4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/export.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 #include <trace/events/block.h>
46 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50 void init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
52 bh
->b_end_io
= handler
;
53 bh
->b_private
= private;
55 EXPORT_SYMBOL(init_buffer
);
57 inline void touch_buffer(struct buffer_head
*bh
)
59 trace_block_touch_buffer(bh
);
60 mark_page_accessed(bh
->b_page
);
62 EXPORT_SYMBOL(touch_buffer
);
64 void __lock_buffer(struct buffer_head
*bh
)
66 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
68 EXPORT_SYMBOL(__lock_buffer
);
70 void unlock_buffer(struct buffer_head
*bh
)
72 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
73 smp_mb__after_atomic();
74 wake_up_bit(&bh
->b_state
, BH_Lock
);
76 EXPORT_SYMBOL(unlock_buffer
);
79 * Returns if the page has dirty or writeback buffers. If all the buffers
80 * are unlocked and clean then the PageDirty information is stale. If
81 * any of the pages are locked, it is assumed they are locked for IO.
83 void buffer_check_dirty_writeback(struct page
*page
,
84 bool *dirty
, bool *writeback
)
86 struct buffer_head
*head
, *bh
;
90 BUG_ON(!PageLocked(page
));
92 if (!page_has_buffers(page
))
95 if (PageWriteback(page
))
98 head
= page_buffers(page
);
101 if (buffer_locked(bh
))
104 if (buffer_dirty(bh
))
107 bh
= bh
->b_this_page
;
108 } while (bh
!= head
);
110 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
113 * Block until a buffer comes unlocked. This doesn't stop it
114 * from becoming locked again - you have to lock it yourself
115 * if you want to preserve its state.
117 void __wait_on_buffer(struct buffer_head
* bh
)
119 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
121 EXPORT_SYMBOL(__wait_on_buffer
);
124 __clear_page_buffers(struct page
*page
)
126 ClearPagePrivate(page
);
127 set_page_private(page
, 0);
128 page_cache_release(page
);
132 static int quiet_error(struct buffer_head
*bh
)
134 if (!test_bit(BH_Quiet
, &bh
->b_state
) && printk_ratelimit())
140 static void buffer_io_error(struct buffer_head
*bh
)
142 char b
[BDEVNAME_SIZE
];
143 printk(KERN_ERR
"Buffer I/O error on device %s, logical block %Lu\n",
144 bdevname(bh
->b_bdev
, b
),
145 (unsigned long long)bh
->b_blocknr
);
149 * End-of-IO handler helper function which does not touch the bh after
151 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
152 * a race there is benign: unlock_buffer() only use the bh's address for
153 * hashing after unlocking the buffer, so it doesn't actually touch the bh
156 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
159 set_buffer_uptodate(bh
);
161 /* This happens, due to failed READA attempts. */
162 clear_buffer_uptodate(bh
);
168 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
169 * unlock the buffer. This is what ll_rw_block uses too.
171 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
173 __end_buffer_read_notouch(bh
, uptodate
);
176 EXPORT_SYMBOL(end_buffer_read_sync
);
178 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
180 char b
[BDEVNAME_SIZE
];
183 set_buffer_uptodate(bh
);
185 if (!quiet_error(bh
)) {
187 printk(KERN_WARNING
"lost page write due to "
189 bdevname(bh
->b_bdev
, b
));
191 set_buffer_write_io_error(bh
);
192 clear_buffer_uptodate(bh
);
197 EXPORT_SYMBOL(end_buffer_write_sync
);
200 * Various filesystems appear to want __find_get_block to be non-blocking.
201 * But it's the page lock which protects the buffers. To get around this,
202 * we get exclusion from try_to_free_buffers with the blockdev mapping's
205 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
206 * may be quite high. This code could TryLock the page, and if that
207 * succeeds, there is no need to take private_lock. (But if
208 * private_lock is contended then so is mapping->tree_lock).
210 static struct buffer_head
*
211 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
213 struct inode
*bd_inode
= bdev
->bd_inode
;
214 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
215 struct buffer_head
*ret
= NULL
;
217 struct buffer_head
*bh
;
218 struct buffer_head
*head
;
222 index
= block
>> (PAGE_CACHE_SHIFT
- bd_inode
->i_blkbits
);
223 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
227 spin_lock(&bd_mapping
->private_lock
);
228 if (!page_has_buffers(page
))
230 head
= page_buffers(page
);
233 if (!buffer_mapped(bh
))
235 else if (bh
->b_blocknr
== block
) {
240 bh
= bh
->b_this_page
;
241 } while (bh
!= head
);
243 /* we might be here because some of the buffers on this page are
244 * not mapped. This is due to various races between
245 * file io on the block device and getblk. It gets dealt with
246 * elsewhere, don't buffer_error if we had some unmapped buffers
249 char b
[BDEVNAME_SIZE
];
251 printk("__find_get_block_slow() failed. "
252 "block=%llu, b_blocknr=%llu\n",
253 (unsigned long long)block
,
254 (unsigned long long)bh
->b_blocknr
);
255 printk("b_state=0x%08lx, b_size=%zu\n",
256 bh
->b_state
, bh
->b_size
);
257 printk("device %s blocksize: %d\n", bdevname(bdev
, b
),
258 1 << bd_inode
->i_blkbits
);
261 spin_unlock(&bd_mapping
->private_lock
);
262 page_cache_release(page
);
268 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
270 static void free_more_memory(void)
275 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM
);
278 for_each_online_node(nid
) {
279 (void)first_zones_zonelist(node_zonelist(nid
, GFP_NOFS
),
280 gfp_zone(GFP_NOFS
), NULL
,
283 try_to_free_pages(node_zonelist(nid
, GFP_NOFS
), 0,
289 * I/O completion handler for block_read_full_page() - pages
290 * which come unlocked at the end of I/O.
292 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
295 struct buffer_head
*first
;
296 struct buffer_head
*tmp
;
298 int page_uptodate
= 1;
300 BUG_ON(!buffer_async_read(bh
));
304 set_buffer_uptodate(bh
);
306 clear_buffer_uptodate(bh
);
307 if (!quiet_error(bh
))
313 * Be _very_ careful from here on. Bad things can happen if
314 * two buffer heads end IO at almost the same time and both
315 * decide that the page is now completely done.
317 first
= page_buffers(page
);
318 local_irq_save(flags
);
319 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
320 clear_buffer_async_read(bh
);
324 if (!buffer_uptodate(tmp
))
326 if (buffer_async_read(tmp
)) {
327 BUG_ON(!buffer_locked(tmp
));
330 tmp
= tmp
->b_this_page
;
332 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
333 local_irq_restore(flags
);
336 * If none of the buffers had errors and they are all
337 * uptodate then we can set the page uptodate.
339 if (page_uptodate
&& !PageError(page
))
340 SetPageUptodate(page
);
345 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
346 local_irq_restore(flags
);
351 * Completion handler for block_write_full_page() - pages which are unlocked
352 * during I/O, and which have PageWriteback cleared upon I/O completion.
354 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
356 char b
[BDEVNAME_SIZE
];
358 struct buffer_head
*first
;
359 struct buffer_head
*tmp
;
362 BUG_ON(!buffer_async_write(bh
));
366 set_buffer_uptodate(bh
);
368 if (!quiet_error(bh
)) {
370 printk(KERN_WARNING
"lost page write due to "
372 bdevname(bh
->b_bdev
, b
));
374 set_bit(AS_EIO
, &page
->mapping
->flags
);
375 set_buffer_write_io_error(bh
);
376 clear_buffer_uptodate(bh
);
380 first
= page_buffers(page
);
381 local_irq_save(flags
);
382 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
384 clear_buffer_async_write(bh
);
386 tmp
= bh
->b_this_page
;
388 if (buffer_async_write(tmp
)) {
389 BUG_ON(!buffer_locked(tmp
));
392 tmp
= tmp
->b_this_page
;
394 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
395 local_irq_restore(flags
);
396 end_page_writeback(page
);
400 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
401 local_irq_restore(flags
);
404 EXPORT_SYMBOL(end_buffer_async_write
);
407 * If a page's buffers are under async readin (end_buffer_async_read
408 * completion) then there is a possibility that another thread of
409 * control could lock one of the buffers after it has completed
410 * but while some of the other buffers have not completed. This
411 * locked buffer would confuse end_buffer_async_read() into not unlocking
412 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
413 * that this buffer is not under async I/O.
415 * The page comes unlocked when it has no locked buffer_async buffers
418 * PageLocked prevents anyone starting new async I/O reads any of
421 * PageWriteback is used to prevent simultaneous writeout of the same
424 * PageLocked prevents anyone from starting writeback of a page which is
425 * under read I/O (PageWriteback is only ever set against a locked page).
427 static void mark_buffer_async_read(struct buffer_head
*bh
)
429 bh
->b_end_io
= end_buffer_async_read
;
430 set_buffer_async_read(bh
);
433 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
434 bh_end_io_t
*handler
)
436 bh
->b_end_io
= handler
;
437 set_buffer_async_write(bh
);
440 void mark_buffer_async_write(struct buffer_head
*bh
)
442 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
444 EXPORT_SYMBOL(mark_buffer_async_write
);
448 * fs/buffer.c contains helper functions for buffer-backed address space's
449 * fsync functions. A common requirement for buffer-based filesystems is
450 * that certain data from the backing blockdev needs to be written out for
451 * a successful fsync(). For example, ext2 indirect blocks need to be
452 * written back and waited upon before fsync() returns.
