2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <linux/tboot.h>
41 #include <asm/cacheflush.h>
42 #include <asm/iommu.h>
45 #define ROOT_SIZE VTD_PAGE_SIZE
46 #define CONTEXT_SIZE VTD_PAGE_SIZE
48 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
49 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
51 #define IOAPIC_RANGE_START (0xfee00000)
52 #define IOAPIC_RANGE_END (0xfeefffff)
53 #define IOVA_START_ADDR (0x1000)
55 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
57 #define MAX_AGAW_WIDTH 64
59 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
60 #define DOMAIN_MAX_PFN(gaw) ((((u64)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
62 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
63 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
64 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
67 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
68 are never going to work. */
69 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn
)
71 return dma_pfn
>> (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
74 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn
)
76 return mm_pfn
<< (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
78 static inline unsigned long page_to_dma_pfn(struct page
*pg
)
80 return mm_to_dma_pfn(page_to_pfn(pg
));
82 static inline unsigned long virt_to_dma_pfn(void *p
)
84 return page_to_dma_pfn(virt_to_page(p
));
87 /* global iommu list, set NULL for ignored DMAR units */
88 static struct intel_iommu
**g_iommus
;
90 static int rwbf_quirk
;
95 * 12-63: Context Ptr (12 - (haw-1))
102 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
103 static inline bool root_present(struct root_entry
*root
)
105 return (root
->val
& 1);
107 static inline void set_root_present(struct root_entry
*root
)
111 static inline void set_root_value(struct root_entry
*root
, unsigned long value
)
113 root
->val
|= value
& VTD_PAGE_MASK
;
116 static inline struct context_entry
*
117 get_context_addr_from_root(struct root_entry
*root
)
119 return (struct context_entry
*)
120 (root_present(root
)?phys_to_virt(
121 root
->val
& VTD_PAGE_MASK
) :
128 * 1: fault processing disable
129 * 2-3: translation type
130 * 12-63: address space root
136 struct context_entry
{
141 static inline bool context_present(struct context_entry
*context
)
143 return (context
->lo
& 1);
145 static inline void context_set_present(struct context_entry
*context
)
150 static inline void context_set_fault_enable(struct context_entry
*context
)
152 context
->lo
&= (((u64
)-1) << 2) | 1;
155 static inline void context_set_translation_type(struct context_entry
*context
,
158 context
->lo
&= (((u64
)-1) << 4) | 3;
159 context
->lo
|= (value
& 3) << 2;
162 static inline void context_set_address_root(struct context_entry
*context
,
165 context
->lo
|= value
& VTD_PAGE_MASK
;
168 static inline void context_set_address_width(struct context_entry
*context
,
171 context
->hi
|= value
& 7;
174 static inline void context_set_domain_id(struct context_entry
*context
,
177 context
->hi
|= (value
& ((1 << 16) - 1)) << 8;
180 static inline void context_clear_entry(struct context_entry
*context
)
193 * 12-63: Host physcial address
199 static inline void dma_clear_pte(struct dma_pte
*pte
)
204 static inline void dma_set_pte_readable(struct dma_pte
*pte
)
206 pte
->val
|= DMA_PTE_READ
;
209 static inline void dma_set_pte_writable(struct dma_pte
*pte
)
211 pte
->val
|= DMA_PTE_WRITE
;
214 static inline void dma_set_pte_snp(struct dma_pte
*pte
)
216 pte
->val
|= DMA_PTE_SNP
;
219 static inline void dma_set_pte_prot(struct dma_pte
*pte
, unsigned long prot
)
221 pte
->val
= (pte
->val
& ~3) | (prot
& 3);
224 static inline u64
dma_pte_addr(struct dma_pte
*pte
)
227 return pte
->val
& VTD_PAGE_MASK
;
229 /* Must have a full atomic 64-bit read */
230 return __cmpxchg64(pte
, 0ULL, 0ULL) & VTD_PAGE_MASK
;
234 static inline void dma_set_pte_pfn(struct dma_pte
*pte
, unsigned long pfn
)
236 pte
->val
|= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
239 static inline bool dma_pte_present(struct dma_pte
*pte
)
241 return (pte
->val
& 3) != 0;
244 static inline int first_pte_in_page(struct dma_pte
*pte
)
246 return !((unsigned long)pte
& ~VTD_PAGE_MASK
);
250 * This domain is a statically identity mapping domain.
251 * 1. This domain creats a static 1:1 mapping to all usable memory.
252 * 2. It maps to each iommu if successful.
253 * 3. Each iommu mapps to this domain if successful.
255 struct dmar_domain
*si_domain
;
257 /* devices under the same p2p bridge are owned in one domain */
258 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
260 /* domain represents a virtual machine, more than one devices
261 * across iommus may be owned in one domain, e.g. kvm guest.
263 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
265 /* si_domain contains mulitple devices */
266 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
269 int id
; /* domain id */
270 unsigned long iommu_bmp
; /* bitmap of iommus this domain uses*/
272 struct list_head devices
; /* all devices' list */
273 struct iova_domain iovad
; /* iova's that belong to this domain */
275 struct dma_pte
*pgd
; /* virtual address */
276 int gaw
; /* max guest address width */
278 /* adjusted guest address width, 0 is level 2 30-bit */
281 int flags
; /* flags to find out type of domain */
283 int iommu_coherency
;/* indicate coherency of iommu access */
284 int iommu_snooping
; /* indicate snooping control feature*/
285 int iommu_count
; /* reference count of iommu */
286 spinlock_t iommu_lock
; /* protect iommu set in domain */
287 u64 max_addr
; /* maximum mapped address */
290 /* PCI domain-device relationship */
291 struct device_domain_info
{
292 struct list_head link
; /* link to domain siblings */
293 struct list_head global
; /* link to global list */
294 int segment
; /* PCI domain */
295 u8 bus
; /* PCI bus number */
296 u8 devfn
; /* PCI devfn number */
297 struct pci_dev
*dev
; /* it's NULL for PCIE-to-PCI bridge */
298 struct intel_iommu
*iommu
; /* IOMMU used by this device */
299 struct dmar_domain
*domain
; /* pointer to domain */
302 static void flush_unmaps_timeout(unsigned long data
);
304 DEFINE_TIMER(unmap_timer
, flush_unmaps_timeout
, 0, 0);
306 #define HIGH_WATER_MARK 250
307 struct deferred_flush_tables
{
309 struct iova
*iova
[HIGH_WATER_MARK
];
310 struct dmar_domain
*domain
[HIGH_WATER_MARK
];
313 static struct deferred_flush_tables
*deferred_flush
;
315 /* bitmap for indexing intel_iommus */
316 static int g_num_of_iommus
;
318 static DEFINE_SPINLOCK(async_umap_flush_lock
);
319 static LIST_HEAD(unmaps_to_do
);
322 static long list_size
;
324 static void domain_remove_dev_info(struct dmar_domain
*domain
);
326 #ifdef CONFIG_DMAR_DEFAULT_ON
327 int dmar_disabled
= 0;
329 int dmar_disabled
= 1;
330 #endif /*CONFIG_DMAR_DEFAULT_ON*/
332 static int __initdata dmar_map_gfx
= 1;
333 static int dmar_forcedac
;
334 static int intel_iommu_strict
;
336 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
337 static DEFINE_SPINLOCK(device_domain_lock
);
338 static LIST_HEAD(device_domain_list
);
340 static struct iommu_ops intel_iommu_ops
;
342 static int __init
intel_iommu_setup(char *str
)
347 if (!strncmp(str
, "on", 2)) {
349 printk(KERN_INFO
"Intel-IOMMU: enabled\n");
350 } else if (!strncmp(str
, "off", 3)) {
352 printk(KERN_INFO
"Intel-IOMMU: disabled\n");
353 } else if (!strncmp(str
, "igfx_off", 8)) {
356 "Intel-IOMMU: disable GFX device mapping\n");
357 } else if (!strncmp(str
, "forcedac", 8)) {
359 "Intel-IOMMU: Forcing DAC for PCI devices\n");
361 } else if (!strncmp(str
, "strict", 6)) {
363 "Intel-IOMMU: disable batched IOTLB flush\n");
364 intel_iommu_strict
= 1;
367 str
+= strcspn(str
, ",");
373 __setup("intel_iommu=", intel_iommu_setup
);
375 static struct kmem_cache
*iommu_domain_cache
;
376 static struct kmem_cache
*iommu_devinfo_cache
;
377 static struct kmem_cache
*iommu_iova_cache
;
379 static inline void *iommu_kmem_cache_alloc(struct kmem_cache
*cachep
)
384 /* trying to avoid low memory issues */
385 flags
= current
->flags
& PF_MEMALLOC
;
386 current
->flags
|= PF_MEMALLOC
;
387 vaddr
= kmem_cache_alloc(cachep
, GFP_ATOMIC
);
388 current
->flags
&= (~PF_MEMALLOC
| flags
);
393 static inline void *alloc_pgtable_page(void)
398 /* trying to avoid low memory issues */
399 flags
= current
->flags
& PF_MEMALLOC
;
400 current
->flags
|= PF_MEMALLOC
;
401 vaddr
= (void *)get_zeroed_page(GFP_ATOMIC
);
402 current
->flags
&= (~PF_MEMALLOC
| flags
);
406 static inline void free_pgtable_page(void *vaddr
)
408 free_page((unsigned long)vaddr
);
411 static inline void *alloc_domain_mem(void)
413 return iommu_kmem_cache_alloc(iommu_domain_cache
);
416 static void free_domain_mem(void *vaddr
)
418 kmem_cache_free(iommu_domain_cache
, vaddr
);
421 static inline void * alloc_devinfo_mem(void)
423 return iommu_kmem_cache_alloc(iommu_devinfo_cache
);
426 static inline void free_devinfo_mem(void *vaddr
)
428 kmem_cache_free(iommu_devinfo_cache
, vaddr
);
431 struct iova
*alloc_iova_mem(void)
433 return iommu_kmem_cache_alloc(iommu_iova_cache
);
436 void free_iova_mem(struct iova
*iova
)
438 kmem_cache_free(iommu_iova_cache
, iova
);
442 static inline int width_to_agaw(int width
);
444 static int __iommu_calculate_agaw(struct intel_iommu
*iommu
, int max_gaw
)
449 sagaw
= cap_sagaw(iommu
->cap
);
450 for (agaw
= width_to_agaw(max_gaw
);
452 if (test_bit(agaw
, &sagaw
))
460 * Calculate max SAGAW for each iommu.
462 int iommu_calculate_max_sagaw(struct intel_iommu
*iommu
)
464 return __iommu_calculate_agaw(iommu
, MAX_AGAW_WIDTH
);
468 * calculate agaw for each iommu.
469 * "SAGAW" may be different across iommus, use a default agaw, and
470 * get a supported less agaw for iommus that don't support the default agaw.
