JBD: round commit timer up to avoid uncommitted transaction
[linux/fpc-iii.git] / fs / jffs2 / nodemgmt.c
blob21a052915aa9363acb0cd1e2b34567ef782b57f5
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/compiler.h>
16 #include <linux/sched.h> /* For cond_resched() */
17 #include "nodelist.h"
18 #include "debug.h"
20 /**
21 * jffs2_reserve_space - request physical space to write nodes to flash
22 * @c: superblock info
23 * @minsize: Minimum acceptable size of allocation
24 * @len: Returned value of allocation length
25 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
27 * Requests a block of physical space on the flash. Returns zero for success
28 * and puts 'len' into the appropriate place, or returns -ENOSPC or other
29 * error if appropriate. Doesn't return len since that's
31 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
32 * allocation semaphore, to prevent more than one allocation from being
33 * active at any time. The semaphore is later released by jffs2_commit_allocation()
35 * jffs2_reserve_space() may trigger garbage collection in order to make room
36 * for the requested allocation.
39 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
40 uint32_t *len, uint32_t sumsize);
42 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
43 uint32_t *len, int prio, uint32_t sumsize)
45 int ret = -EAGAIN;
46 int blocksneeded = c->resv_blocks_write;
47 /* align it */
48 minsize = PAD(minsize);
50 D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
51 mutex_lock(&c->alloc_sem);
53 D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
55 spin_lock(&c->erase_completion_lock);
57 /* this needs a little more thought (true <tglx> :)) */
58 while(ret == -EAGAIN) {
59 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
60 uint32_t dirty, avail;
62 /* calculate real dirty size
63 * dirty_size contains blocks on erase_pending_list
64 * those blocks are counted in c->nr_erasing_blocks.
65 * If one block is actually erased, it is not longer counted as dirty_space
66 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
67 * with c->nr_erasing_blocks * c->sector_size again.
68 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
69 * This helps us to force gc and pick eventually a clean block to spread the load.
70 * We add unchecked_size here, as we hopefully will find some space to use.
71 * This will affect the sum only once, as gc first finishes checking
72 * of nodes.
74 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
75 if (dirty < c->nospc_dirty_size) {
76 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
77 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
78 break;
80 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
81 dirty, c->unchecked_size, c->sector_size));
83 spin_unlock(&c->erase_completion_lock);
84 mutex_unlock(&c->alloc_sem);
85 return -ENOSPC;
88 /* Calc possibly available space. Possibly available means that we
89 * don't know, if unchecked size contains obsoleted nodes, which could give us some
90 * more usable space. This will affect the sum only once, as gc first finishes checking
91 * of nodes.
92 + Return -ENOSPC, if the maximum possibly available space is less or equal than
93 * blocksneeded * sector_size.
94 * This blocks endless gc looping on a filesystem, which is nearly full, even if
95 * the check above passes.
97 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
98 if ( (avail / c->sector_size) <= blocksneeded) {
99 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
100 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
101 break;
104 D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
105 avail, blocksneeded * c->sector_size));
106 spin_unlock(&c->erase_completion_lock);
107 mutex_unlock(&c->alloc_sem);
108 return -ENOSPC;
111 mutex_unlock(&c->alloc_sem);
113 D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
114 c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
115 c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
116 spin_unlock(&c->erase_completion_lock);
118 ret = jffs2_garbage_collect_pass(c);
120 if (ret == -EAGAIN)
121 jffs2_erase_pending_blocks(c, 1);
122 else if (ret)
123 return ret;
125 cond_resched();
127 if (signal_pending(current))
128 return -EINTR;
130 mutex_lock(&c->alloc_sem);
131 spin_lock(&c->erase_completion_lock);
134 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
135 if (ret) {
136 D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
139 spin_unlock(&c->erase_completion_lock);
140 if (!ret)
141 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
142 if (ret)
143 mutex_unlock(&c->alloc_sem);
144 return ret;
147 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
148 uint32_t *len, uint32_t sumsize)
150 int ret = -EAGAIN;
151 minsize = PAD(minsize);
153 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
155 spin_lock(&c->erase_completion_lock);
156 while(ret == -EAGAIN) {
157 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
158 if (ret) {
159 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
162 spin_unlock(&c->erase_completion_lock);
163 if (!ret)
164 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
166 return ret;
170 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
172 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
175 if (c->nextblock == NULL) {
176 D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
177 jeb->offset));
178 return;
180 /* Check, if we have a dirty block now, or if it was dirty already */
