JBD: round commit timer up to avoid uncommitted transaction
[linux/fpc-iii.git] / fs / ext4 / inode.c
blobf9c642b22efabb56f5ec3ae109bf2eaf75beee8a
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "ext4_extents.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode->i_sb)->s_journal,
55 &EXT4_I(inode)->jinode,
56 new_size);
59 static void ext4_invalidatepage(struct page *page, unsigned long offset);
62 * Test whether an inode is a fast symlink.
64 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 int ea_blocks = EXT4_I(inode)->i_file_acl ?
67 (inode->i_sb->s_blocksize >> 9) : 0;
69 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 * The ext4 forget function must perform a revoke if we are freeing data
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
81 * If the handle isn't valid we're not journaling, but we still need to
82 * call into ext4_journal_revoke() to put the buffer head.
84 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
85 struct buffer_head *bh, ext4_fsblk_t blocknr)
87 int err;
89 might_sleep();
91 BUFFER_TRACE(bh, "enter");
93 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
94 "data mode %x\n",
95 bh, is_metadata, inode->i_mode,
96 test_opt(inode->i_sb, DATA_FLAGS));
98 /* Never use the revoke function if we are doing full data
99 * journaling: there is no need to, and a V1 superblock won't
100 * support it. Otherwise, only skip the revoke on un-journaled
101 * data blocks. */
103 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
104 (!is_metadata && !ext4_should_journal_data(inode))) {
105 if (bh) {
106 BUFFER_TRACE(bh, "call jbd2_journal_forget");
107 return ext4_journal_forget(handle, bh);
109 return 0;
113 * data!=journal && (is_metadata || should_journal_data(inode))
115 BUFFER_TRACE(bh, "call ext4_journal_revoke");
116 err = ext4_journal_revoke(handle, blocknr, bh);
117 if (err)
118 ext4_abort(inode->i_sb, __func__,
119 "error %d when attempting revoke", err);
120 BUFFER_TRACE(bh, "exit");
121 return err;
125 * Work out how many blocks we need to proceed with the next chunk of a
126 * truncate transaction.
128 static unsigned long blocks_for_truncate(struct inode *inode)
130 ext4_lblk_t needed;
132 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
134 /* Give ourselves just enough room to cope with inodes in which
135 * i_blocks is corrupt: we've seen disk corruptions in the past
136 * which resulted in random data in an inode which looked enough
137 * like a regular file for ext4 to try to delete it. Things
138 * will go a bit crazy if that happens, but at least we should
139 * try not to panic the whole kernel. */
140 if (needed < 2)
141 needed = 2;
143 /* But we need to bound the transaction so we don't overflow the
144 * journal. */
145 if (needed > EXT4_MAX_TRANS_DATA)
146 needed = EXT4_MAX_TRANS_DATA;
148 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
152 * Truncate transactions can be complex and absolutely huge. So we need to
153 * be able to restart the transaction at a conventient checkpoint to make
154 * sure we don't overflow the journal.
156 * start_transaction gets us a new handle for a truncate transaction,
157 * and extend_transaction tries to extend the existing one a bit. If
158 * extend fails, we need to propagate the failure up and restart the
159 * transaction in the top-level truncate loop. --sct
161 static handle_t *start_transaction(struct inode *inode)
163 handle_t *result;
165 result = ext4_journal_start(inode, blocks_for_truncate(inode));
166 if (!IS_ERR(result))
167 return result;
169 ext4_std_error(inode->i_sb, PTR_ERR(result));
170 return result;
174 * Try to extend this transaction for the purposes of truncation.
176 * Returns 0 if we managed to create more room. If we can't create more
177 * room, and the transaction must be restarted we return 1.
179 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
181 if (!ext4_handle_valid(handle))
182 return 0;
183 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
184 return 0;
185 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
186 return 0;
187 return 1;
191 * Restart the transaction associated with *handle. This does a commit,
192 * so before we call here everything must be consistently dirtied against
193 * this transaction.
195 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
197 BUG_ON(EXT4_JOURNAL(inode) == NULL);
198 jbd_debug(2, "restarting handle %p\n", handle);
199 return ext4_journal_restart(handle, blocks_for_truncate(inode));
203 * Called at the last iput() if i_nlink is zero.
205 void ext4_delete_inode(struct inode *inode)
207 handle_t *handle;
208 int err;
210 if (ext4_should_order_data(inode))
211 ext4_begin_ordered_truncate(inode, 0);
212 truncate_inode_pages(&inode->i_data, 0);
214 if (is_bad_inode(inode))
215 goto no_delete;
217 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
218 if (IS_ERR(handle)) {
219 ext4_std_error(inode->i_sb, PTR_ERR(handle));
221 * If we're going to skip the normal cleanup, we still need to
222 * make sure that the in-core orphan linked list is properly
223 * cleaned up.
225 ext4_orphan_del(NULL, inode);
226 goto no_delete;
229 if (IS_SYNC(inode))
230 ext4_handle_sync(handle);
231 inode->i_size = 0;
232 err = ext4_mark_inode_dirty(handle, inode);
233 if (err) {
234 ext4_warning(inode->i_sb, __func__,
235 "couldn't mark inode dirty (err %d)", err);
236 goto stop_handle;
238 if (inode->i_blocks)
239 ext4_truncate(inode);
242 * ext4_ext_truncate() doesn't reserve any slop when it
243 * restarts journal transactions; therefore there may not be
244 * enough credits left in the handle to remove the inode from
245 * the orphan list and set the dtime field.
247 if (!ext4_handle_has_enough_credits(handle, 3)) {
248 err = ext4_journal_extend(handle, 3);
249 if (err > 0)
250 err = ext4_journal_restart(handle, 3);
251 if (err != 0) {
252 ext4_warning(inode->i_sb, __func__,
253 "couldn't extend journal (err %d)", err);
254 stop_handle:
255 ext4_journal_stop(handle);
256 goto no_delete;
261 * Kill off the orphan record which ext4_truncate created.
262 * AKPM: I think this can be inside the above `if'.
263 * Note that ext4_orphan_del() has to be able to cope with the
264 * deletion of a non-existent orphan - this is because we don't
265 * know if ext4_truncate() actually created an orphan record.
266 * (Well, we could do this if we need to, but heck - it works)
268 ext4_orphan_del(handle, inode);
269 EXT4_I(inode)->i_dtime = get_seconds();
272 * One subtle ordering requirement: if anything has gone wrong
273 * (transaction abort, IO errors, whatever), then we can still
274 * do these next steps (the fs will already have been marked as
275 * having errors), but we can't free the inode if the mark_dirty
276 * fails.
278 if (ext4_mark_inode_dirty(handle, inode))
279 /* If that failed, just do the required in-core inode clear. */
280 clear_inode(inode);
281 else
282 ext4_free_inode(handle, inode);
283 ext4_journal_stop(handle);
284 return;
285 no_delete:
286 clear_inode(inode); /* We must guarantee clearing of inode... */
289 typedef struct {
290 __le32 *p;
291 __le32 key;
292 struct buffer_head *bh;
293 } Indirect;
295 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
297 p->key = *(p->p = v);
298 p->bh = bh;
302 * ext4_block_to_path - parse the block number into array of offsets
303 * @inode: inode in question (we are only interested in its superblock)
304 * @i_block: block number to be parsed
305 * @offsets: array to store the offsets in
306 * @boundary: set this non-zero if the referred-to block is likely to be
307 * followed (on disk) by an indirect block.
309 * To store the locations of file's data ext4 uses a data structure common
310 * for UNIX filesystems - tree of pointers anchored in the inode, with
311 * data blocks at leaves and indirect blocks in intermediate nodes.
312 * This function translates the block number into path in that tree -
313 * return value is the path length and @offsets[n] is the offset of
314 * pointer to (n+1)th node in the nth one. If @block is out of range
315 * (negative or too large) warning is printed and zero returned.
317 * Note: function doesn't find node addresses, so no IO is needed. All
318 * we need to know is the capacity of indirect blocks (taken from the
319 * inode->i_sb).
323 * Portability note: the last comparison (check that we fit into triple
324 * indirect block) is spelled differently, because otherwise on an
325 * architecture with 32-bit longs and 8Kb pages we might get into trouble
326 * if our filesystem had 8Kb blocks. We might use long long, but that would
327 * kill us on x86. Oh, well, at least the sign propagation does not matter -
328 * i_block would have to be negative in the very beginning, so we would not
329 * get there at all.
332 static int ext4_block_to_path(struct inode *inode,
333 ext4_lblk_t i_block,
334 ext4_lblk_t offsets[4], int *boundary)
336 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
337 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
338 const long direct_blocks = EXT4_NDIR_BLOCKS,
339 indirect_blocks = ptrs,
340 double_blocks = (1 << (ptrs_bits * 2));
341 int n = 0;
342 int final = 0;
344 if (i_block < 0) {
345 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
346 } else if (i_block < direct_blocks) {
347 offsets[n++] = i_block;
348 final = direct_blocks;
349 } else if ((i_block -= direct_blocks) < indirect_blocks) {
350 offsets[n++] = EXT4_IND_BLOCK;
351 offsets[n++] = i_block;
352 final = ptrs;
353 } else if ((i_block -= indirect_blocks) < double_blocks) {
354 offsets[n++] = EXT4_DIND_BLOCK;
355 offsets[n++] = i_block >> ptrs_bits;
356 offsets[n++] = i_block & (ptrs - 1);
357 final = ptrs;
358 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
359 offsets[n++] = EXT4_TIND_BLOCK;
360 offsets[n++] = i_block >> (ptrs_bits * 2);
361 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
362 offsets[n++] = i_block & (ptrs - 1);
363 final = ptrs;
364 } else {
365 ext4_warning(inode->i_sb, "ext4_block_to_path",
366 "block %lu > max in inode %lu",
367 i_block + direct_blocks +
368 indirect_blocks + double_blocks, inode->i_ino);
370 if (boundary)
371 *boundary = final - 1 - (i_block & (ptrs - 1));
372 return n;
375 static int __ext4_check_blockref(const char *function, struct inode *inode,
376 __le32 *p, unsigned int max)
378 __le32 *bref = p;
379 unsigned int blk;
381 while (bref < p+max) {
382 blk = le32_to_cpu(*bref++);
383 if (blk &&
384 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
385 blk, 1))) {
386 ext4_error(inode->i_sb, function,
387 "invalid block reference %u "
388 "in inode #%lu", blk, inode->i_ino);
389 return -EIO;
392 return 0;
396 #define ext4_check_indirect_blockref(inode, bh) \
397 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
398 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
400 #define ext4_check_inode_blockref(inode) \
401 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
402 EXT4_NDIR_BLOCKS)
405 * ext4_get_branch - read the chain of indirect blocks leading to data
406 * @inode: inode in question
407 * @depth: depth of the chain (1 - direct pointer, etc.)
408 * @offsets: offsets of pointers in inode/indirect blocks
409 * @chain: place to store the result
410 * @err: here we store the error value
412 * Function fills the array of triples <key, p, bh> and returns %NULL
413 * if everything went OK or the pointer to the last filled triple
414 * (incomplete one) otherwise. Upon the return chain[i].key contains
415 * the number of (i+1)-th block in the chain (as it is stored in memory,
416 * i.e. little-endian 32-bit), chain[i].p contains the address of that
417 * number (it points into struct inode for i==0 and into the bh->b_data
418 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
419 * block for i>0 and NULL for i==0. In other words, it holds the block
420 * numbers of the chain, addresses they were taken from (and where we can
421 * verify that chain did not change) and buffer_heads hosting these
422 * numbers.
424 * Function stops when it stumbles upon zero pointer (absent block)
425 * (pointer to last triple returned, *@err == 0)
426 * or when it gets an IO error reading an indirect block
427 * (ditto, *@err == -EIO)
428 * or when it reads all @depth-1 indirect blocks successfully and finds
429 * the whole chain, all way to the data (returns %NULL, *err == 0).
431 * Need to be called with
432 * down_read(&EXT4_I(inode)->i_data_sem)
434 static Indirect *ext4_get_branch(struct inode *inode, int depth,
435 ext4_lblk_t *offsets,
436 Indirect chain[4], int *err)
438 struct super_block *sb = inode->i_sb;
439 Indirect *p = chain;
440 struct buffer_head *bh;
442 *err = 0;
443 /* i_data is not going away, no lock needed */
444 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
445 if (!p->key)
446 goto no_block;
447 while (--depth) {
448 bh = sb_getblk(sb, le32_to_cpu(p->key));
449 if (unlikely(!bh))
450 goto failure;
452 if (!bh_uptodate_or_lock(bh)) {
453 if (bh_submit_read(bh) < 0) {
454 put_bh(bh);
455 goto failure;
457 /* validate block references */
458 if (ext4_check_indirect_blockref(inode, bh)) {
459 put_bh(bh);
460 goto failure;
464 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
465 /* Reader: end */
466 if (!p->key)
467 goto no_block;
469 return NULL;
471 failure:
472 *err = -EIO;
473 no_block:
474 return p;
478 * ext4_find_near - find a place for allocation with sufficient locality
479 * @inode: owner
480 * @ind: descriptor of indirect block.
482 * This function returns the preferred place for block allocation.
483 * It is used when heuristic for sequential allocation fails.
484 * Rules are:
485 * + if there is a block to the left of our position - allocate near it.
486 * + if pointer will live in indirect block - allocate near that block.
487 * + if pointer will live in inode - allocate in the same
488 * cylinder group.
490 * In the latter case we colour the starting block by the callers PID to
491 * prevent it from clashing with concurrent allocations for a different inode
492 * in the same block group. The PID is used here so that functionally related
493 * files will be close-by on-disk.
495 * Caller must make sure that @ind is valid and will stay that way.
497 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
499 struct ext4_inode_info *ei = EXT4_I(inode);
500 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
501 __le32 *p;
502 ext4_fsblk_t bg_start;
503 ext4_fsblk_t last_block;
504 ext4_grpblk_t colour;
505 ext4_group_t block_group;
506 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
508 /* Try to find previous block */
509 for (p = ind->p - 1; p >= start; p--) {
510 if (*p)
511 return le32_to_cpu(*p);
514 /* No such thing, so let's try location of indirect block */
515 if (ind->bh)
516 return ind->bh->b_blocknr;
519 * It is going to be referred to from the inode itself? OK, just put it
520 * into the same cylinder group then.
522 block_group = ei->i_block_group;
523 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
524 block_group &= ~(flex_size-1);
525 if (S_ISREG(inode->i_mode))
526 block_group++;
528 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
529 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
532 * If we are doing delayed allocation, we don't need take
533 * colour into account.
535 if (test_opt(inode->i_sb, DELALLOC))
536 return bg_start;
538 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
539 colour = (current->pid % 16) *
540 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
541 else
542 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
543 return bg_start + colour;
547 * ext4_find_goal - find a preferred place for allocation.
548 * @inode: owner
549 * @block: block we want
550 * @partial: pointer to the last triple within a chain
552 * Normally this function find the preferred place for block allocation,
553 * returns it.
555 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
556 Indirect *partial)
559 * XXX need to get goal block from mballoc's data structures
562 return ext4_find_near(inode, partial);
566 * ext4_blks_to_allocate: Look up the block map and count the number
567 * of direct blocks need to be allocated for the given branch.
569 * @branch: chain of indirect blocks
570 * @k: number of blocks need for indirect blocks
571 * @blks: number of data blocks to be mapped.
572 * @blocks_to_boundary: the offset in the indirect block
574 * return the total number of blocks to be allocate, including the
575 * direct and indirect blocks.
577 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
578 int blocks_to_boundary)
580 unsigned int count = 0;
583 * Simple case, [t,d]Indirect block(s) has not allocated yet
584 * then it's clear blocks on that path have not allocated
586 if (k > 0) {
587 /* right now we don't handle cross boundary allocation */
588 if (blks < blocks_to_boundary + 1)
589 count += blks;
590 else
591 count += blocks_to_boundary + 1;
592 return count;
595 count++;
596 while (count < blks && count <= blocks_to_boundary &&
597 le32_to_cpu(*(branch[0].p + count)) == 0) {
598 count++;
600 return count;
604 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
605 * @indirect_blks: the number of blocks need to allocate for indirect
606 * blocks
608 * @new_blocks: on return it will store the new block numbers for
609 * the indirect blocks(if needed) and the first direct block,
610 * @blks: on return it will store the total number of allocated
611 * direct blocks
613 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
614 ext4_lblk_t iblock, ext4_fsblk_t goal,
615 int indirect_blks, int blks,
616 ext4_fsblk_t new_blocks[4], int *err)
618 struct ext4_allocation_request ar;
619 int target, i;
620 unsigned long count = 0, blk_allocated = 0;
621 int index = 0;
622 ext4_fsblk_t current_block = 0;
623 int ret = 0;
626 * Here we try to allocate the requested multiple blocks at once,
627 * on a best-effort basis.
628 * To build a branch, we should allocate blocks for
629 * the indirect blocks(if not allocated yet), and at least
630 * the first direct block of this branch. That's the
631 * minimum number of blocks need to allocate(required)
633 /* first we try to allocate the indirect blocks */
634 target = indirect_blks;
635 while (target > 0) {
636 count = target;
637 /* allocating blocks for indirect blocks and direct blocks */
638 current_block = ext4_new_meta_blocks(handle, inode,
639 goal, &count, err);
640 if (*err)
641 goto failed_out;
643 target -= count;
644 /* allocate blocks for indirect blocks */
645 while (index < indirect_blks && count) {
646 new_blocks[index++] = current_block++;
647 count--;
649 if (count > 0) {
651 * save the new block number
652 * for the first direct block
654 new_blocks[index] = current_block;
655 printk(KERN_INFO "%s returned more blocks than "
656 "requested\n", __func__);
657 WARN_ON(1);
658 break;
662 target = blks - count ;
663 blk_allocated = count;
664 if (!target)
665 goto allocated;
666 /* Now allocate data blocks */
667 memset(&ar, 0, sizeof(ar));
668 ar.inode = inode;
669 ar.goal = goal;
670 ar.len = target;
671 ar.logical = iblock;
672 if (S_ISREG(inode->i_mode))
673 /* enable in-core preallocation only for regular files */
674 ar.flags = EXT4_MB_HINT_DATA;
676 current_block = ext4_mb_new_blocks(handle, &ar, err);
678 if (*err && (target == blks)) {
680 * if the allocation failed and we didn't allocate
681 * any blocks before
683 goto failed_out;
685 if (!*err) {
686 if (target == blks) {
688 * save the new block number
689 * for the first direct block
691 new_blocks[index] = current_block;
693 blk_allocated += ar.len;
695 allocated:
696 /* total number of blocks allocated for direct blocks */
697 ret = blk_allocated;
698 *err = 0;
699 return ret;
700 failed_out:
701 for (i = 0; i < index; i++)
702 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
703 return ret;
707 * ext4_alloc_branch - allocate and set up a chain of blocks.
708 * @inode: owner
709 * @indirect_blks: number of allocated indirect blocks
710 * @blks: number of allocated direct blocks
711 * @offsets: offsets (in the blocks) to store the pointers to next.