472 int iommu_calculate_agaw(struct intel_iommu
*iommu
)
474 return __iommu_calculate_agaw(iommu
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
477 /* This functionin only returns single iommu in a domain */
478 static struct intel_iommu
*domain_get_iommu(struct dmar_domain
*domain
)
482 /* si_domain and vm domain should not get here. */
483 BUG_ON(domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
);
484 BUG_ON(domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
);
486 iommu_id
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
487 if (iommu_id
< 0 || iommu_id
>= g_num_of_iommus
)
490 return g_iommus
[iommu_id
];
493 static void domain_update_iommu_coherency(struct dmar_domain
*domain
)
497 domain
->iommu_coherency
= 1;
499 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
500 for (; i
< g_num_of_iommus
; ) {
501 if (!ecap_coherent(g_iommus
[i
]->ecap
)) {
502 domain
->iommu_coherency
= 0;
505 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
509 static void domain_update_iommu_snooping(struct dmar_domain
*domain
)
513 domain
->iommu_snooping
= 1;
515 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
516 for (; i
< g_num_of_iommus
; ) {
517 if (!ecap_sc_support(g_iommus
[i
]->ecap
)) {
518 domain
->iommu_snooping
= 0;
521 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
525 /* Some capabilities may be different across iommus */
526 static void domain_update_iommu_cap(struct dmar_domain
*domain
)
528 domain_update_iommu_coherency(domain
);
529 domain_update_iommu_snooping(domain
);
532 static struct intel_iommu
*device_to_iommu(int segment
, u8 bus
, u8 devfn
)
534 struct dmar_drhd_unit
*drhd
= NULL
;
537 for_each_drhd_unit(drhd
) {
540 if (segment
!= drhd
->segment
)
543 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
544 if (drhd
->devices
[i
] &&
545 drhd
->devices
[i
]->bus
->number
== bus
&&
546 drhd
->devices
[i
]->devfn
== devfn
)
548 if (drhd
->devices
[i
] &&
549 drhd
->devices
[i
]->subordinate
&&
550 drhd
->devices
[i
]->subordinate
->number
<= bus
&&
551 drhd
->devices
[i
]->subordinate
->subordinate
>= bus
)
555 if (drhd
->include_all
)
562 static void domain_flush_cache(struct dmar_domain
*domain
,
563 void *addr
, int size
)
565 if (!domain
->iommu_coherency
)
566 clflush_cache_range(addr
, size
);
569 /* Gets context entry for a given bus and devfn */
570 static struct context_entry
* device_to_context_entry(struct intel_iommu
*iommu
,
573 struct root_entry
*root
;
574 struct context_entry
*context
;
575 unsigned long phy_addr
;
578 spin_lock_irqsave(&iommu
->lock
, flags
);
579 root
= &iommu
->root_entry
[bus
];
580 context
= get_context_addr_from_root(root
);
582 context
= (struct context_entry
*)alloc_pgtable_page();
584 spin_unlock_irqrestore(&iommu
->lock
, flags
);
587 __iommu_flush_cache(iommu
, (void *)context
, CONTEXT_SIZE
);
588 phy_addr
= virt_to_phys((void *)context
);
589 set_root_value(root
, phy_addr
);
590 set_root_present(root
);
591 __iommu_flush_cache(iommu
, root
, sizeof(*root
));
593 spin_unlock_irqrestore(&iommu
->lock
, flags
);
594 return &context
[devfn
];
597 static int device_context_mapped(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
599 struct root_entry
*root
;
600 struct context_entry
*context
;
604 spin_lock_irqsave(&iommu
->lock
, flags
);
605 root
= &iommu
->root_entry
[bus
];
606 context
= get_context_addr_from_root(root
);
611 ret
= context_present(&context
[devfn
]);
613 spin_unlock_irqrestore(&iommu
->lock
, flags
);
617 static void clear_context_table(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
619 struct root_entry
*root
;
620 struct context_entry
*context
;
623 spin_lock_irqsave(&iommu
->lock
, flags
);
624 root
= &iommu
->root_entry
[bus
];
625 context
= get_context_addr_from_root(root
);
627 context_clear_entry(&context
[devfn
]);
628 __iommu_flush_cache(iommu
, &context
[devfn
], \
631 spin_unlock_irqrestore(&iommu
->lock
, flags
);
634 static void free_context_table(struct intel_iommu
*iommu
)
636 struct root_entry
*root
;
639 struct context_entry
*context
;
641 spin_lock_irqsave(&iommu
->lock
, flags
);
642 if (!iommu
->root_entry
) {
645 for (i
= 0; i
< ROOT_ENTRY_NR
; i
++) {
646 root
= &iommu
->root_entry
[i
];
647 context
= get_context_addr_from_root(root
);
649 free_pgtable_page(context
);
651 free_pgtable_page(iommu
->root_entry
);
652 iommu
->root_entry
= NULL
;
654 spin_unlock_irqrestore(&iommu
->lock
, flags
);
657 /* page table handling */
658 #define LEVEL_STRIDE (9)
659 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
661 static inline int agaw_to_level(int agaw
)
666 static inline int agaw_to_width(int agaw
)
668 return 30 + agaw
* LEVEL_STRIDE
;
672 static inline int width_to_agaw(int width
)
674 return (width
- 30) / LEVEL_STRIDE
;
677 static inline unsigned int level_to_offset_bits(int level
)
679 return (level
- 1) * LEVEL_STRIDE
;
682 static inline int pfn_level_offset(unsigned long pfn
, int level
)
684 return (pfn
>> level_to_offset_bits(level
)) & LEVEL_MASK
;
687 static inline unsigned long level_mask(int level
)
689 return -1UL << level_to_offset_bits(level
);
692 static inline unsigned long level_size(int level
)
694 return 1UL << level_to_offset_bits(level
);
697 static inline unsigned long align_to_level(unsigned long pfn
, int level
)
699 return (pfn
+ level_size(level
) - 1) & level_mask(level
);
702 static struct dma_pte
*pfn_to_dma_pte(struct dmar_domain
*domain
,
705 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
706 struct dma_pte
*parent
, *pte
= NULL
;
707 int level
= agaw_to_level(domain
->agaw
);
710 BUG_ON(!domain
->pgd
);
711 BUG_ON(addr_width
< BITS_PER_LONG
&& pfn
>> addr_width
);
712 parent
= domain
->pgd
;
717 offset
= pfn_level_offset(pfn
, level
);
718 pte
= &parent
[offset
];
722 if (!dma_pte_present(pte
)) {
725 tmp_page
= alloc_pgtable_page();
730 domain_flush_cache(domain
, tmp_page
, VTD_PAGE_SIZE
);
731 pteval
= (virt_to_dma_pfn(tmp_page
) << VTD_PAGE_SHIFT
) | DMA_PTE_READ
| DMA_PTE_WRITE
;
732 if (cmpxchg64(&pte
->val
, 0ULL, pteval
)) {
733 /* Someone else set it while we were thinking; use theirs. */
734 free_pgtable_page(tmp_page
);
737 domain_flush_cache(domain
, pte
, sizeof(*pte
));
740 parent
= phys_to_virt(dma_pte_addr(pte
));
747 /* return address's pte at specific level */
748 static struct dma_pte
*dma_pfn_level_pte(struct dmar_domain
*domain
,
752 struct dma_pte
*parent
, *pte
= NULL
;
753 int total
= agaw_to_level(domain
->agaw
);
756 parent
= domain
->pgd
;
757 while (level
<= total
) {
758 offset
= pfn_level_offset(pfn
, total
);
759 pte
= &parent
[offset
];
763 if (!dma_pte_present(pte
))
765 parent
= phys_to_virt(dma_pte_addr(pte
));
771 /* clear last level pte, a tlb flush should be followed */
772 static void dma_pte_clear_range(struct dmar_domain
*domain
,
773 unsigned long start_pfn
,
774 unsigned long last_pfn
)
776 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
777 struct dma_pte
*first_pte
, *pte
;
779 BUG_ON(addr_width
< BITS_PER_LONG
&& start_pfn
>> addr_width
);
780 BUG_ON(addr_width
< BITS_PER_LONG
&& last_pfn
>> addr_width
);
782 /* we don't need lock here; nobody else touches the iova range */
783 while (start_pfn
<= last_pfn
) {
784 first_pte
= pte
= dma_pfn_level_pte(domain
, start_pfn
, 1);
786 start_pfn
= align_to_level(start_pfn
+ 1, 2);
793 } while (start_pfn
<= last_pfn
&& !first_pte_in_page(pte
));
795 domain_flush_cache(domain
, first_pte
,
796 (void *)pte
- (void *)first_pte
);
800 /* free page table pages. last level pte should already be cleared */
801 static void dma_pte_free_pagetable(struct dmar_domain
*domain
,
802 unsigned long start_pfn
,
803 unsigned long last_pfn
)
805 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
806 struct dma_pte
*first_pte
, *pte
;
807 int total
= agaw_to_level(domain
->agaw
);
811 BUG_ON(addr_width
< BITS_PER_LONG
&& start_pfn
>> addr_width
);
812 BUG_ON(addr_width
< BITS_PER_LONG
&& last_pfn
>> addr_width
);
814 /* We don't need lock here; nobody else touches the iova range */
816 while (level
<= total
) {
817 tmp
= align_to_level(start_pfn
, level
);
819 /* If we can't even clear one PTE at this level, we're done */
820 if (tmp
+ level_size(level
) - 1 > last_pfn
)
823 while (tmp
+ level_size(level
) - 1 <= last_pfn
) {
824 first_pte
= pte
= dma_pfn_level_pte(domain
, tmp
, level
);
826 tmp
= align_to_level(tmp
+ 1, level
+ 1);
830 if (dma_pte_present(pte
)) {
831 free_pgtable_page(phys_to_virt(dma_pte_addr(pte
)));
835 tmp
+= level_size(level
);
836 } while (!first_pte_in_page(pte
) &&
837 tmp
+ level_size(level
) - 1 <= last_pfn
);
839 domain_flush_cache(domain
, first_pte
,
840 (void *)pte
- (void *)first_pte
);
846 if (start_pfn
== 0 && last_pfn
== DOMAIN_MAX_PFN(domain
->gaw
)) {
847 free_pgtable_page(domain
->pgd
);
853 static int iommu_alloc_root_entry(struct intel_iommu
*iommu
)
855 struct root_entry
*root
;
858 root
= (struct root_entry
*)alloc_pgtable_page();
862 __iommu_flush_cache(iommu
, root
, ROOT_SIZE
);
864 spin_lock_irqsave(&iommu
->lock
, flags
);
865 iommu
->root_entry
= root
;
866 spin_unlock_irqrestore(&iommu
->lock
, flags
);
871 static void iommu_set_root_entry(struct intel_iommu
*iommu
)
877 addr
= iommu
->root_entry
;
879 spin_lock_irqsave(&iommu
->register_lock
, flag
);
880 dmar_writeq(iommu
->reg
+ DMAR_RTADDR_REG
, virt_to_phys(addr
));
882 writel(iommu
->gcmd
| DMA_GCMD_SRTP
, iommu
->reg
+ DMAR_GCMD_REG
);
884 /* Make sure hardware complete it */
885 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
886 readl
, (sts
& DMA_GSTS_RTPS
), sts
);
888 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
891 static void iommu_flush_write_buffer(struct intel_iommu
*iommu
)
896 if (!rwbf_quirk
&& !cap_rwbf(iommu
->cap
))
899 spin_lock_irqsave(&iommu
->register_lock
, flag
);
900 writel(iommu
->gcmd
| DMA_GCMD_WBF
, iommu
->reg
+ DMAR_GCMD_REG
);
902 /* Make sure hardware complete it */
903 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
904 readl
, (!(val
& DMA_GSTS_WBFS
)), val
);
906 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
909 /* return value determine if we need a write buffer flush */
910 static void __iommu_flush_context(struct intel_iommu
*iommu
,
911 u16 did
, u16 source_id
, u8 function_mask
,
918 case DMA_CCMD_GLOBAL_INVL
:
919 val
= DMA_CCMD_GLOBAL_INVL
;
921 case DMA_CCMD_DOMAIN_INVL
:
922 val
= DMA_CCMD_DOMAIN_INVL
|DMA_CCMD_DID(did
);
924 case DMA_CCMD_DEVICE_INVL
:
925 val
= DMA_CCMD_DEVICE_INVL
|DMA_CCMD_DID(did
)
926 | DMA_CCMD_SID(source_id
) | DMA_CCMD_FM(function_mask
);
933 spin_lock_irqsave(&iommu
->register_lock
, flag
);
934 dmar_writeq(iommu
->reg
+ DMAR_CCMD_REG
, val
);
936 /* Make sure hardware complete it */
937 IOMMU_WAIT_OP(iommu
, DMAR_CCMD_REG
,
938 dmar_readq
, (!(val
& DMA_CCMD_ICC
)), val
);
940 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
943 /* return value determine if we need a write buffer flush */
944 static void __iommu_flush_iotlb(struct intel_iommu
*iommu
, u16 did
,
945 u64 addr
, unsigned int size_order
, u64 type
)
947 int tlb_offset
= ecap_iotlb_offset(iommu
->ecap
);
948 u64 val
= 0, val_iva
= 0;
952 case DMA_TLB_GLOBAL_FLUSH
:
953 /* global flush doesn't need set IVA_REG */
954 val
= DMA_TLB_GLOBAL_FLUSH
|DMA_TLB_IVT
;
956 case DMA_TLB_DSI_FLUSH
:
957 val
= DMA_TLB_DSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
959 case DMA_TLB_PSI_FLUSH
:
960 val
= DMA_TLB_PSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
961 /* Note: always flush non-leaf currently */
962 val_iva
= size_order
| addr
;
967 /* Note: set drain read/write */
970 * This is probably to be super secure.. Looks like we can
971 * ignore it without any impact.
