JBD: round commit timer up to avoid uncommitted transaction
[linux/fpc-iii.git] / mm / page-writeback.c
blob1eea4fa0d410d59603d283d3c3cbf86bbf25d19d
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
39 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
40 * will look to see if it needs to force writeback or throttling.
42 static long ratelimit_pages = 32;
45 * When balance_dirty_pages decides that the caller needs to perform some
46 * non-background writeback, this is how many pages it will attempt to write.
47 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
48 * large amounts of I/O are submitted.
50 static inline long sync_writeback_pages(void)
52 return ratelimit_pages + ratelimit_pages / 2;
55 /* The following parameters are exported via /proc/sys/vm */
58 * Start background writeback (via pdflush) at this percentage
60 int dirty_background_ratio = 10;
63 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
64 * dirty_background_ratio * the amount of dirtyable memory
66 unsigned long dirty_background_bytes;
69 * free highmem will not be subtracted from the total free memory
70 * for calculating free ratios if vm_highmem_is_dirtyable is true
72 int vm_highmem_is_dirtyable;
75 * The generator of dirty data starts writeback at this percentage
77 int vm_dirty_ratio = 20;
80 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
81 * vm_dirty_ratio * the amount of dirtyable memory
83 unsigned long vm_dirty_bytes;
86 * The interval between `kupdate'-style writebacks
88 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
91 * The longest time for which data is allowed to remain dirty
93 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
96 * Flag that makes the machine dump writes/reads and block dirtyings.
98 int block_dump;
101 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
102 * a full sync is triggered after this time elapses without any disk activity.
104 int laptop_mode;
106 EXPORT_SYMBOL(laptop_mode);
108 /* End of sysctl-exported parameters */
112 * Scale the writeback cache size proportional to the relative writeout speeds.
114 * We do this by keeping a floating proportion between BDIs, based on page
115 * writeback completions [end_page_writeback()]. Those devices that write out
116 * pages fastest will get the larger share, while the slower will get a smaller
117 * share.
119 * We use page writeout completions because we are interested in getting rid of
120 * dirty pages. Having them written out is the primary goal.
122 * We introduce a concept of time, a period over which we measure these events,
123 * because demand can/will vary over time. The length of this period itself is
124 * measured in page writeback completions.
127 static struct prop_descriptor vm_completions;
128 static struct prop_descriptor vm_dirties;
131 * couple the period to the dirty_ratio:
133 * period/2 ~ roundup_pow_of_two(dirty limit)
135 static int calc_period_shift(void)
137 unsigned long dirty_total;
139 if (vm_dirty_bytes)
140 dirty_total = vm_dirty_bytes / PAGE_SIZE;
141 else
142 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
143 100;
144 return 2 + ilog2(dirty_total - 1);
148 * update the period when the dirty threshold changes.
150 static void update_completion_period(void)
152 int shift = calc_period_shift();
153 prop_change_shift(&vm_completions, shift);
154 prop_change_shift(&vm_dirties, shift);
157 int dirty_background_ratio_handler(struct ctl_table *table, int write,
158 struct file *filp, void __user *buffer, size_t *lenp,
159 loff_t *ppos)
161 int ret;
163 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
164 if (ret == 0 && write)
165 dirty_background_bytes = 0;
166 return ret;
169 int dirty_background_bytes_handler(struct ctl_table *table, int write,
170 struct file *filp, void __user *buffer, size_t *lenp,
171 loff_t *ppos)
173 int ret;
175 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
176 if (ret == 0 && write)
177 dirty_background_ratio = 0;
178 return ret;
181 int dirty_ratio_handler(struct ctl_table *table, int write,
182 struct file *filp, void __user *buffer, size_t *lenp,
183 loff_t *ppos)
185 int old_ratio = vm_dirty_ratio;
186 int ret;
188 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
189 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
190 update_completion_period();
191 vm_dirty_bytes = 0;
193 return ret;
197 int dirty_bytes_handler(struct ctl_table *table, int write,
198 struct file *filp, void __user *buffer, size_t *lenp,
199 loff_t *ppos)
201 unsigned long old_bytes = vm_dirty_bytes;
202 int ret;
204 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
205 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
206 update_completion_period();
207 vm_dirty_ratio = 0;
209 return ret;
213 * Increment the BDI's writeout completion count and the global writeout
214 * completion count. Called from test_clear_page_writeback().