712 * @branch: place to store the chain in.
714 * This function allocates blocks, zeroes out all but the last one,
715 * links them into chain and (if we are synchronous) writes them to disk.
716 * In other words, it prepares a branch that can be spliced onto the
717 * inode. It stores the information about that chain in the branch[], in
718 * the same format as ext4_get_branch() would do. We are calling it after
719 * we had read the existing part of chain and partial points to the last
720 * triple of that (one with zero ->key). Upon the exit we have the same
721 * picture as after the successful ext4_get_block(), except that in one
722 * place chain is disconnected - *branch->p is still zero (we did not
723 * set the last link), but branch->key contains the number that should
724 * be placed into *branch->p to fill that gap.
726 * If allocation fails we free all blocks we've allocated (and forget
727 * their buffer_heads) and return the error value the from failed
728 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
729 * as described above and return 0.
731 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
732 ext4_lblk_t iblock, int indirect_blks,
733 int *blks, ext4_fsblk_t goal,
734 ext4_lblk_t *offsets, Indirect *branch)
736 int blocksize = inode->i_sb->s_blocksize;
737 int i, n = 0;
738 int err = 0;
739 struct buffer_head *bh;
740 int num;
741 ext4_fsblk_t new_blocks[4];
742 ext4_fsblk_t current_block;
744 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
745 *blks, new_blocks, &err);
746 if (err)
747 return err;
749 branch[0].key = cpu_to_le32(new_blocks[0]);
751 * metadata blocks and data blocks are allocated.
753 for (n = 1; n <= indirect_blks; n++) {
755 * Get buffer_head for parent block, zero it out
756 * and set the pointer to new one, then send
757 * parent to disk.
759 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
760 branch[n].bh = bh;
761 lock_buffer(bh);
762 BUFFER_TRACE(bh, "call get_create_access");
763 err = ext4_journal_get_create_access(handle, bh);
764 if (err) {
765 unlock_buffer(bh);
766 brelse(bh);
767 goto failed;
770 memset(bh->b_data, 0, blocksize);
771 branch[n].p = (__le32 *) bh->b_data + offsets[n];
772 branch[n].key = cpu_to_le32(new_blocks[n]);
773 *branch[n].p = branch[n].key;
774 if (n == indirect_blks) {
775 current_block = new_blocks[n];
777 * End of chain, update the last new metablock of
778 * the chain to point to the new allocated
779 * data blocks numbers
781 for (i = 1; i < num; i++)
782 *(branch[n].p + i) = cpu_to_le32(++current_block);
784 BUFFER_TRACE(bh, "marking uptodate");
785 set_buffer_uptodate(bh);
786 unlock_buffer(bh);
788 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
789 err = ext4_handle_dirty_metadata(handle, inode, bh);
790 if (err)
791 goto failed;
793 *blks = num;
794 return err;
795 failed:
796 /* Allocation failed, free what we already allocated */
797 for (i = 1; i <= n ; i++) {
798 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
799 ext4_journal_forget(handle, branch[i].bh);
801 for (i = 0; i < indirect_blks; i++)
802 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
804 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
806 return err;
810 * ext4_splice_branch - splice the allocated branch onto inode.
811 * @inode: owner
812 * @block: (logical) number of block we are adding
813 * @chain: chain of indirect blocks (with a missing link - see
814 * ext4_alloc_branch)
815 * @where: location of missing link
816 * @num: number of indirect blocks we are adding
817 * @blks: number of direct blocks we are adding
819 * This function fills the missing link and does all housekeeping needed in
820 * inode (->i_blocks, etc.). In case of success we end up with the full
821 * chain to new block and return 0.
823 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
824 ext4_lblk_t block, Indirect *where, int num,
825 int blks)
827 int i;
828 int err = 0;
829 ext4_fsblk_t current_block;
832 * If we're splicing into a [td]indirect block (as opposed to the
833 * inode) then we need to get write access to the [td]indirect block
834 * before the splice.
836 if (where->bh) {
837 BUFFER_TRACE(where->bh, "get_write_access");
838 err = ext4_journal_get_write_access(handle, where->bh);
839 if (err)
840 goto err_out;
842 /* That's it */
844 *where->p = where->key;
847 * Update the host buffer_head or inode to point to more just allocated
848 * direct blocks blocks
850 if (num == 0 && blks > 1) {
851 current_block = le32_to_cpu(where->key) + 1;
852 for (i = 1; i < blks; i++)
853 *(where->p + i) = cpu_to_le32(current_block++);
856 /* We are done with atomic stuff, now do the rest of housekeeping */
857 /* had we spliced it onto indirect block? */
858 if (where->bh) {
860 * If we spliced it onto an indirect block, we haven't
861 * altered the inode. Note however that if it is being spliced
862 * onto an indirect block at the very end of the file (the
863 * file is growing) then we *will* alter the inode to reflect
864 * the new i_size. But that is not done here - it is done in
865 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867 jbd_debug(5, "splicing indirect only\n");
868 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
869 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
870 if (err)
871 goto err_out;
872 } else {
874 * OK, we spliced it into the inode itself on a direct block.
876 ext4_mark_inode_dirty(handle, inode);
877 jbd_debug(5, "splicing direct\n");
879 return err;
881 err_out:
882 for (i = 1; i <= num; i++) {
883 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
884 ext4_journal_forget(handle, where[i].bh);
885 ext4_free_blocks(handle, inode,
886 le32_to_cpu(where[i-1].key), 1, 0);
888 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890 return err;
894 * The ext4_ind_get_blocks() function handles non-extents inodes
895 * (i.e., using the traditional indirect/double-indirect i_blocks
896 * scheme) for ext4_get_blocks().
898 * Allocation strategy is simple: if we have to allocate something, we will
899 * have to go the whole way to leaf. So let's do it before attaching anything
900 * to tree, set linkage between the newborn blocks, write them if sync is
901 * required, recheck the path, free and repeat if check fails, otherwise
902 * set the last missing link (that will protect us from any truncate-generated
903 * removals - all blocks on the path are immune now) and possibly force the
904 * write on the parent block.
905 * That has a nice additional property: no special recovery from the failed
906 * allocations is needed - we simply release blocks and do not touch anything
907 * reachable from inode.
909 * `handle' can be NULL if create == 0.
911 * return > 0, # of blocks mapped or allocated.
912 * return = 0, if plain lookup failed.
913 * return < 0, error case.
915 * The ext4_ind_get_blocks() function should be called with
916 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
917 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
918 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
919 * blocks.
921 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
922 ext4_lblk_t iblock, unsigned int maxblocks,
923 struct buffer_head *bh_result,
924 int flags)
926 int err = -EIO;
927 ext4_lblk_t offsets[4];
928 Indirect chain[4];
929 Indirect *partial;
930 ext4_fsblk_t goal;
931 int indirect_blks;
932 int blocks_to_boundary = 0;
933 int depth;
934 int count = 0;
935 ext4_fsblk_t first_block = 0;
937 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
938 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
939 depth = ext4_block_to_path(inode, iblock, offsets,
940 &blocks_to_boundary);
942 if (depth == 0)
943 goto out;
945 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
947 /* Simplest case - block found, no allocation needed */
948 if (!partial) {
949 first_block = le32_to_cpu(chain[depth - 1].key);
950 clear_buffer_new(bh_result);
951 count++;
952 /*map more blocks*/
953 while (count < maxblocks && count <= blocks_to_boundary) {
954 ext4_fsblk_t blk;
956 blk = le32_to_cpu(*(chain[depth-1].p + count));
958 if (blk == first_block + count)
959 count++;
960 else
961 break;
963 goto got_it;
966 /* Next simple case - plain lookup or failed read of indirect block */
967 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
968 goto cleanup;
971 * Okay, we need to do block allocation.
973 goal = ext4_find_goal(inode, iblock, partial);
975 /* the number of blocks need to allocate for [d,t]indirect blocks */
976 indirect_blks = (chain + depth) - partial - 1;
979 * Next look up the indirect map to count the totoal number of
980 * direct blocks to allocate for this branch.
982 count = ext4_blks_to_allocate(partial, indirect_blks,
983 maxblocks, blocks_to_boundary);
985 * Block out ext4_truncate while we alter the tree
987 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
988 &count, goal,
989 offsets + (partial - chain), partial);
992 * The ext4_splice_branch call will free and forget any buffers
993 * on the new chain if there is a failure, but that risks using
994 * up transaction credits, especially for bitmaps where the
995 * credits cannot be returned. Can we handle this somehow? We
996 * may need to return -EAGAIN upwards in the worst case. --sct
998 if (!err)
999 err = ext4_splice_branch(handle, inode, iblock,
1000 partial, indirect_blks, count);
1001 else
1002 goto cleanup;
1004 set_buffer_new(bh_result);
1005 got_it:
1006 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1007 if (count > blocks_to_boundary)
1008 set_buffer_boundary(bh_result);
1009 err = count;
1010 /* Clean up and exit */
1011 partial = chain + depth - 1; /* the whole chain */
1012 cleanup:
1013 while (partial > chain) {
1014 BUFFER_TRACE(partial->bh, "call brelse");
1015 brelse(partial->bh);
1016 partial--;
1018 BUFFER_TRACE(bh_result, "returned");
1019 out:
1020 return err;
1023 qsize_t ext4_get_reserved_space(struct inode *inode)
1025 unsigned long long total;
1027 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1028 total = EXT4_I(inode)->i_reserved_data_blocks +
1029 EXT4_I(inode)->i_reserved_meta_blocks;
1030 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1032 return total;
1035 * Calculate the number of metadata blocks need to reserve
1036 * to allocate @blocks for non extent file based file
1038 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1040 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1041 int ind_blks, dind_blks, tind_blks;
1043 /* number of new indirect blocks needed */
1044 ind_blks = (blocks + icap - 1) / icap;
1046 dind_blks = (ind_blks + icap - 1) / icap;
1048 tind_blks = 1;
1050 return ind_blks + dind_blks + tind_blks;
1054 * Calculate the number of metadata blocks need to reserve
1055 * to allocate given number of blocks
1057 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1059 if (!blocks)
1060 return 0;
1062 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1063 return ext4_ext_calc_metadata_amount(inode, blocks);
1065 return ext4_indirect_calc_metadata_amount(inode, blocks);
1068 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1070 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1071 int total, mdb, mdb_free;
1073 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1074 /* recalculate the number of metablocks still need to be reserved */
1075 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1076 mdb = ext4_calc_metadata_amount(inode, total);
1078 /* figure out how many metablocks to release */
1079 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1080 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1082 if (mdb_free) {
1083 /* Account for allocated meta_blocks */
1084 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1086 /* update fs dirty blocks counter */
1087 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1088 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1089 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1092 /* update per-inode reservations */
1093 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1094 EXT4_I(inode)->i_reserved_data_blocks -= used;
1095 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1098 * free those over-booking quota for metadata blocks
1100 if (mdb_free)
1101 vfs_dq_release_reservation_block(inode, mdb_free);
1104 * If we have done all the pending block allocations and if
1105 * there aren't any writers on the inode, we can discard the
1106 * inode's preallocations.
1108 if (!total && (atomic_read(&inode->i_writecount) == 0))
1109 ext4_discard_preallocations(inode);
1112 static int check_block_validity(struct inode *inode, sector_t logical,
1113 sector_t phys, int len)
1115 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1116 ext4_error(inode->i_sb, "check_block_validity",
1117 "inode #%lu logical block %llu mapped to %llu "
1118 "(size %d)", inode->i_ino,
1119 (unsigned long long) logical,
1120 (unsigned long long) phys, len);
1121 WARN_ON(1);
1122 return -EIO;
1124 return 0;
1128 * The ext4_get_blocks() function tries to look up the requested blocks,
1129 * and returns if the blocks are already mapped.
1131 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1132 * and store the allocated blocks in the result buffer head and mark it
1133 * mapped.
1135 * If file type is extents based, it will call ext4_ext_get_blocks(),
1136 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1137 * based files
1139 * On success, it returns the number of blocks being mapped or allocate.
1140 * if create==0 and the blocks are pre-allocated and uninitialized block,
1141 * the result buffer head is unmapped. If the create ==1, it will make sure
1142 * the buffer head is mapped.
1144 * It returns 0 if plain look up failed (blocks have not been allocated), in
1145 * that casem, buffer head is unmapped
1147 * It returns the error in case of allocation failure.
1149 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1150 unsigned int max_blocks, struct buffer_head *bh,
1151 int flags)
1153 int retval;
1155 clear_buffer_mapped(bh);
1156 clear_buffer_unwritten(bh);
1159 * Try to see if we can get the block without requesting a new
1160 * file system block.
1162 down_read((&EXT4_I(inode)->i_data_sem));
1163 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1164 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1165 bh, 0);
1166 } else {
1167 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1168 bh, 0);
1170 up_read((&EXT4_I(inode)->i_data_sem));
1172 if (retval > 0 && buffer_mapped(bh)) {
1173 int ret = check_block_validity(inode, block,
1174 bh->b_blocknr, retval);
1175 if (ret != 0)
1176 return ret;
1179 /* If it is only a block(s) look up */
1180 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1181 return retval;
1184 * Returns if the blocks have already allocated
1186 * Note that if blocks have been preallocated
1187 * ext4_ext_get_block() returns th create = 0
1188 * with buffer head unmapped.
1190 if (retval > 0 && buffer_mapped(bh))
1191 return retval;
1194 * When we call get_blocks without the create flag, the
1195 * BH_Unwritten flag could have gotten set if the blocks
1196 * requested were part of a uninitialized extent. We need to
1197 * clear this flag now that we are committed to convert all or
1198 * part of the uninitialized extent to be an initialized
1199 * extent. This is because we need to avoid the combination
1200 * of BH_Unwritten and BH_Mapped flags being simultaneously
1201 * set on the buffer_head.
1203 clear_buffer_unwritten(bh);
1206 * New blocks allocate and/or writing to uninitialized extent
1207 * will possibly result in updating i_data, so we take
1208 * the write lock of i_data_sem, and call get_blocks()
1209 * with create == 1 flag.
1211 down_write((&EXT4_I(inode)->i_data_sem));
1214 * if the caller is from delayed allocation writeout path
1215 * we have already reserved fs blocks for allocation
1216 * let the underlying get_block() function know to
1217 * avoid double accounting
1219 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1220 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1222 * We need to check for EXT4 here because migrate
1223 * could have changed the inode type in between
1225 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1226 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1227 bh, flags);
1228 } else {
1229 retval = ext4_ind_get_blocks(handle, inode, block,
1230 max_blocks, bh, flags);
1232 if (retval > 0 && buffer_new(bh)) {
1234 * We allocated new blocks which will result in
1235 * i_data's format changing. Force the migrate
1236 * to fail by clearing migrate flags
1238 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1239 ~EXT4_EXT_MIGRATE;
1243 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1244 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1247 * Update reserved blocks/metadata blocks after successful
1248 * block allocation which had been deferred till now.
1250 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1251 ext4_da_update_reserve_space(inode, retval);
1253 up_write((&EXT4_I(inode)->i_data_sem));
1254 if (retval > 0 && buffer_mapped(bh)) {
1255 int ret = check_block_validity(inode, block,
1256 bh->b_blocknr, retval);
1257 if (ret != 0)
1258 return ret;
1260 return retval;
1263 /* Maximum number of blocks we map for direct IO at once. */
1264 #define DIO_MAX_BLOCKS 4096
1266 int ext4_get_block(struct inode *inode, sector_t iblock,
1267 struct buffer_head *bh_result, int create)
1269 handle_t *handle = ext4_journal_current_handle();
1270 int ret = 0, started = 0;
1271 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1272 int dio_credits;
1274 if (create && !handle) {
1275 /* Direct IO write... */
1276 if (max_blocks > DIO_MAX_BLOCKS)
1277 max_blocks = DIO_MAX_BLOCKS;
1278 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1279 handle = ext4_journal_start(inode, dio_credits);
1280 if (IS_ERR(handle)) {
1281 ret = PTR_ERR(handle);
1282 goto out;
1284 started = 1;
1287 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1288 create ? EXT4_GET_BLOCKS_CREATE : 0);
1289 if (ret > 0) {
1290 bh_result->b_size = (ret << inode->i_blkbits);
1291 ret = 0;
1293 if (started)
1294 ext4_journal_stop(handle);
1295 out:
1296 return ret;
1300 * `handle' can be NULL if create is zero
1302 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1303 ext4_lblk_t block, int create, int *errp)
1305 struct buffer_head dummy;
1306 int fatal = 0, err;
1307 int flags = 0;
1309 J_ASSERT(handle != NULL || create == 0);
1311 dummy.b_state = 0;
1312 dummy.b_blocknr = -1000;
1313 buffer_trace_init(&dummy.b_history);
1314 if (create)
1315 flags |= EXT4_GET_BLOCKS_CREATE;
1316 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1318 * ext4_get_blocks() returns number of blocks mapped. 0 in
1319 * case of a HOLE.
1321 if (err > 0) {
1322 if (err > 1)
1323 WARN_ON(1);
1324 err = 0;
1326 *errp = err;
1327 if (!err && buffer_mapped(&dummy)) {
1328 struct buffer_head *bh;
1329 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1330 if (!bh) {
1331 *errp = -EIO;
1332 goto err;
1334 if (buffer_new(&dummy)) {
1335 J_ASSERT(create != 0);
1336 J_ASSERT(handle != NULL);
1339 * Now that we do not always journal data, we should
1340 * keep in mind whether this should always journal the
1341 * new buffer as metadata. For now, regular file
1342 * writes use ext4_get_block instead, so it's not a
1343 * problem.
1345 lock_buffer(bh);
1346 BUFFER_TRACE(bh, "call get_create_access");
1347 fatal = ext4_journal_get_create_access(handle, bh);
1348 if (!fatal && !buffer_uptodate(bh)) {
1349 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1350 set_buffer_uptodate(bh);
1352 unlock_buffer(bh);
1353 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1354 err = ext4_handle_dirty_metadata(handle, inode, bh);
1355 if (!fatal)
1356 fatal = err;
1357 } else {
1358 BUFFER_TRACE(bh, "not a new buffer");
1360 if (fatal) {
1361 *errp = fatal;
1362 brelse(bh);
1363 bh = NULL;
1365 return bh;
1367 err:
1368 return NULL;
1371 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1372 ext4_lblk_t block, int create, int *err)
1374 struct buffer_head *bh;
1376 bh = ext4_getblk(handle, inode, block, create, err);
1377 if (!bh)
1378 return bh;
1379 if (buffer_uptodate(bh))
1380 return bh;
1381 ll_rw_block(READ_META, 1, &bh);
1382 wait_on_buffer(bh);
1383 if (buffer_uptodate(bh))
1384 return bh;
1385 put_bh(bh);
1386 *err = -EIO;
1387 return NULL;
1390 static int walk_page_buffers(handle_t *handle,
1391 struct buffer_head *head,
1392 unsigned from,
1393 unsigned to,
1394 int *partial,
1395 int (*fn)(handle_t *handle,
1396 struct buffer_head *bh))
1398 struct buffer_head *bh;
1399 unsigned block_start, block_end;
1400 unsigned blocksize = head->b_size;
1401 int err, ret = 0;
1402 struct buffer_head *next;
1404 for (bh = head, block_start = 0;
1405 ret == 0 && (bh != head || !block_start);
1406 block_start = block_end, bh = next) {
1407 next = bh->b_this_page;
1408 block_end = block_start + blocksize;
1409 if (block_end <= from || block_start >= to) {
1410 if (partial && !buffer_uptodate(bh))
1411 *partial = 1;
1412 continue;
1414 err = (*fn)(handle, bh);
1415 if (!ret)
1416 ret = err;
1418 return ret;
1422 * To preserve ordering, it is essential that the hole instantiation and
1423 * the data write be encapsulated in a single transaction. We cannot
1424 * close off a transaction and start a new one between the ext4_get_block()
1425 * and the commit_write(). So doing the jbd2_journal_start at the start of
1426 * prepare_write() is the right place.