973 if (cap_read_drain(iommu
->cap
))
974 val
|= DMA_TLB_READ_DRAIN
;
976 if (cap_write_drain(iommu
->cap
))
977 val
|= DMA_TLB_WRITE_DRAIN
;
979 spin_lock_irqsave(&iommu
->register_lock
, flag
);
980 /* Note: Only uses first TLB reg currently */
982 dmar_writeq(iommu
->reg
+ tlb_offset
, val_iva
);
983 dmar_writeq(iommu
->reg
+ tlb_offset
+ 8, val
);
985 /* Make sure hardware complete it */
986 IOMMU_WAIT_OP(iommu
, tlb_offset
+ 8,
987 dmar_readq
, (!(val
& DMA_TLB_IVT
)), val
);
989 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
991 /* check IOTLB invalidation granularity */
992 if (DMA_TLB_IAIG(val
) == 0)
993 printk(KERN_ERR
"IOMMU: flush IOTLB failed\n");
994 if (DMA_TLB_IAIG(val
) != DMA_TLB_IIRG(type
))
995 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
996 (unsigned long long)DMA_TLB_IIRG(type
),
997 (unsigned long long)DMA_TLB_IAIG(val
));
1000 static struct device_domain_info
*iommu_support_dev_iotlb(
1001 struct dmar_domain
*domain
, int segment
, u8 bus
, u8 devfn
)
1004 unsigned long flags
;
1005 struct device_domain_info
*info
;
1006 struct intel_iommu
*iommu
= device_to_iommu(segment
, bus
, devfn
);
1008 if (!ecap_dev_iotlb_support(iommu
->ecap
))
1014 spin_lock_irqsave(&device_domain_lock
, flags
);
1015 list_for_each_entry(info
, &domain
->devices
, link
)
1016 if (info
->bus
== bus
&& info
->devfn
== devfn
) {
1020 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1022 if (!found
|| !info
->dev
)
1025 if (!pci_find_ext_capability(info
->dev
, PCI_EXT_CAP_ID_ATS
))
1028 if (!dmar_find_matched_atsr_unit(info
->dev
))
1031 info
->iommu
= iommu
;
1036 static void iommu_enable_dev_iotlb(struct device_domain_info
*info
)
1041 pci_enable_ats(info
->dev
, VTD_PAGE_SHIFT
);
1044 static void iommu_disable_dev_iotlb(struct device_domain_info
*info
)
1046 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1049 pci_disable_ats(info
->dev
);
1052 static void iommu_flush_dev_iotlb(struct dmar_domain
*domain
,
1053 u64 addr
, unsigned mask
)
1056 unsigned long flags
;
1057 struct device_domain_info
*info
;
1059 spin_lock_irqsave(&device_domain_lock
, flags
);
1060 list_for_each_entry(info
, &domain
->devices
, link
) {
1061 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1064 sid
= info
->bus
<< 8 | info
->devfn
;
1065 qdep
= pci_ats_queue_depth(info
->dev
);
1066 qi_flush_dev_iotlb(info
->iommu
, sid
, qdep
, addr
, mask
);
1068 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1071 static void iommu_flush_iotlb_psi(struct intel_iommu
*iommu
, u16 did
,
1072 unsigned long pfn
, unsigned int pages
)
1074 unsigned int mask
= ilog2(__roundup_pow_of_two(pages
));
1075 uint64_t addr
= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
1080 * Fallback to domain selective flush if no PSI support or the size is
1082 * PSI requires page size to be 2 ^ x, and the base address is naturally
1083 * aligned to the size
1085 if (!cap_pgsel_inv(iommu
->cap
) || mask
> cap_max_amask_val(iommu
->cap
))
1086 iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0,
1089 iommu
->flush
.flush_iotlb(iommu
, did
, addr
, mask
,
1093 * In caching mode, domain ID 0 is reserved for non-present to present
1094 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1096 if (!cap_caching_mode(iommu
->cap
) || did
)
1097 iommu_flush_dev_iotlb(iommu
->domains
[did
], addr
, mask
);
1100 static void iommu_disable_protect_mem_regions(struct intel_iommu
*iommu
)
1103 unsigned long flags
;
1105 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1106 pmen
= readl(iommu
->reg
+ DMAR_PMEN_REG
);
1107 pmen
&= ~DMA_PMEN_EPM
;
1108 writel(pmen
, iommu
->reg
+ DMAR_PMEN_REG
);
1110 /* wait for the protected region status bit to clear */
1111 IOMMU_WAIT_OP(iommu
, DMAR_PMEN_REG
,
1112 readl
, !(pmen
& DMA_PMEN_PRS
), pmen
);
1114 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1117 static int iommu_enable_translation(struct intel_iommu
*iommu
)
1120 unsigned long flags
;
1122 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1123 iommu
->gcmd
|= DMA_GCMD_TE
;
1124 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1126 /* Make sure hardware complete it */
1127 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1128 readl
, (sts
& DMA_GSTS_TES
), sts
);
1130 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1134 static int iommu_disable_translation(struct intel_iommu
*iommu
)
1139 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1140 iommu
->gcmd
&= ~DMA_GCMD_TE
;
1141 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1143 /* Make sure hardware complete it */
1144 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1145 readl
, (!(sts
& DMA_GSTS_TES
)), sts
);
1147 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1152 static int iommu_init_domains(struct intel_iommu
*iommu
)
1154 unsigned long ndomains
;
1155 unsigned long nlongs
;
1157 ndomains
= cap_ndoms(iommu
->cap
);
1158 pr_debug("Number of Domains supportd <%ld>\n", ndomains
);
1159 nlongs
= BITS_TO_LONGS(ndomains
);
1161 /* TBD: there might be 64K domains,
1162 * consider other allocation for future chip
1164 iommu
->domain_ids
= kcalloc(nlongs
, sizeof(unsigned long), GFP_KERNEL
);
1165 if (!iommu
->domain_ids
) {
1166 printk(KERN_ERR
"Allocating domain id array failed\n");
1169 iommu
->domains
= kcalloc(ndomains
, sizeof(struct dmar_domain
*),
1171 if (!iommu
->domains
) {
1172 printk(KERN_ERR
"Allocating domain array failed\n");
1173 kfree(iommu
->domain_ids
);
1177 spin_lock_init(&iommu
->lock
);
1180 * if Caching mode is set, then invalid translations are tagged
1181 * with domainid 0. Hence we need to pre-allocate it.
1183 if (cap_caching_mode(iommu
->cap
))
1184 set_bit(0, iommu
->domain_ids
);
1189 static void domain_exit(struct dmar_domain
*domain
);
1190 static void vm_domain_exit(struct dmar_domain
*domain
);
1192 void free_dmar_iommu(struct intel_iommu
*iommu
)
1194 struct dmar_domain
*domain
;
1196 unsigned long flags
;
1198 i
= find_first_bit(iommu
->domain_ids
, cap_ndoms(iommu
->cap
));
1199 for (; i
< cap_ndoms(iommu
->cap
); ) {
1200 domain
= iommu
->domains
[i
];
1201 clear_bit(i
, iommu
->domain_ids
);
1203 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1204 if (--domain
->iommu_count
== 0) {
1205 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
)
1206 vm_domain_exit(domain
);
1208 domain_exit(domain
);
1210 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1212 i
= find_next_bit(iommu
->domain_ids
,
1213 cap_ndoms(iommu
->cap
), i
+1);
1216 if (iommu
->gcmd
& DMA_GCMD_TE
)
1217 iommu_disable_translation(iommu
);
1220 set_irq_data(iommu
->irq
, NULL
);
1221 /* This will mask the irq */
1222 free_irq(iommu
->irq
, iommu
);
1223 destroy_irq(iommu
->irq
);
1226 kfree(iommu
->domains
);
1227 kfree(iommu
->domain_ids
);
1229 g_iommus
[iommu
->seq_id
] = NULL
;
1231 /* if all iommus are freed, free g_iommus */
1232 for (i
= 0; i
< g_num_of_iommus
; i
++) {
1237 if (i
== g_num_of_iommus
)
1240 /* free context mapping */
1241 free_context_table(iommu
);
1244 static struct dmar_domain
*alloc_domain(void)
1246 struct dmar_domain
*domain
;
1248 domain
= alloc_domain_mem();
1252 memset(&domain
->iommu_bmp
, 0, sizeof(unsigned long));
1258 static int iommu_attach_domain(struct dmar_domain
*domain
,
1259 struct intel_iommu
*iommu
)
1262 unsigned long ndomains
;
1263 unsigned long flags
;
1265 ndomains
= cap_ndoms(iommu
->cap
);
1267 spin_lock_irqsave(&iommu
->lock
, flags
);
1269 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1270 if (num
>= ndomains
) {
1271 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1272 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1277 set_bit(num
, iommu
->domain_ids
);
1278 set_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1279 iommu
->domains
[num
] = domain
;
1280 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1285 static void iommu_detach_domain(struct dmar_domain
*domain
,
1286 struct intel_iommu
*iommu
)
1288 unsigned long flags
;
1292 spin_lock_irqsave(&iommu
->lock
, flags
);
1293 ndomains
= cap_ndoms(iommu
->cap
);
1294 num
= find_first_bit(iommu
->domain_ids
, ndomains
);
1295 for (; num
< ndomains
; ) {
1296 if (iommu
->domains
[num
] == domain
) {
1300 num
= find_next_bit(iommu
->domain_ids
,
1301 cap_ndoms(iommu
->cap
), num
+1);
1305 clear_bit(num
, iommu
->domain_ids
);
1306 clear_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1307 iommu
->domains
[num
] = NULL
;
1309 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1312 static struct iova_domain reserved_iova_list
;
1313 static struct lock_class_key reserved_alloc_key
;
1314 static struct lock_class_key reserved_rbtree_key
;
1316 static void dmar_init_reserved_ranges(void)
1318 struct pci_dev
*pdev
= NULL
;
1322 init_iova_domain(&reserved_iova_list
, DMA_32BIT_PFN
);
1324 lockdep_set_class(&reserved_iova_list
.iova_alloc_lock
,
1325 &reserved_alloc_key
);
1326 lockdep_set_class(&reserved_iova_list
.iova_rbtree_lock
,
1327 &reserved_rbtree_key
);
1329 /* IOAPIC ranges shouldn't be accessed by DMA */
1330 iova
= reserve_iova(&reserved_iova_list
, IOVA_PFN(IOAPIC_RANGE_START
),
1331 IOVA_PFN(IOAPIC_RANGE_END
));
1333 printk(KERN_ERR
"Reserve IOAPIC range failed\n");
1335 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1336 for_each_pci_dev(pdev
) {
1339 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++) {
1340 r
= &pdev
->resource
[i
];
1341 if (!r
->flags
|| !(r
->flags
& IORESOURCE_MEM
))
1343 iova
= reserve_iova(&reserved_iova_list
,
1347 printk(KERN_ERR
"Reserve iova failed\n");
1353 static void domain_reserve_special_ranges(struct dmar_domain
*domain
)
1355 copy_reserved_iova(&reserved_iova_list
, &domain
->iovad
);
1358 static inline int guestwidth_to_adjustwidth(int gaw
)
1361 int r
= (gaw
- 12) % 9;
1372 static int domain_init(struct dmar_domain
*domain
, int guest_width
)
1374 struct intel_iommu
*iommu
;
1375 int adjust_width
, agaw
;
1376 unsigned long sagaw
;
1378 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
1379 spin_lock_init(&domain
->iommu_lock
);
1381 domain_reserve_special_ranges(domain
);
1383 /* calculate AGAW */
1384 iommu
= domain_get_iommu(domain
);
1385 if (guest_width
> cap_mgaw(iommu
->cap
))
1386 guest_width
= cap_mgaw(iommu
->cap
);
1387 domain
->gaw
= guest_width
;
1388 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
1389 agaw
= width_to_agaw(adjust_width
);
1390 sagaw
= cap_sagaw(iommu
->cap
);
1391 if (!test_bit(agaw
, &sagaw
)) {
1392 /* hardware doesn't support it, choose a bigger one */
1393 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw
);
1394 agaw
= find_next_bit(&sagaw
, 5, agaw
);
1398 domain
->agaw
= agaw
;
1399 INIT_LIST_HEAD(&domain
->devices
);
1401 if (ecap_coherent(iommu
->ecap
))
1402 domain
->iommu_coherency
= 1;
1404 domain
->iommu_coherency
= 0;
1406 if (ecap_sc_support(iommu
->ecap
))
1407 domain
->iommu_snooping
= 1;
1409 domain
->iommu_snooping
= 0;
1411 domain
->iommu_count
= 1;
1413 /* always allocate the top pgd */
1414 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page();
1417 __iommu_flush_cache(iommu
, domain
->pgd
, PAGE_SIZE
);
1421 static void domain_exit(struct dmar_domain
*domain
)
1423 struct dmar_drhd_unit
*drhd
;
1424 struct intel_iommu
*iommu
;
1426 /* Domain 0 is reserved, so dont process it */
1430 domain_remove_dev_info(domain
);
1432 put_iova_domain(&domain
->iovad
);
1435 dma_pte_clear_range(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1437 /* free page tables */
1438 dma_pte_free_pagetable(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1440 for_each_active_iommu(iommu
, drhd
)
1441 if (test_bit(iommu
->seq_id
, &domain
->iommu_bmp
))
1442 iommu_detach_domain(domain
, iommu
);
1444 free_domain_mem(domain
);
1447 static int domain_context_mapping_one(struct dmar_domain
*domain
, int segment
,
1448 u8 bus
, u8 devfn
, int translation
)
1450 struct context_entry
*context
;
1451 unsigned long flags
;
1452 struct intel_iommu
*iommu
;
1453 struct dma_pte
*pgd
;
1455 unsigned long ndomains
;
1458 struct device_domain_info
*info
= NULL
;
1460 pr_debug("Set context mapping for %02x:%02x.%d\n",
1461 bus
, PCI_SLOT(devfn
), PCI_FUNC(devfn
));
1463 BUG_ON(!domain
->pgd
);
1464 BUG_ON(translation
!= CONTEXT_TT_PASS_THROUGH
&&
1465 translation
!= CONTEXT_TT_MULTI_LEVEL
);
1467 iommu
= device_to_iommu(segment
, bus
, devfn
);
1471 context
= device_to_context_entry(iommu
, bus
, devfn
);
1474 spin_lock_irqsave(&iommu
->lock
, flags
);
1475 if (context_present(context
)) {
1476 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1483 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
1484 domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
) {
1487 /* find an available domain id for this device in iommu */
1488 ndomains
= cap_ndoms(iommu
->cap
);
1489 num
= find_first_bit(iommu
->domain_ids
, ndomains
);
1490 for (; num
< ndomains
; ) {
1491 if (iommu
->domains
[num
] == domain
) {
1496 num
= find_next_bit(iommu
->domain_ids
,
1497 cap_ndoms(iommu
->cap
), num
+1);
1501 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1502 if (num
>= ndomains
) {
1503 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1504 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1508 set_bit(num
, iommu
->domain_ids
);
1509 iommu
->domains
[num
] = domain
;
1513 /* Skip top levels of page tables for
1514 * iommu which has less agaw than default.
