return NULL;
516 int __init dmar_dev_scope_init(void)
518 struct dmar_drhd_unit *drhd, *drhd_n;
519 int ret = -ENODEV;
521 list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
522 ret = dmar_parse_dev(drhd);
523 if (ret)
524 return ret;
527 #ifdef CONFIG_DMAR
529 struct dmar_rmrr_unit *rmrr, *rmrr_n;
530 struct dmar_atsr_unit *atsr, *atsr_n;
532 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
533 ret = rmrr_parse_dev(rmrr);
534 if (ret)
535 return ret;
538 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
539 ret = atsr_parse_dev(atsr);
540 if (ret)
541 return ret;
544 #endif
546 return ret;
550 int __init dmar_table_init(void)
552 static int dmar_table_initialized;
553 int ret;
555 if (dmar_table_initialized)
556 return 0;
558 dmar_table_initialized = 1;
560 ret = parse_dmar_table();
561 if (ret) {
562 if (ret != -ENODEV)
563 printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
564 return ret;
567 if (list_empty(&dmar_drhd_units)) {
568 printk(KERN_INFO PREFIX "No DMAR devices found\n");
569 return -ENODEV;
572 #ifdef CONFIG_DMAR
573 if (list_empty(&dmar_rmrr_units))
574 printk(KERN_INFO PREFIX "No RMRR found\n");
576 if (list_empty(&dmar_atsr_units))
577 printk(KERN_INFO PREFIX "No ATSR found\n");
578 #endif
580 #ifdef CONFIG_INTR_REMAP
581 parse_ioapics_under_ir();
582 #endif
583 return 0;
586 void __init detect_intel_iommu(void)
588 int ret;
590 ret = dmar_table_detect();
593 #ifdef CONFIG_INTR_REMAP
594 struct acpi_table_dmar *dmar;
596 * for now we will disable dma-remapping when interrupt
597 * remapping is enabled.
598 * When support for queued invalidation for IOTLB invalidation
599 * is added, we will not need this any more.
601 dmar = (struct acpi_table_dmar *) dmar_tbl;
602 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
603 printk(KERN_INFO
604 "Queued invalidation will be enabled to support "
605 "x2apic and Intr-remapping.\n");
606 #endif
607 #ifdef CONFIG_DMAR
608 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
609 !dmar_disabled)
610 iommu_detected = 1;
611 #endif
613 early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
614 dmar_tbl = NULL;
618 int alloc_iommu(struct dmar_drhd_unit *drhd)
620 struct intel_iommu *iommu;
621 int map_size;
622 u32 ver;
623 static int iommu_allocated = 0;
624 int agaw = 0;
625 int msagaw = 0;
627 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
628 if (!iommu)
629 return -ENOMEM;
631 iommu->seq_id = iommu_allocated++;
632 sprintf (iommu->name, "dmar%d", iommu->seq_id);
634 iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
635 if (!iommu->reg) {
636 printk(KERN_ERR "IOMMU: can't map the region\n");
637 goto error;
639 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
640 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
642 #ifdef CONFIG_DMAR
643 agaw = iommu_calculate_agaw(iommu);
644 if (agaw < 0) {
645 printk(KERN_ERR
646 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
647 iommu->seq_id);
648 goto error;
650 msagaw = iommu_calculate_max_sagaw(iommu);
651 if (msagaw < 0) {
652 printk(KERN_ERR
653 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
654 iommu->seq_id);
655 goto error;
657 #endif
658 iommu->agaw = agaw;
659 iommu->msagaw = msagaw;
661 /* the registers might be more than one page */
662 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
663 cap_max_fault_reg_offset(iommu->cap));
664 map_size = VTD_PAGE_ALIGN(map_size);
665 if (map_size > VTD_PAGE_SIZE) {
666 iounmap(iommu->reg);
667 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
668 if (!iommu->reg) {
669 printk(KERN_ERR "IOMMU: can't map the region\n");
670 goto error;
674 ver = readl(iommu->reg + DMAR_VER_REG);
675 pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
676 (unsigned long long)drhd->reg_base_addr,
677 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
678 (unsigned long long)iommu->cap,
679 (unsigned long long)iommu->ecap);
681 spin_lock_init(&iommu->register_lock);
683 drhd->iommu = iommu;
684 return 0;
685 error:
686 kfree(iommu);
687 return -1;
690 void free_iommu(struct intel_iommu *iommu)
692 if (!iommu)
693 return;
695 #ifdef CONFIG_DMAR
696 free_dmar_iommu(iommu);
697 #endif
699 if (iommu->reg)
700 iounmap(iommu->reg);
701 kfree(iommu);
705 * Reclaim all the submitted descriptors which have completed its work.