1428 * Also, this function can nest inside ext4_writepage() ->
1429 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1430 * has generated enough buffer credits to do the whole page. So we won't
1431 * block on the journal in that case, which is good, because the caller may
1432 * be PF_MEMALLOC.
1434 * By accident, ext4 can be reentered when a transaction is open via
1435 * quota file writes. If we were to commit the transaction while thus
1436 * reentered, there can be a deadlock - we would be holding a quota
1437 * lock, and the commit would never complete if another thread had a
1438 * transaction open and was blocking on the quota lock - a ranking
1439 * violation.
1441 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1442 * will _not_ run commit under these circumstances because handle->h_ref
1443 * is elevated. We'll still have enough credits for the tiny quotafile
1444 * write.
1446 static int do_journal_get_write_access(handle_t *handle,
1447 struct buffer_head *bh)
1449 if (!buffer_mapped(bh) || buffer_freed(bh))
1450 return 0;
1451 return ext4_journal_get_write_access(handle, bh);
1454 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1455 loff_t pos, unsigned len, unsigned flags,
1456 struct page **pagep, void **fsdata)
1458 struct inode *inode = mapping->host;
1459 int ret, needed_blocks;
1460 handle_t *handle;
1461 int retries = 0;
1462 struct page *page;
1463 pgoff_t index;
1464 unsigned from, to;
1466 trace_ext4_write_begin(inode, pos, len, flags);
1468 * Reserve one block more for addition to orphan list in case
1469 * we allocate blocks but write fails for some reason
1471 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1472 index = pos >> PAGE_CACHE_SHIFT;
1473 from = pos & (PAGE_CACHE_SIZE - 1);
1474 to = from + len;
1476 retry:
1477 handle = ext4_journal_start(inode, needed_blocks);
1478 if (IS_ERR(handle)) {
1479 ret = PTR_ERR(handle);
1480 goto out;
1483 /* We cannot recurse into the filesystem as the transaction is already
1484 * started */
1485 flags |= AOP_FLAG_NOFS;
1487 page = grab_cache_page_write_begin(mapping, index, flags);
1488 if (!page) {
1489 ext4_journal_stop(handle);
1490 ret = -ENOMEM;
1491 goto out;
1493 *pagep = page;
1495 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1496 ext4_get_block);
1498 if (!ret && ext4_should_journal_data(inode)) {
1499 ret = walk_page_buffers(handle, page_buffers(page),
1500 from, to, NULL, do_journal_get_write_access);
1503 if (ret) {
1504 unlock_page(page);
1505 page_cache_release(page);
1507 * block_write_begin may have instantiated a few blocks
1508 * outside i_size. Trim these off again. Don't need
1509 * i_size_read because we hold i_mutex.
1511 * Add inode to orphan list in case we crash before
1512 * truncate finishes
1514 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1515 ext4_orphan_add(handle, inode);
1517 ext4_journal_stop(handle);
1518 if (pos + len > inode->i_size) {
1519 ext4_truncate(inode);
1521 * If truncate failed early the inode might
1522 * still be on the orphan list; we need to
1523 * make sure the inode is removed from the
1524 * orphan list in that case.
1526 if (inode->i_nlink)
1527 ext4_orphan_del(NULL, inode);
1531 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1532 goto retry;
1533 out:
1534 return ret;
1537 /* For write_end() in data=journal mode */
1538 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1540 if (!buffer_mapped(bh) || buffer_freed(bh))
1541 return 0;
1542 set_buffer_uptodate(bh);
1543 return ext4_handle_dirty_metadata(handle, NULL, bh);
1546 static int ext4_generic_write_end(struct file *file,
1547 struct address_space *mapping,
1548 loff_t pos, unsigned len, unsigned copied,
1549 struct page *page, void *fsdata)
1551 int i_size_changed = 0;
1552 struct inode *inode = mapping->host;
1553 handle_t *handle = ext4_journal_current_handle();
1555 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1558 * No need to use i_size_read() here, the i_size
1559 * cannot change under us because we hold i_mutex.
1561 * But it's important to update i_size while still holding page lock:
1562 * page writeout could otherwise come in and zero beyond i_size.
1564 if (pos + copied > inode->i_size) {
1565 i_size_write(inode, pos + copied);
1566 i_size_changed = 1;
1569 if (pos + copied > EXT4_I(inode)->i_disksize) {
1570 /* We need to mark inode dirty even if
1571 * new_i_size is less that inode->i_size
1572 * bu greater than i_disksize.(hint delalloc)
1574 ext4_update_i_disksize(inode, (pos + copied));
1575 i_size_changed = 1;
1577 unlock_page(page);
1578 page_cache_release(page);
1581 * Don't mark the inode dirty under page lock. First, it unnecessarily
1582 * makes the holding time of page lock longer. Second, it forces lock
1583 * ordering of page lock and transaction start for journaling
1584 * filesystems.
1586 if (i_size_changed)
1587 ext4_mark_inode_dirty(handle, inode);
1589 return copied;
1593 * We need to pick up the new inode size which generic_commit_write gave us
1594 * `file' can be NULL - eg, when called from page_symlink().
1596 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1597 * buffers are managed internally.
1599 static int ext4_ordered_write_end(struct file *file,
1600 struct address_space *mapping,
1601 loff_t pos, unsigned len, unsigned copied,
1602 struct page *page, void *fsdata)
1604 handle_t *handle = ext4_journal_current_handle();
1605 struct inode *inode = mapping->host;
1606 int ret = 0, ret2;
1608 trace_ext4_ordered_write_end(inode, pos, len, copied);
1609 ret = ext4_jbd2_file_inode(handle, inode);
1611 if (ret == 0) {
1612 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1613 page, fsdata);
1614 copied = ret2;
1615 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1616 /* if we have allocated more blocks and copied
1617 * less. We will have blocks allocated outside
1618 * inode->i_size. So truncate them
1620 ext4_orphan_add(handle, inode);
1621 if (ret2 < 0)
1622 ret = ret2;
1624 ret2 = ext4_journal_stop(handle);
1625 if (!ret)
1626 ret = ret2;
1628 if (pos + len > inode->i_size) {
1629 ext4_truncate(inode);
1631 * If truncate failed early the inode might still be
1632 * on the orphan list; we need to make sure the inode
1633 * is removed from the orphan list in that case.
1635 if (inode->i_nlink)
1636 ext4_orphan_del(NULL, inode);
1640 return ret ? ret : copied;
1643 static int ext4_writeback_write_end(struct file *file,
1644 struct address_space *mapping,
1645 loff_t pos, unsigned len, unsigned copied,
1646 struct page *page, void *fsdata)
1648 handle_t *handle = ext4_journal_current_handle();
1649 struct inode *inode = mapping->host;
1650 int ret = 0, ret2;
1652 trace_ext4_writeback_write_end(inode, pos, len, copied);
1653 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1654 page, fsdata);
1655 copied = ret2;
1656 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1657 /* if we have allocated more blocks and copied
1658 * less. We will have blocks allocated outside
1659 * inode->i_size. So truncate them
1661 ext4_orphan_add(handle, inode);
1663 if (ret2 < 0)
1664 ret = ret2;
1666 ret2 = ext4_journal_stop(handle);
1667 if (!ret)
1668 ret = ret2;
1670 if (pos + len > inode->i_size) {
1671 ext4_truncate(inode);
1673 * If truncate failed early the inode might still be
1674 * on the orphan list; we need to make sure the inode
1675 * is removed from the orphan list in that case.
1677 if (inode->i_nlink)
1678 ext4_orphan_del(NULL, inode);
1681 return ret ? ret : copied;
1684 static int ext4_journalled_write_end(struct file *file,
1685 struct address_space *mapping,
1686 loff_t pos, unsigned len, unsigned copied,
1687 struct page *page, void *fsdata)
1689 handle_t *handle = ext4_journal_current_handle();
1690 struct inode *inode = mapping->host;
1691 int ret = 0, ret2;
1692 int partial = 0;
1693 unsigned from, to;
1694 loff_t new_i_size;
1696 trace_ext4_journalled_write_end(inode, pos, len, copied);
1697 from = pos & (PAGE_CACHE_SIZE - 1);
1698 to = from + len;
1700 if (copied < len) {
1701 if (!PageUptodate(page))
1702 copied = 0;
1703 page_zero_new_buffers(page, from+copied, to);
1706 ret = walk_page_buffers(handle, page_buffers(page), from,
1707 to, &partial, write_end_fn);
1708 if (!partial)
1709 SetPageUptodate(page);
1710 new_i_size = pos + copied;
1711 if (new_i_size > inode->i_size)
1712 i_size_write(inode, pos+copied);
1713 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1714 if (new_i_size > EXT4_I(inode)->i_disksize) {
1715 ext4_update_i_disksize(inode, new_i_size);
1716 ret2 = ext4_mark_inode_dirty(handle, inode);
1717 if (!ret)
1718 ret = ret2;
1721 unlock_page(page);
1722 page_cache_release(page);
1723 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1724 /* if we have allocated more blocks and copied
1725 * less. We will have blocks allocated outside
1726 * inode->i_size. So truncate them
1728 ext4_orphan_add(handle, inode);
1730 ret2 = ext4_journal_stop(handle);
1731 if (!ret)
1732 ret = ret2;
1733 if (pos + len > inode->i_size) {
1734 ext4_truncate(inode);
1736 * If truncate failed early the inode might still be
1737 * on the orphan list; we need to make sure the inode
1738 * is removed from the orphan list in that case.
1740 if (inode->i_nlink)
1741 ext4_orphan_del(NULL, inode);
1744 return ret ? ret : copied;
1747 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1749 int retries = 0;
1750 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1751 unsigned long md_needed, mdblocks, total = 0;
1754 * recalculate the amount of metadata blocks to reserve
1755 * in order to allocate nrblocks
1756 * worse case is one extent per block
1758 repeat:
1759 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1760 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1761 mdblocks = ext4_calc_metadata_amount(inode, total);
1762 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1764 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1765 total = md_needed + nrblocks;
1768 * Make quota reservation here to prevent quota overflow
1769 * later. Real quota accounting is done at pages writeout
1770 * time.
1772 if (vfs_dq_reserve_block(inode, total)) {
1773 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1774 return -EDQUOT;
1777 if (ext4_claim_free_blocks(sbi, total)) {
1778 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1779 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1780 yield();
1781 goto repeat;
1783 vfs_dq_release_reservation_block(inode, total);
1784 return -ENOSPC;
1786 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1787 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1789 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1790 return 0; /* success */
1793 static void ext4_da_release_space(struct inode *inode, int to_free)
1795 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1796 int total, mdb, mdb_free, release;
1798 if (!to_free)
1799 return; /* Nothing to release, exit */
1801 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1803 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1805 * if there is no reserved blocks, but we try to free some
1806 * then the counter is messed up somewhere.
1807 * but since this function is called from invalidate
1808 * page, it's harmless to return without any action
1810 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1811 "blocks for inode %lu, but there is no reserved "
1812 "data blocks\n", to_free, inode->i_ino);
1813 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1814 return;
1817 /* recalculate the number of metablocks still need to be reserved */
1818 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1819 mdb = ext4_calc_metadata_amount(inode, total);
1821 /* figure out how many metablocks to release */
1822 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1823 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1825 release = to_free + mdb_free;
1827 /* update fs dirty blocks counter for truncate case */
1828 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1830 /* update per-inode reservations */
1831 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1832 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1834 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1835 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1836 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1838 vfs_dq_release_reservation_block(inode, release);
1841 static void ext4_da_page_release_reservation(struct page *page,
1842 unsigned long offset)
1844 int to_release = 0;
1845 struct buffer_head *head, *bh;
1846 unsigned int curr_off = 0;
1848 head = page_buffers(page);
1849 bh = head;
1850 do {
1851 unsigned int next_off = curr_off + bh->b_size;
1853 if ((offset <= curr_off) && (buffer_delay(bh))) {
1854 to_release++;
1855 clear_buffer_delay(bh);
1857 curr_off = next_off;
1858 } while ((bh = bh->b_this_page) != head);
1859 ext4_da_release_space(page->mapping->host, to_release);
1863 * Delayed allocation stuff
1866 struct mpage_da_data {
1867 struct inode *inode;
1868 sector_t b_blocknr; /* start block number of extent */
1869 size_t b_size; /* size of extent */
1870 unsigned long b_state; /* state of the extent */
1871 unsigned long first_page, next_page; /* extent of pages */
1872 struct writeback_control *wbc;
1873 int io_done;
1874 int pages_written;
1875 int retval;
1879 * mpage_da_submit_io - walks through extent of pages and try to write
1880 * them with writepage() call back
1882 * @mpd->inode: inode
1883 * @mpd->first_page: first page of the extent
1884 * @mpd->next_page: page after the last page of the extent
1886 * By the time mpage_da_submit_io() is called we expect all blocks
1887 * to be allocated. this may be wrong if allocation failed.
1889 * As pages are already locked by write_cache_pages(), we can't use it
1891 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1893 long pages_skipped;
1894 struct pagevec pvec;
1895 unsigned long index, end;
1896 int ret = 0, err, nr_pages, i;
1897 struct inode *inode = mpd->inode;
1898 struct address_space *mapping = inode->i_mapping;
1900 BUG_ON(mpd->next_page <= mpd->first_page);
1902 * We need to start from the first_page to the next_page - 1
1903 * to make sure we also write the mapped dirty buffer_heads.
1904 * If we look at mpd->b_blocknr we would only be looking
1905 * at the currently mapped buffer_heads.
1907 index = mpd->first_page;
1908 end = mpd->next_page - 1;
1910 pagevec_init(&pvec, 0);
1911 while (index <= end) {
1912 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1913 if (nr_pages == 0)
1914 break;
1915 for (i = 0; i < nr_pages; i++) {
1916 struct page *page = pvec.pages[i];
1918 index = page->index;
1919 if (index > end)
1920 break;
1921 index++;
1923 BUG_ON(!PageLocked(page));
1924 BUG_ON(PageWriteback(page));
1926 pages_skipped = mpd->wbc->pages_skipped;
1927 err = mapping->a_ops->writepage(page, mpd->wbc);
1928 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1930 * have successfully written the page
1931 * without skipping the same
1933 mpd->pages_written++;
1935 * In error case, we have to continue because
1936 * remaining pages are still locked
1937 * XXX: unlock and re-dirty them?
1939 if (ret == 0)
1940 ret = err;
1942 pagevec_release(&pvec);
1944 return ret;
1948 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1950 * @mpd->inode - inode to walk through
1951 * @exbh->b_blocknr - first block on a disk
1952 * @exbh->b_size - amount of space in bytes
1953 * @logical - first logical block to start assignment with
1955 * the function goes through all passed space and put actual disk
1956 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1958 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1959 struct buffer_head *exbh)
1961 struct inode *inode = mpd->inode;
1962 struct address_space *mapping = inode->i_mapping;
1963 int blocks = exbh->b_size >> inode->i_blkbits;
1964 sector_t pblock = exbh->b_blocknr, cur_logical;
1965 struct buffer_head *head, *bh;
1966 pgoff_t index, end;
1967 struct pagevec pvec;
1968 int nr_pages, i;
1970 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1971 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1972 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1974 pagevec_init(&pvec, 0);
1976 while (index <= end) {
1977 /* XXX: optimize tail */
1978 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1979 if (nr_pages == 0)
1980 break;
1981 for (i = 0; i < nr_pages; i++) {
1982 struct page *page = pvec.pages[i];
1984 index = page->index;
1985 if (index > end)
1986 break;
1987 index++;
1989 BUG_ON(!PageLocked(page));
1990 BUG_ON(PageWriteback(page));
1991 BUG_ON(!page_has_buffers(page));
1993 bh = page_buffers(page);
1994 head = bh;
1996 /* skip blocks out of the range */
1997 do {
1998 if (cur_logical >= logical)
1999 break;
2000 cur_logical++;
2001 } while ((bh = bh->b_this_page) != head);
2003 do {
2004 if (cur_logical >= logical + blocks)
2005 break;
2007 if (buffer_delay(bh) ||
2008 buffer_unwritten(bh)) {
2010 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2012 if (buffer_delay(bh)) {
2013 clear_buffer_delay(bh);
2014 bh->b_blocknr = pblock;
2015 } else {
2017 * unwritten already should have
2018 * blocknr assigned. Verify that
2020 clear_buffer_unwritten(bh);
2021 BUG_ON(bh->b_blocknr != pblock);
2024 } else if (buffer_mapped(bh))
2025 BUG_ON(bh->b_blocknr != pblock);
2027 cur_logical++;
2028 pblock++;
2029 } while ((bh = bh->b_this_page) != head);
2031 pagevec_release(&pvec);
2037 * __unmap_underlying_blocks - just a helper function to unmap
2038 * set of blocks described by @bh
2040 static inline void __unmap_underlying_blocks(struct inode *inode,
2041 struct buffer_head *bh)
2043 struct block_device *bdev = inode->i_sb->s_bdev;
2044 int blocks, i;
2046 blocks = bh->b_size >> inode->i_blkbits;
2047 for (i = 0; i < blocks; i++)
2048 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2051 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2052 sector_t logical, long blk_cnt)
2054 int nr_pages, i;
2055 pgoff_t index, end;
2056 struct pagevec pvec;
2057 struct inode *inode = mpd->inode;
2058 struct address_space *mapping = inode->i_mapping;
2060 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2061 end = (logical + blk_cnt - 1) >>
2062 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2063 while (index <= end) {
2064 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2065 if (nr_pages == 0)
2066 break;
2067 for (i = 0; i < nr_pages; i++) {
2068 struct page *page = pvec.pages[i];
2069 index = page->index;
2070 if (index > end)
2071 break;
2072 index++;
2074 BUG_ON(!PageLocked(page));
2075 BUG_ON(PageWriteback(page));
2076 block_invalidatepage(page, 0);
2077 ClearPageUptodate(page);
2078 unlock_page(page);
2081 return;
2084 static void ext4_print_free_blocks(struct inode *inode)
2086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2087 printk(KERN_EMERG "Total free blocks count %lld\n",
2088 ext4_count_free_blocks(inode->i_sb));
2089 printk(KERN_EMERG "Free/Dirty block details\n");
2090 printk(KERN_EMERG "free_blocks=%lld\n",
2091 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
2092 printk(KERN_EMERG "dirty_blocks=%lld\n",
2093 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2094 printk(KERN_EMERG "Block reservation details\n");
2095 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2096 EXT4_I(inode)->i_reserved_data_blocks);
2097 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2098 EXT4_I(inode)->i_reserved_meta_blocks);
2099 return;
2103 * mpage_da_map_blocks - go through given space
2105 * @mpd - bh describing space
2107 * The function skips space we know is already mapped to disk blocks.