216 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
218 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
219 bdi->max_prop_frac);
222 void bdi_writeout_inc(struct backing_dev_info *bdi)
224 unsigned long flags;
226 local_irq_save(flags);
227 __bdi_writeout_inc(bdi);
228 local_irq_restore(flags);
230 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
232 void task_dirty_inc(struct task_struct *tsk)
234 prop_inc_single(&vm_dirties, &tsk->dirties);
238 * Obtain an accurate fraction of the BDI's portion.
240 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
241 long *numerator, long *denominator)
243 if (bdi_cap_writeback_dirty(bdi)) {
244 prop_fraction_percpu(&vm_completions, &bdi->completions,
245 numerator, denominator);
246 } else {
247 *numerator = 0;
248 *denominator = 1;
253 * Clip the earned share of dirty pages to that which is actually available.
254 * This avoids exceeding the total dirty_limit when the floating averages
255 * fluctuate too quickly.
257 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
258 unsigned long dirty, unsigned long *pbdi_dirty)
260 unsigned long avail_dirty;
262 avail_dirty = global_page_state(NR_FILE_DIRTY) +
263 global_page_state(NR_WRITEBACK) +
264 global_page_state(NR_UNSTABLE_NFS) +
265 global_page_state(NR_WRITEBACK_TEMP);
267 if (avail_dirty < dirty)
268 avail_dirty = dirty - avail_dirty;
269 else
270 avail_dirty = 0;
272 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
273 bdi_stat(bdi, BDI_WRITEBACK);
275 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
278 static inline void task_dirties_fraction(struct task_struct *tsk,
279 long *numerator, long *denominator)
281 prop_fraction_single(&vm_dirties, &tsk->dirties,
282 numerator, denominator);
286 * scale the dirty limit
288 * task specific dirty limit:
290 * dirty -= (dirty/8) * p_{t}
292 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
294 long numerator, denominator;
295 unsigned long dirty = *pdirty;
296 u64 inv = dirty >> 3;
298 task_dirties_fraction(tsk, &numerator, &denominator);
299 inv *= numerator;
300 do_div(inv, denominator);
302 dirty -= inv;
303 if (dirty < *pdirty/2)
304 dirty = *pdirty/2;
306 *pdirty = dirty;
312 static unsigned int bdi_min_ratio;
314 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
316 int ret = 0;
318 spin_lock_bh(&bdi_lock);
319 if (min_ratio > bdi->max_ratio) {
320 ret = -EINVAL;
321 } else {
322 min_ratio -= bdi->min_ratio;
323 if (bdi_min_ratio + min_ratio < 100) {
324 bdi_min_ratio += min_ratio;
325 bdi->min_ratio += min_ratio;
326 } else {
327 ret = -EINVAL;
330 spin_unlock_bh(&bdi_lock);
332 return ret;
335 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
337 int ret = 0;
339 if (max_ratio > 100)
340 return -EINVAL;
342 spin_lock_bh(&bdi_lock);
343 if (bdi->min_ratio > max_ratio) {
344 ret = -EINVAL;
345 } else {
346 bdi->max_ratio = max_ratio;
347 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
349 spin_unlock_bh(&bdi_lock);
351 return ret;
353 EXPORT_SYMBOL(bdi_set_max_ratio);
356 * Work out the current dirty-memory clamping and background writeout
357 * thresholds.
359 * The main aim here is to lower them aggressively if there is a lot of mapped
360 * memory around. To avoid stressing page reclaim with lots of unreclaimable
361 * pages. It is better to clamp down on writers than to start swapping, and
362 * performing lots of scanning.
364 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
366 * We don't permit the clamping level to fall below 5% - that is getting rather
367 * excessive.
369 * We make sure that the background writeout level is below the adjusted
370 * clamping level.
373 static unsigned long highmem_dirtyable_memory(unsigned long total)
375 #ifdef CONFIG_HIGHMEM
376 int node;
377 unsigned long x = 0;
379 for_each_node_state(node, N_HIGH_MEMORY) {
380 struct zone *z =
381 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
383 x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
386 * Make sure that the number of highmem pages is never larger
387 * than the number of the total dirtyable memory. This can only
388 * occur in very strange VM situations but we want to make sure
389 * that this does not occur.
391 return min(x, total);
392 #else
393 return 0;
394 #endif
398 * determine_dirtyable_memory - amount of memory that may be used
400 * Returns the numebr of pages that can currently be freed and used
401 * by the kernel for direct mappings.