1516 for (agaw
= domain
->agaw
; agaw
!= iommu
->agaw
; agaw
--) {
1517 pgd
= phys_to_virt(dma_pte_addr(pgd
));
1518 if (!dma_pte_present(pgd
)) {
1519 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1525 context_set_domain_id(context
, id
);
1527 if (translation
!= CONTEXT_TT_PASS_THROUGH
) {
1528 info
= iommu_support_dev_iotlb(domain
, segment
, bus
, devfn
);
1529 translation
= info
? CONTEXT_TT_DEV_IOTLB
:
1530 CONTEXT_TT_MULTI_LEVEL
;
1533 * In pass through mode, AW must be programmed to indicate the largest
1534 * AGAW value supported by hardware. And ASR is ignored by hardware.
1536 if (unlikely(translation
== CONTEXT_TT_PASS_THROUGH
))
1537 context_set_address_width(context
, iommu
->msagaw
);
1539 context_set_address_root(context
, virt_to_phys(pgd
));
1540 context_set_address_width(context
, iommu
->agaw
);
1543 context_set_translation_type(context
, translation
);
1544 context_set_fault_enable(context
);
1545 context_set_present(context
);
1546 domain_flush_cache(domain
, context
, sizeof(*context
));
1549 * It's a non-present to present mapping. If hardware doesn't cache
1550 * non-present entry we only need to flush the write-buffer. If the
1551 * _does_ cache non-present entries, then it does so in the special
1552 * domain #0, which we have to flush:
1554 if (cap_caching_mode(iommu
->cap
)) {
1555 iommu
->flush
.flush_context(iommu
, 0,
1556 (((u16
)bus
) << 8) | devfn
,
1557 DMA_CCMD_MASK_NOBIT
,
1558 DMA_CCMD_DEVICE_INVL
);
1559 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_DSI_FLUSH
);
1561 iommu_flush_write_buffer(iommu
);
1563 iommu_enable_dev_iotlb(info
);
1564 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1566 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1567 if (!test_and_set_bit(iommu
->seq_id
, &domain
->iommu_bmp
)) {
1568 domain
->iommu_count
++;
1569 domain_update_iommu_cap(domain
);
1571 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1576 domain_context_mapping(struct dmar_domain
*domain
, struct pci_dev
*pdev
,
1580 struct pci_dev
*tmp
, *parent
;
1582 ret
= domain_context_mapping_one(domain
, pci_domain_nr(pdev
->bus
),
1583 pdev
->bus
->number
, pdev
->devfn
,
1588 /* dependent device mapping */
1589 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1592 /* Secondary interface's bus number and devfn 0 */
1593 parent
= pdev
->bus
->self
;
1594 while (parent
!= tmp
) {
1595 ret
= domain_context_mapping_one(domain
,
1596 pci_domain_nr(parent
->bus
),
1597 parent
->bus
->number
,
1598 parent
->devfn
, translation
);
1601 parent
= parent
->bus
->self
;
1603 if (tmp
->is_pcie
) /* this is a PCIE-to-PCI bridge */
1604 return domain_context_mapping_one(domain
,
1605 pci_domain_nr(tmp
->subordinate
),
1606 tmp
->subordinate
->number
, 0,
1608 else /* this is a legacy PCI bridge */
1609 return domain_context_mapping_one(domain
,
1610 pci_domain_nr(tmp
->bus
),
1616 static int domain_context_mapped(struct pci_dev
*pdev
)
1619 struct pci_dev
*tmp
, *parent
;
1620 struct intel_iommu
*iommu
;
1622 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
1627 ret
= device_context_mapped(iommu
, pdev
->bus
->number
, pdev
->devfn
);
1630 /* dependent device mapping */
1631 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1634 /* Secondary interface's bus number and devfn 0 */
1635 parent
= pdev
->bus
->self
;
1636 while (parent
!= tmp
) {
1637 ret
= device_context_mapped(iommu
, parent
->bus
->number
,
1641 parent
= parent
->bus
->self
;
1644 return device_context_mapped(iommu
, tmp
->subordinate
->number
,
1647 return device_context_mapped(iommu
, tmp
->bus
->number
,
1651 /* Returns a number of VTD pages, but aligned to MM page size */
1652 static inline unsigned long aligned_nrpages(unsigned long host_addr
,
1655 host_addr
&= ~PAGE_MASK
;
1656 return PAGE_ALIGN(host_addr
+ size
) >> VTD_PAGE_SHIFT
;
1659 static int __domain_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1660 struct scatterlist
*sg
, unsigned long phys_pfn
,
1661 unsigned long nr_pages
, int prot
)
1663 struct dma_pte
*first_pte
= NULL
, *pte
= NULL
;
1664 phys_addr_t
uninitialized_var(pteval
);
1665 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
1666 unsigned long sg_res
;
1668 BUG_ON(addr_width
< BITS_PER_LONG
&& (iov_pfn
+ nr_pages
- 1) >> addr_width
);
1670 if ((prot
& (DMA_PTE_READ
|DMA_PTE_WRITE
)) == 0)
1673 prot
&= DMA_PTE_READ
| DMA_PTE_WRITE
| DMA_PTE_SNP
;
1678 sg_res
= nr_pages
+ 1;
1679 pteval
= ((phys_addr_t
)phys_pfn
<< VTD_PAGE_SHIFT
) | prot
;
1682 while (nr_pages
--) {
1686 sg_res
= aligned_nrpages(sg
->offset
, sg
->length
);
1687 sg
->dma_address
= ((dma_addr_t
)iov_pfn
<< VTD_PAGE_SHIFT
) + sg
->offset
;
1688 sg
->dma_length
= sg
->length
;
1689 pteval
= page_to_phys(sg_page(sg
)) | prot
;
1692 first_pte
= pte
= pfn_to_dma_pte(domain
, iov_pfn
);
1696 /* We don't need lock here, nobody else
1697 * touches the iova range
1699 tmp
= cmpxchg64_local(&pte
->val
, 0ULL, pteval
);
1701 static int dumps
= 5;
1702 printk(KERN_CRIT
"ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1703 iov_pfn
, tmp
, (unsigned long long)pteval
);
1706 debug_dma_dump_mappings(NULL
);
1711 if (!nr_pages
|| first_pte_in_page(pte
)) {
1712 domain_flush_cache(domain
, first_pte
,
1713 (void *)pte
- (void *)first_pte
);
1717 pteval
+= VTD_PAGE_SIZE
;
1725 static inline int domain_sg_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1726 struct scatterlist
*sg
, unsigned long nr_pages
,
1729 return __domain_mapping(domain
, iov_pfn
, sg
, 0, nr_pages
, prot
);
1732 static inline int domain_pfn_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1733 unsigned long phys_pfn
, unsigned long nr_pages
,
1736 return __domain_mapping(domain
, iov_pfn
, NULL
, phys_pfn
, nr_pages
, prot
);
1739 static void iommu_detach_dev(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
1744 clear_context_table(iommu
, bus
, devfn
);
1745 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
1746 DMA_CCMD_GLOBAL_INVL
);
1747 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
1750 static void domain_remove_dev_info(struct dmar_domain
*domain
)
1752 struct device_domain_info
*info
;
1753 unsigned long flags
;
1754 struct intel_iommu
*iommu
;
1756 spin_lock_irqsave(&device_domain_lock
, flags
);
1757 while (!list_empty(&domain
->devices
)) {
1758 info
= list_entry(domain
->devices
.next
,
1759 struct device_domain_info
, link
);
1760 list_del(&info
->link
);
1761 list_del(&info
->global
);
1763 info
->dev
->dev
.archdata
.iommu
= NULL
;
1764 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1766 iommu_disable_dev_iotlb(info
);
1767 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
1768 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
1769 free_devinfo_mem(info
);
1771 spin_lock_irqsave(&device_domain_lock
, flags
);
1773 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1778 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1780 static struct dmar_domain
*
1781 find_domain(struct pci_dev
*pdev
)
1783 struct device_domain_info
*info
;
1785 /* No lock here, assumes no domain exit in normal case */
1786 info
= pdev
->dev
.archdata
.iommu
;
1788 return info
->domain
;
1792 /* domain is initialized */
1793 static struct dmar_domain
*get_domain_for_dev(struct pci_dev
*pdev
, int gaw
)
1795 struct dmar_domain
*domain
, *found
= NULL
;
1796 struct intel_iommu
*iommu
;
1797 struct dmar_drhd_unit
*drhd
;
1798 struct device_domain_info
*info
, *tmp
;
1799 struct pci_dev
*dev_tmp
;
1800 unsigned long flags
;
1801 int bus
= 0, devfn
= 0;
1805 domain
= find_domain(pdev
);
1809 segment
= pci_domain_nr(pdev
->bus
);
1811 dev_tmp
= pci_find_upstream_pcie_bridge(pdev
);
1813 if (dev_tmp
->is_pcie
) {
1814 bus
= dev_tmp
->subordinate
->number
;
1817 bus
= dev_tmp
->bus
->number
;
1818 devfn
= dev_tmp
->devfn
;
1820 spin_lock_irqsave(&device_domain_lock
, flags
);
1821 list_for_each_entry(info
, &device_domain_list
, global
) {
1822 if (info
->segment
== segment
&&
1823 info
->bus
== bus
&& info
->devfn
== devfn
) {
1824 found
= info
->domain
;
1828 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1829 /* pcie-pci bridge already has a domain, uses it */
1836 domain
= alloc_domain();
1840 /* Allocate new domain for the device */
1841 drhd
= dmar_find_matched_drhd_unit(pdev
);
1843 printk(KERN_ERR
"IOMMU: can't find DMAR for device %s\n",
1847 iommu
= drhd
->iommu
;
1849 ret
= iommu_attach_domain(domain
, iommu
);
1851 domain_exit(domain
);
1855 if (domain_init(domain
, gaw
)) {
1856 domain_exit(domain
);
1860 /* register pcie-to-pci device */
1862 info
= alloc_devinfo_mem();
1864 domain_exit(domain
);
1867 info
->segment
= segment
;
1869 info
->devfn
= devfn
;
1871 info
->domain
= domain
;
1872 /* This domain is shared by devices under p2p bridge */
1873 domain
->flags
|= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES
;
1875 /* pcie-to-pci bridge already has a domain, uses it */
1877 spin_lock_irqsave(&device_domain_lock
, flags
);
1878 list_for_each_entry(tmp
, &device_domain_list
, global
) {
1879 if (tmp
->segment
== segment
&&
1880 tmp
->bus
== bus
&& tmp
->devfn
== devfn
) {
1881 found
= tmp
->domain
;
1886 free_devinfo_mem(info
);
1887 domain_exit(domain
);
1890 list_add(&info
->link
, &domain
->devices
);
1891 list_add(&info
->global
, &device_domain_list
);
1893 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1897 info