2110 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2112 int err, blks, get_blocks_flags;
2113 struct buffer_head new;
2114 sector_t next = mpd->b_blocknr;
2115 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2116 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2117 handle_t *handle = NULL;
2120 * We consider only non-mapped and non-allocated blocks
2122 if ((mpd->b_state & (1 << BH_Mapped)) &&
2123 !(mpd->b_state & (1 << BH_Delay)) &&
2124 !(mpd->b_state & (1 << BH_Unwritten)))
2125 return 0;
2128 * If we didn't accumulate anything to write simply return
2130 if (!mpd->b_size)
2131 return 0;
2133 handle = ext4_journal_current_handle();
2134 BUG_ON(!handle);
2137 * Call ext4_get_blocks() to allocate any delayed allocation
2138 * blocks, or to convert an uninitialized extent to be
2139 * initialized (in the case where we have written into
2140 * one or more preallocated blocks).
2142 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2143 * indicate that we are on the delayed allocation path. This
2144 * affects functions in many different parts of the allocation
2145 * call path. This flag exists primarily because we don't
2146 * want to change *many* call functions, so ext4_get_blocks()
2147 * will set the magic i_delalloc_reserved_flag once the
2148 * inode's allocation semaphore is taken.
2150 * If the blocks in questions were delalloc blocks, set
2151 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2152 * variables are updated after the blocks have been allocated.
2154 new.b_state = 0;
2155 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2156 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2157 if (mpd->b_state & (1 << BH_Delay))
2158 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2159 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2160 &new, get_blocks_flags);
2161 if (blks < 0) {
2162 err = blks;
2164 * If get block returns with error we simply
2165 * return. Later writepage will redirty the page and
2166 * writepages will find the dirty page again
2168 if (err == -EAGAIN)
2169 return 0;
2171 if (err == -ENOSPC &&
2172 ext4_count_free_blocks(mpd->inode->i_sb)) {
2173 mpd->retval = err;
2174 return 0;
2178 * get block failure will cause us to loop in
2179 * writepages, because a_ops->writepage won't be able
2180 * to make progress. The page will be redirtied by
2181 * writepage and writepages will again try to write
2182 * the same.
2184 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2185 "at logical offset %llu with max blocks "
2186 "%zd with error %d\n",
2187 __func__, mpd->inode->i_ino,
2188 (unsigned long long)next,
2189 mpd->b_size >> mpd->inode->i_blkbits, err);
2190 printk(KERN_EMERG "This should not happen.!! "
2191 "Data will be lost\n");
2192 if (err == -ENOSPC) {
2193 ext4_print_free_blocks(mpd->inode);
2195 /* invalidate all the pages */
2196 ext4_da_block_invalidatepages(mpd, next,
2197 mpd->b_size >> mpd->inode->i_blkbits);
2198 return err;
2200 BUG_ON(blks == 0);
2202 new.b_size = (blks << mpd->inode->i_blkbits);
2204 if (buffer_new(&new))
2205 __unmap_underlying_blocks(mpd->inode, &new);
2208 * If blocks are delayed marked, we need to
2209 * put actual blocknr and drop delayed bit
2211 if ((mpd->b_state & (1 << BH_Delay)) ||
2212 (mpd->b_state & (1 << BH_Unwritten)))
2213 mpage_put_bnr_to_bhs(mpd, next, &new);
2215 if (ext4_should_order_data(mpd->inode)) {
2216 err = ext4_jbd2_file_inode(handle, mpd->inode);
2217 if (err)
2218 return err;
2222 * Update on-disk size along with block allocation.
2224 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2225 if (disksize > i_size_read(mpd->inode))
2226 disksize = i_size_read(mpd->inode);
2227 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2228 ext4_update_i_disksize(mpd->inode, disksize);
2229 return ext4_mark_inode_dirty(handle, mpd->inode);
2232 return 0;
2235 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2236 (1 << BH_Delay) | (1 << BH_Unwritten))
2239 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2241 * @mpd->lbh - extent of blocks
2242 * @logical - logical number of the block in the file
2243 * @bh - bh of the block (used to access block's state)
2245 * the function is used to collect contig. blocks in same state
2247 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2248 sector_t logical, size_t b_size,
2249 unsigned long b_state)
2251 sector_t next;
2252 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2254 /* check if thereserved journal credits might overflow */
2255 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2256 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2258 * With non-extent format we are limited by the journal
2259 * credit available. Total credit needed to insert
2260 * nrblocks contiguous blocks is dependent on the
2261 * nrblocks. So limit nrblocks.
2263 goto flush_it;
2264 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2265 EXT4_MAX_TRANS_DATA) {
2267 * Adding the new buffer_head would make it cross the
2268 * allowed limit for which we have journal credit
2269 * reserved. So limit the new bh->b_size
2271 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2272 mpd->inode->i_blkbits;
2273 /* we will do mpage_da_submit_io in the next loop */
2277 * First block in the extent
2279 if (mpd->b_size == 0) {
2280 mpd->b_blocknr = logical;
2281 mpd->b_size = b_size;
2282 mpd->b_state = b_state & BH_FLAGS;
2283 return;
2286 next = mpd->b_blocknr + nrblocks;
2288 * Can we merge the block to our big extent?
2290 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2291 mpd->b_size += b_size;
2292 return;
2295 flush_it:
2297 * We couldn't merge the block to our extent, so we
2298 * need to flush current extent and start new one
2300 if (mpage_da_map_blocks(mpd) == 0)
2301 mpage_da_submit_io(mpd);
2302 mpd->io_done = 1;
2303 return;
2306 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2308 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2312 * __mpage_da_writepage - finds extent of pages and blocks
2314 * @page: page to consider
2315 * @wbc: not used, we just follow rules
2316 * @data: context
2318 * The function finds extents of pages and scan them for all blocks.
2320 static int __mpage_da_writepage(struct page *page,
2321 struct writeback_control *wbc, void *data)
2323 struct mpage_da_data *mpd = data;
2324 struct inode *inode = mpd->inode;
2325 struct buffer_head *bh, *head;
2326 sector_t logical;
2328 if (mpd->io_done) {
2330 * Rest of the page in the page_vec
2331 * redirty then and skip then. We will
2332 * try to to write them again after
2333 * starting a new transaction
2335 redirty_page_for_writepage(wbc, page);
2336 unlock_page(page);
2337 return MPAGE_DA_EXTENT_TAIL;
2340 * Can we merge this page to current extent?
2342 if (mpd->next_page != page->index) {
2344 * Nope, we can't. So, we map non-allocated blocks
2345 * and start IO on them using writepage()
2347 if (mpd->next_page != mpd->first_page) {
2348 if (mpage_da_map_blocks(mpd) == 0)
2349 mpage_da_submit_io(mpd);
2351 * skip rest of the page in the page_vec
2353 mpd->io_done = 1;
2354 redirty_page_for_writepage(wbc, page);
2355 unlock_page(page);
2356 return MPAGE_DA_EXTENT_TAIL;
2360 * Start next extent of pages ...
2362 mpd->first_page = page->index;
2365 * ... and blocks
2367 mpd->b_size = 0;
2368 mpd->b_state = 0;
2369 mpd->b_blocknr = 0;
2372 mpd->next_page = page->index + 1;
2373 logical = (sector_t) page->index <<
2374 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2376 if (!page_has_buffers(page)) {
2377 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2378 (1 << BH_Dirty) | (1 << BH_Uptodate));
2379 if (mpd->io_done)
2380 return MPAGE_DA_EXTENT_TAIL;
2381 } else {
2383 * Page with regular buffer heads, just add all dirty ones
2385 head = page_buffers(page);
2386 bh = head;
2387 do {
2388 BUG_ON(buffer_locked(bh));
2390 * We need to try to allocate
2391 * unmapped blocks in the same page.
2392 * Otherwise we won't make progress
2393 * with the page in ext4_writepage
2395 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2396 mpage_add_bh_to_extent(mpd, logical,
2397 bh->b_size,
2398 bh->b_state);
2399 if (mpd->io_done)
2400 return MPAGE_DA_EXTENT_TAIL;
2401 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2403 * mapped dirty buffer. We need to update
2404 * the b_state because we look at
2405 * b_state in mpage_da_map_blocks. We don't
2406 * update b_size because if we find an
2407 * unmapped buffer_head later we need to
2408 * use the b_state flag of that buffer_head.
2410 if (mpd->b_size == 0)
2411 mpd->b_state = bh->b_state & BH_FLAGS;
2413 logical++;
2414 } while ((bh = bh->b_this_page) != head);
2417 return 0;
2421 * This is a special get_blocks_t callback which is used by
2422 * ext4_da_write_begin(). It will either return mapped block or
2423 * reserve space for a single block.
2425 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2426 * We also have b_blocknr = -1 and b_bdev initialized properly
2428 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2429 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2430 * initialized properly.
2432 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2433 struct buffer_head *bh_result, int create)
2435 int ret = 0;
2436 sector_t invalid_block = ~((sector_t) 0xffff);
2438 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2439 invalid_block = ~0;
2441 BUG_ON(create == 0);
2442 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2445 * first, we need to know whether the block is allocated already
2446 * preallocated blocks are unmapped but should treated
2447 * the same as allocated blocks.
2449 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2450 if ((ret == 0) && !buffer_delay(bh_result)) {
2451 /* the block isn't (pre)allocated yet, let's reserve space */
2453 * XXX: __block_prepare_write() unmaps passed block,
2454 * is it OK?
2456 ret = ext4_da_reserve_space(inode, 1);
2457 if (ret)
2458 /* not enough space to reserve */
2459 return ret;
2461 map_bh(bh_result, inode->i_sb, invalid_block);
2462 set_buffer_new(bh_result);
2463 set_buffer_delay(bh_result);
2464 } else if (ret > 0) {
2465 bh_result->b_size = (ret << inode->i_blkbits);
2466 if (buffer_unwritten(bh_result)) {
2467 /* A delayed write to unwritten bh should
2468 * be marked new and mapped. Mapped ensures
2469 * that we don't do get_block multiple times
2470 * when we write to the same offset and new
2471 * ensures that we do proper zero out for
2472 * partial write.
2474 set_buffer_new(bh_result);
2475 set_buffer_mapped(bh_result);
2477 ret = 0;
2480 return ret;
2484 * This function is used as a standard get_block_t calback function
2485 * when there is no desire to allocate any blocks. It is used as a
2486 * callback function for block_prepare_write(), nobh_writepage(), and
2487 * block_write_full_page(). These functions should only try to map a
2488 * single block at a time.
2490 * Since this function doesn't do block allocations even if the caller
2491 * requests it by passing in create=1, it is critically important that
2492 * any caller checks to make sure that any buffer heads are returned
2493 * by this function are either all already mapped or marked for
2494 * delayed allocation before calling nobh_writepage() or
2495 * block_write_full_page(). Otherwise, b_blocknr could be left
2496 * unitialized, and the page write functions will be taken by
2497 * surprise.
2499 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2500 struct buffer_head *bh_result, int create)
2502 int ret = 0;
2503 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2505 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2508 * we don't want to do block allocation in writepage
2509 * so call get_block_wrap with create = 0
2511 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2512 if (ret > 0) {
2513 bh_result->b_size = (ret << inode->i_blkbits);
2514 ret = 0;
2516 return ret;
2519 static int bget_one(handle_t *handle, struct buffer_head *bh)
2521 get_bh(bh);
2522 return 0;
2525 static int bput_one(handle_t *handle, struct buffer_head *bh)
2527 put_bh(bh);
2528 return 0;
2531 static int __ext4_journalled_writepage(struct page *page,
2532 struct writeback_control *wbc,
2533 unsigned int len)
2535 struct address_space *mapping = page->mapping;
2536 struct inode *inode = mapping->host;
2537 struct buffer_head *page_bufs;
2538 handle_t *handle = NULL;
2539 int ret = 0;
2540 int err;
2542 page_bufs = page_buffers(page);
2543 BUG_ON(!page_bufs);
2544 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2545 /* As soon as we unlock the page, it can go away, but we have
2546 * references to buffers so we are safe */
2547 unlock_page(page);
2549 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2550 if (IS_ERR(handle)) {
2551 ret = PTR_ERR(handle);
2552 goto out;
2555 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2556 do_journal_get_write_access);
2558 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2559 write_end_fn);
2560 if (ret == 0)
2561 ret = err;
2562 err = ext4_journal_stop(handle);
2563 if (!ret)
2564 ret = err;
2566 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2567 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2568 out:
2569 return ret;
2573 * Note that we don't need to start a transaction unless we're journaling data
2574 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2575 * need to file the inode to the transaction's list in ordered mode because if
2576 * we are writing back data added by write(), the inode is already there and if
2577 * we are writing back data modified via mmap(), noone guarantees in which
2578 * transaction the data will hit the disk. In case we are journaling data, we
2579 * cannot start transaction directly because transaction start ranks above page
2580 * lock so we have to do some magic.
2582 * This function can get called via...
2583 * - ext4_da_writepages after taking page lock (have journal handle)
2584 * - journal_submit_inode_data_buffers (no journal handle)
2585 * - shrink_page_list via pdflush (no journal handle)
2586 * - grab_page_cache when doing write_begin (have journal handle)
2588 * We don't do any block allocation in this function. If we have page with
2589 * multiple blocks we need to write those buffer_heads that are mapped. This
2590 * is important for mmaped based write. So if we do with blocksize 1K
2591 * truncate(f, 1024);
2592 * a = mmap(f, 0, 4096);
2593 * a[0] = 'a';
2594 * truncate(f, 4096);
2595 * we have in the page first buffer_head mapped via page_mkwrite call back
2596 * but other bufer_heads would be unmapped but dirty(dirty done via the
2597 * do_wp_page). So writepage should write the first block. If we modify
2598 * the mmap area beyond 1024 we will again get a page_fault and the
2599 * page_mkwrite callback will do the block allocation and mark the
2600 * buffer_heads mapped.
2602 * We redirty the page if we have any buffer_heads that is either delay or
2603 * unwritten in the page.
2605 * We can get recursively called as show below.
2607 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2608 * ext4_writepage()
2610 * But since we don't do any block allocation we should not deadlock.
2611 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2613 static int ext4_writepage(struct page *page,
2614 struct writeback_control *wbc)
2616 int ret = 0;
2617 loff_t size;
2618 unsigned int len;
2619 struct buffer_head *page_bufs;
2620 struct inode *inode = page->mapping->host;
2622 trace_ext4_writepage(inode, page);
2623 size = i_size_read(inode);
2624 if (page->index == size >> PAGE_CACHE_SHIFT)
2625 len = size & ~PAGE_CACHE_MASK;
2626 else
2627 len = PAGE_CACHE_SIZE;
2629 if (page_has_buffers(page)) {
2630 page_bufs = page_buffers(page);
2631 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2632 ext4_bh_delay_or_unwritten)) {
2634 * We don't want to do block allocation
2635 * So redirty the page and return
2636 * We may reach here when we do a journal commit
2637 * via journal_submit_inode_data_buffers.
2638 * If we don't have mapping block we just ignore
2639 * them. We can also reach here via shrink_page_list
2641 redirty_page_for_writepage(wbc, page);
2642 unlock_page(page);
2643 return 0;
2645 } else {
2647 * The test for page_has_buffers() is subtle:
2648 * We know the page is dirty but it lost buffers. That means
2649 * that at some moment in time after write_begin()/write_end()
2650 * has been called all buffers have been clean and thus they
2651 * must have been written at least once. So they are all
2652 * mapped and we can happily proceed with mapping them
2653 * and writing the page.
2655 * Try to initialize the buffer_heads and check whether
2656 * all are mapped and non delay. We don't want to
2657 * do block allocation here.
2659 ret = block_prepare_write(page, 0, len,
2660 noalloc_get_block_write);
2661 if (!ret) {
2662 page_bufs = page_buffers(page);
2663 /* check whether all are mapped and non delay */
2664 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2665 ext4_bh_delay_or_unwritten)) {
2666 redirty_page_for_writepage(wbc, page);
2667 unlock_page(page);
2668 return 0;
2670 } else {
2672 * We can't do block allocation here
2673 * so just redity the page and unlock
2674 * and return
2676 redirty_page_for_writepage(wbc, page);
2677 unlock_page(page);
2678 return 0;
2680 /* now mark the buffer_heads as dirty and uptodate */
2681 block_commit_write(page, 0, len);
2684 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2686 * It's mmapped pagecache. Add buffers and journal it. There
2687 * doesn't seem much point in redirtying the page here.
2689 ClearPageChecked(page);
2690 return __ext4_journalled_writepage(page, wbc, len);
2693 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2694 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2695 else
2696 ret = block_write_full_page(page, noalloc_get_block_write,
2697 wbc);
2699 return ret;
2703 * This is called via ext4_da_writepages() to
2704 * calulate the total number of credits to reserve to fit
2705 * a single extent allocation into a single transaction,
2706 * ext4_da_writpeages() will loop calling this before
2707 * the block allocation.
2710 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2712 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2715 * With non-extent format the journal credit needed to
2716 * insert nrblocks contiguous block is dependent on
2717 * number of contiguous block. So we will limit
2718 * number of contiguous block to a sane value
2720 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2721 (max_blocks > EXT4_MAX_TRANS_DATA))
2722 max_blocks = EXT4_MAX_TRANS_DATA;
2724 return ext4_chunk_trans_blocks(inode, max_blocks);
2727 static int ext4_da_writepages(struct address_space *mapping,
2728 struct writeback_control *wbc)
2730 pgoff_t index;
2731 int range_whole = 0;
2732 handle_t *handle = NULL;
2733 struct mpage_da_data mpd;
2734 struct inode *inode = mapping->host;
2735 int no_nrwrite_index_update;
2736 int pages_written = 0;
2737 long pages_skipped;
2738 int range_cyclic, cycled = 1, io_done = 0;
2739 int needed_blocks, ret = 0, nr_to_writebump = 0;
2740 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2742 trace_ext4_da_writepages(inode, wbc);
2745 * No pages to write? This is mainly a kludge to avoid starting
2746 * a transaction for special inodes like journal inode on last iput()
2747 * because that could violate lock ordering on umount
2749 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2750 return 0;
2753 * If the filesystem has aborted, it is read-only, so return
2754 * right away instead of dumping stack traces later on that
2755 * will obscure the real source of the problem. We test
2756 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2757 * the latter could be true if the filesystem is mounted
2758 * read-only, and in that case, ext4_da_writepages should
2759 * *never* be called, so if that ever happens, we would want
2760 * the stack trace.