181 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
182 c->dirty_size += jeb->wasted_size;
183 c->wasted_size -= jeb->wasted_size;
184 jeb->dirty_size += jeb->wasted_size;
185 jeb->wasted_size = 0;
186 if (VERYDIRTY(c, jeb->dirty_size)) {
187 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
188 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
189 list_add_tail(&jeb->list, &c->very_dirty_list);
190 } else {
191 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
192 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
193 list_add_tail(&jeb->list, &c->dirty_list);
195 } else {
196 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
197 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
198 list_add_tail(&jeb->list, &c->clean_list);
200 c->nextblock = NULL;
204 /* Select a new jeb for nextblock */
206 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
208 struct list_head *next;
210 /* Take the next block off the 'free' list */
212 if (list_empty(&c->free_list)) {
214 if (!c->nr_erasing_blocks &&
215 !list_empty(&c->erasable_list)) {
216 struct jffs2_eraseblock *ejeb;
218 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
219 list_move_tail(&ejeb->list, &c->erase_pending_list);
220 c->nr_erasing_blocks++;
221 jffs2_erase_pending_trigger(c);
222 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
223 ejeb->offset));
226 if (!c->nr_erasing_blocks &&
227 !list_empty(&c->erasable_pending_wbuf_list)) {
228 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
229 /* c->nextblock is NULL, no update to c->nextblock allowed */
230 spin_unlock(&c->erase_completion_lock);
231 jffs2_flush_wbuf_pad(c);
232 spin_lock(&c->erase_completion_lock);
233 /* Have another go. It'll be on the erasable_list now */
234 return -EAGAIN;
237 if (!c->nr_erasing_blocks) {
238 /* Ouch. We're in GC, or we wouldn't have got here.
239 And there's no space left. At all. */
240 printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
241 c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
242 list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
243 return -ENOSPC;
246 spin_unlock(&c->erase_completion_lock);
247 /* Don't wait for it; just erase one right now */
248 jffs2_erase_pending_blocks(c, 1);
249 spin_lock(&c->erase_completion_lock);
251 /* An erase may have failed, decreasing the
252 amount of free space available. So we must
253 restart from the beginning */
254 return -EAGAIN;
257 next = c->free_list.next;
258 list_del(next);
259 c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
260 c->nr_free_blocks--;
262 jffs2_sum_reset_collected(c->summary); /* reset collected summary */
264 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
265 /* adjust write buffer offset, else we get a non contiguous write bug */
266 if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
267 c->wbuf_ofs = 0xffffffff;
268 #endif
270 D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
272 return 0;
275 /* Called with alloc sem _and_ erase_completion_lock */
276 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
277 uint32_t *len, uint32_t sumsize)
279 struct jffs2_eraseblock *jeb = c->nextblock;
280 uint32_t reserved_size; /* for summary information at the end of the jeb */
281 int ret;
283 restart:
284 reserved_size = 0;
286 if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
287 /* NOSUM_SIZE means not to generate summary */
289 if (jeb) {
290 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
291 dbg_summary("minsize=%d , jeb->free=%d ,"
292 "summary->size=%d , sumsize=%d\n",
293 minsize, jeb->free_size,
294 c->summary->sum_size, sumsize);
297 /* Is there enough space for writing out the current node, or we have to
298 write out summary information now, close this jeb and select new nextblock? */
299 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
300 JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
302 /* Has summary been disabled for this jeb? */
303 if (jffs2_sum_is_disabled(c->summary)) {
304 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
305 goto restart;
308 /* Writing out the collected summary information */
309 dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
310 ret = jffs2_sum_write_sumnode(c);
312 if (ret)
313 return ret;
315 if (jffs2_sum_is_disabled(c->summary)) {
316 /* jffs2_write_sumnode() couldn't write out the summary information
317 diabling summary for this jeb and free the collected information
319 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
320 goto restart;
323 jffs2_close_nextblock(c, jeb);
324 jeb = NULL;
325 /* keep always valid value in reserved_size */
326 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
328 } else {
329 if (jeb && minsize > jeb->free_size) {
330 uint32_t waste;
332 /* Skip the end of this block and file it as having some dirty space */
333 /* If there's a pending write to it, flush now */
335 if (jffs2_wbuf_dirty(c)) {
336 spin_unlock(&c->erase_completion_lock);
337 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
338 jffs2_flush_wbuf_pad(c);
339 spin_lock(&c->erase_completion_lock);
340 jeb = c->nextblock;
341 goto restart;
344 spin_unlock(&c->erase_completion_lock);
346 ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
347 if (ret)
348 return ret;
349 /* Just lock it again and continue. Nothing much can change because
350 we hold c->alloc_sem anyway. In fact, it's not entirely clear why
351 we hold c->erase_completion_lock in the majority of this function...