= alloc_devinfo_mem();
1900 info
->segment
= segment
;
1901 info
->bus
= pdev
->bus
->number
;
1902 info
->devfn
= pdev
->devfn
;
1904 info
->domain
= domain
;
1905 spin_lock_irqsave(&device_domain_lock
, flags
);
1906 /* somebody is fast */
1907 found
= find_domain(pdev
);
1908 if (found
!= NULL
) {
1909 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1910 if (found
!= domain
) {
1911 domain_exit(domain
);
1914 free_devinfo_mem(info
);
1917 list_add(&info
->link
, &domain
->devices
);
1918 list_add(&info
->global
, &device_domain_list
);
1919 pdev
->dev
.archdata
.iommu
= info
;
1920 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1923 /* recheck it here, maybe others set it */
1924 return find_domain(pdev
);
1927 static int iommu_identity_mapping
;
1929 static int iommu_domain_identity_map(struct dmar_domain
*domain
,
1930 unsigned long long start
,
1931 unsigned long long end
)
1933 unsigned long first_vpfn
= start
>> VTD_PAGE_SHIFT
;
1934 unsigned long last_vpfn
= end
>> VTD_PAGE_SHIFT
;
1936 if (!reserve_iova(&domain
->iovad
, dma_to_mm_pfn(first_vpfn
),
1937 dma_to_mm_pfn(last_vpfn
))) {
1938 printk(KERN_ERR
"IOMMU: reserve iova failed\n");
1942 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
1943 start
, end
, domain
->id
);
1945 * RMRR range might have overlap with physical memory range,
1948 dma_pte_clear_range(domain
, first_vpfn
, last_vpfn
);
1950 return domain_pfn_mapping(domain
, first_vpfn
, first_vpfn
,
1951 last_vpfn
- first_vpfn
+ 1,
1952 DMA_PTE_READ
|DMA_PTE_WRITE
);
1955 static int iommu_prepare_identity_map(struct pci_dev
*pdev
,
1956 unsigned long long start
,
1957 unsigned long long end
)
1959 struct dmar_domain
*domain
;
1963 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1964 pci_name(pdev
), start
, end
);
1966 domain
= get_domain_for_dev(pdev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
1970 ret
= iommu_domain_identity_map(domain
, start
, end
);
1974 /* context entry init */
1975 ret
= domain_context_mapping(domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
1982 domain_exit(domain
);
1986 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit
*rmrr
,
1987 struct pci_dev
*pdev
)
1989 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
1991 return iommu_prepare_identity_map(pdev
, rmrr
->base_address
,
1992 rmrr
->end_address
+ 1);
1995 #ifdef CONFIG_DMAR_FLOPPY_WA
1996 static inline void iommu_prepare_isa(void)
1998 struct pci_dev
*pdev
;
2001 pdev
= pci_get_class(PCI_CLASS_BRIDGE_ISA
<< 8, NULL
);
2005 printk(KERN_INFO
"IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2006 ret
= iommu_prepare_identity_map(pdev
, 0, 16*1024*1024);
2009 printk(KERN_ERR
"IOMMU: Failed to create 0-16MiB identity map; "
2010 "floppy might not work\n");
2014 static inline void iommu_prepare_isa(void)
2018 #endif /* !CONFIG_DMAR_FLPY_WA */
2020 /* Initialize each context entry as pass through.*/
2021 static int __init
init_context_pass_through(void)
2023 struct pci_dev
*pdev
= NULL
;
2024 struct dmar_domain
*domain
;
2027 for_each_pci_dev(pdev
) {
2028 domain
= get_domain_for_dev(pdev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2029 ret
= domain_context_mapping(domain
, pdev
,
2030 CONTEXT_TT_PASS_THROUGH
);
2037 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
);
2039 static int __init
si_domain_work_fn(unsigned long start_pfn
,
2040 unsigned long end_pfn
, void *datax
)
2044 *ret
= iommu_domain_identity_map(si_domain
,
2045 (uint64_t)start_pfn
<< PAGE_SHIFT
,
2046 (uint64_t)end_pfn
<< PAGE_SHIFT
);
2051 static int si_domain_init(void)
2053 struct dmar_drhd_unit
*drhd
;
2054 struct intel_iommu
*iommu
;
2057 si_domain
= alloc_domain();
2061 pr_debug("Identity mapping domain is domain %d\n", si_domain
->id
);
2063 for_each_active_iommu(iommu
, drhd
) {
2064 ret
= iommu_attach_domain(si_domain
, iommu
);
2066 domain_exit(si_domain
);
2071 if (md_domain_init(si_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
2072 domain_exit(si_domain
);
2076 si_domain
->flags
= DOMAIN_FLAG_STATIC_IDENTITY
;
2078 for_each_online_node(nid
) {
2079 work_with_active_regions(nid
, si_domain_work_fn
, &ret
);
2087 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
2088 struct pci_dev
*pdev
);
2089 static int identity_mapping(struct pci_dev
*pdev
)
2091 struct device_domain_info
*info
;
2093 if (likely(!iommu_identity_mapping
))
2097 list_for_each_entry(info
, &si_domain
->devices
, link
)
2098 if (info
->dev
== pdev
)
2103 static int domain_add_dev_info(struct dmar_domain
*domain
,
2104 struct pci_dev
*pdev
)
2106 struct device_domain_info
*info
;
2107 unsigned long flags
;
2109 info
= alloc_devinfo_mem();
2113 info
->segment
= pci_domain_nr(pdev
->bus
);
2114 info
->bus
= pdev
->bus
->number
;
2115 info
->devfn
= pdev
->devfn
;
2117 info
->domain
= domain
;
2119 spin_lock_irqsave(&device_domain_lock
, flags
);
2120 list_add(&info
->link
, &domain
->devices
);
2121 list_add(&info
->global
, &device_domain_list
);
2122 pdev
->dev
.archdata
.iommu
= info
;
2123 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2128 static int iommu_should_identity_map(struct pci_dev
*pdev
, int startup
)
2130 if (iommu_identity_mapping
== 2)
2131 return IS_GFX_DEVICE(pdev
);
2134 * We want to start off with all devices in the 1:1 domain, and
2135 * take them out later if we find they can't access all of memory.
2137 * However, we can't do this for PCI devices behind bridges,
2138 * because all PCI devices behind the same bridge will end up
2139 * with the same source-id on their transactions.
2141 * Practically speaking, we can't change things around for these
2142 * devices at run-time, because we can't be sure there'll be no
2143 * DMA transactions in flight for any of their siblings.
2145 * So PCI devices (unless they're on the root bus) as well as
2146 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2147 * the 1:1 domain, just in _case_ one of their siblings turns out
2148 * not to be able to map all of memory.
2150 if (!pdev
->is_pcie
) {
2151 if (!pci_is_root_bus(pdev
->bus
))
2153 if (pdev
->class >> 8 == PCI_CLASS_BRIDGE_PCI
)
2155 } else if (pdev
->pcie_type
== PCI_EXP_TYPE_PCI_BRIDGE
)
2159 * At boot time, we don't yet know if devices will be 64-bit capable.
2160 * Assume that they will -- if they turn out not to be, then we can
2161 * take them out of the 1:1 domain later.
2164 return pdev
->dma_mask
> DMA_BIT_MASK(32);
2169 static int iommu_prepare_static_identity_mapping(void)
2171 struct pci_dev
*pdev
= NULL
;
2174 ret
= si_domain_init();
2178 for_each_pci_dev(pdev
) {
2179 if (iommu_should_identity_map(pdev
, 1)) {
2180 printk(KERN_INFO
"IOMMU: identity mapping for device %s\n",
2183 ret
= domain_context_mapping(si_domain
, pdev
,
2184 CONTEXT_TT_MULTI_LEVEL
);
2187 ret
= domain_add_dev_info(si_domain
, pdev
);
2196 int __init
init_dmars(void)
2198 struct dmar_drhd_unit
*drhd
;
2199 struct dmar_rmrr_unit
*rmrr
;
2200 struct pci_dev
*pdev
;
2201 struct intel_iommu
*iommu
;
2203 int pass_through
= 1;
2206 * In case pass through can not be enabled, iommu tries to use identity
2209 if (iommu_pass_through
)
2210 iommu_identity_mapping
= 1;
2215 * initialize and program root entry to not present
2218 for_each_drhd_unit(drhd
) {
2221 * lock not needed as this is only incremented in the single
2222 * threaded kernel __init code path all other access are read
2227 g_iommus
= kcalloc(g_num_of_iommus
, sizeof(struct intel_iommu
*),
2230 printk(KERN_ERR
"Allocating global iommu array failed\n");
2235 deferred_flush
= kzalloc(g_num_of_iommus
*
2236 sizeof(struct deferred_flush_tables
), GFP_KERNEL
);
2237 if (!deferred_flush
) {
2243 for_each_drhd_unit(drhd
) {
2247 iommu
= drhd
->iommu
;
2248 g_iommus
[iommu
->seq_id
] = iommu
;
2250 ret
= iommu_init_domains(iommu
);
2256 * we could share the same root & context tables
2257 * amoung all IOMMU's. Need to Split it later.
2259 ret
= iommu_alloc_root_entry(iommu
);
2261 printk(KERN_ERR
"IOMMU: allocate root entry failed\n");
2264 if (!ecap_pass_through(iommu
->ecap
))
2267 if (iommu_pass_through
)
2268 if (!pass_through
) {
2270 "Pass Through is not supported by hardware.\n");
2271 iommu_pass_through
= 0;
2275 * Start from the sane iommu hardware state.
2277 for_each_drhd_unit(drhd
) {
2281 iommu
= drhd
->iommu
;
2284 * If the queued invalidation is already initialized by us
2285 * (for example, while enabling interrupt-remapping) then
2286 * we got the things already rolling from a sane state.
2292 * Clear any previous faults.
2294 dmar_fault(-1, iommu
);
2296 * Disable queued invalidation if supported and already enabled
2297 * before OS handover.
2299 dmar_disable_qi(iommu
);
2302 for_each_drhd_unit(drhd
) {
2306 iommu
= drhd
->iommu
;
2308 if (dmar_enable_qi(iommu
)) {
2310 * Queued Invalidate not enabled, use Register Based
2313 iommu
->flush
.flush_context
= __iommu_flush_context
;
2314 iommu
->flush
.flush_iotlb
= __iommu_flush_iotlb
;
2315 printk(KERN_INFO
"IOMMU 0x%Lx: using Register based "
2317 (unsigned long long)drhd
->reg_base_addr
);
2319 iommu
->flush
.flush_context
= qi_flush_context
;
2320 iommu
->flush
.flush_iotlb
= qi_flush_iotlb
;
2321 printk(KERN_INFO
"IOMMU 0x%Lx: using Queued "
2323 (unsigned long long)drhd
->reg_base_addr
);
2328 * If pass through is set and enabled, context entries of all pci
2329 * devices are intialized by pass through translation type.