403 unsigned long determine_dirtyable_memory(void)
405 unsigned long x;
407 x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
409 if (!vm_highmem_is_dirtyable)
410 x -= highmem_dirtyable_memory(x);
412 return x + 1; /* Ensure that we never return 0 */
415 void
416 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
417 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
419 unsigned long background;
420 unsigned long dirty;
421 unsigned long available_memory = determine_dirtyable_memory();
422 struct task_struct *tsk;
424 if (vm_dirty_bytes)
425 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
426 else {
427 int dirty_ratio;
429 dirty_ratio = vm_dirty_ratio;
430 if (dirty_ratio < 5)
431 dirty_ratio = 5;
432 dirty = (dirty_ratio * available_memory) / 100;
435 if (dirty_background_bytes)
436 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
437 else
438 background = (dirty_background_ratio * available_memory) / 100;
440 if (background >= dirty)
441 background = dirty / 2;
442 tsk = current;
443 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
444 background += background / 4;
445 dirty += dirty / 4;
447 *pbackground = background;
448 *pdirty = dirty;
450 if (bdi) {
451 u64 bdi_dirty;
452 long numerator, denominator;
455 * Calculate this BDI's share of the dirty ratio.
457 bdi_writeout_fraction(bdi, &numerator, &denominator);
459 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
460 bdi_dirty *= numerator;
461 do_div(bdi_dirty, denominator);
462 bdi_dirty += (dirty * bdi->min_ratio) / 100;
463 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
464 bdi_dirty = dirty * bdi->max_ratio / 100;
466 *pbdi_dirty = bdi_dirty;
467 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
468 task_dirty_limit(current, pbdi_dirty);
473 * balance_dirty_pages() must be called by processes which are generating dirty
474 * data. It looks at the number of dirty pages in the machine and will force
475 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
476 * If we're over `background_thresh' then pdflush is woken to perform some
477 * writeout.
479 static void balance_dirty_pages(struct address_space *mapping)
481 long nr_reclaimable, bdi_nr_reclaimable;
482 long nr_writeback, bdi_nr_writeback;
483 unsigned long background_thresh;
484 unsigned long dirty_thresh;
485 unsigned long bdi_thresh;
486 unsigned long pages_written = 0;
487 unsigned long write_chunk = sync_writeback_pages();
489 struct backing_dev_info *bdi = mapping->backing_dev_info;
491 for (;;) {
492 struct writeback_control wbc = {
493 .bdi = bdi,
494 .sync_mode = WB_SYNC_NONE,
495 .older_than_this = NULL,
496 .nr_to_write = write_chunk,
497 .range_cyclic = 1,
500 get_dirty_limits(&background_thresh, &dirty_thresh,
501 &bdi_thresh, bdi);
503 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
504 global_page_state(NR_UNSTABLE_NFS);
505 nr_writeback = global_page_state(NR_WRITEBACK);
507 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
508 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
510 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
511 break;
514 * Throttle it only when the background writeback cannot
515 * catch-up. This avoids (excessively) small writeouts
516 * when the bdi limits are ramping up.
518 if (nr_reclaimable + nr_writeback <
519 (background_thresh + dirty_thresh) / 2)
520 break;
522 if (!bdi->dirty_exceeded)
523 bdi->dirty_exceeded = 1;
525 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
526 * Unstable writes are a feature of certain networked
527 * filesystems (i.e. NFS) in which data may have been
528 * written to the server's write cache, but has not yet
529 * been flushed to permanent storage.
530 * Only move pages to writeback if this bdi is over its
531 * threshold otherwise wait until the disk writes catch
532 * up.
534 if (bdi_nr_reclaimable > bdi_thresh) {
535 writeback_inodes_wbc(&wbc);
536 pages_written += write_chunk - wbc.nr_to_write;
537 get_dirty_limits(&background_thresh, &dirty_thresh,
538 &bdi_thresh, bdi);
542 * In order to avoid the stacked BDI deadlock we need
543 * to ensure we accurately count the 'dirty' pages when
544 * the threshold is low.
546 * Otherwise it would be possible to get thresh+n pages
547 * reported dirty, even though there are thresh-m pages
548 * actually dirty; with m+n sitting in the percpu
549 * deltas.