454 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
455 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
456 * management of a list of dependent buffers at ->i_mapping->private_list.
458 * Locking is a little subtle: try_to_free_buffers() will remove buffers
459 * from their controlling inode's queue when they are being freed. But
460 * try_to_free_buffers() will be operating against the *blockdev* mapping
461 * at the time, not against the S_ISREG file which depends on those buffers.
462 * So the locking for private_list is via the private_lock in the address_space
463 * which backs the buffers. Which is different from the address_space
464 * against which the buffers are listed. So for a particular address_space,
465 * mapping->private_lock does *not* protect mapping->private_list! In fact,
466 * mapping->private_list will always be protected by the backing blockdev's
469 * Which introduces a requirement: all buffers on an address_space's
470 * ->private_list must be from the same address_space: the blockdev's.
472 * address_spaces which do not place buffers at ->private_list via these
473 * utility functions are free to use private_lock and private_list for
474 * whatever they want. The only requirement is that list_empty(private_list)
475 * be true at clear_inode() time.
477 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
478 * filesystems should do that. invalidate_inode_buffers() should just go
479 * BUG_ON(!list_empty).
481 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
482 * take an address_space, not an inode. And it should be called
483 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
486 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
487 * list if it is already on a list. Because if the buffer is on a list,
488 * it *must* already be on the right one. If not, the filesystem is being
489 * silly. This will save a ton of locking. But first we have to ensure
490 * that buffers are taken *off* the old inode's list when they are freed
491 * (presumably in truncate). That requires careful auditing of all
492 * filesystems (do it inside bforget()). It could also be done by bringing
497 * The buffer's backing address_space's private_lock must be held
499 static void __remove_assoc_queue(struct buffer_head
*bh
)
501 list_del_init(&bh
->b_assoc_buffers
);
502 WARN_ON(!bh
->b_assoc_map
);
503 if (buffer_write_io_error(bh
))
504 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
505 bh
->b_assoc_map
= NULL
;
508 int inode_has_buffers(struct inode
*inode
)
510 return !list_empty(&inode
->i_data
.private_list
);
514 * osync is designed to support O_SYNC io. It waits synchronously for
515 * all already-submitted IO to complete, but does not queue any new
516 * writes to the disk.
518 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
519 * you dirty the buffers, and then use osync_inode_buffers to wait for
520 * completion. Any other dirty buffers which are not yet queued for
521 * write will not be flushed to disk by the osync.
523 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
525 struct buffer_head
*bh
;
531 list_for_each_prev(p
, list
) {
533 if (buffer_locked(bh
)) {
537 if (!buffer_uptodate(bh
))
548 static void do_thaw_one(struct super_block
*sb
, void *unused
)
550 char b
[BDEVNAME_SIZE
];
551 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
552 printk(KERN_WARNING
"Emergency Thaw on %s\n",
553 bdevname(sb
->s_bdev
, b
));
556 static void do_thaw_all(struct work_struct
*work
)
558 iterate_supers(do_thaw_one
, NULL
);
560 printk(KERN_WARNING
"Emergency Thaw complete\n");
564 * emergency_thaw_all -- forcibly thaw every frozen filesystem
566 * Used for emergency unfreeze of all filesystems via SysRq
568 void emergency_thaw_all(void)
570 struct work_struct
*work
;
572 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
574 INIT_WORK(work
, do_thaw_all
);
580 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
581 * @mapping: the mapping which wants those buffers written
583 * Starts I/O against the buffers at mapping->private_list, and waits upon
586 * Basically, this is a convenience function for fsync().
587 * @mapping is a file or directory which needs those buffers to be written for
588 * a successful fsync().
590 int sync_mapping_buffers(struct address_space
*mapping
)
592 struct address_space
*buffer_mapping
= mapping
->private_data
;
594 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
597 return fsync_buffers_list(&buffer_mapping
->private_lock
,
598 &mapping
->private_list
);
600 EXPORT_SYMBOL(sync_mapping_buffers
);
603 * Called when we've recently written block `bblock', and it is known that
604 * `bblock' was for a buffer_boundary() buffer. This means that the block at
605 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
606 * dirty, schedule it for IO. So that indirects merge nicely with their data.
608 void write_boundary_block(struct block_device
*bdev
,
609 sector_t bblock
, unsigned blocksize
)
611 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
613 if (buffer_dirty(bh
))
614 ll_rw_block(WRITE
, 1, &bh
);
619 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
621 struct address_space
*mapping
= inode
->i_mapping
;
622 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
624 mark_buffer_dirty(bh
);
625 if (!mapping
->private_data
) {
626 mapping
->private_data
= buffer_mapping
;
628 BUG_ON(mapping
->private_data
!= buffer_mapping
);
630 if (!bh
->b_assoc_map
) {
631 spin_lock(&buffer_mapping
->private_lock
);
632 list_move_tail(&bh
->b_assoc_buffers
,
633 &mapping
->private_list
);
634 bh
->b_assoc_map
= mapping
;
635 spin_unlock(&buffer_mapping
->private_lock
);
638 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
641 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
644 * If warn is true, then emit a warning if the page is not uptodate and has
645 * not been truncated.
647 static void __set_page_dirty(struct page
*page
,
648 struct address_space
*mapping
, int warn
)
652 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
653 if (page
->mapping
) { /* Race with truncate? */
654 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
655 account_page_dirtied(page
, mapping
);
656 radix_tree_tag_set(&mapping
->page_tree
,
657 page_index(page
), PAGECACHE_TAG_DIRTY
);
659 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
660 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
664 * Add a page to the dirty page list.
666 * It is a sad fact of life that this function is called from several places
667 * deeply under spinlocking. It may not sleep.
669 * If the page has buffers, the uptodate buffers are set dirty, to preserve
670 * dirty-state coherency between the page and the buffers. It the page does
671 * not have buffers then when they are later attached they will all be set
674 * The buffers are dirtied before the page is dirtied. There's a small race
675 * window in which a writepage caller may see the page cleanness but not the
676 * buffer dirtiness. That's fine. If this code were to set the page dirty
677 * before the buffers, a concurrent writepage caller could clear the page dirty
678 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
679 * page on the dirty page list.
681 * We use private_lock to lock against try_to_free_buffers while using the
682 * page's buffer list. Also use this to protect against clean buffers being
683 * added to the page after it was set dirty.
685 * FIXME: may need to call ->reservepage here as well. That's rather up to the
686 * address_space though.
688 int __set_page_dirty_buffers(struct page
*page
)
691 struct address_space
*mapping
= page_mapping(page
);
693 if (unlikely(!mapping
))
694 return !TestSetPageDirty(page
);
696 spin_lock(&mapping
->private_lock
);
697 if (page_has_buffers(page
)) {
698 struct buffer_head
*head
= page_buffers(page
);
699 struct buffer_head
*bh
= head
;
702 set_buffer_dirty(bh
);
703 bh
= bh
->b_this_page
;
704 } while (bh
!= head
);
706 newly_dirty
= !TestSetPageDirty(page
);
707 spin_unlock(&mapping
->private_lock
);
710 __set_page_dirty(page
, mapping
, 1);
713 EXPORT_SYMBOL(__set_page_dirty_buffers
);
716 * Write out and wait upon a list of buffers.
718 * We have conflicting pressures: we want to make sure that all
719 * initially dirty buffers get waited on, but that any subsequently
720 * dirtied buffers don't. After all, we don't want fsync to last
721 * forever if somebody is actively writing to the file.
723 * Do this in two main stages: first we copy dirty buffers to a
724 * temporary inode list, queueing the writes as we go. Then we clean
725 * up, waiting for those writes to complete.
727 * During this second stage, any subsequent updates to the file may end
728 * up refiling the buffer on the original inode's dirty list again, so
729 * there is a chance we will end up with a buffer queued for write but
730 * not yet completed on that list. So, as a final cleanup we go through
731 * the osync code to catch these locked, dirty buffers without requeuing
732 * any newly dirty buffers for write.
734 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
736 struct buffer_head
*bh
;
737 struct list_head tmp
;
738 struct address_space
*mapping
;
740 struct blk_plug plug
;
742 INIT_LIST_HEAD(&tmp
);
743 blk_start_plug(&plug
);
746 while (!list_empty(list
)) {
747 bh
= BH_ENTRY(list
->next
);
748 mapping
= bh
->b_assoc_map
;
749 __remove_assoc_queue(bh
);
750 /* Avoid race with mark_buffer_dirty_inode() which does
751 * a lockless check and we rely on seeing the dirty bit */
753 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
754 list_add(&bh
->b_assoc_buffers
, &tmp
);
755 bh
->b_assoc_map
= mapping
;
756 if (buffer_dirty(bh
)) {
760 * Ensure any pending I/O completes so that
761 * write_dirty_buffer() actually writes the
762 * current contents - it is a noop if I/O is
763 * still in flight on potentially older
766 write_dirty_buffer(bh
, WRITE_SYNC
);
769 * Kick off IO for the previous mapping. Note
770 * that we will not run the very last mapping,
771 * wait_on_buffer() will do that for us
772 * through sync_buffer().