2331 if (iommu_pass_through
) {
2332 ret
= init_context_pass_through();
2334 printk(KERN_ERR
"IOMMU: Pass through init failed.\n");
2335 iommu_pass_through
= 0;
2340 * If pass through is not set or not enabled, setup context entries for
2341 * identity mappings for rmrr, gfx, and isa and may fall back to static
2342 * identity mapping if iommu_identity_mapping is set.
2344 if (!iommu_pass_through
) {
2345 #ifdef CONFIG_DMAR_BROKEN_GFX_WA
2346 if (!iommu_identity_mapping
)
2347 iommu_identity_mapping
= 2;
2349 if (iommu_identity_mapping
)
2350 iommu_prepare_static_identity_mapping();
2353 * for each dev attached to rmrr
2355 * locate drhd for dev, alloc domain for dev
2356 * allocate free domain
2357 * allocate page table entries for rmrr
2358 * if context not allocated for bus
2359 * allocate and init context
2360 * set present in root table for this bus
2361 * init context with domain, translation etc
2365 printk(KERN_INFO
"IOMMU: Setting RMRR:\n");
2366 for_each_rmrr_units(rmrr
) {
2367 for (i
= 0; i
< rmrr
->devices_cnt
; i
++) {
2368 pdev
= rmrr
->devices
[i
];
2370 * some BIOS lists non-exist devices in DMAR
2375 ret
= iommu_prepare_rmrr_dev(rmrr
, pdev
);
2378 "IOMMU: mapping reserved region failed\n");
2382 iommu_prepare_isa();
2388 * global invalidate context cache
2389 * global invalidate iotlb
2390 * enable translation
2392 for_each_drhd_unit(drhd
) {
2395 iommu
= drhd
->iommu
;
2397 iommu_flush_write_buffer(iommu
);
2399 ret
= dmar_set_interrupt(iommu
);
2403 iommu_set_root_entry(iommu
);
2405 iommu
->flush
.flush_context(iommu
, 0, 0, 0, DMA_CCMD_GLOBAL_INVL
);
2406 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
2407 iommu_disable_protect_mem_regions(iommu
);
2409 ret
= iommu_enable_translation(iommu
);
2416 for_each_drhd_unit(drhd
) {
2419 iommu
= drhd
->iommu
;
2426 /* This takes a number of _MM_ pages, not VTD pages */
2427 static struct iova
*intel_alloc_iova(struct device
*dev
,
2428 struct dmar_domain
*domain
,
2429 unsigned long nrpages
, uint64_t dma_mask
)
2431 struct pci_dev
*pdev
= to_pci_dev(dev
);
2432 struct iova
*iova
= NULL
;
2434 /* Restrict dma_mask to the width that the iommu can handle */
2435 dma_mask
= min_t(uint64_t, DOMAIN_MAX_ADDR(domain
->gaw
), dma_mask
);
2437 if (!dmar_forcedac
&& dma_mask
> DMA_BIT_MASK(32)) {
2439 * First try to allocate an io virtual address in
2440 * DMA_BIT_MASK(32) and if that fails then try allocating
2443 iova
= alloc_iova(&domain
->iovad
, nrpages
,
2444 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2448 iova
= alloc_iova(&domain
->iovad
, nrpages
, IOVA_PFN(dma_mask
), 1);
2449 if (unlikely(!iova
)) {
2450 printk(KERN_ERR
"Allocating %ld-page iova for %s failed",
2451 nrpages
, pci_name(pdev
));
2458 static struct dmar_domain
*
2459 get_valid_domain_for_dev(struct pci_dev
*pdev
)
2461 struct dmar_domain
*domain
;
2464 domain
= get_domain_for_dev(pdev
,
2465 DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2468 "Allocating domain for %s failed", pci_name(pdev
));
2472 /* make sure context mapping is ok */
2473 if (unlikely(!domain_context_mapped(pdev
))) {
2474 ret
= domain_context_mapping(domain
, pdev
,
2475 CONTEXT_TT_MULTI_LEVEL
);
2478 "Domain context map for %s failed",
2487 static int iommu_dummy(struct pci_dev
*pdev
)
2489 return pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
;
2492 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2493 static int iommu_no_mapping(struct device
*dev
)
2495 struct pci_dev
*pdev
;
2498 if (unlikely(dev
->bus
!= &pci_bus_type
))
2501 pdev
= to_pci_dev(dev
);
2502 if (iommu_dummy(pdev
))
2505 if (!iommu_identity_mapping
)
2508 found
= identity_mapping(pdev
);
2510 if (iommu_should_identity_map(pdev
, 0))
2514 * 32 bit DMA is removed from si_domain and fall back
2515 * to non-identity mapping.
2517 domain_remove_one_dev_info(si_domain
, pdev
);
2518 printk(KERN_INFO
"32bit %s uses non-identity mapping\n",
2524 * In case of a detached 64 bit DMA device from vm, the device
2525 * is put into si_domain for identity mapping.
2527 if (iommu_should_identity_map(pdev
, 0)) {
2529 ret
= domain_add_dev_info(si_domain
, pdev
);
2532 ret
= domain_context_mapping(si_domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
2534 printk(KERN_INFO
"64bit %s uses identity mapping\n",
2544 static dma_addr_t
__intel_map_single(struct device
*hwdev
, phys_addr_t paddr
,
2545 size_t size
, int dir
, u64 dma_mask
)
2547 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2548 struct dmar_domain
*domain
;
2549 phys_addr_t start_paddr
;
2553 struct intel_iommu
*iommu
;
2554 unsigned long paddr_pfn
= paddr
>> PAGE_SHIFT
;
2556 BUG_ON(dir
== DMA_NONE
);
2558 if (iommu_no_mapping(hwdev
))
2561 domain
= get_valid_domain_for_dev(pdev
);
2565 iommu
= domain_get_iommu(domain
);
2566 size
= aligned_nrpages(paddr
, size
);
2568 iova
= intel_alloc_iova(hwdev
, domain
, dma_to_mm_pfn(size
),
2574 * Check if DMAR supports zero-length reads on write only
2577 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2578 !cap_zlr(iommu
->cap
))
2579 prot
|= DMA_PTE_READ
;
2580 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2581 prot
|= DMA_PTE_WRITE
;
2583 * paddr - (paddr + size) might be partial page, we should map the whole
2584 * page. Note: if two part of one page are separately mapped, we
2585 * might have two guest_addr mapping to the same host paddr, but this
2586 * is not a big problem
2588 ret
= domain_pfn_mapping(domain
, mm_to_dma_pfn(iova
->pfn_lo
),
2589 mm_to_dma_pfn(paddr_pfn
), size
, prot
);
2593 /* it's a non-present to present mapping. Only flush if caching mode */
2594 if (cap_caching_mode(iommu
->cap
))
2595 iommu_flush_iotlb_psi(iommu
, 0, mm_to_dma_pfn(iova
->pfn_lo
), size
);
2597 iommu_flush_write_buffer(iommu
);
2599 start_paddr
= (phys_addr_t
)iova
->pfn_lo
<< PAGE_SHIFT
;
2600 start_paddr
+= paddr
& ~PAGE_MASK
;
2605 __free_iova(&domain
->iovad
, iova
);
2606 printk(KERN_ERR
"Device %s request: %zx@%llx dir %d --- failed\n",
2607 pci_name(pdev
), size
, (unsigned long long)paddr
, dir
);
2611 static dma_addr_t
intel_map_page(struct device
*dev
, struct page
*page
,
2612 unsigned long offset
, size_t size
,
2613 enum dma_data_direction dir
,
2614 struct dma_attrs
*attrs
)
2616 return __intel_map_single(dev
, page_to_phys(page
) + offset
, size
,
2617 dir
, to_pci_dev(dev
)->dma_mask
);
2620 static void flush_unmaps(void)
2626 /* just flush them all */
2627 for (i
= 0; i
< g_num_of_iommus
; i
++) {
2628 struct intel_iommu
*iommu
= g_iommus
[i
];
2632 if (!deferred_flush
[i
].next
)
2635 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
2636 DMA_TLB_GLOBAL_FLUSH
);
2637 for (j
= 0; j
< deferred_flush
[i
].next
; j
++) {
2639 struct iova
*iova
= deferred_flush
[i
].iova
[j
];
2641 mask
= (iova
->pfn_hi
- iova
->pfn_lo
+ 1) << PAGE_SHIFT
;
2642 mask
= ilog2(mask
>> VTD_PAGE_SHIFT
);
2643 iommu_flush_dev_iotlb(deferred_flush
[i
].domain
[j
],
2644 iova
->pfn_lo
<< PAGE_SHIFT
, mask
);
2645 __free_iova(&deferred_flush
[i
].domain
[j
]->iovad
, iova
);
2647 deferred_flush
[i
].next
= 0;
2653 static void flush_unmaps_timeout(unsigned long data
)
2655 unsigned long flags
;
2657 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2659 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2662 static void add_unmap(struct dmar_domain
*dom
, struct iova
*iova
)
2664 unsigned long flags
;
2666 struct intel_iommu
*iommu
;
2668 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2669 if (list_size
== HIGH_WATER_MARK
)
2672 iommu
= domain_get_iommu(dom
);
2673 iommu_id
= iommu
->seq_id
;
2675 next
= deferred_flush
[iommu_id
].next
;
2676 deferred_flush
[iommu_id
].domain
[next
] = dom
;
2677 deferred_flush
[iommu_id
].iova
[next
] = iova
;
2678 deferred_flush
[iommu_id
].next
++;
2681 mod_timer(&unmap_timer
, jiffies
+ msecs_to_jiffies(10));
2685 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2688 static void intel_unmap_page(struct device
*dev
, dma_addr_t dev_addr
,
2689 size_t size
, enum dma_data_direction dir
,
2690 struct dma_attrs
*attrs
)
2692 struct pci_dev
*pdev
= to_pci_dev(dev
);
2693 struct dmar_domain
*domain
;
2694 unsigned long start_pfn
, last_pfn
;
2696 struct intel_iommu
*iommu
;
2698 if (iommu_no_mapping(dev
))
2701 domain
= find_domain(pdev
);
2704 iommu
= domain_get_iommu(domain
);
2706 iova
= find_iova(&domain
->iovad
, IOVA_PFN(dev_addr
));
2707 if (WARN_ONCE(!iova
, "Driver unmaps unmatched page at PFN %llx\n",
2708 (unsigned long long)dev_addr
))
2711 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2712 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
2714 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2715 pci_name(pdev
), start_pfn
, last_pfn
);
2717 /* clear the whole page */
2718 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
2720 /* free page tables */
2721 dma_pte_free_pagetable(domain
, start_pfn
, last_pfn
);
2723 if (intel_iommu_strict
) {
2724 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
2725 last_pfn
- start_pfn
+ 1);
2727 __free_iova(&domain
->iovad
, iova
);
2729 add_unmap(domain
, iova
);
2731 * queue up the release of the unmap to save the 1/6th of the
2732 * cpu used up by the iotlb flush operation...