551 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
552 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
553 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
554 } else if (bdi_nr_reclaimable) {
555 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
556 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
559 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
560 break;
561 if (pages_written >= write_chunk)
562 break; /* We've done our duty */
564 schedule_timeout(1);
567 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
568 bdi->dirty_exceeded)
569 bdi->dirty_exceeded = 0;
571 if (writeback_in_progress(bdi))
572 return; /* pdflush is already working this queue */
575 * In laptop mode, we wait until hitting the higher threshold before
576 * starting background writeout, and then write out all the way down
577 * to the lower threshold. So slow writers cause minimal disk activity.
579 * In normal mode, we start background writeout at the lower
580 * background_thresh, to keep the amount of dirty memory low.
582 if ((laptop_mode && pages_written) ||
583 (!laptop_mode && ((nr_writeback = global_page_state(NR_FILE_DIRTY)
584 + global_page_state(NR_UNSTABLE_NFS))
585 > background_thresh)))
586 bdi_start_writeback(bdi, nr_writeback);
589 void set_page_dirty_balance(struct page *page, int page_mkwrite)
591 if (set_page_dirty(page) || page_mkwrite) {
592 struct address_space *mapping = page_mapping(page);
594 if (mapping)
595 balance_dirty_pages_ratelimited(mapping);
599 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
602 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
603 * @mapping: address_space which was dirtied
604 * @nr_pages_dirtied: number of pages which the caller has just dirtied
606 * Processes which are dirtying memory should call in here once for each page
607 * which was newly dirtied. The function will periodically check the system's
608 * dirty state and will initiate writeback if needed.
610 * On really big machines, get_writeback_state is expensive, so try to avoid
611 * calling it too often (ratelimiting). But once we're over the dirty memory
612 * limit we decrease the ratelimiting by a lot, to prevent individual processes
613 * from overshooting the limit by (ratelimit_pages) each.
615 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
616 unsigned long nr_pages_dirtied)
618 unsigned long ratelimit;
619 unsigned long *p;
621 ratelimit = ratelimit_pages;
622 if (mapping->backing_dev_info->dirty_exceeded)
623 ratelimit = 8;
626 * Check the rate limiting. Also, we do not want to throttle real-time
627 * tasks in balance_dirty_pages(). Period.
629 preempt_disable();
630 p = &__get_cpu_var(bdp_ratelimits);
631 *p += nr_pages_dirtied;
632 if (unlikely(*p >= ratelimit)) {
633 *p = 0;
634 preempt_enable();
635 balance_dirty_pages(mapping);
636 return;
638 preempt_enable();
640 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
642 void throttle_vm_writeout(gfp_t gfp_mask)
644 unsigned long background_thresh;
645 unsigned long dirty_thresh;
647 for ( ; ; ) {
648 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
651 * Boost the allowable dirty threshold a bit for page
652 * allocators so they don't get DoS'ed by heavy writers
654 dirty_thresh += dirty_thresh / 10; /* wheeee... */
656 if (global_page_state(NR_UNSTABLE_NFS) +
657 global_page_state(NR_WRITEBACK) <= dirty_thresh)
658 break;
659 congestion_wait(BLK_RW_ASYNC, HZ/10);
662 * The caller might hold locks which can prevent IO completion
663 * or progress in the filesystem. So we cannot just sit here
664 * waiting for IO to complete.
666 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
667 break;
671 static void laptop_timer_fn(unsigned long unused);
673 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
676 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
678 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
679 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
681 proc_dointvec(table, write, file, buffer, length, ppos);
682 return 0;
685 static void do_laptop_sync(struct work_struct *work)
687 wakeup_flusher_threads(0);
688 kfree(work);
691 static void laptop_timer_fn(unsigned long unused)
693 struct work_struct *work;
695 work = kmalloc(sizeof(*work), GFP_ATOMIC);
696 if (work) {
697 INIT_WORK(work, do_laptop_sync);
698 schedule_work(work);
703 * We've spun up the disk and we're in laptop mode: schedule writeback
704 * of all dirty data a few seconds from now. If the flush is already scheduled
705 * then push it back - the user is still using the disk.
707 void laptop_io_completion(void)
709 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
713 * We're in laptop mode and we've just synced. The sync's writes will have
714 * caused another writeback to be scheduled by laptop_io_completion.
715 * Nothing needs to be written back anymore, so we unschedule the writeback.
717 void laptop_sync_completion(void)
719 del_timer(&laptop_mode_wb_timer);
723 * If ratelimit_pages is too high then we can get into dirty-data overload
724 * if a large number of processes all perform writes at the same time.