2762 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2763 return -EROFS;
2766 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2767 * This make sure small files blocks are allocated in
2768 * single attempt. This ensure that small files
2769 * get less fragmented.
2771 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2772 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2773 wbc->nr_to_write = sbi->s_mb_stream_request;
2775 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2776 range_whole = 1;
2778 range_cyclic = wbc->range_cyclic;
2779 if (wbc->range_cyclic) {
2780 index = mapping->writeback_index;
2781 if (index)
2782 cycled = 0;
2783 wbc->range_start = index << PAGE_CACHE_SHIFT;
2784 wbc->range_end = LLONG_MAX;
2785 wbc->range_cyclic = 0;
2786 } else
2787 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2789 mpd.wbc = wbc;
2790 mpd.inode = mapping->host;
2793 * we don't want write_cache_pages to update
2794 * nr_to_write and writeback_index
2796 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2797 wbc->no_nrwrite_index_update = 1;
2798 pages_skipped = wbc->pages_skipped;
2800 retry:
2801 while (!ret && wbc->nr_to_write > 0) {
2804 * we insert one extent at a time. So we need
2805 * credit needed for single extent allocation.
2806 * journalled mode is currently not supported
2807 * by delalloc
2809 BUG_ON(ext4_should_journal_data(inode));
2810 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2812 /* start a new transaction*/
2813 handle = ext4_journal_start(inode, needed_blocks);
2814 if (IS_ERR(handle)) {
2815 ret = PTR_ERR(handle);
2816 printk(KERN_CRIT "%s: jbd2_start: "
2817 "%ld pages, ino %lu; err %d\n", __func__,
2818 wbc->nr_to_write, inode->i_ino, ret);
2819 dump_stack();
2820 goto out_writepages;
2824 * Now call __mpage_da_writepage to find the next
2825 * contiguous region of logical blocks that need
2826 * blocks to be allocated by ext4. We don't actually
2827 * submit the blocks for I/O here, even though
2828 * write_cache_pages thinks it will, and will set the
2829 * pages as clean for write before calling
2830 * __mpage_da_writepage().
2832 mpd.b_size = 0;
2833 mpd.b_state = 0;
2834 mpd.b_blocknr = 0;
2835 mpd.first_page = 0;
2836 mpd.next_page = 0;
2837 mpd.io_done = 0;
2838 mpd.pages_written = 0;
2839 mpd.retval = 0;
2840 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2841 &mpd);
2843 * If we have a contigous extent of pages and we
2844 * haven't done the I/O yet, map the blocks and submit
2845 * them for I/O.
2847 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2848 if (mpage_da_map_blocks(&mpd) == 0)
2849 mpage_da_submit_io(&mpd);
2850 mpd.io_done = 1;
2851 ret = MPAGE_DA_EXTENT_TAIL;
2853 wbc->nr_to_write -= mpd.pages_written;
2855 ext4_journal_stop(handle);
2857 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2858 /* commit the transaction which would
2859 * free blocks released in the transaction
2860 * and try again
2862 jbd2_journal_force_commit_nested(sbi->s_journal);
2863 wbc->pages_skipped = pages_skipped;
2864 ret = 0;
2865 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2867 * got one extent now try with
2868 * rest of the pages
2870 pages_written += mpd.pages_written;
2871 wbc->pages_skipped = pages_skipped;
2872 ret = 0;
2873 io_done = 1;
2874 } else if (wbc->nr_to_write)
2876 * There is no more writeout needed
2877 * or we requested for a noblocking writeout
2878 * and we found the device congested
2880 break;
2882 if (!io_done && !cycled) {
2883 cycled = 1;
2884 index = 0;
2885 wbc->range_start = index << PAGE_CACHE_SHIFT;
2886 wbc->range_end = mapping->writeback_index - 1;
2887 goto retry;
2889 if (pages_skipped != wbc->pages_skipped)
2890 printk(KERN_EMERG "This should not happen leaving %s "
2891 "with nr_to_write = %ld ret = %d\n",
2892 __func__, wbc->nr_to_write, ret);
2894 /* Update index */
2895 index += pages_written;
2896 wbc->range_cyclic = range_cyclic;
2897 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2899 * set the writeback_index so that range_cyclic
2900 * mode will write it back later
2902 mapping->writeback_index = index;
2904 out_writepages:
2905 if (!no_nrwrite_index_update)
2906 wbc->no_nrwrite_index_update = 0;
2907 wbc->nr_to_write -= nr_to_writebump;
2908 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2909 return ret;
2912 #define FALL_BACK_TO_NONDELALLOC 1
2913 static int ext4_nonda_switch(struct super_block *sb)
2915 s64 free_blocks, dirty_blocks;
2916 struct ext4_sb_info *sbi = EXT4_SB(sb);
2919 * switch to non delalloc mode if we are running low
2920 * on free block. The free block accounting via percpu
2921 * counters can get slightly wrong with percpu_counter_batch getting
2922 * accumulated on each CPU without updating global counters
2923 * Delalloc need an accurate free block accounting. So switch
2924 * to non delalloc when we are near to error range.
2926 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2927 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2928 if (2 * free_blocks < 3 * dirty_blocks ||
2929 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2931 * free block count is less that 150% of dirty blocks
2932 * or free blocks is less that watermark
2934 return 1;
2936 return 0;
2939 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2940 loff_t pos, unsigned len, unsigned flags,
2941 struct page **pagep, void **fsdata)
2943 int ret, retries = 0;
2944 struct page *page;
2945 pgoff_t index;
2946 unsigned from, to;
2947 struct inode *inode = mapping->host;
2948 handle_t *handle;
2950 index = pos >> PAGE_CACHE_SHIFT;
2951 from = pos & (PAGE_CACHE_SIZE - 1);
2952 to = from + len;
2954 if (ext4_nonda_switch(inode->i_sb)) {
2955 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2956 return ext4_write_begin(file, mapping, pos,
2957 len, flags, pagep, fsdata);
2959 *fsdata = (void *)0;
2960 trace_ext4_da_write_begin(inode, pos, len, flags);
2961 retry:
2963 * With delayed allocation, we don't log the i_disksize update
2964 * if there is delayed block allocation. But we still need
2965 * to journalling the i_disksize update if writes to the end
2966 * of file which has an already mapped buffer.
2968 handle = ext4_journal_start(inode, 1);
2969 if (IS_ERR(handle)) {
2970 ret = PTR_ERR(handle);
2971 goto out;
2973 /* We cannot recurse into the filesystem as the transaction is already
2974 * started */
2975 flags |= AOP_FLAG_NOFS;
2977 page = grab_cache_page_write_begin(mapping, index, flags);
2978 if (!page) {
2979 ext4_journal_stop(handle);
2980 ret = -ENOMEM;
2981 goto out;
2983 *pagep = page;
2985 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2986 ext4_da_get_block_prep);
2987 if (ret < 0) {
2988 unlock_page(page);
2989 ext4_journal_stop(handle);
2990 page_cache_release(page);
2992 * block_write_begin may have instantiated a few blocks
2993 * outside i_size. Trim these off again. Don't need
2994 * i_size_read because we hold i_mutex.
2996 if (pos + len > inode->i_size)
2997 ext4_truncate(inode);
3000 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3001 goto retry;
3002 out:
3003 return ret;
3007 * Check if we should update i_disksize
3008 * when write to the end of file but not require block allocation
3010 static int ext4_da_should_update_i_disksize(struct page *page,
3011 unsigned long offset)
3013 struct buffer_head *bh;
3014 struct inode *inode = page->mapping->host;
3015 unsigned int idx;
3016 int i;
3018 bh = page_buffers(page);
3019 idx = offset >> inode->i_blkbits;
3021 for (i = 0; i < idx; i++)
3022 bh = bh->b_this_page;
3024 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3025 return 0;
3026 return 1;
3029 static int ext4_da_write_end(struct file *file,
3030 struct address_space *mapping,
3031 loff_t pos, unsigned len, unsigned copied,
3032 struct page *page, void *fsdata)
3034 struct inode *inode = mapping->host;
3035 int ret = 0, ret2;
3036 handle_t *handle = ext4_journal_current_handle();
3037 loff_t new_i_size;
3038 unsigned long start, end;
3039 int write_mode = (int)(unsigned long)fsdata;
3041 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3042 if (ext4_should_order_data(inode)) {
3043 return ext4_ordered_write_end(file, mapping, pos,
3044 len, copied, page, fsdata);
3045 } else if (ext4_should_writeback_data(inode)) {
3046 return ext4_writeback_write_end(file, mapping, pos,
3047 len, copied, page, fsdata);
3048 } else {
3049 BUG();
3053 trace_ext4_da_write_end(inode, pos, len, copied);
3054 start = pos & (PAGE_CACHE_SIZE - 1);
3055 end = start + copied - 1;
3058 * generic_write_end() will run mark_inode_dirty() if i_size
3059 * changes. So let's piggyback the i_disksize mark_inode_dirty
3060 * into that.
3063 new_i_size = pos + copied;
3064 if (new_i_size > EXT4_I(inode)->i_disksize) {
3065 if (ext4_da_should_update_i_disksize(page, end)) {
3066 down_write(&EXT4_I(inode)->i_data_sem);
3067 if (new_i_size > EXT4_I(inode)->i_disksize) {
3069 * Updating i_disksize when extending file
3070 * without needing block allocation
3072 if (ext4_should_order_data(inode))
3073 ret = ext4_jbd2_file_inode(handle,
3074 inode);
3076 EXT4_I(inode)->i_disksize = new_i_size;
3078 up_write(&EXT4_I(inode)->i_data_sem);
3079 /* We need to mark inode dirty even if
3080 * new_i_size is less that inode->i_size
3081 * bu greater than i_disksize.(hint delalloc)
3083 ext4_mark_inode_dirty(handle, inode);
3086 ret2 = generic_write_end(file, mapping, pos, len, copied,
3087 page, fsdata);
3088 copied = ret2;
3089 if (ret2 < 0)
3090 ret = ret2;
3091 ret2 = ext4_journal_stop(handle);
3092 if (!ret)
3093 ret = ret2;
3095 return ret ? ret : copied;
3098 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3101 * Drop reserved blocks
3103 BUG_ON(!PageLocked(page));
3104 if (!page_has_buffers(page))
3105 goto out;
3107 ext4_da_page_release_reservation(page, offset);
3109 out:
3110 ext4_invalidatepage(page, offset);
3112 return;
3116 * Force all delayed allocation blocks to be allocated for a given inode.
3118 int ext4_alloc_da_blocks(struct inode *inode)
3120 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3121 !EXT4_I(inode)->i_reserved_meta_blocks)
3122 return 0;
3125 * We do something simple for now. The filemap_flush() will
3126 * also start triggering a write of the data blocks, which is
3127 * not strictly speaking necessary (and for users of
3128 * laptop_mode, not even desirable). However, to do otherwise
3129 * would require replicating code paths in:
3131 * ext4_da_writepages() ->
3132 * write_cache_pages() ---> (via passed in callback function)
3133 * __mpage_da_writepage() -->
3134 * mpage_add_bh_to_extent()
3135 * mpage_da_map_blocks()
3137 * The problem is that write_cache_pages(), located in
3138 * mm/page-writeback.c, marks pages clean in preparation for
3139 * doing I/O, which is not desirable if we're not planning on
3140 * doing I/O at all.
3142 * We could call write_cache_pages(), and then redirty all of
3143 * the pages by calling redirty_page_for_writeback() but that
3144 * would be ugly in the extreme. So instead we would need to
3145 * replicate parts of the code in the above functions,
3146 * simplifying them becuase we wouldn't actually intend to
3147 * write out the pages, but rather only collect contiguous
3148 * logical block extents, call the multi-block allocator, and
3149 * then update the buffer heads with the block allocations.
3151 * For now, though, we'll cheat by calling filemap_flush(),
3152 * which will map the blocks, and start the I/O, but not
3153 * actually wait for the I/O to complete.
3155 return filemap_flush(inode->i_mapping);
3159 * bmap() is special. It gets used by applications such as lilo and by
3160 * the swapper to find the on-disk block of a specific piece of data.
3162 * Naturally, this is dangerous if the block concerned is still in the
3163 * journal. If somebody makes a swapfile on an ext4 data-journaling
3164 * filesystem and enables swap, then they may get a nasty shock when the
3165 * data getting swapped to that swapfile suddenly gets overwritten by
3166 * the original zero's written out previously to the journal and
3167 * awaiting writeback in the kernel's buffer cache.
3169 * So, if we see any bmap calls here on a modified, data-journaled file,
3170 * take extra steps to flush any blocks which might be in the cache.
3172 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3174 struct inode *inode = mapping->host;
3175 journal_t *journal;
3176 int err;
3178 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3179 test_opt(inode->i_sb, DELALLOC)) {
3181 * With delalloc we want to sync the file
3182 * so that we can make sure we allocate
3183 * blocks for file
3185 filemap_write_and_wait(mapping);
3188 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3190 * This is a REALLY heavyweight approach, but the use of
3191 * bmap on dirty files is expected to be extremely rare:
3192 * only if we run lilo or swapon on a freshly made file
3193 * do we expect this to happen.
3195 * (bmap requires CAP_SYS_RAWIO so this does not
3196 * represent an unprivileged user DOS attack --- we'd be
3197 * in trouble if mortal users could trigger this path at
3198 * will.)
3200 * NB. EXT4_STATE_JDATA is not set on files other than
3201 * regular files. If somebody wants to bmap a directory
3202 * or symlink and gets confused because the buffer
3203 * hasn't yet been flushed to disk, they deserve
3204 * everything they get.
3207 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3208 journal = EXT4_JOURNAL(inode);
3209 jbd2_journal_lock_updates(journal);
3210 err = jbd2_journal_flush(journal);
3211 jbd2_journal_unlock_updates(journal);
3213 if (err)
3214 return 0;
3217 return generic_block_bmap(mapping, block, ext4_get_block);
3220 static int ext4_readpage(struct file *file, struct page *page)
3222 return mpage_readpage(page, ext4_get_block);
3225 static int
3226 ext4_readpages(struct file *file, struct address_space *mapping,
3227 struct list_head *pages, unsigned nr_pages)
3229 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3232 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3234 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3237 * If it's a full truncate we just forget about the pending dirtying
3239 if (offset == 0)
3240 ClearPageChecked(page);
3242 if (journal)
3243 jbd2_journal_invalidatepage(journal, page, offset);
3244 else
3245 block_invalidatepage(page, offset);
3248 static int ext4_releasepage(struct page *page, gfp_t wait)
3250 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3252 WARN_ON(PageChecked(page));
3253 if (!page_has_buffers(page))
3254 return 0;
3255 if (journal)
3256 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3257 else
3258 return try_to_free_buffers(page);
3262 * If the O_DIRECT write will extend the file then add this inode to the
3263 * orphan list. So recovery will truncate it back to the original size
3264 * if the machine crashes during the write.
3266 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3267 * crashes then stale disk data _may_ be exposed inside the file. But current
3268 * VFS code falls back into buffered path in that case so we are safe.
3270 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3271 const struct iovec *iov, loff_t offset,
3272 unsigned long nr_segs)
3274 struct file *file = iocb->ki_filp;
3275 struct inode *inode = file->f_mapping->host;
3276 struct ext4_inode_info *ei = EXT4_I(inode);
3277 handle_t *handle;
3278 ssize_t ret;
3279 int orphan = 0;
3280 size_t count = iov_length(iov, nr_segs);
3282 if (rw == WRITE) {
3283 loff_t final_size = offset + count;
3285 if (final_size > inode->i_size) {
3286 /* Credits for sb + inode write */
3287 handle = ext4_journal_start(inode, 2);
3288 if (IS_ERR(handle)) {
3289 ret = PTR_ERR(handle);
3290 goto out;
3292 ret = ext4_orphan_add(handle, inode);
3293 if (ret) {
3294 ext4_journal_stop(handle);
3295 goto out;
3297 orphan = 1;
3298 ei->i_disksize = inode->i_size;
3299 ext4_journal_stop(handle);
3303 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3304 offset, nr_segs,
3305 ext4_get_block, NULL);
3307 if (orphan) {
3308 int err;
3310 /* Credits for sb + inode write */
3311 handle = ext4_journal_start(inode, 2);
3312 if (IS_ERR(handle)) {
3313 /* This is really bad luck. We've written the data
3314 * but cannot extend i_size. Bail out and pretend
3315 * the write failed... */
3316 ret = PTR_ERR(handle);
3317 goto out;
3319 if (inode->i_nlink)
3320 ext4_orphan_del(handle, inode);
3321 if (ret > 0) {
3322 loff_t end = offset + ret;
3323 if (end > inode->i_size) {
3324 ei->i_disksize = end;
3325 i_size_write(inode, end);
3327 * We're going to return a positive `ret'
3328 * here due to non-zero-length I/O, so there's
3329 * no way of reporting error returns from
3330 * ext4_mark_inode_dirty() to userspace. So
3331 * ignore it.
3333 ext4_mark_inode_dirty(handle, inode);
3336 err = ext4_journal_stop(handle);
3337 if (ret == 0)
3338 ret = err;
3340 out:
3341 return ret;
3345 * Pages can be marked dirty completely asynchronously from ext4's journalling
3346 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3347 * much here because ->set_page_dirty is called under VFS locks. The page is
3348 * not necessarily locked.
3350 * We cannot just dirty the page and leave attached buffers clean, because the
3351 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3352 * or jbddirty because all the journalling code will explode.
3354 * So what we do is to mark the page "pending dirty" and next time writepage
3355 * is called, propagate that into the buffers appropriately.