707 static inline void reclaim_free_desc(struct q_inval *qi)
709 while (qi->desc_status[qi->free_tail] == QI_DONE ||
710 qi->desc_status[qi->free_tail] == QI_ABORT) {
711 qi->desc_status[qi->free_tail] = QI_FREE;
712 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
713 qi->free_cnt++;
717 static int qi_check_fault(struct intel_iommu *iommu, int index)
719 u32 fault;
720 int head, tail;
721 struct q_inval *qi = iommu->qi;
722 int wait_index = (index + 1) % QI_LENGTH;
724 if (qi->desc_status[wait_index] == QI_ABORT)
725 return -EAGAIN;
727 fault = readl(iommu->reg + DMAR_FSTS_REG);
730 * If IQE happens, the head points to the descriptor associated
731 * with the error. No new descriptors are fetched until the IQE
732 * is cleared.
734 if (fault & DMA_FSTS_IQE) {
735 head = readl(iommu->reg + DMAR_IQH_REG);
736 if ((head >> DMAR_IQ_SHIFT) == index) {
737 printk(KERN_ERR "VT-d detected invalid descriptor: "
738 "low=%llx, high=%llx\n",
739 (unsigned long long)qi->desc[index].low,
740 (unsigned long long)qi->desc[index].high);
741 memcpy(&qi->desc[index], &qi->desc[wait_index],
742 sizeof(struct qi_desc));
743 __iommu_flush_cache(iommu, &qi->desc[index],
744 sizeof(struct qi_desc));
745 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
746 return -EINVAL;
751 * If ITE happens, all pending wait_desc commands are aborted.
752 * No new descriptors are fetched until the ITE is cleared.
754 if (fault & DMA_FSTS_ITE) {
755 head = readl(iommu->reg + DMAR_IQH_REG);
756 head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
757 head |= 1;
758 tail = readl(iommu->reg + DMAR_IQT_REG);
759 tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
761 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
763 do {
764 if (qi->desc_status[head] == QI_IN_USE)
765 qi->desc_status[head] = QI_ABORT;
766 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
767 } while (head != tail);
769 if (qi->desc_status[wait_index] == QI_ABORT)
770 return -EAGAIN;
773 if (fault & DMA_FSTS_ICE)
774 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
776 return 0;
780 * Submit the queued invalidation descriptor to the remapping
781 * hardware unit and wait for its completion.
783 int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
785 int rc;
786 struct q_inval *qi = iommu->qi;
787 struct qi_desc *hw, wait_desc;
788 int wait_index, index;
789 unsigned long flags;
791 if (!qi)
792 return 0;
794 hw = qi->desc;
796 restart:
797 rc = 0;
799 spin_lock_irqsave(&qi->q_lock, flags);
800 while (qi->free_cnt < 3) {
801 spin_unlock_irqrestore(&qi->q_lock, flags);
802 cpu_relax();
803 spin_lock_irqsave(&qi->q_lock, flags);
806 index = qi->free_head;
807 wait_index = (index + 1) % QI_LENGTH;
809 qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
811 hw[index] = *desc;
813 wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
814 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
815 wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
817 hw[wait_index] = wait_desc;
819 __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
820 __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
822 qi->free_head = (qi->free_head + 2) % QI_LENGTH;
823 qi->free_cnt -= 2;
826 * update the HW tail register indicating the presence of
827 * new descriptors.
829 writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
831 while (qi->desc_status[wait_index] != QI_DONE) {
833 * We will leave the interrupts disabled, to prevent interrupt
834 * context to queue another cmd while a cmd is already submitted
835 * and waiting for completion on this cpu. This is to avoid
836 * a deadlock where the interrupt context can wait indefinitely
837 * for free slots in the queue.
839 rc = qi_check_fault(iommu, index);
840 if (rc)
841 break;
843 spin_unlock(&qi->q_lock);
844 cpu_relax();
845 spin_lock(&qi->q_lock);
848 qi->desc_status[index] = QI_DONE;
850 reclaim_free_desc(qi);
851 spin_unlock_irqrestore(&qi->q_lock, flags);
853 if (rc == -EAGAIN)
854 goto restart;
856 return rc;
860 * Flush the global interrupt entry cache.