725 * If it is too low then SMP machines will call the (expensive)
726 * get_writeback_state too often.
728 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
729 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
730 * thresholds before writeback cuts in.
732 * But the limit should not be set too high. Because it also controls the
733 * amount of memory which the balance_dirty_pages() caller has to write back.
734 * If this is too large then the caller will block on the IO queue all the
735 * time. So limit it to four megabytes - the balance_dirty_pages() caller
736 * will write six megabyte chunks, max.
739 void writeback_set_ratelimit(void)
741 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
742 if (ratelimit_pages < 16)
743 ratelimit_pages = 16;
744 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
745 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
748 static int __cpuinit
749 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
751 writeback_set_ratelimit();
752 return NOTIFY_DONE;
755 static struct notifier_block __cpuinitdata ratelimit_nb = {
756 .notifier_call = ratelimit_handler,
757 .next = NULL,
761 * Called early on to tune the page writeback dirty limits.
763 * We used to scale dirty pages according to how total memory
764 * related to pages that could be allocated for buffers (by
765 * comparing nr_free_buffer_pages() to vm_total_pages.
767 * However, that was when we used "dirty_ratio" to scale with
768 * all memory, and we don't do that any more. "dirty_ratio"
769 * is now applied to total non-HIGHPAGE memory (by subtracting
770 * totalhigh_pages from vm_total_pages), and as such we can't
771 * get into the old insane situation any more where we had
772 * large amounts of dirty pages compared to a small amount of
773 * non-HIGHMEM memory.
775 * But we might still want to scale the dirty_ratio by how
776 * much memory the box has..
778 void __init page_writeback_init(void)
780 int shift;
782 writeback_set_ratelimit();
783 register_cpu_notifier(&ratelimit_nb);
785 shift = calc_period_shift();
786 prop_descriptor_init(&vm_completions, shift);
787 prop_descriptor_init(&vm_dirties, shift);
791 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
792 * @mapping: address space structure to write
793 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
794 * @writepage: function called for each page
795 * @data: data passed to writepage function
797 * If a page is already under I/O, write_cache_pages() skips it, even
798 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
799 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
800 * and msync() need to guarantee that all the data which was dirty at the time
801 * the call was made get new I/O started against them. If wbc->sync_mode is
802 * WB_SYNC_ALL then we were called for data integrity and we must wait for
803 * existing IO to complete.
805 int write_cache_pages(struct address_space *mapping,
806 struct writeback_control *wbc, writepage_t writepage,
807 void *data)
809 struct backing_dev_info *bdi = mapping->backing_dev_info;
810 int ret = 0;
811 int done = 0;
812 struct pagevec pvec;
813 int nr_pages;
814 pgoff_t uninitialized_var(writeback_index);
815 pgoff_t index;
816 pgoff_t end; /* Inclusive */
817 pgoff_t done_index;
818 int cycled;
819 int range_whole = 0;
820 long nr_to_write = wbc->nr_to_write;
822 if (wbc->nonblocking && bdi_write_congested(bdi)) {
823 wbc->encountered_congestion = 1;
824 return 0;
827 pagevec_init(&pvec, 0);
828 if (wbc->range_cyclic) {
829 writeback_index = mapping->writeback_index; /* prev offset */
830 index = writeback_index;
831 if (index == 0)
832 cycled = 1;
833 else
834 cycled = 0;
835 end = -1;
836 } else {
837 index = wbc->range_start >> PAGE_CACHE_SHIFT;
838 end = wbc->range_end >> PAGE_CACHE_SHIFT;
839 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
840 range_whole = 1;
841 cycled = 1; /* ignore range_cyclic tests */
843 retry:
844 done_index = index;
845 while (!done && (index <= end)) {
846 int i;
848 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
849 PAGECACHE_TAG_DIRTY,
850 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
851 if (nr_pages == 0)
852 break;
854 for (i = 0; i < nr_pages; i++) {
855 struct page *page = pvec.pages[i];
858 * At this point, the page may be truncated or
859 * invalidated (changing page->mapping to NULL), or
860 * even swizzled back from swapper_space to tmpfs file
861 * mapping. However, page->index will not change
862 * because we have a reference on the page.
864 if (page->index > end) {
866 * can't be range_cyclic (1st pass) because
867 * end == -1 in that case.