781 blk_finish_plug(&plug
);
784 while (!list_empty(&tmp
)) {
785 bh
= BH_ENTRY(tmp
.prev
);
787 mapping
= bh
->b_assoc_map
;
788 __remove_assoc_queue(bh
);
789 /* Avoid race with mark_buffer_dirty_inode() which does
790 * a lockless check and we rely on seeing the dirty bit */
792 if (buffer_dirty(bh
)) {
793 list_add(&bh
->b_assoc_buffers
,
794 &mapping
->private_list
);
795 bh
->b_assoc_map
= mapping
;
799 if (!buffer_uptodate(bh
))
806 err2
= osync_buffers_list(lock
, list
);
814 * Invalidate any and all dirty buffers on a given inode. We are
815 * probably unmounting the fs, but that doesn't mean we have already
816 * done a sync(). Just drop the buffers from the inode list.
818 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
819 * assumes that all the buffers are against the blockdev. Not true
822 void invalidate_inode_buffers(struct inode
*inode
)
824 if (inode_has_buffers(inode
)) {
825 struct address_space
*mapping
= &inode
->i_data
;
826 struct list_head
*list
= &mapping
->private_list
;
827 struct address_space
*buffer_mapping
= mapping
->private_data
;
829 spin_lock(&buffer_mapping
->private_lock
);
830 while (!list_empty(list
))
831 __remove_assoc_queue(BH_ENTRY(list
->next
));
832 spin_unlock(&buffer_mapping
->private_lock
);
835 EXPORT_SYMBOL(invalidate_inode_buffers
);
838 * Remove any clean buffers from the inode's buffer list. This is called
839 * when we're trying to free the inode itself. Those buffers can pin it.
841 * Returns true if all buffers were removed.
843 int remove_inode_buffers(struct inode
*inode
)
847 if (inode_has_buffers(inode
)) {
848 struct address_space
*mapping
= &inode
->i_data
;
849 struct list_head
*list
= &mapping
->private_list
;
850 struct address_space
*buffer_mapping
= mapping
->private_data
;
852 spin_lock(&buffer_mapping
->private_lock
);
853 while (!list_empty(list
)) {
854 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
855 if (buffer_dirty(bh
)) {
859 __remove_assoc_queue(bh
);
861 spin_unlock(&buffer_mapping
->private_lock
);
867 * Create the appropriate buffers when given a page for data area and
868 * the size of each buffer.. Use the bh->b_this_page linked list to
869 * follow the buffers created. Return NULL if unable to create more
872 * The retry flag is used to differentiate async IO (paging, swapping)
873 * which may not fail from ordinary buffer allocations.
875 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
878 struct buffer_head
*bh
, *head
;
884 while ((offset
-= size
) >= 0) {
885 bh
= alloc_buffer_head(GFP_NOFS
);
889 bh
->b_this_page
= head
;
895 /* Link the buffer to its page */
896 set_bh_page(bh
, page
, offset
);
900 * In case anything failed, we just free everything we got.
906 head
= head
->b_this_page
;
907 free_buffer_head(bh
);
912 * Return failure for non-async IO requests. Async IO requests
913 * are not allowed to fail, so we have to wait until buffer heads
914 * become available. But we don't want tasks sleeping with
915 * partially complete buffers, so all were released above.
920 /* We're _really_ low on memory. Now we just
921 * wait for old buffer heads to become free due to
922 * finishing IO. Since this is an async request and
923 * the reserve list is empty, we're sure there are
924 * async buffer heads in use.
929 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
932 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
934 struct buffer_head
*bh
, *tail
;
939 bh
= bh
->b_this_page
;
941 tail
->b_this_page
= head
;
942 attach_page_buffers(page
, head
);
945 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
947 sector_t retval
= ~((sector_t
)0);
948 loff_t sz
= i_size_read(bdev
->bd_inode
);
951 unsigned int sizebits
= blksize_bits(size
);
952 retval
= (sz
>> sizebits
);
958 * Initialise the state of a blockdev page's buffers.
961 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
962 sector_t block
, int size
)
964 struct buffer_head
*head
= page_buffers(page
);
965 struct buffer_head
*bh
= head
;
966 int uptodate
= PageUptodate(page
);
967 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
970 if (!buffer_mapped(bh
)) {
971 init_buffer(bh
, NULL
, NULL
);
973 bh
->b_blocknr
= block
;
975 set_buffer_uptodate(bh
);
976 if (block
< end_block
)
977 set_buffer_mapped(bh
);
980 bh
= bh
->b_this_page
;
981 } while (bh
!= head
);
984 * Caller needs to validate requested block against end of device.
990 * Create the page-cache page that contains the requested block.
992 * This is used purely for blockdev mappings.
995 grow_dev_page(struct block_device
*bdev
, sector_t block
,
996 pgoff_t index
, int size
, int sizebits
)
998 struct inode
*inode
= bdev
->bd_inode
;
1000 struct buffer_head
*bh
;
1002 int ret
= 0; /* Will call free_more_memory() */
1005 gfp_mask
= mapping_gfp_mask(inode
->i_mapping
) & ~__GFP_FS
;
1006 gfp_mask
|= __GFP_MOVABLE
;
1008 * XXX: __getblk_slow() can not really deal with failure and
1009 * will endlessly loop on improvised global reclaim. Prefer
1010 * looping in the allocator rather than here, at least that
1011 * code knows what it's doing.
1013 gfp_mask
|= __GFP_NOFAIL
;
1015 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
1019 BUG_ON(!PageLocked(page
));
1021 if (page_has_buffers(page
)) {
1022 bh
= page_buffers(page
);
1023 if (bh
->b_size
== size
) {
1024 end_block
= init_page_buffers(page
, bdev
,
1025 (sector_t
)index
<< sizebits
,
1029 if (!try_to_free_buffers(page
))
1034 * Allocate some buffers for this page
1036 bh
= alloc_page_buffers(page
, size
, 0);
1041 * Link the page to the buffers and initialise them. Take the
1042 * lock to be atomic wrt __find_get_block(), which does not
1043 * run under the page lock.
1045 spin_lock(&inode
->i_mapping
->private_lock
);
1046 link_dev_buffers(page
, bh
);
1047 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
1049 spin_unlock(&inode
->i_mapping
->private_lock
);
1051 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1054 page_cache_release(page
);
1059 * Create buffers for the specified block device block's page. If
1060 * that page was dirty, the buffers are set dirty also.
1063 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
)
1071 } while ((size
<< sizebits
) < PAGE_SIZE
);
1073 index
= block
>> sizebits
;
1076 * Check for a block which wants to lie outside our maximum possible
1077 * pagecache index. (this comparison is done using sector_t types).
1079 if (unlikely(index
!= block
>> sizebits
)) {
1080 char b
[BDEVNAME_SIZE
];
1082 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1084 __func__
, (unsigned long long)block
,
1089 /* Create a page with the proper size buffers.. */
1090 return grow_dev_page(bdev
, block
, index
, size
, sizebits
);
1093 static struct buffer_head
*
1094 __getblk_slow(struct block_device
*bdev
, sector_t block
, int size
)
1096 /* Size must be multiple of hard sectorsize */
1097 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1098 (size
< 512 || size
> PAGE_SIZE
))) {
1099 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1101 printk(KERN_ERR
"logical block size: %d\n",
1102 bdev_logical_block_size(bdev
));
1109 struct buffer_head
*bh
;
1112 bh
= __find_get_block(bdev
, block
, size
);
1116 ret
= grow_buffers(bdev
, block
, size
);
1125 * The relationship between dirty buffers and dirty pages:
1127 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1128 * the page is tagged dirty in its radix tree.
1130 * At all times, the dirtiness of the buffers represents the dirtiness of
1131 * subsections of the page. If the page has buffers, the page dirty bit is
1132 * merely a hint about the true dirty state.
1134 * When a page is set dirty in its entirety, all its buffers are marked dirty
1135 * (if the page has buffers).
1137 * When a buffer is marked dirty, its page is dirtied, but the page's other
1140 * Also. When blockdev buffers are explicitly read with bread(), they
1141 * individually become uptodate. But their backing page remains not
1142 * uptodate - even if all of its buffers are uptodate. A subsequent
1143 * block_read_full_page() against that page will discover all the uptodate
1144 * buffers, will set the page uptodate and will perform no I/O.
1148 * mark_buffer_dirty - mark a buffer_head as needing writeout
1149 * @bh: the buffer_head to mark dirty
1151 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1152 * backing page dirty, then tag the page as dirty in its address_space's radix
1153 * tree and then attach the address_space's inode to its superblock's dirty
1156 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1157 * mapping->tree_lock and mapping->host->i_lock.
1159 void mark_buffer_dirty(struct buffer_head
*bh
)
1161 WARN_ON_ONCE(!buffer_uptodate(bh
));
1163 trace_block_dirty_buffer(bh
);
1166 * Very *carefully* optimize the it-is-already-dirty case.
1168 * Don't let the final "is it dirty" escape to before we
1169 * perhaps modified the buffer.