3357 static int ext4_journalled_set_page_dirty(struct page *page)
3359 SetPageChecked(page);
3360 return __set_page_dirty_nobuffers(page);
3363 static const struct address_space_operations ext4_ordered_aops = {
3364 .readpage = ext4_readpage,
3365 .readpages = ext4_readpages,
3366 .writepage = ext4_writepage,
3367 .sync_page = block_sync_page,
3368 .write_begin = ext4_write_begin,
3369 .write_end = ext4_ordered_write_end,
3370 .bmap = ext4_bmap,
3371 .invalidatepage = ext4_invalidatepage,
3372 .releasepage = ext4_releasepage,
3373 .direct_IO = ext4_direct_IO,
3374 .migratepage = buffer_migrate_page,
3375 .is_partially_uptodate = block_is_partially_uptodate,
3378 static const struct address_space_operations ext4_writeback_aops = {
3379 .readpage = ext4_readpage,
3380 .readpages = ext4_readpages,
3381 .writepage = ext4_writepage,
3382 .sync_page = block_sync_page,
3383 .write_begin = ext4_write_begin,
3384 .write_end = ext4_writeback_write_end,
3385 .bmap = ext4_bmap,
3386 .invalidatepage = ext4_invalidatepage,
3387 .releasepage = ext4_releasepage,
3388 .direct_IO = ext4_direct_IO,
3389 .migratepage = buffer_migrate_page,
3390 .is_partially_uptodate = block_is_partially_uptodate,
3393 static const struct address_space_operations ext4_journalled_aops = {
3394 .readpage = ext4_readpage,
3395 .readpages = ext4_readpages,
3396 .writepage = ext4_writepage,
3397 .sync_page = block_sync_page,
3398 .write_begin = ext4_write_begin,
3399 .write_end = ext4_journalled_write_end,
3400 .set_page_dirty = ext4_journalled_set_page_dirty,
3401 .bmap = ext4_bmap,
3402 .invalidatepage = ext4_invalidatepage,
3403 .releasepage = ext4_releasepage,
3404 .is_partially_uptodate = block_is_partially_uptodate,
3407 static const struct address_space_operations ext4_da_aops = {
3408 .readpage = ext4_readpage,
3409 .readpages = ext4_readpages,
3410 .writepage = ext4_writepage,
3411 .writepages = ext4_da_writepages,
3412 .sync_page = block_sync_page,
3413 .write_begin = ext4_da_write_begin,
3414 .write_end = ext4_da_write_end,
3415 .bmap = ext4_bmap,
3416 .invalidatepage = ext4_da_invalidatepage,
3417 .releasepage = ext4_releasepage,
3418 .direct_IO = ext4_direct_IO,
3419 .migratepage = buffer_migrate_page,
3420 .is_partially_uptodate = block_is_partially_uptodate,
3423 void ext4_set_aops(struct inode *inode)
3425 if (ext4_should_order_data(inode) &&
3426 test_opt(inode->i_sb, DELALLOC))
3427 inode->i_mapping->a_ops = &ext4_da_aops;
3428 else if (ext4_should_order_data(inode))
3429 inode->i_mapping->a_ops = &ext4_ordered_aops;
3430 else if (ext4_should_writeback_data(inode) &&
3431 test_opt(inode->i_sb, DELALLOC))
3432 inode->i_mapping->a_ops = &ext4_da_aops;
3433 else if (ext4_should_writeback_data(inode))
3434 inode->i_mapping->a_ops = &ext4_writeback_aops;
3435 else
3436 inode->i_mapping->a_ops = &ext4_journalled_aops;
3440 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3441 * up to the end of the block which corresponds to `from'.
3442 * This required during truncate. We need to physically zero the tail end
3443 * of that block so it doesn't yield old data if the file is later grown.
3445 int ext4_block_truncate_page(handle_t *handle,
3446 struct address_space *mapping, loff_t from)
3448 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3449 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3450 unsigned blocksize, length, pos;
3451 ext4_lblk_t iblock;
3452 struct inode *inode = mapping->host;
3453 struct buffer_head *bh;
3454 struct page *page;
3455 int err = 0;
3457 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3458 mapping_gfp_mask(mapping) & ~__GFP_FS);
3459 if (!page)
3460 return -EINVAL;
3462 blocksize = inode->i_sb->s_blocksize;
3463 length = blocksize - (offset & (blocksize - 1));
3464 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3467 * For "nobh" option, we can only work if we don't need to
3468 * read-in the page - otherwise we create buffers to do the IO.
3470 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3471 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3472 zero_user(page, offset, length);
3473 set_page_dirty(page);
3474 goto unlock;
3477 if (!page_has_buffers(page))
3478 create_empty_buffers(page, blocksize, 0);
3480 /* Find the buffer that contains "offset" */
3481 bh = page_buffers(page);
3482 pos = blocksize;
3483 while (offset >= pos) {
3484 bh = bh->b_this_page;
3485 iblock++;
3486 pos += blocksize;
3489 err = 0;
3490 if (buffer_freed(bh)) {
3491 BUFFER_TRACE(bh, "freed: skip");
3492 goto unlock;
3495 if (!buffer_mapped(bh)) {
3496 BUFFER_TRACE(bh, "unmapped");
3497 ext4_get_block(inode, iblock, bh, 0);
3498 /* unmapped? It's a hole - nothing to do */
3499 if (!buffer_mapped(bh)) {
3500 BUFFER_TRACE(bh, "still unmapped");
3501 goto unlock;
3505 /* Ok, it's mapped. Make sure it's up-to-date */
3506 if (PageUptodate(page))
3507 set_buffer_uptodate(bh);
3509 if (!buffer_uptodate(bh)) {
3510 err = -EIO;
3511 ll_rw_block(READ, 1, &bh);
3512 wait_on_buffer(bh);
3513 /* Uhhuh. Read error. Complain and punt. */
3514 if (!buffer_uptodate(bh))
3515 goto unlock;
3518 if (ext4_should_journal_data(inode)) {
3519 BUFFER_TRACE(bh, "get write access");
3520 err = ext4_journal_get_write_access(handle, bh);
3521 if (err)
3522 goto unlock;
3525 zero_user(page, offset, length);
3527 BUFFER_TRACE(bh, "zeroed end of block");
3529 err = 0;
3530 if (ext4_should_journal_data(inode)) {
3531 err = ext4_handle_dirty_metadata(handle, inode, bh);
3532 } else {
3533 if (ext4_should_order_data(inode))
3534 err = ext4_jbd2_file_inode(handle, inode);
3535 mark_buffer_dirty(bh);
3538 unlock:
3539 unlock_page(page);
3540 page_cache_release(page);
3541 return err;
3545 * Probably it should be a library function... search for first non-zero word
3546 * or memcmp with zero_page, whatever is better for particular architecture.
3547 * Linus?
3549 static inline int all_zeroes(__le32 *p, __le32 *q)
3551 while (p < q)
3552 if (*p++)
3553 return 0;
3554 return 1;
3558 * ext4_find_shared - find the indirect blocks for partial truncation.
3559 * @inode: inode in question
3560 * @depth: depth of the affected branch
3561 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3562 * @chain: place to store the pointers to partial indirect blocks
3563 * @top: place to the (detached) top of branch
3565 * This is a helper function used by ext4_truncate().
3567 * When we do truncate() we may have to clean the ends of several
3568 * indirect blocks but leave the blocks themselves alive. Block is
3569 * partially truncated if some data below the new i_size is refered
3570 * from it (and it is on the path to the first completely truncated
3571 * data block, indeed). We have to free the top of that path along
3572 * with everything to the right of the path. Since no allocation
3573 * past the truncation point is possible until ext4_truncate()
3574 * finishes, we may safely do the latter, but top of branch may
3575 * require special attention - pageout below the truncation point
3576 * might try to populate it.
3578 * We atomically detach the top of branch from the tree, store the
3579 * block number of its root in *@top, pointers to buffer_heads of
3580 * partially truncated blocks - in @chain[].bh and pointers to
3581 * their last elements that should not be removed - in
3582 * @chain[].p. Return value is the pointer to last filled element
3583 * of @chain.
3585 * The work left to caller to do the actual freeing of subtrees:
3586 * a) free the subtree starting from *@top
3587 * b) free the subtrees whose roots are stored in
3588 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3589 * c) free the subtrees growing from the inode past the @chain[0].
3590 * (no partially truncated stuff there). */
3592 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3593 ext4_lblk_t offsets[4], Indirect chain[4],
3594 __le32 *top)
3596 Indirect *partial, *p;
3597 int k, err;
3599 *top = 0;
3600 /* Make k index the deepest non-null offest + 1 */
3601 for (k = depth; k > 1 && !offsets[k-1]; k--)
3603 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3604 /* Writer: pointers */
3605 if (!partial)
3606 partial = chain + k-1;
3608 * If the branch acquired continuation since we've looked at it -
3609 * fine, it should all survive and (new) top doesn't belong to us.
3611 if (!partial->key && *partial->p)
3612 /* Writer: end */
3613 goto no_top;
3614 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3617 * OK, we've found the last block that must survive. The rest of our
3618 * branch should be detached before unlocking. However, if that rest
3619 * of branch is all ours and does not grow immediately from the inode
3620 * it's easier to cheat and just decrement partial->p.
3622 if (p == chain + k - 1 && p > chain) {
3623 p->p--;
3624 } else {
3625 *top = *p->p;
3626 /* Nope, don't do this in ext4. Must leave the tree intact */
3627 #if 0
3628 *p->p = 0;
3629 #endif
3631 /* Writer: end */
3633 while (partial > p) {
3634 brelse(partial->bh);
3635 partial--;
3637 no_top:
3638 return partial;
3642 * Zero a number of block pointers in either an inode or an indirect block.
3643 * If we restart the transaction we must again get write access to the
3644 * indirect block for further modification.
3646 * We release `count' blocks on disk, but (last - first) may be greater
3647 * than `count' because there can be holes in there.
3649 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3650 struct buffer_head *bh,
3651 ext4_fsblk_t block_to_free,
3652 unsigned long count, __le32 *first,
3653 __le32 *last)
3655 __le32 *p;
3656 if (try_to_extend_transaction(handle, inode)) {
3657 if (bh) {
3658 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3659 ext4_handle_dirty_metadata(handle, inode, bh);
3661 ext4_mark_inode_dirty(handle, inode);
3662 ext4_journal_test_restart(handle, inode);
3663 if (bh) {
3664 BUFFER_TRACE(bh, "retaking write access");
3665 ext4_journal_get_write_access(handle, bh);
3670 * Any buffers which are on the journal will be in memory. We
3671 * find them on the hash table so jbd2_journal_revoke() will
3672 * run jbd2_journal_forget() on them. We've already detached
3673 * each block from the file, so bforget() in
3674 * jbd2_journal_forget() should be safe.
3676 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3678 for (p = first; p < last; p++) {
3679 u32 nr = le32_to_cpu(*p);
3680 if (nr) {
3681 struct buffer_head *tbh;
3683 *p = 0;
3684 tbh = sb_find_get_block(inode->i_sb, nr);
3685 ext4_forget(handle, 0, inode, tbh, nr);
3689 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3693 * ext4_free_data - free a list of data blocks
3694 * @handle: handle for this transaction
3695 * @inode: inode we are dealing with
3696 * @this_bh: indirect buffer_head which contains *@first and *@last
3697 * @first: array of block numbers
3698 * @last: points immediately past the end of array
3700 * We are freeing all blocks refered from that array (numbers are stored as
3701 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3703 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3704 * blocks are contiguous then releasing them at one time will only affect one
3705 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3706 * actually use a lot of journal space.
3708 * @this_bh will be %NULL if @first and @last point into the inode's direct
3709 * block pointers.
3711 static void ext4_free_data(handle_t *handle, struct inode *inode,
3712 struct buffer_head *this_bh,
3713 __le32 *first, __le32 *last)
3715 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3716 unsigned long count = 0; /* Number of blocks in the run */
3717 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3718 corresponding to
3719 block_to_free */
3720 ext4_fsblk_t nr; /* Current block # */
3721 __le32 *p; /* Pointer into inode/ind
3722 for current block */
3723 int err;
3725 if (this_bh) { /* For indirect block */
3726 BUFFER_TRACE(this_bh, "get_write_access");
3727 err = ext4_journal_get_write_access(handle, this_bh);
3728 /* Important: if we can't update the indirect pointers
3729 * to the blocks, we can't free them. */
3730 if (err)
3731 return;
3734 for (p = first; p < last; p++) {
3735 nr = le32_to_cpu(*p);
3736 if (nr) {
3737 /* accumulate blocks to free if they're contiguous */
3738 if (count == 0) {
3739 block_to_free = nr;
3740 block_to_free_p = p;
3741 count = 1;
3742 } else if (nr == block_to_free + count) {
3743 count++;
3744 } else {
3745 ext4_clear_blocks(handle, inode, this_bh,
3746 block_to_free,
3747 count, block_to_free_p, p);
3748 block_to_free = nr;
3749 block_to_free_p = p;
3750 count = 1;
3755 if (count > 0)
3756 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3757 count, block_to_free_p, p);
3759 if (this_bh) {
3760 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3763 * The buffer head should have an attached journal head at this
3764 * point. However, if the data is corrupted and an indirect
3765 * block pointed to itself, it would have been detached when
3766 * the block was cleared. Check for this instead of OOPSing.
3768 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3769 ext4_handle_dirty_metadata(handle, inode, this_bh);
3770 else
3771 ext4_error(inode->i_sb, __func__,
3772 "circular indirect block detected, "
3773 "inode=%lu, block=%llu",
3774 inode->i_ino,
3775 (unsigned long long) this_bh->b_blocknr);
3780 * ext4_free_branches - free an array of branches
3781 * @handle: JBD handle for this transaction
3782 * @inode: inode we are dealing with
3783 * @parent_bh: the buffer_head which contains *@first and *@last
3784 * @first: array of block numbers
3785 * @last: pointer immediately past the end of array
3786 * @depth: depth of the branches to free
3788 * We are freeing all blocks refered from these branches (numbers are
3789 * stored as little-endian 32-bit) and updating @inode->i_blocks
3790 * appropriately.
3792 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3793 struct buffer_head *parent_bh,
3794 __le32 *first, __le32 *last, int depth)
3796 ext4_fsblk_t nr;
3797 __le32 *p;
3799 if (ext4_handle_is_aborted(handle))
3800 return;
3802 if (depth--) {
3803 struct buffer_head *bh;
3804 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3805 p = last;
3806 while (--p >= first) {
3807 nr = le32_to_cpu(*p);
3808 if (!nr)
3809 continue; /* A hole */
3811 /* Go read the buffer for the next level down */
3812 bh = sb_bread(inode->i_sb, nr);
3815 * A read failure? Report error and clear slot
3816 * (should be rare).
3818 if (!bh) {
3819 ext4_error(inode->i_sb, "ext4_free_branches",
3820 "Read failure, inode=%lu, block=%llu",
3821 inode->i_ino, nr);
3822 continue;
3825 /* This zaps the entire block. Bottom up. */
3826 BUFFER_TRACE(bh, "free child branches");
3827 ext4_free_branches(handle, inode, bh,
3828 (__le32 *) bh->b_data,
3829 (__le32 *) bh->b_data + addr_per_block,
3830 depth);
3833 * We've probably journalled the indirect block several
3834 * times during the truncate. But it's no longer
3835 * needed and we now drop it from the transaction via
3836 * jbd2_journal_revoke().
3838 * That's easy if it's exclusively part of this
3839 * transaction. But if it's part of the committing
3840 * transaction then jbd2_journal_forget() will simply
3841 * brelse() it. That means that if the underlying
3842 * block is reallocated in ext4_get_block(),
3843 * unmap_underlying_metadata() will find this block
3844 * and will try to get rid of it. damn, damn.
3846 * If this block has already been committed to the
3847 * journal, a revoke record will be written. And
3848 * revoke records must be emitted *before* clearing
3849 * this block's bit in the bitmaps.
3851 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3854 * Everything below this this pointer has been
3855 * released. Now let this top-of-subtree go.
3857 * We want the freeing of this indirect block to be
3858 * atomic in the journal with the updating of the
3859 * bitmap block which owns it. So make some room in
3860 * the journal.
3862 * We zero the parent pointer *after* freeing its
3863 * pointee in the bitmaps, so if extend_transaction()
3864 * for some reason fails to put the bitmap changes and
3865 * the release into the same transaction, recovery
3866 * will merely complain about releasing a free block,
3867 * rather than leaking blocks.
3869 if (ext4_handle_is_aborted(handle))
3870 return;
3871 if (try_to_extend_transaction(handle, inode)) {
3872 ext4_mark_inode_dirty(handle, inode);
3873 ext4_journal_test_restart(handle, inode);
3876 ext4_free_blocks(handle, inode, nr, 1, 1);
3878 if (parent_bh) {
3880 * The block which we have just freed is
3881 * pointed to by an indirect block: journal it
3883 BUFFER_TRACE(parent_bh, "get_write_access");
3884 if (!ext4_journal_get_write_access(handle,
3885 parent_bh)){
3886 *p = 0;
3887 BUFFER_TRACE(parent_bh,
3888 "call ext4_handle_dirty_metadata");
3889 ext4_handle_dirty_metadata(handle,
3890 inode,
3891 parent_bh);
3895 } else {
3896 /* We have reached the bottom of the tree. */
3897 BUFFER_TRACE(parent_bh, "free data blocks");
3898 ext4_free_data(handle, inode, parent_bh, first, last);
3902 int ext4_can_truncate(struct inode *inode)
3904 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3905 return 0;
3906 if (S_ISREG(inode->i_mode))
3907 return 1;
3908 if (S_ISDIR(inode->i_mode))
3909 return 1;
3910 if (S_ISLNK(inode->i_mode))
3911 return !ext4_inode_is_fast_symlink(inode);
3912 return 0;
3916 * ext4_truncate()
3918 * We block out ext4_get_block() block instantiations across the entire
3919 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3920 * simultaneously on behalf of the same inode.
3922 * As we work through the truncate and commmit bits of it to the journal there
3923 * is one core, guiding principle: the file's tree must always be consistent on
3924 * disk. We must be able to restart the truncate after a crash.
3926 * The file's tree may be transiently inconsistent in memory (although it
3927 * probably isn't), but whenever we close off and commit a journal transaction,
3928 * the contents of (the filesystem + the journal) must be consistent and
3929 * restartable. It's pretty simple, really: bottom up, right to left (although
3930 * left-to-right works OK too).
3932 * Note that at recovery time, journal replay occurs *before* the restart of
3933 * truncate against the orphan inode list.
3935 * The committed inode has the new, desired i_size (which is the same as
3936 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3937 * that this inode's truncate did not complete and it will again call
3938 * ext4_truncate() to have another go. So there will be instantiated blocks
3939 * to the right of the truncation point in a crashed ext4 filesystem. But
3940 * that's fine - as long as they are linked from the inode, the post-crash
3941 * ext4_truncate() run will find them and release them.
3943 void ext4_truncate(struct inode *inode)
3945 handle_t *handle;
3946 struct ext4_inode_info *ei = EXT4_I(inode);
3947 __le32 *i_data = ei->i_data;
3948 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3949 struct address_space *mapping = inode->i_mapping;
3950 ext4_lblk_t offsets[4];
3951 Indirect chain[4];
3952 Indirect *partial;
3953 __le32 nr = 0;
3954 int n;
3955 ext4_lblk_t last_block;
3956 unsigned blocksize = inode->i_sb->s_blocksize;
3958 if (!ext4_can_truncate(inode))
3959 return;
3961 if (ei->i_disksize && inode->i_size == 0 &&
3962 !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3963 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3965 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3966 ext4_ext_truncate(inode);
3967 return;
3970 handle = start_transaction(inode);
3971 if (IS_ERR(handle))
3972 return; /* AKPM: return what? */
3974 last_block = (inode->i_size + blocksize-1)
3975 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3977 if (inode->i_size & (blocksize - 1))
3978 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3979 goto out_stop;
3981 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3982 if (n == 0)
3983 goto out_stop; /* error */
3986 * OK. This truncate is going to happen. We add the inode to the
3987 * orphan list, so that if this truncate spans multiple transactions,
3988 * and we crash, we will resume the truncate when the filesystem
3989 * recovers. It also marks the inode dirty, to catch the new size.