2737 static void intel_unmap_single(struct device
*dev
, dma_addr_t dev_addr
, size_t size
,
2740 intel_unmap_page(dev
, dev_addr
, size
, dir
, NULL
);
2743 static void *intel_alloc_coherent(struct device
*hwdev
, size_t size
,
2744 dma_addr_t
*dma_handle
, gfp_t flags
)
2749 size
= PAGE_ALIGN(size
);
2750 order
= get_order(size
);
2751 flags
&= ~(GFP_DMA
| GFP_DMA32
);
2753 vaddr
= (void *)__get_free_pages(flags
, order
);
2756 memset(vaddr
, 0, size
);
2758 *dma_handle
= __intel_map_single(hwdev
, virt_to_bus(vaddr
), size
,
2760 hwdev
->coherent_dma_mask
);
2763 free_pages((unsigned long)vaddr
, order
);
2767 static void intel_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
2768 dma_addr_t dma_handle
)
2772 size
= PAGE_ALIGN(size
);
2773 order
= get_order(size
);
2775 intel_unmap_single(hwdev
, dma_handle
, size
, DMA_BIDIRECTIONAL
);
2776 free_pages((unsigned long)vaddr
, order
);
2779 static void intel_unmap_sg(struct device
*hwdev
, struct scatterlist
*sglist
,
2780 int nelems
, enum dma_data_direction dir
,
2781 struct dma_attrs
*attrs
)
2783 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2784 struct dmar_domain
*domain
;
2785 unsigned long start_pfn
, last_pfn
;
2787 struct intel_iommu
*iommu
;
2789 if (iommu_no_mapping(hwdev
))
2792 domain
= find_domain(pdev
);
2795 iommu
= domain_get_iommu(domain
);
2797 iova
= find_iova(&domain
->iovad
, IOVA_PFN(sglist
[0].dma_address
));
2798 if (WARN_ONCE(!iova
, "Driver unmaps unmatched sglist at PFN %llx\n",
2799 (unsigned long long)sglist
[0].dma_address
))
2802 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2803 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
2805 /* clear the whole page */
2806 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
2808 /* free page tables */
2809 dma_pte_free_pagetable(domain
, start_pfn
, last_pfn
);
2811 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
2812 (last_pfn
- start_pfn
+ 1));
2815 __free_iova(&domain
->iovad
, iova
);
2818 static int intel_nontranslate_map_sg(struct device
*hddev
,
2819 struct scatterlist
*sglist
, int nelems
, int dir
)
2822 struct scatterlist
*sg
;
2824 for_each_sg(sglist
, sg
, nelems
, i
) {
2825 BUG_ON(!sg_page(sg
));
2826 sg
->dma_address
= page_to_phys(sg_page(sg
)) + sg
->offset
;
2827 sg
->dma_length
= sg
->length
;
2832 static int intel_map_sg(struct device
*hwdev
, struct scatterlist
*sglist
, int nelems
,
2833 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
2836 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2837 struct dmar_domain
*domain
;
2840 size_t offset_pfn
= 0;
2841 struct iova
*iova
= NULL
;
2843 struct scatterlist
*sg
;
2844 unsigned long start_vpfn
;
2845 struct intel_iommu
*iommu
;
2847 BUG_ON(dir
== DMA_NONE
);
2848 if (iommu_no_mapping(hwdev
))
2849 return intel_nontranslate_map_sg(hwdev
, sglist
, nelems
, dir
);
2851 domain
= get_valid_domain_for_dev(pdev
);
2855 iommu
= domain_get_iommu(domain
);
2857 for_each_sg(sglist
, sg
, nelems
, i
)
2858 size
+= aligned_nrpages(sg
->offset
, sg
->length
);
2860 iova
= intel_alloc_iova(hwdev
, domain
, dma_to_mm_pfn(size
),
2863 sglist
->dma_length
= 0;
2868 * Check if DMAR supports zero-length reads on write only
2871 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2872 !cap_zlr(iommu
->cap
))
2873 prot
|= DMA_PTE_READ
;
2874 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2875 prot
|= DMA_PTE_WRITE
;
2877 start_vpfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2879 ret
= domain_sg_mapping(domain
, start_vpfn
, sglist
, size
, prot
);
2880 if (unlikely(ret
)) {
2881 /* clear the page */
2882 dma_pte_clear_range(domain
, start_vpfn
,
2883 start_vpfn
+ size
- 1);
2884 /* free page tables */
2885 dma_pte_free_pagetable(domain
, start_vpfn
,
2886 start_vpfn
+ size
- 1);
2888 __free_iova(&domain
->iovad
, iova
);
2892 /* it's a non-present to present mapping. Only flush if caching mode */
2893 if (cap_caching_mode(iommu
->cap
))
2894 iommu_flush_iotlb_psi(iommu
, 0, start_vpfn
, offset_pfn
);
2896 iommu_flush_write_buffer(iommu
);
2901 static int intel_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
2906 struct dma_map_ops intel_dma_ops
= {
2907 .alloc_coherent
= intel_alloc_coherent
,
2908 .free_coherent
= intel_free_coherent
,
2909 .map_sg
= intel_map_sg
,
2910 .unmap_sg
= intel_unmap_sg
,
2911 .map_page
= intel_map_page
,
2912 .unmap_page
= intel_unmap_page
,
2913 .mapping_error
= intel_mapping_error
,
2916 static inline int iommu_domain_cache_init(void)
2920 iommu_domain_cache
= kmem_cache_create("iommu_domain",
2921 sizeof(struct dmar_domain
),
2926 if (!iommu_domain_cache
) {
2927 printk(KERN_ERR
"Couldn't create iommu_domain cache\n");
2934 static inline int iommu_devinfo_cache_init(void)
2938 iommu_devinfo_cache
= kmem_cache_create("iommu_devinfo",
2939 sizeof(struct device_domain_info
),
2943 if (!iommu_devinfo_cache
) {
2944 printk(KERN_ERR
"Couldn't create devinfo cache\n");
2951 static inline int iommu_iova_cache_init(void)
2955 iommu_iova_cache
= kmem_cache_create("iommu_iova",
2956 sizeof(struct iova
),
2960 if (!iommu_iova_cache
) {
2961 printk(KERN_ERR
"Couldn't create iova cache\n");
2968 static int __init
iommu_init_mempool(void)
2971 ret
= iommu_iova_cache_init();
2975 ret
= iommu_domain_cache_init();
2979 ret
= iommu_devinfo_cache_init();
2983 kmem_cache_destroy(iommu_domain_cache
);
2985 kmem_cache_destroy(iommu_iova_cache
);
2990 static void __init
iommu_exit_mempool(void)
2992 kmem_cache_destroy(iommu_devinfo_cache
);
2993 kmem_cache_destroy(iommu_domain_cache
);
2994 kmem_cache_destroy(iommu_iova_cache
);
2998 static void __init
init_no_remapping_devices(void)
3000 struct dmar_drhd_unit
*drhd
;
3002 for_each_drhd_unit(drhd
) {
3003 if (!drhd
->include_all
) {
3005 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
3006 if (drhd
->devices
[i
] != NULL
)
3008 /* ignore DMAR unit if no pci devices exist */
3009 if (i
== drhd
->devices_cnt
)
3017 for_each_drhd_unit(drhd
) {
3019 if (drhd
->ignored
|| drhd
->include_all
)
3022 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
3023 if (drhd
->devices
[i
] &&
3024 !IS_GFX_DEVICE(drhd
->devices
[i
]))
3027 if (i
< drhd
->devices_cnt
)
3030 /* bypass IOMMU if it is just for gfx devices */
3032 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
3033 if (!drhd
->devices
[i
])
3035 drhd
->devices
[i
]->dev
.archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
3040 #ifdef CONFIG_SUSPEND
3041 static int init_iommu_hw(void)
3043 struct dmar_drhd_unit
*drhd
;
3044 struct intel_iommu
*iommu
= NULL
;
3046 for_each_active_iommu(iommu
, drhd
)
3048 dmar_reenable_qi(iommu
);
3050 for_each_active_iommu(iommu
, drhd
) {
3051 iommu_flush_write_buffer(iommu
);
3053 iommu_set_root_entry(iommu
);
3055 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3056 DMA_CCMD_GLOBAL_INVL
);
3057 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3058 DMA_TLB_GLOBAL_FLUSH
);
3059 iommu_disable_protect_mem_regions(iommu
);
3060 iommu_enable_translation(iommu
);
3066 static void iommu_flush_all(void)
3068 struct dmar_drhd_unit
*drhd
;
3069 struct intel_iommu
*iommu
;
3071 for_each_active_iommu(iommu
, drhd
) {
3072 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3073 DMA_CCMD_GLOBAL_INVL
);
3074 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3075 DMA_TLB_GLOBAL_FLUSH
);
3079 static int iommu_suspend(struct sys_device
*dev
, pm_message_t state
)
3081 struct dmar_drhd_unit
*drhd
;
3082 struct intel_iommu
*iommu
= NULL
;
3085 for_each_active_iommu(iommu
, drhd
) {
3086 iommu
->iommu_state
= kzalloc(sizeof(u32
) * MAX_SR_DMAR_REGS
,
3088 if (!iommu
->iommu_state
)
3094 for_each_active_iommu(iommu
, drhd
) {
3095 iommu_disable_translation(iommu
);
3097 spin_lock_irqsave(&iommu
->register_lock
, flag
);
3099 iommu
->iommu_state
[SR_DMAR_FECTL_REG
] =
3100 readl(iommu
->reg
+ DMAR_FECTL_REG
);
3101 iommu
->iommu_state
[SR_DMAR_FEDATA_REG
] =
3102 readl(iommu
->reg
+ DMAR_FEDATA_REG
);
3103 iommu
->iommu_state
[SR_DMAR_FEADDR_REG
] =
3104 readl(iommu
->reg
+ DMAR_FEADDR_REG
);
3105 iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
] =
3106 readl(iommu
->reg
+ DMAR_FEUADDR_REG
);
3108 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3113 for_each_active_iommu(iommu
, drhd
)
3114 kfree(iommu
->iommu_state
);
3119 static int iommu_resume(struct sys_device
*dev
)
3121 struct dmar_drhd_unit
*drhd
;
3122 struct intel_iommu
*iommu
= NULL
;
3125 if (init_iommu_hw()) {
3126 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3130 for_each_active_iommu(iommu
, drhd
) {
3132 spin_lock_irqsave(&iommu
->register_lock
, flag
);
3134 writel(iommu
->iommu_state
[SR_DMAR_FECTL_REG
],
3135 iommu
->reg
+ DMAR_FECTL_REG
);
3136 writel(iommu
->iommu_state
[SR_DMAR_FEDATA_REG
],
3137 iommu
->reg
+ DMAR_FEDATA_REG
);
3138 writel(iommu
->iommu_state
[SR_DMAR_FEADDR_REG
],
3139 iommu
->reg
+ DMAR_FEADDR_REG
);
3140 writel(iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
],
3141 iommu
->reg
+ DMAR_FEUADDR_REG
);
3143 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3146 for_each_active_iommu(iommu
, drhd
)
3147 kfree(iommu
->iommu_state
);
3152 static struct sysdev_class iommu_sysclass
= {
3154 .resume
= iommu_resume
,
3155 .suspend
= iommu_suspend
,
3158 static struct sys_device device_iommu
= {
3159 .cls
= &iommu_sysclass
,
3162 static int __init
init_iommu_sysfs(void)
3166 error
= sysdev_class_register(&iommu_sysclass
);
3170 error
= sysdev_register(&device_iommu
);
3172 sysdev_class_unregister(&iommu_sysclass
);
3178 static int __init
init_iommu_sysfs(void)
3182 #endif /* CONFIG_PM */
3184 int __init
intel_iommu_init(void)
3189 /* VT-d is required for a TXT/tboot launch, so enforce that */
3190 force_on
= tboot_force_iommu();
3192 if (dmar_table_init()) {
3194 panic("tboot: Failed to initialize DMAR table\n");
3198 if (dmar_dev_scope_init()) {
3200 panic("tboot: Failed to initialize DMAR device scope\n");
3205 * Check the need for DMA-remapping initialization now.
3206 * Above initialization will also be used by Interrupt-remapping.