1171 if (buffer_dirty(bh
)) {
1173 if (buffer_dirty(bh
))
1177 if (!test_set_buffer_dirty(bh
)) {
1178 struct page
*page
= bh
->b_page
;
1179 if (!TestSetPageDirty(page
)) {
1180 struct address_space
*mapping
= page_mapping(page
);
1182 __set_page_dirty(page
, mapping
, 0);
1186 EXPORT_SYMBOL(mark_buffer_dirty
);
1189 * Decrement a buffer_head's reference count. If all buffers against a page
1190 * have zero reference count, are clean and unlocked, and if the page is clean
1191 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1192 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1193 * a page but it ends up not being freed, and buffers may later be reattached).
1195 void __brelse(struct buffer_head
* buf
)
1197 if (atomic_read(&buf
->b_count
)) {
1201 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1203 EXPORT_SYMBOL(__brelse
);
1206 * bforget() is like brelse(), except it discards any
1207 * potentially dirty data.
1209 void __bforget(struct buffer_head
*bh
)
1211 clear_buffer_dirty(bh
);
1212 if (bh
->b_assoc_map
) {
1213 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1215 spin_lock(&buffer_mapping
->private_lock
);
1216 list_del_init(&bh
->b_assoc_buffers
);
1217 bh
->b_assoc_map
= NULL
;
1218 spin_unlock(&buffer_mapping
->private_lock
);
1222 EXPORT_SYMBOL(__bforget
);
1224 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1227 if (buffer_uptodate(bh
)) {
1232 bh
->b_end_io
= end_buffer_read_sync
;
1233 submit_bh(READ
, bh
);
1235 if (buffer_uptodate(bh
))
1243 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1244 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1245 * refcount elevated by one when they're in an LRU. A buffer can only appear
1246 * once in a particular CPU's LRU. A single buffer can be present in multiple
1247 * CPU's LRUs at the same time.
1249 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1250 * sb_find_get_block().
1252 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1253 * a local interrupt disable for that.
1256 #define BH_LRU_SIZE 16
1259 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1262 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1265 #define bh_lru_lock() local_irq_disable()
1266 #define bh_lru_unlock() local_irq_enable()
1268 #define bh_lru_lock() preempt_disable()
1269 #define bh_lru_unlock() preempt_enable()
1272 static inline void check_irqs_on(void)
1274 #ifdef irqs_disabled
1275 BUG_ON(irqs_disabled());
1280 * The LRU management algorithm is dopey-but-simple. Sorry.
1282 static void bh_lru_install(struct buffer_head
*bh
)
1284 struct buffer_head
*evictee
= NULL
;
1288 if (__this_cpu_read(bh_lrus
.bhs
[0]) != bh
) {
1289 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1295 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1296 struct buffer_head
*bh2
=
1297 __this_cpu_read(bh_lrus
.bhs
[in
]);
1302 if (out
>= BH_LRU_SIZE
) {
1303 BUG_ON(evictee
!= NULL
);
1310 while (out
< BH_LRU_SIZE
)
1312 memcpy(this_cpu_ptr(&bh_lrus
.bhs
), bhs
, sizeof(bhs
));
1321 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1323 static struct buffer_head
*
1324 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1326 struct buffer_head
*ret
= NULL
;
1331 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1332 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1334 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1335 bh
->b_size
== size
) {
1338 __this_cpu_write(bh_lrus
.bhs
[i
],
1339 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1342 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1354 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1355 * it in the LRU and mark it as accessed. If it is not present then return
1358 struct buffer_head
*
1359 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1361 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1364 /* __find_get_block_slow will mark the page accessed */
1365 bh
= __find_get_block_slow(bdev
, block
);
1373 EXPORT_SYMBOL(__find_get_block
);
1376 * __getblk will locate (and, if necessary, create) the buffer_head
1377 * which corresponds to the passed block_device, block and size. The
1378 * returned buffer has its reference count incremented.
1380 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1381 * attempt is failing. FIXME, perhaps?
1383 struct buffer_head
*
1384 __getblk(struct block_device
*bdev
, sector_t block
, unsigned size
)
1386 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1390 bh
= __getblk_slow(bdev
, block
, size
);
1393 EXPORT_SYMBOL(__getblk
);
1396 * Do async read-ahead on a buffer..
1398 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1400 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1402 ll_rw_block(READA
, 1, &bh
);
1406 EXPORT_SYMBOL(__breadahead
);
1409 * __bread() - reads a specified block and returns the bh
1410 * @bdev: the block_device to read from
1411 * @block: number of block
1412 * @size: size (in bytes) to read
1414 * Reads a specified block, and returns buffer head that contains it.
1415 * It returns NULL if the block was unreadable.
1417 struct buffer_head
*
1418 __bread(struct block_device
*bdev
, sector_t block
, unsigned size
)
1420 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1422 if (likely(bh
) && !buffer_uptodate(bh
))
1423 bh
= __bread_slow(bh
);
1426 EXPORT_SYMBOL(__bread
);
1429 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430 * This doesn't race because it runs in each cpu either in irq
1431 * or with preempt disabled.
1433 static void invalidate_bh_lru(void *arg
)
1435 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1438 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1442 put_cpu_var(bh_lrus
);
1445 static bool has_bh_in_lru(int cpu
, void *dummy
)
1447 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1450 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1458 void invalidate_bh_lrus(void)
1460 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1464 void set_bh_page(struct buffer_head
*bh
,
1465 struct page
*page
, unsigned long offset
)
1468 BUG_ON(offset
>= PAGE_SIZE
);
1469 if (PageHighMem(page
))
1471 * This catches illegal uses and preserves the offset:
1473 bh
->b_data
= (char *)(0 + offset
);
1475 bh
->b_data
= page_address(page
) + offset
;
1477 EXPORT_SYMBOL(set_bh_page
);
1480 * Called when truncating a buffer on a page completely.
1483 /* Bits that are cleared during an invalidate */
1484 #define BUFFER_FLAGS_DISCARD \
1485 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486 1 << BH_Delay | 1 << BH_Unwritten)
1488 static void discard_buffer(struct buffer_head
* bh
)
1490 unsigned long b_state
, b_state_old
;
1493 clear_buffer_dirty(bh
);
1495 b_state
= bh
->b_state
;
1497 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1498 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1499 if (b_state_old
== b_state
)
1501 b_state
= b_state_old
;
1507 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 * @page: the page which is affected
1510 * @offset: start of the range to invalidate
1511 * @length: length of the range to invalidate
1513 * block_invalidatepage() is called when all or part of the page has become
1514 * invalidated by a truncate operation.
1516 * block_invalidatepage() does not have to release all buffers, but it must
1517 * ensure that no dirty buffer is left outside @offset and that no I/O
1518 * is underway against any of the blocks which are outside the truncation
1519 * point. Because the caller is about to free (and possibly reuse) those
1522 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1523 unsigned int length
)
1525 struct buffer_head
*head
, *bh
, *next
;
1526 unsigned int curr_off
= 0;
1527 unsigned int stop
= length
+ offset
;
1529 BUG_ON(!PageLocked(page
));
1530 if (!page_has_buffers(page
))
1534 * Check for overflow
1536 BUG_ON(stop
> PAGE_CACHE_SIZE
|| stop
< length
);
1538 head
= page_buffers(page
);
1541 unsigned int next_off
= curr_off
+ bh
->b_size
;
1542 next
= bh
->b_this_page
;
1545 * Are we still fully in range ?
1547 if (next_off
> stop
)
1551 * is this block fully invalidated?
1553 if (offset
<= curr_off
)
1555 curr_off
= next_off
;
1557 } while (bh
!= head
);
1560 * We release buffers only if the entire page is being invalidated.
1561 * The get_block cached value has been unconditionally invalidated,
1562 * so real IO is not possible anymore.
1565 try_to_release_page(page
, 0);
1569 EXPORT_SYMBOL(block_invalidatepage
);
1573 * We attach and possibly dirty the buffers atomically wrt
1574 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1575 * is already excluded via the page lock.
1577 void create_empty_buffers(struct page
*page
,
1578 unsigned long blocksize
, unsigned long b_state
)
1580 struct buffer_head
*bh
, *head
, *tail
;
1582 head
= alloc_page_buffers(page
, blocksize
, 1);
1585 bh
->b_state
|= b_state
;
1587 bh
= bh
->b_this_page
;
1589 tail
->b_this_page
= head
;
1591 spin_lock(&page
->mapping
->private_lock
);
1592 if (PageUptodate(page
) || PageDirty(page
)) {
1595 if (PageDirty(page
))
1596 set_buffer_dirty(bh
);
1597 if (PageUptodate(page
))
1598 set_buffer_uptodate(bh
);
1599 bh
= bh
->b_this_page
;
1600 } while (bh
!= head
);
1602 attach_page_buffers(page
, head
);
1603 spin_unlock(&page
->mapping
->private_lock
);
1605 EXPORT_SYMBOL(create_empty_buffers
);
1608 * We are taking a block for data and we don't want any output from any
1609 * buffer-cache aliases starting from return from that function and
1610 * until the moment when something will explicitly mark the buffer
1611 * dirty (hopefully that will not happen until we will free that block ;-)
1612 * We don't even need to mark it not-uptodate - nobody can expect
1613 * anything from a newly allocated buffer anyway. We used to used
1614 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615 * don't want to mark the alias unmapped, for example - it would confuse
1616 * anyone who might pick it with bread() afterwards...