862 void qi_global_iec(struct intel_iommu *iommu)
864 struct qi_desc desc;
866 desc.low = QI_IEC_TYPE;
867 desc.high = 0;
869 /* should never fail */
870 qi_submit_sync(&desc, iommu);
873 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
874 u64 type)
876 struct qi_desc desc;
878 desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
879 | QI_CC_GRAN(type) | QI_CC_TYPE;
880 desc.high = 0;
882 qi_submit_sync(&desc, iommu);
885 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
886 unsigned int size_order, u64 type)
888 u8 dw = 0, dr = 0;
890 struct qi_desc desc;
891 int ih = 0;
893 if (cap_write_drain(iommu->cap))
894 dw = 1;
896 if (cap_read_drain(iommu->cap))
897 dr = 1;
899 desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
900 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
901 desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
902 | QI_IOTLB_AM(size_order);
904 qi_submit_sync(&desc, iommu);
907 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
908 u64 addr, unsigned mask)
910 struct qi_desc desc;
912 if (mask) {
913 BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
914 addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
915 desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
916 } else
917 desc.high = QI_DEV_IOTLB_ADDR(addr);
919 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
920 qdep = 0;
922 desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
923 QI_DIOTLB_TYPE;
925 qi_submit_sync(&desc, iommu);
929 * Disable Queued Invalidation interface.
931 void dmar_disable_qi(struct intel_iommu *iommu)
933 unsigned long flags;
934 u32 sts;
935 cycles_t start_time = get_cycles();
937 if (!ecap_qis(iommu->ecap))
938 return;
940 spin_lock_irqsave(&iommu->register_lock, flags);
942 sts = dmar_readq(iommu->reg + DMAR_GSTS_REG);
943 if (!(sts & DMA_GSTS_QIES))
944 goto end;
947 * Give a chance to HW to complete the pending invalidation requests.
949 while ((readl(iommu->reg + DMAR_IQT_REG) !=
950 readl(iommu->reg + DMAR_IQH_REG)) &&
951 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
952 cpu_relax();
954 iommu->gcmd &= ~DMA_GCMD_QIE;
955 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
957 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
958 !(sts & DMA_GSTS_QIES), sts);
959 end:
960 spin_unlock_irqrestore(&iommu->register_lock, flags);
964 * Enable queued invalidation.
966 static void __dmar_enable_qi(struct intel_iommu *iommu)
968 u32 sts;
969 unsigned long flags;
970 struct q_inval *qi = iommu->qi;
972 qi->free_head = qi->free_tail = 0;
973 qi->free_cnt = QI_LENGTH;
975 spin_lock_irqsave(&iommu->register_lock, flags);
977 /* write zero to the tail reg */
978 writel(0, iommu->reg + DMAR_IQT_REG);
980 dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
982 iommu->gcmd |= DMA_GCMD_QIE;
983 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
985 /* Make sure hardware complete it */
986 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
988 spin_unlock_irqrestore(&iommu->register_lock, flags);
992 * Enable Queued Invalidation interface. This is a must to support
993 * interrupt-remapping. Also used by DMA-remapping, which replaces
994 * register based IOTLB invalidation.
996 int dmar_enable_qi(struct intel_iommu *iommu)
998 struct q_inval *qi;
1000 if (!ecap_qis(iommu->ecap))
1001 return -ENOENT;
1004 * queued invalidation is already setup and enabled.