352 but that's a question for another (more caffeine-rich) day. */
353 spin_lock(&c->erase_completion_lock);
355 waste = jeb->free_size;
356 jffs2_link_node_ref(c, jeb,
357 (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
358 waste, NULL);
359 /* FIXME: that made it count as dirty. Convert to wasted */
360 jeb->dirty_size -= waste;
361 c->dirty_size -= waste;
362 jeb->wasted_size += waste;
363 c->wasted_size += waste;
365 jffs2_close_nextblock(c, jeb);
366 jeb = NULL;
370 if (!jeb) {
372 ret = jffs2_find_nextblock(c);
373 if (ret)
374 return ret;
376 jeb = c->nextblock;
378 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
379 printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
380 goto restart;
383 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
384 enough space */
385 *len = jeb->free_size - reserved_size;
387 if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
388 !jeb->first_node->next_in_ino) {
389 /* Only node in it beforehand was a CLEANMARKER node (we think).
390 So mark it obsolete now that there's going to be another node
391 in the block. This will reduce used_size to zero but We've
392 already set c->nextblock so that jffs2_mark_node_obsolete()
393 won't try to refile it to the dirty_list.
395 spin_unlock(&c->erase_completion_lock);
396 jffs2_mark_node_obsolete(c, jeb->first_node);
397 spin_lock(&c->erase_completion_lock);
400 D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
401 *len, jeb->offset + (c->sector_size - jeb->free_size)));
402 return 0;
406 * jffs2_add_physical_node_ref - add a physical node reference to the list
407 * @c: superblock info
408 * @new: new node reference to add
409 * @len: length of this physical node
411 * Should only be used to report nodes for which space has been allocated
412 * by jffs2_reserve_space.
414 * Must be called with the alloc_sem held.