1618 * Also.. Note that bforget() doesn't lock the buffer. So there can
1619 * be writeout I/O going on against recently-freed buffers. We don't
1620 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621 * only if we really need to. That happens here.
1623 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1625 struct buffer_head
*old_bh
;
1629 old_bh
= __find_get_block_slow(bdev
, block
);
1631 clear_buffer_dirty(old_bh
);
1632 wait_on_buffer(old_bh
);
1633 clear_buffer_req(old_bh
);
1637 EXPORT_SYMBOL(unmap_underlying_metadata
);
1640 * Size is a power-of-two in the range 512..PAGE_SIZE,
1641 * and the case we care about most is PAGE_SIZE.
1643 * So this *could* possibly be written with those
1644 * constraints in mind (relevant mostly if some
1645 * architecture has a slow bit-scan instruction)
1647 static inline int block_size_bits(unsigned int blocksize
)
1649 return ilog2(blocksize
);
1652 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1654 BUG_ON(!PageLocked(page
));
1656 if (!page_has_buffers(page
))
1657 create_empty_buffers(page
, 1 << ACCESS_ONCE(inode
->i_blkbits
), b_state
);
1658 return page_buffers(page
);
1662 * NOTE! All mapped/uptodate combinations are valid:
1664 * Mapped Uptodate Meaning
1666 * No No "unknown" - must do get_block()
1667 * No Yes "hole" - zero-filled
1668 * Yes No "allocated" - allocated on disk, not read in
1669 * Yes Yes "valid" - allocated and up-to-date in memory.
1671 * "Dirty" is valid only with the last case (mapped+uptodate).
1675 * While block_write_full_page is writing back the dirty buffers under
1676 * the page lock, whoever dirtied the buffers may decide to clean them
1677 * again at any time. We handle that by only looking at the buffer
1678 * state inside lock_buffer().
1680 * If block_write_full_page() is called for regular writeback
1681 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682 * locked buffer. This only can happen if someone has written the buffer
1683 * directly, with submit_bh(). At the address_space level PageWriteback
1684 * prevents this contention from occurring.
1686 * If block_write_full_page() is called with wbc->sync_mode ==
1687 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688 * causes the writes to be flagged as synchronous writes.
1690 static int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1691 get_block_t
*get_block
, struct writeback_control
*wbc
,
1692 bh_end_io_t
*handler
)
1696 sector_t last_block
;
1697 struct buffer_head
*bh
, *head
;
1698 unsigned int blocksize
, bbits
;
1699 int nr_underway
= 0;
1700 int write_op
= (wbc
->sync_mode
== WB_SYNC_ALL
?
1701 WRITE_SYNC
: WRITE
);
1703 head
= create_page_buffers(page
, inode
,
1704 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1707 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1708 * here, and the (potentially unmapped) buffers may become dirty at
1709 * any time. If a buffer becomes dirty here after we've inspected it
1710 * then we just miss that fact, and the page stays dirty.
1712 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1713 * handle that here by just cleaning them.
1717 blocksize
= bh
->b_size
;
1718 bbits
= block_size_bits(blocksize
);
1720 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1721 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1724 * Get all the dirty buffers mapped to disk addresses and
1725 * handle any aliases from the underlying blockdev's mapping.
1728 if (block
> last_block
) {
1730 * mapped buffers outside i_size will occur, because
1731 * this page can be outside i_size when there is a
1732 * truncate in progress.
1735 * The buffer was zeroed by block_write_full_page()
1737 clear_buffer_dirty(bh
);
1738 set_buffer_uptodate(bh
);
1739 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1741 WARN_ON(bh
->b_size
!= blocksize
);
1742 err
= get_block(inode
, block
, bh
, 1);
1745 clear_buffer_delay(bh
);
1746 if (buffer_new(bh
)) {
1747 /* blockdev mappings never come here */
1748 clear_buffer_new(bh
);
1749 unmap_underlying_metadata(bh
->b_bdev
,
1753 bh
= bh
->b_this_page
;
1755 } while (bh
!= head
);
1758 if (!buffer_mapped(bh
))
1761 * If it's a fully non-blocking write attempt and we cannot
1762 * lock the buffer then redirty the page. Note that this can
1763 * potentially cause a busy-wait loop from writeback threads
1764 * and kswapd activity, but those code paths have their own
1765 * higher-level throttling.
1767 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1769 } else if (!trylock_buffer(bh
)) {
1770 redirty_page_for_writepage(wbc
, page
);
1773 if (test_clear_buffer_dirty(bh
)) {
1774 mark_buffer_async_write_endio(bh
, handler
);
1778 } while ((bh
= bh
->b_this_page
) != head
);
1781 * The page and its buffers are protected by PageWriteback(), so we can
1782 * drop the bh refcounts early.
1784 BUG_ON(PageWriteback(page
));
1785 set_page_writeback(page
);
1788 struct buffer_head
*next
= bh
->b_this_page
;
1789 if (buffer_async_write(bh
)) {
1790 submit_bh(write_op
, bh
);
1794 } while (bh
!= head
);
1799 if (nr_underway
== 0) {
1801 * The page was marked dirty, but the buffers were
1802 * clean. Someone wrote them back by hand with
1803 * ll_rw_block/submit_bh. A rare case.
1805 end_page_writeback(page
);
1808 * The page and buffer_heads can be released at any time from
1816 * ENOSPC, or some other error. We may already have added some
1817 * blocks to the file, so we need to write these out to avoid
1818 * exposing stale data.
1819 * The page is currently locked and not marked for writeback
1822 /* Recovery: lock and submit the mapped buffers */
1824 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1825 !buffer_delay(bh
)) {
1827 mark_buffer_async_write_endio(bh
, handler
);
1830 * The buffer may have been set dirty during
1831 * attachment to a dirty page.
1833 clear_buffer_dirty(bh
);
1835 } while ((bh
= bh
->b_this_page
) != head
);
1837 BUG_ON(PageWriteback(page
));
1838 mapping_set_error(page
->mapping
, err
);
1839 set_page_writeback(page
);
1841 struct buffer_head
*next
= bh
->b_this_page
;
1842 if (buffer_async_write(bh
)) {
1843 clear_buffer_dirty(bh
);
1844 submit_bh(write_op
, bh
);
1848 } while (bh
!= head
);
1854 * If a page has any new buffers, zero them out here, and mark them uptodate
1855 * and dirty so they'll be written out (in order to prevent uninitialised
1856 * block data from leaking). And clear the new bit.
1858 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1860 unsigned int block_start
, block_end
;
1861 struct buffer_head
*head
, *bh
;
1863 BUG_ON(!PageLocked(page
));
1864 if (!page_has_buffers(page
))
1867 bh
= head
= page_buffers(page
);
1870 block_end
= block_start
+ bh
->b_size
;
1872 if (buffer_new(bh
)) {
1873 if (block_end
> from
&& block_start
< to
) {
1874 if (!PageUptodate(page
)) {
1875 unsigned start
, size
;
1877 start
= max(from
, block_start
);
1878 size
= min(to
, block_end
) - start
;
1880 zero_user(page
, start
, size
);
1881 set_buffer_uptodate(bh
);
1884 clear_buffer_new(bh
);
1885 mark_buffer_dirty(bh
);
1889 block_start
= block_end
;
1890 bh
= bh
->b_this_page
;
1891 } while (bh
!= head
);
1893 EXPORT_SYMBOL(page_zero_new_buffers
);
1895 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
1896 get_block_t
*get_block
)
1898 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1899 unsigned to
= from
+ len
;
1900 struct inode
*inode
= page
->mapping
->host
;
1901 unsigned block_start
, block_end
;
1904 unsigned blocksize
, bbits
;
1905 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1907 BUG_ON(!PageLocked(page
));
1908 BUG_ON(from
> PAGE_CACHE_SIZE
);
1909 BUG_ON(to
> PAGE_CACHE_SIZE
);
1912 head
= create_page_buffers(page
, inode
, 0);
1913 blocksize
= head
->b_size
;
1914 bbits
= block_size_bits(blocksize
);
1916 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
1918 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1919 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1920 block_end
= block_start
+ blocksize
;
1921 if (block_end
<= from
|| block_start
>= to
) {
1922 if (PageUptodate(page
)) {
1923 if (!buffer_uptodate(bh
))
1924 set_buffer_uptodate(bh
);
1929 clear_buffer_new(bh
);
1930 if (!buffer_mapped(bh
)) {
1931 WARN_ON(bh
->b_size
!= blocksize
);
1932 err
= get_block(inode
, block
, bh
, 1);
1935 if (buffer_new(bh
)) {
1936 unmap_underlying_metadata(bh
->b_bdev
,
1938 if (PageUptodate(page
)) {
1939 clear_buffer_new(bh
);
1940 set_buffer_uptodate(bh
);
1941 mark_buffer_dirty(bh
);
1944 if (block_end
> to
|| block_start
< from
)
1945 zero_user_segments(page
,
1951 if (PageUptodate(page
)) {
1952 if (!buffer_uptodate(bh
))
1953 set_buffer_uptodate(bh
);
1956 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1957 !buffer_unwritten(bh
) &&
1958 (block_start
< from
|| block_end
> to
)) {
1959 ll_rw_block(READ
, 1, &bh
);
1964 * If we issued read requests - let them complete.