1006 if (iommu->qi)
1007 return 0;
1009 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1010 if (!iommu->qi)
1011 return -ENOMEM;
1013 qi = iommu->qi;
1015 qi->desc = (void *)(get_zeroed_page(GFP_ATOMIC));
1016 if (!qi->desc) {
1017 kfree(qi);
1018 iommu->qi = 0;
1019 return -ENOMEM;
1022 qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1023 if (!qi->desc_status) {
1024 free_page((unsigned long) qi->desc);
1025 kfree(qi);
1026 iommu->qi = 0;
1027 return -ENOMEM;
1030 qi->free_head = qi->free_tail = 0;
1031 qi->free_cnt = QI_LENGTH;
1033 spin_lock_init(&qi->q_lock);
1035 __dmar_enable_qi(iommu);
1037 return 0;
1040 /* iommu interrupt handling. Most stuff are MSI-like. */
1042 enum faulttype {
1043 DMA_REMAP,
1044 INTR_REMAP,
1045 UNKNOWN,
1048 static const char *dma_remap_fault_reasons[] =
1050 "Software",
1051 "Present bit in root entry is clear",
1052 "Present bit in context entry is clear",
1053 "Invalid context entry",
1054 "Access beyond MGAW",
1055 "PTE Write access is not set",
1056 "PTE Read access is not set",
1057 "Next page table ptr is invalid",
1058 "Root table address invalid",
1059 "Context table ptr is invalid",
1060 "non-zero reserved fields in RTP",
1061 "non-zero reserved fields in CTP",
1062 "non-zero reserved fields in PTE",
1065 static const char *intr_remap_fault_reasons[] =
1067 "Detected reserved fields in the decoded interrupt-remapped request",
1068 "Interrupt index exceeded the interrupt-remapping table size",
1069 "Present field in the IRTE entry is clear",
1070 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1071 "Detected reserved fields in the IRTE entry",
1072 "Blocked a compatibility format interrupt request",
1073 "Blocked an interrupt request due to source-id verification failure",
1076 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1078 const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1080 if (fault_reason >= 0x20 && (fault_reason <= 0x20 +
1081 ARRAY_SIZE(intr_remap_fault_reasons))) {
1082 *fault_type = INTR_REMAP;
1083 return intr_remap_fault_reasons[fault_reason - 0x20];
1084 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1085 *fault_type = DMA_REMAP;
1086 return dma_remap_fault_reasons[fault_reason];
1087 } else {
1088 *fault_type = UNKNOWN;
1089 return "Unknown";
1093 void dmar_msi_unmask(unsigned int irq)
1095 struct intel_iommu *iommu = get_irq_data(irq);
1096 unsigned long flag;
1098 /* unmask it */
1099 spin_lock_irqsave(&iommu->register_lock, flag);
1100 writel(0, iommu->reg + DMAR_FECTL_REG);
1101 /* Read a reg to force flush the post write */
1102 readl(iommu->reg + DMAR_FECTL_REG);
1103 spin_unlock_irqrestore(&iommu->register_lock, flag);
1106 void dmar_msi_mask(unsigned int irq)
1108 unsigned long flag;
1109 struct intel_iommu *iommu = get_irq_data(irq);
1111 /* mask it */
1112 spin_lock_irqsave(&iommu->register_lock, flag);
1113 writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
1114 /* Read a reg to force flush the post write */
1115 readl(iommu->reg + DMAR_FECTL_REG);
1116 spin_unlock_irqrestore(&iommu->register_lock, flag);
1119 void dmar_msi_write(int irq, struct msi_msg *msg)
1121 struct intel_iommu *iommu = get_irq_data(irq);
1122 unsigned long flag;
1124 spin_lock_irqsave(&iommu->register_lock, flag);
1125 writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
1126 writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
1127 writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1128 spin_unlock_irqrestore(&iommu->register_lock, flag);
1131 void dmar_msi_read(int irq, struct msi_msg *msg)
1133 struct intel_iommu *iommu = get_irq_data(irq);
1134 unsigned long flag;
1136 spin_lock_irqsave(&iommu->register_lock, flag);
1137 msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
1138 msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
1139 msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1140 spin_unlock_irqrestore(&iommu->register_lock, flag);
1143 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1144 u8 fault_reason, u16 source_id, unsigned long long addr)
1146 const char *reason;
1147 int fault_type;