3208 if (no_iommu
|| (swiotlb
&& !iommu_pass_through
) || dmar_disabled
)
3211 iommu_init_mempool();
3212 dmar_init_reserved_ranges();
3214 init_no_remapping_devices();
3219 panic("tboot: Failed to initialize DMARs\n");
3220 printk(KERN_ERR
"IOMMU: dmar init failed\n");
3221 put_iova_domain(&reserved_iova_list
);
3222 iommu_exit_mempool();
3226 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3228 init_timer(&unmap_timer
);
3231 if (!iommu_pass_through
) {
3233 "Multi-level page-table translation for DMAR.\n");
3234 dma_ops
= &intel_dma_ops
;
3237 "DMAR: Pass through translation for DMAR.\n");
3241 register_iommu(&intel_iommu_ops
);
3246 static void iommu_detach_dependent_devices(struct intel_iommu
*iommu
,
3247 struct pci_dev
*pdev
)
3249 struct pci_dev
*tmp
, *parent
;
3251 if (!iommu
|| !pdev
)
3254 /* dependent device detach */
3255 tmp
= pci_find_upstream_pcie_bridge(pdev
);
3256 /* Secondary interface's bus number and devfn 0 */
3258 parent
= pdev
->bus
->self
;
3259 while (parent
!= tmp
) {
3260 iommu_detach_dev(iommu
, parent
->bus
->number
,
3262 parent
= parent
->bus
->self
;
3264 if (tmp
->is_pcie
) /* this is a PCIE-to-PCI bridge */
3265 iommu_detach_dev(iommu
,
3266 tmp
->subordinate
->number
, 0);
3267 else /* this is a legacy PCI bridge */
3268 iommu_detach_dev(iommu
, tmp
->bus
->number
,
3273 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
3274 struct pci_dev
*pdev
)
3276 struct device_domain_info
*info
;
3277 struct intel_iommu
*iommu
;
3278 unsigned long flags
;
3280 struct list_head
*entry
, *tmp
;
3282 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3287 spin_lock_irqsave(&device_domain_lock
, flags
);
3288 list_for_each_safe(entry
, tmp
, &domain
->devices
) {
3289 info
= list_entry(entry
, struct device_domain_info
, link
);
3290 /* No need to compare PCI domain; it has to be the same */
3291 if (info
->bus
== pdev
->bus
->number
&&
3292 info
->devfn
== pdev
->devfn
) {
3293 list_del(&info
->link
);
3294 list_del(&info
->global
);
3296 info
->dev
->dev
.archdata
.iommu
= NULL
;
3297 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3299 iommu_disable_dev_iotlb(info
);
3300 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3301 iommu_detach_dependent_devices(iommu
, pdev
);
3302 free_devinfo_mem(info
);
3304 spin_lock_irqsave(&device_domain_lock
, flags
);
3312 /* if there is no other devices under the same iommu
3313 * owned by this domain, clear this iommu in iommu_bmp
3314 * update iommu count and coherency
3316 if (iommu
== device_to_iommu(info
->segment
, info
->bus
,
3322 unsigned long tmp_flags
;
3323 spin_lock_irqsave(&domain
->iommu_lock
, tmp_flags
);
3324 clear_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
3325 domain
->iommu_count
--;
3326 domain_update_iommu_cap(domain
);
3327 spin_unlock_irqrestore(&domain
->iommu_lock
, tmp_flags
);
3330 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3333 static void vm_domain_remove_all_dev_info(struct dmar_domain
*domain
)
3335 struct device_domain_info
*info
;
3336 struct intel_iommu
*iommu
;
3337 unsigned long flags1
, flags2
;
3339 spin_lock_irqsave(&device_domain_lock
, flags1
);
3340 while (!list_empty(&domain
->devices
)) {
3341 info
= list_entry(domain
->devices
.next
,
3342 struct device_domain_info
, link
);
3343 list_del(&info
->link
);
3344 list_del(&info
->global
);
3346 info
->dev
->dev
.archdata
.iommu
= NULL
;
3348 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3350 iommu_disable_dev_iotlb(info
);
3351 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
3352 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3353 iommu_detach_dependent_devices(iommu
, info
->dev
);
3355 /* clear this iommu in iommu_bmp, update iommu count
3358 spin_lock_irqsave(&domain
->iommu_lock
, flags2
);
3359 if (test_and_clear_bit(iommu
->seq_id
,
3360 &domain
->iommu_bmp
)) {
3361 domain
->iommu_count
--;
3362 domain_update_iommu_cap(domain
);
3364 spin_unlock_irqrestore(&domain
->iommu_lock
, flags2
);
3366 free_devinfo_mem(info
);
3367 spin_lock_irqsave(&device_domain_lock
, flags1
);
3369 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3372 /* domain id for virtual machine, it won't be set in context */
3373 static unsigned long vm_domid
;
3375 static int vm_domain_min_agaw(struct dmar_domain
*domain
)
3378 int min_agaw
= domain
->agaw
;
3380 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
3381 for (; i
< g_num_of_iommus
; ) {
3382 if (min_agaw
> g_iommus
[i
]->agaw
)
3383 min_agaw
= g_iommus
[i
]->agaw
;
3385 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
3391 static struct dmar_domain
*iommu_alloc_vm_domain(void)
3393 struct dmar_domain
*domain
;
3395 domain
= alloc_domain_mem();
3399 domain
->id
= vm_domid
++;
3400 memset(&domain
->iommu_bmp
, 0, sizeof(unsigned long));
3401 domain
->flags
= DOMAIN_FLAG_VIRTUAL_MACHINE
;
3406 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
)
3410 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
3411 spin_lock_init(&domain
->iommu_lock
);
3413 domain_reserve_special_ranges(domain
);
3415 /* calculate AGAW */
3416 domain
->gaw
= guest_width
;
3417 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
3418 domain
->agaw
= width_to_agaw(adjust_width
);
3420 INIT_LIST_HEAD(&domain
->devices
);
3422 domain
->iommu_count
= 0;
3423 domain
->iommu_coherency
= 0;
3424 domain
->iommu_snooping
= 0;
3425 domain
->max_addr
= 0;
3427 /* always allocate the top pgd */
3428 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page();
3431 domain_flush_cache(domain
, domain
->pgd
, PAGE_SIZE
);
3435 static void iommu_free_vm_domain(struct dmar_domain
*domain
)
3437 unsigned long flags
;
3438 struct dmar_drhd_unit
*drhd
;
3439 struct intel_iommu
*iommu
;
3441 unsigned long ndomains
;
3443 for_each_drhd_unit(drhd
) {
3446 iommu
= drhd
->iommu
;
3448 ndomains
= cap_ndoms(iommu
->cap
);
3449 i
= find_first_bit(iommu
->domain_ids
, ndomains
);
3450 for (; i
< ndomains
; ) {
3451 if (iommu
->domains
[i
] == domain
) {
3452 spin_lock_irqsave(&iommu
->lock
, flags
);
3453 clear_bit(i
, iommu
->domain_ids
);
3454 iommu
->domains
[i
] = NULL
;
3455 spin_unlock_irqrestore(&iommu
->lock
, flags
);
3458 i
= find_next_bit(iommu
->domain_ids
, ndomains
, i
+1);
3463 static void vm_domain_exit(struct dmar_domain
*domain
)
3465 /* Domain 0 is reserved, so dont process it */
3469 vm_domain_remove_all_dev_info(domain
);
3471 put_iova_domain(&domain
->iovad
);
3474 dma_pte_clear_range(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
3476 /* free page tables */
3477 dma_pte_free_pagetable(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
3479 iommu_free_vm_domain(domain
);
3480 free_domain_mem(domain
);
3483 static int intel_iommu_domain_init(struct iommu_domain
*domain
)
3485 struct dmar_domain
*dmar_domain
;
3487 dmar_domain
= iommu_alloc_vm_domain();
3490 "intel_iommu_domain_init: dmar_domain == NULL\n");
3493 if (md_domain_init(dmar_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
3495 "intel_iommu_domain_init() failed\n");
3496 vm_domain_exit(dmar_domain
);
3499 domain
->priv
= dmar_domain
;
3504 static void intel_iommu_domain_destroy(struct iommu_domain
*domain
)
3506 struct dmar_domain
*dmar_domain
= domain
->priv
;
3508 domain
->priv
= NULL
;
3509 vm_domain_exit(dmar_domain
);
3512 static int intel_iommu_attach_device(struct iommu_domain
*domain
,
3515 struct dmar_domain
*dmar_domain
= domain
->priv
;
3516 struct pci_dev
*pdev
= to_pci_dev(dev
);
3517 struct intel_iommu
*iommu
;
3522 /* normally pdev is not mapped */
3523 if (unlikely(domain_context_mapped(pdev
))) {
3524 struct dmar_domain
*old_domain
;
3526 old_domain
= find_domain(pdev
);
3528 if (dmar_domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
3529 dmar_domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
)
3530 domain_remove_one_dev_info(old_domain
, pdev
);
3532 domain_remove_dev_info(old_domain
);
3536 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3541 /* check if this iommu agaw is sufficient for max mapped address */
3542 addr_width
= agaw_to_width(iommu
->agaw
);
3543 end
= DOMAIN_MAX_ADDR(addr_width
);
3544 end
= end
& VTD_PAGE_MASK
;
3545 if (end
< dmar_domain
->max_addr
) {
3546 printk(KERN_ERR
"%s: iommu agaw (%d) is not "
3547 "sufficient for the mapped address (%llx)\n",
3548 __func__
, iommu
->agaw
, dmar_domain
->max_addr
);
3552 ret
= domain_add_dev_info(dmar_domain
, pdev
);
3556 ret
= domain_context_mapping(dmar_domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
3560 static void intel_iommu_detach_device(struct iommu_domain
*domain
,
3563 struct dmar_domain
*dmar_domain
= domain
->priv
;
3564 struct pci_dev
*pdev
= to_pci_dev(dev
);
3566 domain_remove_one_dev_info(dmar_domain
, pdev
);
3569 static int intel_iommu_map_range(struct iommu_domain
*domain
,
3570 unsigned long iova
, phys_addr_t hpa
,
3571 size_t size
, int iommu_prot
)
3573 struct dmar_domain
*dmar_domain
= domain
->priv
;
3579 if (iommu_prot
& IOMMU_READ
)
3580 prot
|= DMA_PTE_READ
;
3581 if (iommu_prot
& IOMMU_WRITE
)
3582 prot
|= DMA_PTE_WRITE
;
3583 if ((iommu_prot
& IOMMU_CACHE
) && dmar_domain
->iommu_snooping
)
3584 prot
|= DMA_PTE_SNP
;
3586 max_addr
= iova
+ size
;
3587 if (dmar_domain
->max_addr
< max_addr
) {
3591 /* check if minimum agaw is sufficient for mapped address */
3592 min_agaw
= vm_domain_min_agaw(dmar_domain
);
3593 addr_width
= agaw_to_width(min_agaw
);
3594 end
= DOMAIN_MAX_ADDR(addr_width
);
3595 end
= end
& VTD_PAGE_MASK
;
3596 if (end
< max_addr
) {
3597 printk(KERN_ERR
"%s: iommu agaw (%d) is not "
3598 "sufficient for the mapped address (%llx)\n",
3599 __func__
, min_agaw
, max_addr
);
3602 dmar_domain
->max_addr
= max_addr
;
3604 /* Round up size to next multiple of PAGE_SIZE, if it and
3605 the low bits of hpa would take us onto the next page */
3606 size
= aligned_nrpages(hpa
, size
);
3607 ret
= domain_pfn_mapping(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
3608 hpa
>> VTD_PAGE_SHIFT
, size
, prot
);
3612 static void intel_iommu_unmap_range(struct iommu_domain
*domain
,
3613 unsigned long iova
, size_t size
)
3615 struct dmar_domain
*dmar_domain
= domain
->priv
;
3620 dma_pte_clear_range(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
3621 (iova
+ size
- 1) >> VTD_PAGE_SHIFT
);
3623 if (dmar_domain
->max_addr
== iova
+ size
)
3624 dmar_domain
->max_addr
= iova
;
3627 static phys_addr_t
intel_iommu_iova_to_phys(struct iommu_domain
*domain
,
3630 struct dmar_domain
*dmar_domain
= domain
->priv
;
3631 struct dma_pte
*pte
;
3634 pte
= pfn_to_dma_pte(dmar_domain
, iova
>> VTD_PAGE_SHIFT
);
3636 phys
= dma_pte_addr(pte
);
3641 static int intel_iommu_domain_has_cap(struct iommu_domain
*domain
,
3644 struct dmar_domain
*dmar_domain
= domain
->priv
;
3646 if (cap
== IOMMU_CAP_CACHE_COHERENCY
)
3647 return dmar_domain
->iommu_snooping
;
3652 static struct iommu_ops intel_iommu_ops
= {
3653 .domain_init
= intel_iommu_domain_init
,
3654 .domain_destroy
= intel_iommu_domain_destroy
,
3655 .attach_dev
= intel_iommu_attach_device
,
3656 .detach_dev
= intel_iommu_detach_device
,
3657 .map
= intel_iommu_map_range
,
3658 .unmap
= intel_iommu_unmap_range
,
3659 .iova_to_phys
= intel_iommu_iova_to_phys
,
3660 .domain_has_cap
= intel_iommu_domain_has_cap
,
3663 static void __devinit
quirk_iommu_rwbf(struct pci_dev
*dev
)
3666 * Mobile 4 Series Chipset neglects to set RWBF capability,
3669 printk(KERN_INFO
"DMAR: Forcing write-buffer flush capability\n");
3673 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_rwbf
);