869 done = 1;
870 break;
873 done_index = page->index + 1;
875 lock_page(page);
878 * Page truncated or invalidated. We can freely skip it
879 * then, even for data integrity operations: the page
880 * has disappeared concurrently, so there could be no
881 * real expectation of this data interity operation
882 * even if there is now a new, dirty page at the same
883 * pagecache address.
885 if (unlikely(page->mapping != mapping)) {
886 continue_unlock:
887 unlock_page(page);
888 continue;
891 if (!PageDirty(page)) {
892 /* someone wrote it for us */
893 goto continue_unlock;
896 if (PageWriteback(page)) {
897 if (wbc->sync_mode != WB_SYNC_NONE)
898 wait_on_page_writeback(page);
899 else
900 goto continue_unlock;
903 BUG_ON(PageWriteback(page));
904 if (!clear_page_dirty_for_io(page))
905 goto continue_unlock;
907 ret = (*writepage)(page, wbc, data);
908 if (unlikely(ret)) {
909 if (ret == AOP_WRITEPAGE_ACTIVATE) {
910 unlock_page(page);
911 ret = 0;
912 } else {
914 * done_index is set past this page,
915 * so media errors will not choke
916 * background writeout for the entire
917 * file. This has consequences for
918 * range_cyclic semantics (ie. it may
919 * not be suitable for data integrity
920 * writeout).
922 done = 1;
923 break;
927 if (nr_to_write > 0) {
928 nr_to_write--;
929 if (nr_to_write == 0 &&
930 wbc->sync_mode == WB_SYNC_NONE) {
932 * We stop writing back only if we are
933 * not doing integrity sync. In case of
934 * integrity sync we have to keep going
935 * because someone may be concurrently
936 * dirtying pages, and we might have
937 * synced a lot of newly appeared dirty
938 * pages, but have not synced all of the
939 * old dirty pages.
941 done = 1;
942 break;
946 if (wbc->nonblocking && bdi_write_congested(bdi)) {
947 wbc->encountered_congestion = 1;
948 done = 1;
949 break;
952 pagevec_release(&pvec);
953 cond_resched();
955 if (!cycled && !done) {
957 * range_cyclic:
958 * We hit the last page and there is more work to be done: wrap
959 * back to the start of the file
961 cycled = 1;
962 index = 0;
963 end = writeback_index - 1;
964 goto retry;
966 if (!wbc->no_nrwrite_index_update) {
967 if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
968 mapping->writeback_index = done_index;
969 wbc->nr_to_write = nr_to_write;
972 return ret;
974 EXPORT_SYMBOL(write_cache_pages);
977 * Function used by generic_writepages to call the real writepage
978 * function and set the mapping flags on error
980 static int __writepage(struct page *page, struct writeback_control *wbc,
981 void *data)
983 struct address_space *mapping = data;
984 int ret = mapping->a_ops->writepage(page, wbc);
985 mapping_set_error(mapping, ret);
986 return ret;
990 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
991 * @mapping: address space structure to write
992 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
994 * This is a library function, which implements the writepages()
995 * address_space_operation.
997 int generic_writepages(struct address_space *mapping,
998 struct writeback_control *wbc)
1000 /* deal with chardevs and other special file */
1001 if (!mapping->a_ops->writepage)
1002 return 0;
1004 return write_cache_pages(mapping, wbc, __writepage, mapping);
1007 EXPORT_SYMBOL(generic_writepages);
1009 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1011 int ret;
1013 if (wbc->nr_to_write <= 0)
1014 return 0;
1015 if (mapping->a_ops->writepages)
1016 ret = mapping->a_ops->writepages(mapping, wbc);
1017 else
1018 ret = generic_writepages(mapping, wbc);
1019 return ret;
1023 * write_one_page - write out a single page and optionally wait on I/O
1024 * @page: the page to write
1025 * @wait: if true, wait on writeout
1027 * The page must be locked by the caller and will be unlocked upon return.
1029 * write_one_page() returns a negative error code if I/O failed.
1031 int write_one_page(struct page *page, int wait)
1033 struct address_space *mapping = page->mapping;
1034 int ret = 0;
1035 struct writeback_control wbc = {
1036 .sync_mode = WB_SYNC_ALL,
1037 .nr_to_write = 1,
1040 BUG_ON(!PageLocked(page));
1042 if (wait)
1043 wait_on_page_writeback(page);
1045 if (clear_page_dirty_for_io(page)) {
1046 page_cache_get(page);
1047 ret = mapping->a_ops->writepage(page, &wbc);
1048 if (ret == 0 && wait) {
1049 wait_on_page_writeback(page);
1050 if (PageError(page))
1051 ret = -EIO;
1053 page_cache_release(page);
1054 } else {
1055 unlock_page(page);
1057 return ret;
1059 EXPORT_SYMBOL(write_one_page);
1062 * For address_spaces which do not use buffers nor write back.