417 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
418 uint32_t ofs, uint32_t len,
419 struct jffs2_inode_cache *ic)
421 struct jffs2_eraseblock *jeb;
422 struct jffs2_raw_node_ref *new;
424 jeb = &c->blocks[ofs / c->sector_size];
426 D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
427 ofs & ~3, ofs & 3, len));
428 #if 1
429 /* Allow non-obsolete nodes only to be added at the end of c->nextblock,
430 if c->nextblock is set. Note that wbuf.c will file obsolete nodes
431 even after refiling c->nextblock */
432 if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
433 && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
434 printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
435 if (c->nextblock)
436 printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
437 else
438 printk(KERN_WARNING "No nextblock");
439 printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
440 return ERR_PTR(-EINVAL);
442 #endif
443 spin_lock(&c->erase_completion_lock);
445 new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
447 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
448 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
449 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
450 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
451 if (jffs2_wbuf_dirty(c)) {
452 /* Flush the last write in the block if it's outstanding */
453 spin_unlock(&c->erase_completion_lock);
454 jffs2_flush_wbuf_pad(c);
455 spin_lock(&c->erase_completion_lock);
458 list_add_tail(&jeb->list, &c->clean_list);
459 c->nextblock = NULL;
461 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
462 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
464 spin_unlock(&c->erase_completion_lock);
466 return new;
470 void jffs2_complete_reservation(struct jffs2_sb_info *c)
472 D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
473 jffs2_garbage_collect_trigger(c);
474 mutex_unlock(&c->alloc_sem);
477 static inline int on_list(struct list_head *obj, struct list_head *head)
479 struct list_head *this;
481 list_for_each(this, head) {
482 if (this == obj) {
483 D1(printk("%p is on list at %p\n", obj, head));
484 return 1;
488 return 0;
491 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
493 struct jffs2_eraseblock *jeb;
494 int blocknr;
495 struct jffs2_unknown_node n;
496 int ret, addedsize;
497 size_t retlen;
498 uint32_t freed_len;
500 if(unlikely(!ref)) {
501 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
502 return;
504 if (ref_obsolete(ref)) {
505 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
506 return;
508 blocknr = ref->flash_offset / c->sector_size;
509 if (blocknr >= c->nr_blocks) {
510 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
511 BUG();
513 jeb = &c->blocks[blocknr];
515 if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
516 !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
517 /* Hm. This may confuse static lock analysis. If any of the above
518 three conditions is false, we're going to return from this
519 function without actually obliterating any nodes or freeing
520 any jffs2_raw_node_refs. So we don't need to stop erases from
521 happening, or protect against people holding an obsolete
522 jffs2_raw_node_ref without the erase_completion_lock. */
523 mutex_lock(&c->erase_free_sem);
526 spin_lock(&c->erase_completion_lock);
528 freed_len = ref_totlen(c, jeb, ref);
530 if (ref_flags(ref) == REF_UNCHECKED) {
531 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
532 printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
533 freed_len, blocknr, ref->flash_offset, jeb->used_size);
534 BUG();
536 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
537 jeb->unchecked_size -= freed_len;
538 c->unchecked_size -= freed_len;
539 } else {
540 D1(if (unlikely(jeb->used_size < freed_len)) {
541 printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
542 freed_len, blocknr, ref->flash_offset, jeb->used_size);
543 BUG();
545 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
546 jeb->used_size -= freed_len;
547 c->used_size -= freed_len;
550 // Take care, that wasted size is taken into concern
551 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
552 D1(printk("Dirtying\n"));
553 addedsize = freed_len;
554 jeb->dirty_size += freed_len;
555 c->dirty_size += freed_len;
557 /* Convert wasted space to dirty, if not a bad block */
558 if (jeb->wasted_size) {
559 if (on_list(&jeb->list, &c->bad_used_list)) {
560 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
561 jeb->offset));
562 addedsize = 0; /* To fool the refiling code later */
563 } else {
564 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
565 jeb->wasted_size, jeb->offset));
566 addedsize += jeb->wasted_size;
567 jeb->dirty_size += jeb->wasted_size;
568 c->dirty_size += jeb->wasted_size;
569 c->wasted_size -= jeb->wasted_size;
570 jeb->wasted_size = 0;
573 } else {
574 D1(printk("Wasting\n"));
575 addedsize = 0;
576 jeb->wasted_size += freed_len;
577 c->wasted_size += freed_len;
579 ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
581 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
582 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
584 if (c->flags & JFFS2_SB_FLAG_SCANNING) {
585 /* Flash scanning is in progress. Don't muck about with the block
586 lists because they're not ready yet, and don't actually
587 obliterate nodes that look obsolete. If they weren't
588 marked obsolete on the flash at the time they _became_
589 obsolete, there was probably a reason for that. */
590 spin_unlock(&c->erase_completion_lock);
591 /* We didn't lock the erase_free_sem */
592 return;
595 if (jeb == c->nextblock) {
596 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
597 } else if (!jeb->used_size && !jeb->unchecked_size) {
598 if (jeb == c->gcblock) {