1966 while(wait_bh
> wait
) {
1967 wait_on_buffer(*--wait_bh
);
1968 if (!buffer_uptodate(*wait_bh
))
1972 page_zero_new_buffers(page
, from
, to
);
1975 EXPORT_SYMBOL(__block_write_begin
);
1977 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
1978 unsigned from
, unsigned to
)
1980 unsigned block_start
, block_end
;
1983 struct buffer_head
*bh
, *head
;
1985 bh
= head
= page_buffers(page
);
1986 blocksize
= bh
->b_size
;
1990 block_end
= block_start
+ blocksize
;
1991 if (block_end
<= from
|| block_start
>= to
) {
1992 if (!buffer_uptodate(bh
))
1995 set_buffer_uptodate(bh
);
1996 mark_buffer_dirty(bh
);
1998 clear_buffer_new(bh
);
2000 block_start
= block_end
;
2001 bh
= bh
->b_this_page
;
2002 } while (bh
!= head
);
2005 * If this is a partial write which happened to make all buffers
2006 * uptodate then we can optimize away a bogus readpage() for
2007 * the next read(). Here we 'discover' whether the page went
2008 * uptodate as a result of this (potentially partial) write.
2011 SetPageUptodate(page
);
2016 * block_write_begin takes care of the basic task of block allocation and
2017 * bringing partial write blocks uptodate first.
2019 * The filesystem needs to handle block truncation upon failure.
2021 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2022 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2024 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
2028 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2032 status
= __block_write_begin(page
, pos
, len
, get_block
);
2033 if (unlikely(status
)) {
2035 page_cache_release(page
);
2042 EXPORT_SYMBOL(block_write_begin
);
2044 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2045 loff_t pos
, unsigned len
, unsigned copied
,
2046 struct page
*page
, void *fsdata
)
2048 struct inode
*inode
= mapping
->host
;
2051 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2053 if (unlikely(copied
< len
)) {
2055 * The buffers that were written will now be uptodate, so we
2056 * don't have to worry about a readpage reading them and
2057 * overwriting a partial write. However if we have encountered
2058 * a short write and only partially written into a buffer, it
2059 * will not be marked uptodate, so a readpage might come in and
2060 * destroy our partial write.
2062 * Do the simplest thing, and just treat any short write to a
2063 * non uptodate page as a zero-length write, and force the
2064 * caller to redo the whole thing.
2066 if (!PageUptodate(page
))
2069 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2071 flush_dcache_page(page
);
2073 /* This could be a short (even 0-length) commit */
2074 __block_commit_write(inode
, page
, start
, start
+copied
);
2078 EXPORT_SYMBOL(block_write_end
);
2080 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2081 loff_t pos
, unsigned len
, unsigned copied
,
2082 struct page
*page
, void *fsdata
)
2084 struct inode
*inode
= mapping
->host
;
2085 int i_size_changed
= 0;
2087 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2090 * No need to use i_size_read() here, the i_size
2091 * cannot change under us because we hold i_mutex.
2093 * But it's important to update i_size while still holding page lock:
2094 * page writeout could otherwise come in and zero beyond i_size.
2096 if (pos
+copied
> inode
->i_size
) {
2097 i_size_write(inode
, pos
+copied
);
2102 page_cache_release(page
);
2105 * Don't mark the inode dirty under page lock. First, it unnecessarily
2106 * makes the holding time of page lock longer. Second, it forces lock
2107 * ordering of page lock and transaction start for journaling
2111 mark_inode_dirty(inode
);
2115 EXPORT_SYMBOL(generic_write_end
);
2118 * block_is_partially_uptodate checks whether buffers within a page are
2121 * Returns true if all buffers which correspond to a file portion
2122 * we want to read are uptodate.
2124 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2125 unsigned long count
)
2127 unsigned block_start
, block_end
, blocksize
;
2129 struct buffer_head
*bh
, *head
;
2132 if (!page_has_buffers(page
))
2135 head
= page_buffers(page
);
2136 blocksize
= head
->b_size
;
2137 to
= min_t(unsigned, PAGE_CACHE_SIZE
- from
, count
);
2139 if (from
< blocksize
&& to
> PAGE_CACHE_SIZE
- blocksize
)
2145 block_end
= block_start
+ blocksize
;
2146 if (block_end
> from
&& block_start
< to
) {
2147 if (!buffer_uptodate(bh
)) {
2151 if (block_end
>= to
)
2154 block_start
= block_end
;
2155 bh
= bh
->b_this_page
;
2156 } while (bh
!= head
);
2160 EXPORT_SYMBOL(block_is_partially_uptodate
);
2163 * Generic "read page" function for block devices that have the normal
2164 * get_block functionality. This is most of the block device filesystems.
2165 * Reads the page asynchronously --- the unlock_buffer() and
2166 * set/clear_buffer_uptodate() functions propagate buffer state into the
2167 * page struct once IO has completed.
2169 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2171 struct inode
*inode
= page
->mapping
->host
;
2172 sector_t iblock
, lblock
;
2173 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2174 unsigned int blocksize
, bbits
;
2176 int fully_mapped
= 1;
2178 head
= create_page_buffers(page
, inode
, 0);
2179 blocksize
= head
->b_size
;
2180 bbits
= block_size_bits(blocksize
);
2182 iblock
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
2183 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2189 if (buffer_uptodate(bh
))
2192 if (!buffer_mapped(bh
)) {
2196 if (iblock
< lblock
) {
2197 WARN_ON(bh
->b_size
!= blocksize
);
2198 err
= get_block(inode
, iblock
, bh
, 0);
2202 if (!buffer_mapped(bh
)) {
2203 zero_user(page
, i
* blocksize
, blocksize
);
2205 set_buffer_uptodate(bh
);
2209 * get_block() might have updated the buffer
2212 if (buffer_uptodate(bh
))
2216 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2219 SetPageMappedToDisk(page
);
2223 * All buffers are uptodate - we can set the page uptodate
2224 * as well. But not if get_block() returned an error.
2226 if (!PageError(page
))
2227 SetPageUptodate(page
);
2232 /* Stage two: lock the buffers */
2233 for (i
= 0; i
< nr
; i
++) {
2236 mark_buffer_async_read(bh
);
2240 * Stage 3: start the IO. Check for uptodateness
2241 * inside the buffer lock in case another process reading
2242 * the underlying blockdev brought it uptodate (the sct fix).
2244 for (i
= 0; i
< nr
; i
++) {
2246 if (buffer_uptodate(bh
))
2247 end_buffer_async_read(bh
, 1);
2249 submit_bh(READ
, bh
);
2253 EXPORT_SYMBOL(block_read_full_page
);
2255 /* utility function for filesystems that need to do work on expanding
2256 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2257 * deal with the hole.
2259 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2261 struct address_space
*mapping
= inode
->i_mapping
;
2266 err
= inode_newsize_ok(inode
, size
);
2270 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2271 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2276 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2282 EXPORT_SYMBOL(generic_cont_expand_simple
);
2284 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2285 loff_t pos
, loff_t
*bytes
)
2287 struct inode
*inode
= mapping
->host
;
2288 unsigned blocksize
= 1 << inode
->i_blkbits
;
2291 pgoff_t index
, curidx
;
2293 unsigned zerofrom
, offset
, len
;
2296 index
= pos
>> PAGE_CACHE_SHIFT
;
2297 offset
= pos
& ~PAGE_CACHE_MASK
;
2299 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_CACHE_SHIFT
)) {
2300 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2301 if (zerofrom
& (blocksize
-1)) {
2302 *bytes
|= (blocksize
-1);
2305 len
= PAGE_CACHE_SIZE
- zerofrom
;
2307 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2308 AOP_FLAG_UNINTERRUPTIBLE
,
2312 zero_user(page
, zerofrom
, len
);
2313 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2320 balance_dirty_pages_ratelimited(mapping
);
2322 if (unlikely(fatal_signal_pending(current
))) {
2328 /* page covers the boundary, find the boundary offset */
2329 if (index
== curidx
) {
2330 zerofrom
= curpos
& ~PAGE_CACHE_MASK
;
2331 /* if we will expand the thing last block will be filled */
2332 if (offset
<= zerofrom
) {
2335 if (zerofrom
& (blocksize
-1)) {
2336 *bytes
|= (blocksize
-1);
2339 len
= offset
- zerofrom
;
2341 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2342 AOP_FLAG_UNINTERRUPTIBLE
,
2346 zero_user(page
, zerofrom
, len
);
2347 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2359 * For moronic filesystems that do not allow holes in file.
2360 * We may have to extend the file.