1064 int __set_page_dirty_no_writeback(struct page *page)
1066 if (!PageDirty(page))
1067 SetPageDirty(page);
1068 return 0;
1072 * Helper function for set_page_dirty family.
1073 * NOTE: This relies on being atomic wrt interrupts.
1075 void account_page_dirtied(struct page *page, struct address_space *mapping)
1077 if (mapping_cap_account_dirty(mapping)) {
1078 __inc_zone_page_state(page, NR_FILE_DIRTY);
1079 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1080 task_dirty_inc(current);
1081 task_io_account_write(PAGE_CACHE_SIZE);
1086 * For address_spaces which do not use buffers. Just tag the page as dirty in
1087 * its radix tree.
1089 * This is also used when a single buffer is being dirtied: we want to set the
1090 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1091 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1093 * Most callers have locked the page, which pins the address_space in memory.
1094 * But zap_pte_range() does not lock the page, however in that case the
1095 * mapping is pinned by the vma's ->vm_file reference.
1097 * We take care to handle the case where the page was truncated from the
1098 * mapping by re-checking page_mapping() inside tree_lock.
1100 int __set_page_dirty_nobuffers(struct page *page)
1102 if (!TestSetPageDirty(page)) {
1103 struct address_space *mapping = page_mapping(page);
1104 struct address_space *mapping2;
1106 if (!mapping)
1107 return 1;
1109 spin_lock_irq(&mapping->tree_lock);
1110 mapping2 = page_mapping(page);
1111 if (mapping2) { /* Race with truncate? */
1112 BUG_ON(mapping2 != mapping);
1113 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1114 account_page_dirtied(page, mapping);
1115 radix_tree_tag_set(&mapping->page_tree,
1116 page_index(page), PAGECACHE_TAG_DIRTY);
1118 spin_unlock_irq(&mapping->tree_lock);
1119 if (mapping->host) {
1120 /* !PageAnon && !swapper_space */
1121 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1123 return 1;
1125 return 0;
1127 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1130 * When a writepage implementation decides that it doesn't want to write this
1131 * page for some reason, it should redirty the locked page via
1132 * redirty_page_for_writepage() and it should then unlock the page and return 0
1134 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1136 wbc->pages_skipped++;
1137 return __set_page_dirty_nobuffers(page);
1139 EXPORT_SYMBOL(redirty_page_for_writepage);
1142 * If the mapping doesn't provide a set_page_dirty a_op, then
1143 * just fall through and assume that it wants buffer_heads.
1145 int set_page_dirty(struct page *page)
1147 struct address_space *mapping = page_mapping(page);
1149 if (likely(mapping)) {
1150 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1151 #ifdef CONFIG_BLOCK
1152 if (!spd)
1153 spd = __set_page_dirty_buffers;
1154 #endif
1155 return (*spd)(page);
1157 if (!PageDirty(page)) {
1158 if (!TestSetPageDirty(page))
1159 return 1;
1161 return 0;
1163 EXPORT_SYMBOL(set_page_dirty);
1166 * set_page_dirty() is racy if the caller has no reference against
1167 * page->mapping->host, and if the page is unlocked. This is because another
1168 * CPU could truncate the page off the mapping and then free the mapping.
1170 * Usually, the page _is_ locked, or the caller is a user-space process which
1171 * holds a reference on the inode by having an open file.
1173 * In other cases, the page should be locked before running set_page_dirty().
1175 int set_page_dirty_lock(struct page *page)
1177 int ret;
1179 lock_page_nosync(page);
1180 ret = set_page_dirty(page);
1181 unlock_page(page);
1182 return ret;
1184 EXPORT_SYMBOL(set_page_dirty_lock);
1187 * Clear a page's dirty flag, while caring for dirty memory accounting.
1188 * Returns true if the page was previously dirty.
1190 * This is for preparing to put the page under writeout. We leave the page
1191 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1192 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1193 * implementation will run either set_page_writeback() or set_page_dirty(),
1194 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1195 * back into sync.