1149 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1151 if (fault_type == INTR_REMAP)
1152 printk(KERN_ERR "INTR-REMAP: Request device [[%02x:%02x.%d] "
1153 "fault index %llx\n"
1154 "INTR-REMAP:[fault reason %02d] %s\n",
1155 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1156 PCI_FUNC(source_id & 0xFF), addr >> 48,
1157 fault_reason, reason);
1158 else
1159 printk(KERN_ERR
1160 "DMAR:[%s] Request device [%02x:%02x.%d] "
1161 "fault addr %llx \n"
1162 "DMAR:[fault reason %02d] %s\n",
1163 (type ? "DMA Read" : "DMA Write"),
1164 (source_id >> 8), PCI_SLOT(source_id & 0xFF),
1165 PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1166 return 0;
1169 #define PRIMARY_FAULT_REG_LEN (16)
1170 irqreturn_t dmar_fault(int irq, void *dev_id)
1172 struct intel_iommu *iommu = dev_id;
1173 int reg, fault_index;
1174 u32 fault_status;
1175 unsigned long flag;
1177 spin_lock_irqsave(&iommu->register_lock, flag);
1178 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1179 if (fault_status)
1180 printk(KERN_ERR "DRHD: handling fault status reg %x\n",
1181 fault_status);
1183 /* TBD: ignore advanced fault log currently */
1184 if (!(fault_status & DMA_FSTS_PPF))
1185 goto clear_rest;
1187 fault_index = dma_fsts_fault_record_index(fault_status);
1188 reg = cap_fault_reg_offset(iommu->cap);
1189 while (1) {
1190 u8 fault_reason;
1191 u16 source_id;
1192 u64 guest_addr;
1193 int type;
1194 u32 data;
1196 /* highest 32 bits */
1197 data = readl(iommu->reg + reg +
1198 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1199 if (!(data & DMA_FRCD_F))
1200 break;
1202 fault_reason = dma_frcd_fault_reason(data);
1203 type = dma_frcd_type(data);
1205 data = readl(iommu->reg + reg +
1206 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1207 source_id = dma_frcd_source_id(data);
1209 guest_addr = dmar_readq(iommu->reg + reg +
1210 fault_index * PRIMARY_FAULT_REG_LEN);
1211 guest_addr = dma_frcd_page_addr(guest_addr);
1212 /* clear the fault */
1213 writel(DMA_FRCD_F, iommu->reg + reg +
1214 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1216 spin_unlock_irqrestore(&iommu->register_lock, flag);
1218 dmar_fault_do_one(iommu, type, fault_reason,
1219 source_id, guest_addr);
1221 fault_index++;
1222 if (fault_index > cap_num_fault_regs(iommu->cap))
1223 fault_index = 0;
1224 spin_lock_irqsave(&iommu->register_lock, flag);
1226 clear_rest:
1227 /* clear all the other faults */
1228 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1229 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1231 spin_unlock_irqrestore(&iommu->register_lock, flag);
1232 return IRQ_HANDLED;
1235 int dmar_set_interrupt(struct intel_iommu *iommu)
1237 int irq, ret;
1240 * Check if the fault interrupt is already initialized.
1242 if (iommu->irq)
1243 return 0;
1245 irq = create_irq();
1246 if (!irq) {
1247 printk(KERN_ERR "IOMMU: no free vectors\n");
1248 return -EINVAL;
1251 set_irq_data(irq, iommu);
1252 iommu->irq = irq;
1254 ret = arch_setup_dmar_msi(irq);
1255 if (ret) {
1256 set_irq_data(irq, NULL);
1257 iommu->irq = 0;
1258 destroy_irq(irq);
1259 return ret;
1262 ret = request_irq(irq, dmar_fault, 0, iommu->name, iommu);
1263 if (ret)
1264 printk(KERN_ERR "IOMMU: can't request irq\n");
1265 return ret;
1268 int __init enable_drhd_fault_handling(void)
1270 struct dmar_drhd_unit *drhd;
1273 * Enable fault control interrupt.
1275 for_each_drhd_unit(drhd) {
1276 int ret;
1277 struct intel_iommu *iommu = drhd->iommu;
1278 ret = dmar_set_interrupt(iommu);
1280 if (ret) {
1281 printk(KERN_ERR "DRHD %Lx: failed to enable fault, "
1282 " interrupt, ret %d\n",
1283 (unsigned long long)drhd->reg_base_addr, ret);
1284 return -1;
1288 return 0;
1292 * Re-enable Queued Invalidation interface.
1294 int dmar_reenable_qi(struct intel_iommu *iommu)
1296 if (!ecap_qis(iommu->ecap))
1297 return -ENOENT;
1299 if (!iommu->qi)
1300 return -ENOENT;
1303 * First disable queued invalidation.
1305 dmar_disable_qi(iommu);
1307 * Then enable queued invalidation again. Since there is no pending
1308 * invalidation requests now, it's safe to re-enable queued
1309 * invalidation.
1311 __dmar_enable_qi(iommu);
1313 return 0;