2362 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2363 loff_t pos
, unsigned len
, unsigned flags
,
2364 struct page
**pagep
, void **fsdata
,
2365 get_block_t
*get_block
, loff_t
*bytes
)
2367 struct inode
*inode
= mapping
->host
;
2368 unsigned blocksize
= 1 << inode
->i_blkbits
;
2372 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2376 zerofrom
= *bytes
& ~PAGE_CACHE_MASK
;
2377 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2378 *bytes
|= (blocksize
-1);
2382 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2384 EXPORT_SYMBOL(cont_write_begin
);
2386 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2388 struct inode
*inode
= page
->mapping
->host
;
2389 __block_commit_write(inode
,page
,from
,to
);
2392 EXPORT_SYMBOL(block_commit_write
);
2395 * block_page_mkwrite() is not allowed to change the file size as it gets
2396 * called from a page fault handler when a page is first dirtied. Hence we must
2397 * be careful to check for EOF conditions here. We set the page up correctly
2398 * for a written page which means we get ENOSPC checking when writing into
2399 * holes and correct delalloc and unwritten extent mapping on filesystems that
2400 * support these features.
2402 * We are not allowed to take the i_mutex here so we have to play games to
2403 * protect against truncate races as the page could now be beyond EOF. Because
2404 * truncate writes the inode size before removing pages, once we have the
2405 * page lock we can determine safely if the page is beyond EOF. If it is not
2406 * beyond EOF, then the page is guaranteed safe against truncation until we
2409 * Direct callers of this function should protect against filesystem freezing
2410 * using sb_start_write() - sb_end_write() functions.
2412 int __block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2413 get_block_t get_block
)
2415 struct page
*page
= vmf
->page
;
2416 struct inode
*inode
= file_inode(vma
->vm_file
);
2422 size
= i_size_read(inode
);
2423 if ((page
->mapping
!= inode
->i_mapping
) ||
2424 (page_offset(page
) > size
)) {
2425 /* We overload EFAULT to mean page got truncated */
2430 /* page is wholly or partially inside EOF */
2431 if (((page
->index
+ 1) << PAGE_CACHE_SHIFT
) > size
)
2432 end
= size
& ~PAGE_CACHE_MASK
;
2434 end
= PAGE_CACHE_SIZE
;
2436 ret
= __block_write_begin(page
, 0, end
, get_block
);
2438 ret
= block_commit_write(page
, 0, end
);
2440 if (unlikely(ret
< 0))
2442 set_page_dirty(page
);
2443 wait_for_stable_page(page
);
2449 EXPORT_SYMBOL(__block_page_mkwrite
);
2451 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2452 get_block_t get_block
)
2455 struct super_block
*sb
= file_inode(vma
->vm_file
)->i_sb
;
2457 sb_start_pagefault(sb
);
2460 * Update file times before taking page lock. We may end up failing the
2461 * fault so this update may be superfluous but who really cares...
2463 file_update_time(vma
->vm_file
);
2465 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
2466 sb_end_pagefault(sb
);
2467 return block_page_mkwrite_return(ret
);
2469 EXPORT_SYMBOL(block_page_mkwrite
);
2472 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2473 * immediately, while under the page lock. So it needs a special end_io
2474 * handler which does not touch the bh after unlocking it.
2476 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2478 __end_buffer_read_notouch(bh
, uptodate
);
2482 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2483 * the page (converting it to circular linked list and taking care of page
2486 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2488 struct buffer_head
*bh
;
2490 BUG_ON(!PageLocked(page
));
2492 spin_lock(&page
->mapping
->private_lock
);
2495 if (PageDirty(page
))
2496 set_buffer_dirty(bh
);
2497 if (!bh
->b_this_page
)
2498 bh
->b_this_page
= head
;
2499 bh
= bh
->b_this_page
;
2500 } while (bh
!= head
);
2501 attach_page_buffers(page
, head
);
2502 spin_unlock(&page
->mapping
->private_lock
);
2506 * On entry, the page is fully not uptodate.
2507 * On exit the page is fully uptodate in the areas outside (from,to)
2508 * The filesystem needs to handle block truncation upon failure.
2510 int nobh_write_begin(struct address_space
*mapping
,
2511 loff_t pos
, unsigned len
, unsigned flags
,
2512 struct page
**pagep
, void **fsdata
,
2513 get_block_t
*get_block
)
2515 struct inode
*inode
= mapping
->host
;
2516 const unsigned blkbits
= inode
->i_blkbits
;
2517 const unsigned blocksize
= 1 << blkbits
;
2518 struct buffer_head
*head
, *bh
;
2522 unsigned block_in_page
;
2523 unsigned block_start
, block_end
;
2524 sector_t block_in_file
;
2527 int is_mapped_to_disk
= 1;
2529 index
= pos
>> PAGE_CACHE_SHIFT
;
2530 from
= pos
& (PAGE_CACHE_SIZE
- 1);
2533 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2539 if (page_has_buffers(page
)) {
2540 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2546 if (PageMappedToDisk(page
))
2550 * Allocate buffers so that we can keep track of state, and potentially
2551 * attach them to the page if an error occurs. In the common case of
2552 * no error, they will just be freed again without ever being attached
2553 * to the page (which is all OK, because we're under the page lock).
2555 * Be careful: the buffer linked list is a NULL terminated one, rather
2556 * than the circular one we're used to.
2558 head
= alloc_page_buffers(page
, blocksize
, 0);
2564 block_in_file
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- blkbits
);
2567 * We loop across all blocks in the page, whether or not they are
2568 * part of the affected region. This is so we can discover if the
2569 * page is fully mapped-to-disk.
2571 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2572 block_start
< PAGE_CACHE_SIZE
;
2573 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2576 block_end
= block_start
+ blocksize
;
2579 if (block_start
>= to
)
2581 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2585 if (!buffer_mapped(bh
))
2586 is_mapped_to_disk
= 0;
2588 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
2589 if (PageUptodate(page
)) {
2590 set_buffer_uptodate(bh
);
2593 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2594 zero_user_segments(page
, block_start
, from
,
2598 if (buffer_uptodate(bh
))
2599 continue; /* reiserfs does this */
2600 if (block_start
< from
|| block_end
> to
) {
2602 bh
->b_end_io
= end_buffer_read_nobh
;
2603 submit_bh(READ
, bh
);
2610 * The page is locked, so these buffers are protected from
2611 * any VM or truncate activity. Hence we don't need to care
2612 * for the buffer_head refcounts.
2614 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2616 if (!buffer_uptodate(bh
))
2623 if (is_mapped_to_disk
)
2624 SetPageMappedToDisk(page
);
2626 *fsdata
= head
; /* to be released by nobh_write_end */
2633 * Error recovery is a bit difficult. We need to zero out blocks that
2634 * were newly allocated, and dirty them to ensure they get written out.
2635 * Buffers need to be attached to the page at this point, otherwise
2636 * the handling of potential IO errors during writeout would be hard
2637 * (could try doing synchronous writeout, but what if that fails too?)
2639 attach_nobh_buffers(page
, head
);
2640 page_zero_new_buffers(page
, from
, to
);
2644 page_cache_release(page
);
2649 EXPORT_SYMBOL(nobh_write_begin
);
2651 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2652 loff_t pos
, unsigned len
, unsigned copied
,
2653 struct page
*page
, void *fsdata
)
2655 struct inode
*inode
= page
->mapping
->host
;
2656 struct buffer_head
*head
= fsdata
;
2657 struct buffer_head
*bh
;
2658 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2660 if (unlikely(copied
< len
) && head
)
2661 attach_nobh_buffers(page
, head
);
2662 if (page_has_buffers(page
))
2663 return generic_write_end(file
, mapping
, pos
, len
,
2664 copied
, page
, fsdata
);
2666 SetPageUptodate(page
);
2667 set_page_dirty(page
);
2668 if (pos
+copied
> inode
->i_size
) {
2669 i_size_write(inode
, pos
+copied
);
2670 mark_inode_dirty(inode
);
2674 page_cache_release(page
);
2678 head
= head
->b_this_page
;
2679 free_buffer_head(bh
);
2684 EXPORT_SYMBOL(nobh_write_end
);
2687 * nobh_writepage() - based on block_full_write_page() except
2688 * that it tries to operate without attaching bufferheads to
2691 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2692 struct writeback_control
*wbc
)
2694 struct inode
* const inode
= page
->mapping
->host
;
2695 loff_t i_size
= i_size_read(inode
);
2696 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2700 /* Is the page fully inside i_size? */
2701 if (page
->index
< end_index
)
2704 /* Is the page fully outside i_size? (truncate in progress) */
2705 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2706 if (page
->index
>= end_index
+1 || !offset
) {
2708 * The page may have dirty, unmapped buffers. For example,
2709 * they may have been added in ext3_writepage(). Make them
2710 * freeable here, so the page does not leak.
2713 /* Not really sure about this - do we need this ? */
2714 if (page
->mapping
->a_ops
->invalidatepage
)
2715 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2718 return 0; /* don't care */
2722 * The page straddles i_size. It must be zeroed out on each and every
2723 * writepage invocation because it may be mmapped. "A file is mapped
2724 * in multiples of the page size. For a file that is not a multiple of
2725 * the page size, the remaining memory is zeroed when mapped, and
2726 * writes to that region are not written out to the file."