1197 * This incoherency between the page's dirty flag and radix-tree tag is
1198 * unfortunate, but it only exists while the page is locked.
1200 int clear_page_dirty_for_io(struct page *page)
1202 struct address_space *mapping = page_mapping(page);
1204 BUG_ON(!PageLocked(page));
1206 ClearPageReclaim(page);
1207 if (mapping && mapping_cap_account_dirty(mapping)) {
1209 * Yes, Virginia, this is indeed insane.
1211 * We use this sequence to make sure that
1212 * (a) we account for dirty stats properly
1213 * (b) we tell the low-level filesystem to
1214 * mark the whole page dirty if it was
1215 * dirty in a pagetable. Only to then
1216 * (c) clean the page again and return 1 to
1217 * cause the writeback.
1219 * This way we avoid all nasty races with the
1220 * dirty bit in multiple places and clearing
1221 * them concurrently from different threads.
1223 * Note! Normally the "set_page_dirty(page)"
1224 * has no effect on the actual dirty bit - since
1225 * that will already usually be set. But we
1226 * need the side effects, and it can help us
1227 * avoid races.
1229 * We basically use the page "master dirty bit"
1230 * as a serialization point for all the different
1231 * threads doing their things.
1233 if (page_mkclean(page))
1234 set_page_dirty(page);
1236 * We carefully synchronise fault handlers against
1237 * installing a dirty pte and marking the page dirty
1238 * at this point. We do this by having them hold the
1239 * page lock at some point after installing their
1240 * pte, but before marking the page dirty.
1241 * Pages are always locked coming in here, so we get
1242 * the desired exclusion. See mm/memory.c:do_wp_page()
1243 * for more comments.
1245 if (TestClearPageDirty(page)) {
1246 dec_zone_page_state(page, NR_FILE_DIRTY);
1247 dec_bdi_stat(mapping->backing_dev_info,
1248 BDI_RECLAIMABLE);
1249 return 1;
1251 return 0;
1253 return TestClearPageDirty(page);
1255 EXPORT_SYMBOL(clear_page_dirty_for_io);
1257 int test_clear_page_writeback(struct page *page)
1259 struct address_space *mapping = page_mapping(page);
1260 int ret;
1262 if (mapping) {
1263 struct backing_dev_info *bdi = mapping->backing_dev_info;
1264 unsigned long flags;
1266 spin_lock_irqsave(&mapping->tree_lock, flags);
1267 ret = TestClearPageWriteback(page);
1268 if (ret) {
1269 radix_tree_tag_clear(&mapping->page_tree,
1270 page_index(page),
1271 PAGECACHE_TAG_WRITEBACK);
1272 if (bdi_cap_account_writeback(bdi)) {
1273 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1274 __bdi_writeout_inc(bdi);
1277 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1278 } else {
1279 ret = TestClearPageWriteback(page);
1281 if (ret)
1282 dec_zone_page_state(page, NR_WRITEBACK);
1283 return ret;
1286 int test_set_page_writeback(struct page *page)
1288 struct address_space *mapping = page_mapping(page);
1289 int ret;
1291 if (mapping) {
1292 struct backing_dev_info *bdi = mapping->backing_dev_info;
1293 unsigned long flags;
1295 spin_lock_irqsave(&mapping->tree_lock, flags);
1296 ret = TestSetPageWriteback(page);
1297 if (!ret) {
1298 radix_tree_tag_set(&mapping->page_tree,
1299 page_index(page),
1300 PAGECACHE_TAG_WRITEBACK);
1301 if (bdi_cap_account_writeback(bdi))
1302 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1304 if (!PageDirty(page))
1305 radix_tree_tag_clear(&mapping->page_tree,
1306 page_index(page),
1307 PAGECACHE_TAG_DIRTY);
1308 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1309 } else {
1310 ret = TestSetPageWriteback(page);
1312 if (!ret)
1313 inc_zone_page_state(page, NR_WRITEBACK);
1314 return ret;
1317 EXPORT_SYMBOL(test_set_page_writeback);
1320 * Return true if any of the pages in the mapping are marked with the
1321 * passed tag.
1323 int mapping_tagged(struct address_space *mapping, int tag)
1325 int ret;
1326 rcu_read_lock();
1327 ret = radix_tree_tagged(&mapping->page_tree, tag);
1328 rcu_read_unlock();
1329 return ret;
1331 EXPORT_SYMBOL(mapping_tagged);