599 D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
600 c->gcblock = NULL;
601 } else {
602 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
603 list_del(&jeb->list);
605 if (jffs2_wbuf_dirty(c)) {
606 D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
607 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
608 } else {
609 if (jiffies & 127) {
610 /* Most of the time, we just erase it immediately. Otherwise we
611 spend ages scanning it on mount, etc. */
612 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
613 list_add_tail(&jeb->list, &c->erase_pending_list);
614 c->nr_erasing_blocks++;
615 jffs2_erase_pending_trigger(c);
616 } else {
617 /* Sometimes, however, we leave it elsewhere so it doesn't get
618 immediately reused, and we spread the load a bit. */
619 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
620 list_add_tail(&jeb->list, &c->erasable_list);
623 D1(printk(KERN_DEBUG "Done OK\n"));
624 } else if (jeb == c->gcblock) {
625 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
626 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
627 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
628 list_del(&jeb->list);
629 D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
630 list_add_tail(&jeb->list, &c->dirty_list);
631 } else if (VERYDIRTY(c, jeb->dirty_size) &&
632 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
633 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
634 list_del(&jeb->list);
635 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
636 list_add_tail(&jeb->list, &c->very_dirty_list);
637 } else {
638 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
639 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
642 spin_unlock(&c->erase_completion_lock);
644 if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
645 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
646 /* We didn't lock the erase_free_sem */
647 return;
650 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
651 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
652 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
653 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
655 D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
656 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
657 if (ret) {
658 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
659 goto out_erase_sem;
661 if (retlen != sizeof(n)) {
662 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
663 goto out_erase_sem;
665 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
666 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
667 goto out_erase_sem;
669 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
670 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
671 goto out_erase_sem;
673 /* XXX FIXME: This is ugly now */
674 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
675 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
676 if (ret) {
677 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
678 goto out_erase_sem;
680 if (retlen != sizeof(n)) {
681 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
682 goto out_erase_sem;
685 /* Nodes which have been marked obsolete no longer need to be
686 associated with any inode. Remove them from the per-inode list.
688 Note we can't do this for NAND at the moment because we need
689 obsolete dirent nodes to stay on the lists, because of the
690 horridness in jffs2_garbage_collect_deletion_dirent(). Also
691 because we delete the inocache, and on NAND we need that to
692 stay around until all the nodes are actually erased, in order
693 to stop us from giving the same inode number to another newly
694 created inode. */
695 if (ref->next_in_ino) {
696 struct jffs2_inode_cache *ic;
697 struct jffs2_raw_node_ref **p;
699 spin_lock(&c->erase_completion_lock);
701 ic = jffs2_raw_ref_to_ic(ref);
702 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
705 *p = ref->next_in_ino;
706 ref->next_in_ino = NULL;
708 switch (ic->class) {
709 #ifdef CONFIG_JFFS2_FS_XATTR
710 case RAWNODE_CLASS_XATTR_DATUM:
711 jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
712 break;
713 case RAWNODE_CLASS_XATTR_REF:
714 jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
715 break;
716 #endif
717 default:
718 if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
719 jffs2_del_ino_cache(c, ic);
720 break;
722 spin_unlock(&c->erase_completion_lock);
725 out_erase_sem:
726 mutex_unlock(&c->erase_free_sem);
729 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
731 int ret = 0;
732 uint32_t dirty;
733 int nr_very_dirty = 0;
734 struct jffs2_eraseblock *jeb;
736 if (c->unchecked_size) {
737 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
738 c->unchecked_size, c->checked_ino));
739 return 1;
742 /* dirty_size contains blocks on erase_pending_list
743 * those blocks are counted in c->nr_erasing_blocks.
744 * If one block is actually erased, it is not longer counted as dirty_space
745 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
746 * with c->nr_erasing_blocks * c->sector_size again.
747 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
748 * This helps us to force gc and pick eventually a clean block to spread the load.
750 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
752 if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
753 (dirty > c->nospc_dirty_size))
754 ret = 1;
756 list_for_each_entry(jeb, &c->very_dirty_list, list) {
757 nr_very_dirty++;
758 if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
759 ret = 1;
760 /* In debug mode, actually go through and count them all */
761 D1(continue);
762 break;
766 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
767 c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, nr_very_dirty, ret?"yes":"no"));
769 return ret;