3991 * Implication: the file must always be in a sane, consistent
3992 * truncatable state while each transaction commits.
3994 if (ext4_orphan_add(handle, inode))
3995 goto out_stop;
3998 * From here we block out all ext4_get_block() callers who want to
3999 * modify the block allocation tree.
4001 down_write(&ei->i_data_sem);
4003 ext4_discard_preallocations(inode);
4006 * The orphan list entry will now protect us from any crash which
4007 * occurs before the truncate completes, so it is now safe to propagate
4008 * the new, shorter inode size (held for now in i_size) into the
4009 * on-disk inode. We do this via i_disksize, which is the value which
4010 * ext4 *really* writes onto the disk inode.
4012 ei->i_disksize = inode->i_size;
4014 if (n == 1) { /* direct blocks */
4015 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4016 i_data + EXT4_NDIR_BLOCKS);
4017 goto do_indirects;
4020 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4021 /* Kill the top of shared branch (not detached) */
4022 if (nr) {
4023 if (partial == chain) {
4024 /* Shared branch grows from the inode */
4025 ext4_free_branches(handle, inode, NULL,
4026 &nr, &nr+1, (chain+n-1) - partial);
4027 *partial->p = 0;
4029 * We mark the inode dirty prior to restart,
4030 * and prior to stop. No need for it here.
4032 } else {
4033 /* Shared branch grows from an indirect block */
4034 BUFFER_TRACE(partial->bh, "get_write_access");
4035 ext4_free_branches(handle, inode, partial->bh,
4036 partial->p,
4037 partial->p+1, (chain+n-1) - partial);
4040 /* Clear the ends of indirect blocks on the shared branch */
4041 while (partial > chain) {
4042 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4043 (__le32*)partial->bh->b_data+addr_per_block,
4044 (chain+n-1) - partial);
4045 BUFFER_TRACE(partial->bh, "call brelse");
4046 brelse(partial->bh);
4047 partial--;
4049 do_indirects:
4050 /* Kill the remaining (whole) subtrees */
4051 switch (offsets[0]) {
4052 default:
4053 nr = i_data[EXT4_IND_BLOCK];
4054 if (nr) {
4055 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4056 i_data[EXT4_IND_BLOCK] = 0;
4058 case EXT4_IND_BLOCK:
4059 nr = i_data[EXT4_DIND_BLOCK];
4060 if (nr) {
4061 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4062 i_data[EXT4_DIND_BLOCK] = 0;
4064 case EXT4_DIND_BLOCK:
4065 nr = i_data[EXT4_TIND_BLOCK];
4066 if (nr) {
4067 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4068 i_data[EXT4_TIND_BLOCK] = 0;
4070 case EXT4_TIND_BLOCK:
4074 up_write(&ei->i_data_sem);
4075 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4076 ext4_mark_inode_dirty(handle, inode);
4079 * In a multi-transaction truncate, we only make the final transaction
4080 * synchronous
4082 if (IS_SYNC(inode))
4083 ext4_handle_sync(handle);
4084 out_stop:
4086 * If this was a simple ftruncate(), and the file will remain alive
4087 * then we need to clear up the orphan record which we created above.
4088 * However, if this was a real unlink then we were called by
4089 * ext4_delete_inode(), and we allow that function to clean up the
4090 * orphan info for us.
4092 if (inode->i_nlink)
4093 ext4_orphan_del(handle, inode);
4095 ext4_journal_stop(handle);
4099 * ext4_get_inode_loc returns with an extra refcount against the inode's
4100 * underlying buffer_head on success. If 'in_mem' is true, we have all
4101 * data in memory that is needed to recreate the on-disk version of this
4102 * inode.
4104 static int __ext4_get_inode_loc(struct inode *inode,
4105 struct ext4_iloc *iloc, int in_mem)
4107 struct ext4_group_desc *gdp;
4108 struct buffer_head *bh;
4109 struct super_block *sb = inode->i_sb;
4110 ext4_fsblk_t block;
4111 int inodes_per_block, inode_offset;
4113 iloc->bh = NULL;
4114 if (!ext4_valid_inum(sb, inode->i_ino))
4115 return -EIO;
4117 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4118 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4119 if (!gdp)
4120 return -EIO;
4123 * Figure out the offset within the block group inode table
4125 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4126 inode_offset = ((inode->i_ino - 1) %
4127 EXT4_INODES_PER_GROUP(sb));
4128 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4129 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4131 bh = sb_getblk(sb, block);
4132 if (!bh) {
4133 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4134 "inode block - inode=%lu, block=%llu",
4135 inode->i_ino, block);
4136 return -EIO;
4138 if (!buffer_uptodate(bh)) {
4139 lock_buffer(bh);
4142 * If the buffer has the write error flag, we have failed
4143 * to write out another inode in the same block. In this
4144 * case, we don't have to read the block because we may
4145 * read the old inode data successfully.
4147 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4148 set_buffer_uptodate(bh);
4150 if (buffer_uptodate(bh)) {
4151 /* someone brought it uptodate while we waited */
4152 unlock_buffer(bh);
4153 goto has_buffer;
4157 * If we have all information of the inode in memory and this
4158 * is the only valid inode in the block, we need not read the
4159 * block.
4161 if (in_mem) {
4162 struct buffer_head *bitmap_bh;
4163 int i, start;
4165 start = inode_offset & ~(inodes_per_block - 1);
4167 /* Is the inode bitmap in cache? */
4168 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4169 if (!bitmap_bh)
4170 goto make_io;
4173 * If the inode bitmap isn't in cache then the
4174 * optimisation may end up performing two reads instead
4175 * of one, so skip it.
4177 if (!buffer_uptodate(bitmap_bh)) {
4178 brelse(bitmap_bh);
4179 goto make_io;
4181 for (i = start; i < start + inodes_per_block; i++) {
4182 if (i == inode_offset)
4183 continue;
4184 if (ext4_test_bit(i, bitmap_bh->b_data))
4185 break;
4187 brelse(bitmap_bh);
4188 if (i == start + inodes_per_block) {
4189 /* all other inodes are free, so skip I/O */
4190 memset(bh->b_data, 0, bh->b_size);
4191 set_buffer_uptodate(bh);
4192 unlock_buffer(bh);
4193 goto has_buffer;
4197 make_io:
4199 * If we need to do any I/O, try to pre-readahead extra
4200 * blocks from the inode table.
4202 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4203 ext4_fsblk_t b, end, table;
4204 unsigned num;
4206 table = ext4_inode_table(sb, gdp);
4207 /* s_inode_readahead_blks is always a power of 2 */
4208 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4209 if (table > b)
4210 b = table;
4211 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4212 num = EXT4_INODES_PER_GROUP(sb);
4213 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4214 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4215 num -= ext4_itable_unused_count(sb, gdp);
4216 table += num / inodes_per_block;
4217 if (end > table)
4218 end = table;
4219 while (b <= end)
4220 sb_breadahead(sb, b++);
4224 * There are other valid inodes in the buffer, this inode
4225 * has in-inode xattrs, or we don't have this inode in memory.
4226 * Read the block from disk.
4228 get_bh(bh);
4229 bh->b_end_io = end_buffer_read_sync;
4230 submit_bh(READ_META, bh);
4231 wait_on_buffer(bh);
4232 if (!buffer_uptodate(bh)) {
4233 ext4_error(sb, __func__,
4234 "unable to read inode block - inode=%lu, "
4235 "block=%llu", inode->i_ino, block);
4236 brelse(bh);
4237 return -EIO;
4240 has_buffer:
4241 iloc->bh = bh;
4242 return 0;
4245 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4247 /* We have all inode data except xattrs in memory here. */
4248 return __ext4_get_inode_loc(inode, iloc,
4249 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4252 void ext4_set_inode_flags(struct inode *inode)
4254 unsigned int flags = EXT4_I(inode)->i_flags;
4256 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4257 if (flags & EXT4_SYNC_FL)
4258 inode->i_flags |= S_SYNC;
4259 if (flags & EXT4_APPEND_FL)
4260 inode->i_flags |= S_APPEND;
4261 if (flags & EXT4_IMMUTABLE_FL)
4262 inode->i_flags |= S_IMMUTABLE;
4263 if (flags & EXT4_NOATIME_FL)
4264 inode->i_flags |= S_NOATIME;
4265 if (flags & EXT4_DIRSYNC_FL)
4266 inode->i_flags |= S_DIRSYNC;
4269 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4270 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4272 unsigned int flags = ei->vfs_inode.i_flags;
4274 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4275 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4276 if (flags & S_SYNC)
4277 ei->i_flags |= EXT4_SYNC_FL;
4278 if (flags & S_APPEND)
4279 ei->i_flags |= EXT4_APPEND_FL;
4280 if (flags & S_IMMUTABLE)
4281 ei->i_flags |= EXT4_IMMUTABLE_FL;
4282 if (flags & S_NOATIME)
4283 ei->i_flags |= EXT4_NOATIME_FL;
4284 if (flags & S_DIRSYNC)
4285 ei->i_flags |= EXT4_DIRSYNC_FL;
4288 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4289 struct ext4_inode_info *ei)
4291 blkcnt_t i_blocks ;
4292 struct inode *inode = &(ei->vfs_inode);
4293 struct super_block *sb = inode->i_sb;
4295 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4296 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4297 /* we are using combined 48 bit field */
4298 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4299 le32_to_cpu(raw_inode->i_blocks_lo);
4300 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4301 /* i_blocks represent file system block size */
4302 return i_blocks << (inode->i_blkbits - 9);
4303 } else {
4304 return i_blocks;
4306 } else {
4307 return le32_to_cpu(raw_inode->i_blocks_lo);
4311 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4313 struct ext4_iloc iloc;
4314 struct ext4_inode *raw_inode;
4315 struct ext4_inode_info *ei;
4316 struct buffer_head *bh;
4317 struct inode *inode;
4318 long ret;
4319 int block;
4321 inode = iget_locked(sb, ino);
4322 if (!inode)
4323 return ERR_PTR(-ENOMEM);
4324 if (!(inode->i_state & I_NEW))
4325 return inode;
4327 ei = EXT4_I(inode);
4329 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4330 if (ret < 0)
4331 goto bad_inode;
4332 bh = iloc.bh;
4333 raw_inode = ext4_raw_inode(&iloc);
4334 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4335 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4336 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4337 if (!(test_opt(inode->i_sb, NO_UID32))) {
4338 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4339 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4341 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4343 ei->i_state = 0;
4344 ei->i_dir_start_lookup = 0;
4345 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4346 /* We now have enough fields to check if the inode was active or not.
4347 * This is needed because nfsd might try to access dead inodes
4348 * the test is that same one that e2fsck uses
4349 * NeilBrown 1999oct15
4351 if (inode->i_nlink == 0) {
4352 if (inode->i_mode == 0 ||
4353 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4354 /* this inode is deleted */
4355 brelse(bh);
4356 ret = -ESTALE;
4357 goto bad_inode;
4359 /* The only unlinked inodes we let through here have
4360 * valid i_mode and are being read by the orphan
4361 * recovery code: that's fine, we're about to complete
4362 * the process of deleting those. */
4364 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4365 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4366 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4367 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4368 ei->i_file_acl |=
4369 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4370 inode->i_size = ext4_isize(raw_inode);
4371 ei->i_disksize = inode->i_size;
4372 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4373 ei->i_block_group = iloc.block_group;
4374 ei->i_last_alloc_group = ~0;
4376 * NOTE! The in-memory inode i_data array is in little-endian order
4377 * even on big-endian machines: we do NOT byteswap the block numbers!
4379 for (block = 0; block < EXT4_N_BLOCKS; block++)
4380 ei->i_data[block] = raw_inode->i_block[block];
4381 INIT_LIST_HEAD(&ei->i_orphan);
4383 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4384 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4385 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4386 EXT4_INODE_SIZE(inode->i_sb)) {
4387 brelse(bh);
4388 ret = -EIO;
4389 goto bad_inode;
4391 if (ei->i_extra_isize == 0) {
4392 /* The extra space is currently unused. Use it. */
4393 ei->i_extra_isize = sizeof(struct ext4_inode) -
4394 EXT4_GOOD_OLD_INODE_SIZE;
4395 } else {
4396 __le32 *magic = (void *)raw_inode +
4397 EXT4_GOOD_OLD_INODE_SIZE +
4398 ei->i_extra_isize;
4399 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4400 ei->i_state |= EXT4_STATE_XATTR;
4402 } else
4403 ei->i_extra_isize = 0;
4405 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4406 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4407 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4408 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4410 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4411 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4412 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4413 inode->i_version |=
4414 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4417 ret = 0;
4418 if (ei->i_file_acl &&
4419 ((ei->i_file_acl <
4420 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4421 EXT4_SB(sb)->s_gdb_count)) ||
4422 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4423 ext4_error(sb, __func__,
4424 "bad extended attribute block %llu in inode #%lu",
4425 ei->i_file_acl, inode->i_ino);
4426 ret = -EIO;
4427 goto bad_inode;
4428 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4429 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4430 (S_ISLNK(inode->i_mode) &&
4431 !ext4_inode_is_fast_symlink(inode)))
4432 /* Validate extent which is part of inode */
4433 ret = ext4_ext_check_inode(inode);
4434 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4435 (S_ISLNK(inode->i_mode) &&
4436 !ext4_inode_is_fast_symlink(inode))) {
4437 /* Validate block references which are part of inode */
4438 ret = ext4_check_inode_blockref(inode);
4440 if (ret) {
4441 brelse(bh);
4442 goto bad_inode;
4445 if (S_ISREG(inode->i_mode)) {
4446 inode->i_op = &ext4_file_inode_operations;
4447 inode->i_fop = &ext4_file_operations;
4448 ext4_set_aops(inode);
4449 } else if (S_ISDIR(inode->i_mode)) {
4450 inode->i_op = &ext4_dir_inode_operations;
4451 inode->i_fop = &ext4_dir_operations;
4452 } else if (S_ISLNK(inode->i_mode)) {
4453 if (ext4_inode_is_fast_symlink(inode)) {
4454 inode->i_op = &ext4_fast_symlink_inode_operations;
4455 nd_terminate_link(ei->i_data, inode->i_size,
4456 sizeof(ei->i_data) - 1);
4457 } else {
4458 inode->i_op = &ext4_symlink_inode_operations;
4459 ext4_set_aops(inode);
4461 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4462 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4463 inode->i_op = &ext4_special_inode_operations;
4464 if (raw_inode->i_block[0])
4465 init_special_inode(inode, inode->i_mode,
4466 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4467 else
4468 init_special_inode(inode, inode->i_mode,
4469 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4470 } else {
4471 brelse(bh);
4472 ret = -EIO;
4473 ext4_error(inode->i_sb, __func__,
4474 "bogus i_mode (%o) for inode=%lu",
4475 inode->i_mode, inode->i_ino);
4476 goto bad_inode;
4478 brelse(iloc.bh);
4479 ext4_set_inode_flags(inode);
4480 unlock_new_inode(inode);
4481 return inode;
4483 bad_inode:
4484 iget_failed(inode);
4485 return ERR_PTR(ret);
4488 static int ext4_inode_blocks_set(handle_t *handle,
4489 struct ext4_inode *raw_inode,
4490 struct ext4_inode_info *ei)
4492 struct inode *inode = &(ei->vfs_inode);
4493 u64 i_blocks = inode->i_blocks;
4494 struct super_block *sb = inode->i_sb;
4496 if (i_blocks <= ~0U) {
4498 * i_blocks can be represnted in a 32 bit variable
4499 * as multiple of 512 bytes
4501 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4502 raw_inode->i_blocks_high = 0;
4503 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4504 return 0;
4506 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4507 return -EFBIG;
4509 if (i_blocks <= 0xffffffffffffULL) {
4511 * i_blocks can be represented in a 48 bit variable
4512 * as multiple of 512 bytes
4514 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4515 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4516 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4517 } else {
4518 ei->i_flags |= EXT4_HUGE_FILE_FL;
4519 /* i_block is stored in file system block size */
4520 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4521 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4522 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4524 return 0;
4528 * Post the struct inode info into an on-disk inode location in the
4529 * buffer-cache. This gobbles the caller's reference to the
4530 * buffer_head in the inode location struct.
4532 * The caller must have write access to iloc->bh.
4534 static int ext4_do_update_inode(handle_t *handle,
4535 struct inode *inode,
4536 struct ext4_iloc *iloc)
4538 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4539 struct ext4_inode_info *ei = EXT4_I(inode);
4540 struct buffer_head *bh = iloc->bh;
4541 int err = 0, rc, block;
4543 /* For fields not not tracking in the in-memory inode,
4544 * initialise them to zero for new inodes. */
4545 if (ei->i_state & EXT4_STATE_NEW)
4546 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4548 ext4_get_inode_flags(ei);
4549 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4550 if (!(test_opt(inode->i_sb, NO_UID32))) {
4551 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4552 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4554 * Fix up interoperability with old kernels. Otherwise, old inodes get
4555 * re-used with the upper 16 bits of the uid/gid intact
4557 if (!ei->i_dtime) {
4558 raw_inode->i_uid_high =
4559 cpu_to_le16(high_16_bits(inode->i_uid));
4560 raw_inode->i_gid_high =
4561 cpu_to_le16(high_16_bits(inode->i_gid));
4562 } else {
4563 raw_inode->i_uid_high = 0;
4564 raw_inode->i_gid_high = 0;
4566 } else {
4567 raw_inode->i_uid_low =
4568 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4569 raw_inode->i_gid_low =
4570 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4571 raw_inode->i_uid_high = 0;
4572 raw_inode->i_gid_high = 0;
4574 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4576 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4577 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4578 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4579 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4581 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4582 goto out_brelse;
4583 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4584 /* clear the migrate flag in the raw_inode */
4585 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4586 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4587 cpu_to_le32(EXT4_OS_HURD))
4588 raw_inode->i_file_acl_high =
4589 cpu_to_le16(ei->i_file_acl >> 32);
4590 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4591 ext4_isize_set(raw_inode, ei->i_disksize);
4592 if (ei->i_disksize > 0x7fffffffULL) {
4593 struct super_block *sb = inode->i_sb;
4594 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4595 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4596 EXT4_SB(sb)->s_es->s_rev_level ==
4597 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4598 /* If this is the first large file
4599 * created, add a flag to the superblock.
4601 err = ext4_journal_get_write_access(handle,
4602 EXT4_SB(sb)->s_sbh);
4603 if (err)
4604 goto out_brelse;
4605 ext4_update_dynamic_rev(sb);
4606 EXT4_SET_RO_COMPAT_FEATURE(sb,
4607 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4608 sb->s_dirt = 1;
4609 ext4_handle_sync(handle);
4610 err = ext4_handle_dirty_metadata(handle, inode,
4611 EXT4_SB(sb)->s_sbh);
4614 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4615 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4616 if (old_valid_dev(inode->i_rdev)) {
4617 raw_inode->i_block[0] =
4618 cpu_to_le32(old_encode_dev(inode->i_rdev));
4619 raw_inode->i_block[1] = 0;
4620 } else {
4621 raw_inode->i_block[0] = 0;
4622 raw_inode->i_block[1] =
4623 cpu_to_le32(new_encode_dev(inode->i_rdev));
4624 raw_inode->i_block[2] = 0;
4626 } else
4627 for (block = 0; block < EXT4_N_BLOCKS; block++)
4628 raw_inode->i_block[block] = ei->i_data[block];
4630 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4631 if (ei->i_extra_isize) {
4632 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4633 raw_inode->i_version_hi =
4634 cpu_to_le32(inode->i_version >> 32);
4635 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4638 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4639 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4640 if (!err)
4641 err = rc;
4642 ei->i_state &= ~EXT4_STATE_NEW;
4644 out_brelse:
4645 brelse(bh);
4646 ext4_std_error(inode->i_sb, err);
4647 return err;
4651 * ext4_write_inode()
4653 * We are called from a few places:
4655 * - Within generic_file_write() for O_SYNC files.
4656 * Here, there will be no transaction running. We wait for any running
4657 * trasnaction to commit.
4659 * - Within sys_sync(), kupdate and such.
4660 * We wait on commit, if tol to.
4662 * - Within prune_icache() (PF_MEMALLOC == true)
4663 * Here we simply return. We can't afford to block kswapd on the
4664 * journal commit.
4666 * In all cases it is actually safe for us to return without doing anything,
4667 * because the inode has been copied into a raw inode buffer in
4668 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4669 * knfsd.
4671 * Note that we are absolutely dependent upon all inode dirtiers doing the
4672 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4673 * which we are interested.
4675 * It would be a bug for them to not do this. The code:
4677 * mark_inode_dirty(inode)
4678 * stuff();
4679 * inode->i_size = expr;
4681 * is in error because a kswapd-driven write_inode() could occur while
4682 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4683 * will no longer be on the superblock's dirty inode list.
4685 int ext4_write_inode(struct inode *inode, int wait)
4687 if (current->flags & PF_MEMALLOC)
4688 return 0;
4690 if (ext4_journal_current_handle()) {
4691 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4692 dump_stack();
4693 return -EIO;
4696 if (!wait)
4697 return 0;
4699 return ext4_force_commit(inode->i_sb);
4703 * ext4_setattr()
4705 * Called from notify_change.
4707 * We want to trap VFS attempts to truncate the file as soon as
4708 * possible. In particular, we want to make sure that when the VFS
4709 * shrinks i_size, we put the inode on the orphan list and modify
4710 * i_disksize immediately, so that during the subsequent flushing of
4711 * dirty pages and freeing of disk blocks, we can guarantee that any
4712 * commit will leave the blocks being flushed in an unused state on
4713 * disk. (On recovery, the inode will get truncated and the blocks will
4714 * be freed, so we have a strong guarantee that no future commit will
4715 * leave these blocks visible to the user.)
4717 * Another thing we have to assure is that if we are in ordered mode
4718 * and inode is still attached to the committing transaction, we must
4719 * we start writeout of all the dirty pages which are being truncated.
4720 * This way we are sure that all the data written in the previous
4721 * transaction are already on disk (truncate waits for pages under
4722 * writeback).
4724 * Called with inode->i_mutex down.
4726 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4728 struct inode *inode = dentry->d_inode;
4729 int error, rc = 0;
4730 const unsigned int ia_valid = attr->ia_valid;
4732 error = inode_change_ok(inode, attr);
4733 if (error)
4734 return error;
4736 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4737 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4738 handle_t *handle;
4740 /* (user+group)*(old+new) structure, inode write (sb,
4741 * inode block, ? - but truncate inode update has it) */
4742 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4743 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4744 if (IS_ERR(handle)) {
4745 error = PTR_ERR(handle);
4746 goto err_out;
4748 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4749 if (error) {
4750 ext4_journal_stop(handle);
4751 return error;
4753 /* Update corresponding info in inode so that everything is in
4754 * one transaction */
4755 if (attr->ia_valid & ATTR_UID)
4756 inode->i_uid = attr->ia_uid;
4757 if (attr->ia_valid & ATTR_GID)
4758 inode->i_gid = attr->ia_gid;
4759 error = ext4_mark_inode_dirty(handle, inode);
4760 ext4_journal_stop(handle);
4763 if (attr->ia_valid & ATTR_SIZE) {
4764 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4765 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4767 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4768 error = -EFBIG;
4769 goto err_out;
4774 if (S_ISREG(inode->i_mode) &&
4775 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4776 handle_t *handle;
4778 handle = ext4_journal_start(inode, 3);
4779 if (IS_ERR(handle)) {
4780 error = PTR_ERR(handle);
4781 goto err_out;
4784 error = ext4_orphan_add(handle, inode);
4785 EXT4_I(inode)->i_disksize = attr->ia_size;
4786 rc = ext4_mark_inode_dirty(handle, inode);
4787 if (!error)
4788 error = rc;
4789 ext4_journal_stop(handle);
4791 if (ext4_should_order_data(inode)) {
4792 error = ext4_begin_ordered_truncate(inode,
4793 attr->ia_size);
4794 if (error) {
4795 /* Do as much error cleanup as possible */
4796 handle = ext4_journal_start(inode, 3);
4797 if (IS_ERR(handle)) {
4798 ext4_orphan_del(NULL, inode);
4799 goto err_out;
4801 ext4_orphan_del(handle, inode);
4802 ext4_journal_stop(handle);
4803 goto err_out;
4808 rc = inode_setattr(inode, attr);
4810 /* If inode_setattr's call to ext4_truncate failed to get a
4811 * transaction handle at all, we need to clean up the in-core
4812 * orphan list manually. */
4813 if (inode->i_nlink)
4814 ext4_orphan_del(NULL, inode);
4816 if (!rc && (ia_valid & ATTR_MODE))
4817 rc = ext4_acl_chmod(inode);
4819 err_out:
4820 ext4_std_error(inode->i_sb, error);
4821 if (!error)
4822 error = rc;
4823 return error;
4826 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4827 struct kstat *stat)
4829 struct inode *inode;
4830 unsigned long delalloc_blocks;
4832 inode = dentry->d_inode;
4833 generic_fillattr(inode, stat);
4836 * We can't update i_blocks if the block allocation is delayed
4837 * otherwise in the case of system crash before the real block
4838 * allocation is done, we will have i_blocks inconsistent with
4839 * on-disk file blocks.
4840 * We always keep i_blocks updated together with real
4841 * allocation. But to not confuse with user, stat
4842 * will return the blocks that include the delayed allocation
4843 * blocks for this file.
4845 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4846 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4847 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4849 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4850 return 0;
4853 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4854 int chunk)
4856 int indirects;
4858 /* if nrblocks are contiguous */
4859 if (chunk) {
4861 * With N contiguous data blocks, it need at most
4862 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4863 * 2 dindirect blocks
4864 * 1 tindirect block
4866 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4867 return indirects + 3;
4870 * if nrblocks are not contiguous, worse case, each block touch
4871 * a indirect block, and each indirect block touch a double indirect
4872 * block, plus a triple indirect block
4874 indirects = nrblocks * 2 + 1;
4875 return indirects;
4878 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4880 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4881 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4882 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4886 * Account for index blocks, block groups bitmaps and block group
4887 * descriptor blocks if modify datablocks and index blocks
4888 * worse case, the indexs blocks spread over different block groups
4890 * If datablocks are discontiguous, they are possible to spread over
4891 * different block groups too. If they are contiugous, with flexbg,
4892 * they could still across block group boundary.
4894 * Also account for superblock, inode, quota and xattr blocks
4896 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4898 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4899 int gdpblocks;
4900 int idxblocks;
4901 int ret = 0;
4904 * How many index blocks need to touch to modify nrblocks?
4905 * The "Chunk" flag indicating whether the nrblocks is
4906 * physically contiguous on disk
4908 * For Direct IO and fallocate, they calls get_block to allocate
4909 * one single extent at a time, so they could set the "Chunk" flag
4911 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4913 ret = idxblocks;
4916 * Now let's see how many group bitmaps and group descriptors need
4917 * to account
4919 groups = idxblocks;
4920 if (chunk)
4921 groups += 1;
4922 else
4923 groups += nrblocks;
4925 gdpblocks = groups;
4926 if (groups > ngroups)
4927 groups = ngroups;
4928 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4929 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4931 /* bitmaps and block group descriptor blocks */
4932 ret += groups + gdpblocks;
4934 /* Blocks for super block, inode, quota and xattr blocks */
4935 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4937 return ret;
4941 * Calulate the total number of credits to reserve to fit
4942 * the modification of a single pages into a single transaction,
4943 * which may include multiple chunks of block allocations.
4945 * This could be called via ext4_write_begin()
4947 * We need to consider the worse case, when
4948 * one new block per extent.
4950 int ext4_writepage_trans_blocks(struct inode *inode)
4952 int bpp = ext4_journal_blocks_per_page(inode);
4953 int ret;
4955 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4957 /* Account for data blocks for journalled mode */
4958 if (ext4_should_journal_data(inode))
4959 ret += bpp;
4960 return ret;
4964 * Calculate the journal credits for a chunk of data modification.
4966 * This is called from DIO, fallocate or whoever calling
4967 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
4969 * journal buffers for data blocks are not included here, as DIO
4970 * and fallocate do no need to journal data buffers.
4972 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4974 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4978 * The caller must have previously called ext4_reserve_inode_write().
4979 * Give this, we know that the caller already has write access to iloc->bh.
4981 int ext4_mark_iloc_dirty(handle_t *handle,
4982 struct inode *inode, struct ext4_iloc *iloc)
4984 int err = 0;
4986 if (test_opt(inode->i_sb, I_VERSION))
4987 inode_inc_iversion(inode);
4989 /* the do_update_inode consumes one bh->b_count */
4990 get_bh(iloc->bh);
4992 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4993 err = ext4_do_update_inode(handle, inode, iloc);
4994 put_bh(iloc->bh);
4995 return err;
4999 * On success, We end up with an outstanding reference count against
5000 * iloc->bh. This _must_ be cleaned up later.
5004 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5005 struct ext4_iloc *iloc)
5007 int err;
5009 err = ext4_get_inode_loc(inode, iloc);
5010 if (!err) {
5011 BUFFER_TRACE(iloc->bh, "get_write_access");
5012 err = ext4_journal_get_write_access(handle, iloc->bh);
5013 if (err) {
5014 brelse(iloc->bh);
5015 iloc->bh = NULL;
5018 ext4_std_error(inode->i_sb, err);
5019 return err;
5023 * Expand an inode by new_extra_isize bytes.
5024 * Returns 0 on success or negative error number on failure.
5026 static int ext4_expand_extra_isize(struct inode *inode,
5027 unsigned int new_extra_isize,
5028 struct ext4_iloc iloc,
5029 handle_t *handle)
5031 struct ext4_inode *raw_inode;
5032 struct ext4_xattr_ibody_header *header;
5033 struct ext4_xattr_entry *entry;
5035 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5036 return 0;
5038 raw_inode = ext4_raw_inode(&iloc);
5040 header = IHDR(inode, raw_inode);
5041 entry = IFIRST(header);
5043 /* No extended attributes present */
5044 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5045 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5046 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5047 new_extra_isize);
5048 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5049 return 0;
5052 /* try to expand with EAs present */
5053 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5054 raw_inode, handle);
5058 * What we do here is to mark the in-core inode as clean with respect to inode
5059 * dirtiness (it may still be data-dirty).
5060 * This means that the in-core inode may be reaped by prune_icache
5061 * without having to perform any I/O. This is a very good thing,
5062 * because *any* task may call prune_icache - even ones which
5063 * have a transaction open against a different journal.
5065 * Is this cheating? Not really. Sure, we haven't written the
5066 * inode out, but prune_icache isn't a user-visible syncing function.
5067 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5068 * we start and wait on commits.
5070 * Is this efficient/effective? Well, we're being nice to the system
5071 * by cleaning up our inodes proactively so they can be reaped
5072 * without I/O. But we are potentially leaving up to five seconds'
5073 * worth of inodes floating about which prune_icache wants us to
5074 * write out. One way to fix that would be to get prune_icache()
5075 * to do a write_super() to free up some memory. It has the desired
5076 * effect.
5078 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5080 struct ext4_iloc iloc;
5081 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5082 static unsigned int mnt_count;
5083 int err, ret;
5085 might_sleep();
5086 err = ext4_reserve_inode_write(handle, inode, &iloc);
5087 if (ext4_handle_valid(handle) &&
5088 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5089 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5091 * We need extra buffer credits since we may write into EA block
5092 * with this same handle. If journal_extend fails, then it will
5093 * only result in a minor loss of functionality for that inode.
5094 * If this is felt to be critical, then e2fsck should be run to
5095 * force a large enough s_min_extra_isize.
5097 if ((jbd2_journal_extend(handle,
5098 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5099 ret = ext4_expand_extra_isize(inode,
5100 sbi->s_want_extra_isize,
5101 iloc, handle);
5102 if (ret) {
5103 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5104 if (mnt_count !=
5105 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5106 ext4_warning(inode->i_sb, __func__,
5107 "Unable to expand inode %lu. Delete"
5108 " some EAs or run e2fsck.",
5109 inode->i_ino);
5110 mnt_count =
5111 le16_to_cpu(sbi->s_es->s_mnt_count);
5116 if (!err)
5117 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5118 return err;
5122 * ext4_dirty_inode() is called from __mark_inode_dirty()
5124 * We're really interested in the case where a file is being extended.
5125 * i_size has been changed by generic_commit_write() and we thus need
5126 * to include the updated inode in the current transaction.
5128 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5129 * are allocated to the file.
5131 * If the inode is marked synchronous, we don't honour that here - doing
5132 * so would cause a commit on atime updates, which we don't bother doing.
5133 * We handle synchronous inodes at the highest possible level.
5135 void ext4_dirty_inode(struct inode *inode)
5137 handle_t *current_handle = ext4_journal_current_handle();
5138 handle_t *handle;
5140 if (!ext4_handle_valid(current_handle)) {
5141 ext4_mark_inode_dirty(current_handle, inode);
5142 return;
5145 handle = ext4_journal_start(inode, 2);
5146 if (IS_ERR(handle))
5147 goto out;
5148 if (current_handle &&
5149 current_handle->h_transaction != handle->h_transaction) {
5150 /* This task has a transaction open against a different fs */
5151 printk(KERN_EMERG "%s: transactions do not match!\n",
5152 __func__);
5153 } else {
5154 jbd_debug(5, "marking dirty. outer handle=%p\n",
5155 current_handle);
5156 ext4_mark_inode_dirty(handle, inode);
5158 ext4_journal_stop(handle);
5159 out:
5160 return;
5163 #if 0
5165 * Bind an inode's backing buffer_head into this transaction, to prevent
5166 * it from being flushed to disk early. Unlike
5167 * ext4_reserve_inode_write, this leaves behind no bh reference and
5168 * returns no iloc structure, so the caller needs to repeat the iloc
5169 * lookup to mark the inode dirty later.
5171 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5173 struct ext4_iloc iloc;
5175 int err = 0;
5176 if (handle) {
5177 err = ext4_get_inode_loc(inode, &iloc);
5178 if (!err) {
5179 BUFFER_TRACE(iloc.bh, "get_write_access");
5180 err = jbd2_journal_get_write_access(handle, iloc.bh);
5181 if (!err)
5182 err = ext4_handle_dirty_metadata(handle,
5183 inode,
5184 iloc.bh);
5185 brelse(iloc.bh);
5188 ext4_std_error(inode->i_sb, err);
5189 return err;
5191 #endif
5193 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5195 journal_t *journal;
5196 handle_t *handle;
5197 int err;
5200 * We have to be very careful here: changing a data block's
5201 * journaling status dynamically is dangerous. If we write a
5202 * data block to the journal, change the status and then delete
5203 * that block, we risk forgetting to revoke the old log record
5204 * from the journal and so a subsequent replay can corrupt data.
5205 * So, first we make sure that the journal is empty and that
5206 * nobody is changing anything.
5209 journal = EXT4_JOURNAL(inode);
5210 if (!journal)
5211 return 0;
5212 if (is_journal_aborted(journal))
5213 return -EROFS;
5215 jbd2_journal_lock_updates(journal);
5216 jbd2_journal_flush(journal);
5219 * OK, there are no updates running now, and all cached data is
5220 * synced to disk. We are now in a completely consistent state
5221 * which doesn't have anything in the journal, and we know that
5222 * no filesystem updates are running, so it is safe to modify
5223 * the inode's in-core data-journaling state flag now.
5226 if (val)
5227 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5228 else
5229 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5230 ext4_set_aops(inode);
5232 jbd2_journal_unlock_updates(journal);
5234 /* Finally we can mark the inode as dirty. */
5236 handle = ext4_journal_start(inode, 1);
5237 if (IS_ERR(handle))
5238 return PTR_ERR(handle);
5240 err = ext4_mark_inode_dirty(handle, inode);
5241 ext4_handle_sync(handle);
5242 ext4_journal_stop(handle);
5243 ext4_std_error(inode->i_sb, err);
5245 return err;
5248 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5250 return !buffer_mapped(bh);
5253 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5255 struct page *page = vmf->page;
5256 loff_t size;
5257 unsigned long len;
5258 int ret = -EINVAL;
5259 void *fsdata;
5260 struct file *file = vma->vm_file;
5261 struct inode *inode = file->f_path.dentry->d_inode;
5262 struct address_space *mapping = inode->i_mapping;
5265 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5266 * get i_mutex because we are already holding mmap_sem.
5268 down_read(&inode->i_alloc_sem);
5269 size = i_size_read(inode);
5270 if (page->mapping != mapping || size <= page_offset(page)
5271 || !PageUptodate(page)) {
5272 /* page got truncated from under us? */
5273 goto out_unlock;
5275 ret = 0;
5276 if (PageMappedToDisk(page))
5277 goto out_unlock;
5279 if (page->index == size >> PAGE_CACHE_SHIFT)
5280 len = size & ~PAGE_CACHE_MASK;
5281 else
5282 len = PAGE_CACHE_SIZE;
5284 if (page_has_buffers(page)) {
5285 /* return if we have all the buffers mapped */
5286 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5287 ext4_bh_unmapped))
5288 goto out_unlock;
5291 * OK, we need to fill the hole... Do write_begin write_end
5292 * to do block allocation/reservation.We are not holding
5293 * inode.i__mutex here. That allow * parallel write_begin,
5294 * write_end call. lock_page prevent this from happening
5295 * on the same page though
5297 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5298 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5299 if (ret < 0)
5300 goto out_unlock;
5301 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5302 len, len, page, fsdata);
5303 if (ret < 0)
5304 goto out_unlock;
5305 ret = 0;
5306 out_unlock:
5307 if (ret)
5308 ret = VM_FAULT_SIGBUS;
5309 up_read(&inode->i_alloc_sem);
5310 return ret;