2728 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2730 ret
= mpage_writepage(page
, get_block
, wbc
);
2732 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2733 end_buffer_async_write
);
2736 EXPORT_SYMBOL(nobh_writepage
);
2738 int nobh_truncate_page(struct address_space
*mapping
,
2739 loff_t from
, get_block_t
*get_block
)
2741 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2742 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2745 unsigned length
, pos
;
2746 struct inode
*inode
= mapping
->host
;
2748 struct buffer_head map_bh
;
2751 blocksize
= 1 << inode
->i_blkbits
;
2752 length
= offset
& (blocksize
- 1);
2754 /* Block boundary? Nothing to do */
2758 length
= blocksize
- length
;
2759 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2761 page
= grab_cache_page(mapping
, index
);
2766 if (page_has_buffers(page
)) {
2769 page_cache_release(page
);
2770 return block_truncate_page(mapping
, from
, get_block
);
2773 /* Find the buffer that contains "offset" */
2775 while (offset
>= pos
) {
2780 map_bh
.b_size
= blocksize
;
2782 err
= get_block(inode
, iblock
, &map_bh
, 0);
2785 /* unmapped? It's a hole - nothing to do */
2786 if (!buffer_mapped(&map_bh
))
2789 /* Ok, it's mapped. Make sure it's up-to-date */
2790 if (!PageUptodate(page
)) {
2791 err
= mapping
->a_ops
->readpage(NULL
, page
);
2793 page_cache_release(page
);
2797 if (!PageUptodate(page
)) {
2801 if (page_has_buffers(page
))
2804 zero_user(page
, offset
, length
);
2805 set_page_dirty(page
);
2810 page_cache_release(page
);
2814 EXPORT_SYMBOL(nobh_truncate_page
);
2816 int block_truncate_page(struct address_space
*mapping
,
2817 loff_t from
, get_block_t
*get_block
)
2819 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2820 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2823 unsigned length
, pos
;
2824 struct inode
*inode
= mapping
->host
;
2826 struct buffer_head
*bh
;
2829 blocksize
= 1 << inode
->i_blkbits
;
2830 length
= offset
& (blocksize
- 1);
2832 /* Block boundary? Nothing to do */
2836 length
= blocksize
- length
;
2837 iblock
= (sector_t
)index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2839 page
= grab_cache_page(mapping
, index
);
2844 if (!page_has_buffers(page
))
2845 create_empty_buffers(page
, blocksize
, 0);
2847 /* Find the buffer that contains "offset" */
2848 bh
= page_buffers(page
);
2850 while (offset
>= pos
) {
2851 bh
= bh
->b_this_page
;
2857 if (!buffer_mapped(bh
)) {
2858 WARN_ON(bh
->b_size
!= blocksize
);
2859 err
= get_block(inode
, iblock
, bh
, 0);
2862 /* unmapped? It's a hole - nothing to do */
2863 if (!buffer_mapped(bh
))
2867 /* Ok, it's mapped. Make sure it's up-to-date */
2868 if (PageUptodate(page
))
2869 set_buffer_uptodate(bh
);
2871 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2873 ll_rw_block(READ
, 1, &bh
);
2875 /* Uhhuh. Read error. Complain and punt. */
2876 if (!buffer_uptodate(bh
))
2880 zero_user(page
, offset
, length
);
2881 mark_buffer_dirty(bh
);
2886 page_cache_release(page
);
2890 EXPORT_SYMBOL(block_truncate_page
);
2893 * The generic ->writepage function for buffer-backed address_spaces
2895 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2896 struct writeback_control
*wbc
)
2898 struct inode
* const inode
= page
->mapping
->host
;
2899 loff_t i_size
= i_size_read(inode
);
2900 const pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2903 /* Is the page fully inside i_size? */
2904 if (page
->index
< end_index
)
2905 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2906 end_buffer_async_write
);
2908 /* Is the page fully outside i_size? (truncate in progress) */
2909 offset
= i_size
& (PAGE_CACHE_SIZE
-1);
2910 if (page
->index
>= end_index
+1 || !offset
) {
2912 * The page may have dirty, unmapped buffers. For example,
2913 * they may have been added in ext3_writepage(). Make them
2914 * freeable here, so the page does not leak.
2916 do_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
2918 return 0; /* don't care */
2922 * The page straddles i_size. It must be zeroed out on each and every
2923 * writepage invocation because it may be mmapped. "A file is mapped
2924 * in multiples of the page size. For a file that is not a multiple of
2925 * the page size, the remaining memory is zeroed when mapped, and
2926 * writes to that region are not written out to the file."
2928 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
2929 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2930 end_buffer_async_write
);
2932 EXPORT_SYMBOL(block_write_full_page
);
2934 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2935 get_block_t
*get_block
)
2937 struct buffer_head tmp
;
2938 struct inode
*inode
= mapping
->host
;
2941 tmp
.b_size
= 1 << inode
->i_blkbits
;
2942 get_block(inode
, block
, &tmp
, 0);
2943 return tmp
.b_blocknr
;
2945 EXPORT_SYMBOL(generic_block_bmap
);
2947 static void end_bio_bh_io_sync(struct bio
*bio
, int err
)
2949 struct buffer_head
*bh
= bio
->bi_private
;
2951 if (err
== -EOPNOTSUPP
) {
2952 set_bit(BIO_EOPNOTSUPP
, &bio
->bi_flags
);
2955 if (unlikely (test_bit(BIO_QUIET
,&bio
->bi_flags
)))
2956 set_bit(BH_Quiet
, &bh
->b_state
);
2958 bh
->b_end_io(bh
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
2963 * This allows us to do IO even on the odd last sectors
2964 * of a device, even if the block size is some multiple
2965 * of the physical sector size.
2967 * We'll just truncate the bio to the size of the device,
2968 * and clear the end of the buffer head manually.
2970 * Truly out-of-range accesses will turn into actual IO
2971 * errors, this only handles the "we need to be able to
2972 * do IO at the final sector" case.
2974 void guard_bio_eod(int rw
, struct bio
*bio
)
2977 struct bio_vec
*bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
2978 unsigned truncated_bytes
;
2980 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
2985 * If the *whole* IO is past the end of the device,
2986 * let it through, and the IO layer will turn it into
2989 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
2992 maxsector
-= bio
->bi_iter
.bi_sector
;
2993 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
2996 /* Uhhuh. We've got a bio that straddles the device size! */
2997 truncated_bytes
= bio
->bi_iter
.bi_size
- (maxsector
<< 9);
2999 /* Truncate the bio.. */
3000 bio
->bi_iter
.bi_size
-= truncated_bytes
;
3001 bvec
->bv_len
-= truncated_bytes
;
3003 /* ..and clear the end of the buffer for reads */
3004 if ((rw
& RW_MASK
) == READ
) {
3005 zero_user(bvec
->bv_page
, bvec
->bv_offset
+ bvec
->bv_len
,
3010 int _submit_bh(int rw
, struct buffer_head
*bh
, unsigned long bio_flags
)
3015 BUG_ON(!buffer_locked(bh
));
3016 BUG_ON(!buffer_mapped(bh
));
3017 BUG_ON(!bh
->b_end_io
);
3018 BUG_ON(buffer_delay(bh
));
3019 BUG_ON(buffer_unwritten(bh
));
3022 * Only clear out a write error when rewriting
3024 if (test_set_buffer_req(bh
) && (rw
& WRITE
))
3025 clear_buffer_write_io_error(bh
);
3028 * from here on down, it's all bio -- do the initial mapping,
3029 * submit_bio -> generic_make_request may further map this bio around
3031 bio
= bio_alloc(GFP_NOIO
, 1);
3033 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3034 bio
->bi_bdev
= bh
->b_bdev
;
3035 bio
->bi_io_vec
[0].bv_page
= bh
->b_page
;
3036 bio
->bi_io_vec
[0].bv_len
= bh
->b_size
;
3037 bio
->bi_io_vec
[0].bv_offset
= bh_offset(bh
);
3040 bio
->bi_iter
.bi_size
= bh
->b_size
;
3042 bio
->bi_end_io
= end_bio_bh_io_sync
;
3043 bio
->bi_private
= bh
;
3044 bio
->bi_flags
|= bio_flags
;
3046 /* Take care of bh's that straddle the end of the device */
3047 guard_bio_eod(rw
, bio
);
3049 if (buffer_meta(bh
))
3051 if (buffer_prio(bh
))
3055 submit_bio(rw
, bio
);
3057 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
3063 EXPORT_SYMBOL_GPL(_submit_bh
);
3065 int submit_bh(int rw
, struct buffer_head
*bh
)
3067 return _submit_bh(rw
, bh
, 0);
3069 EXPORT_SYMBOL(submit_bh
);
3072 * ll_rw_block: low-level access to block devices (DEPRECATED)
3073 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
3074 * @nr: number of &struct buffer_heads in the array
3075 * @bhs: array of pointers to &struct buffer_head
3077 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3078 * requests an I/O operation on them, either a %READ or a %WRITE. The third
3079 * %READA option is described in the documentation for generic_make_request()
3080 * which ll_rw_block() calls.
3082 * This function drops any buffer that it cannot get a lock on (with the
3083 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3084 * request, and any buffer that appears to be up-to-date when doing read
3085 * request. Further it marks as clean buffers that are processed for
3086 * writing (the buffer cache won't assume that they are actually clean
3087 * until the buffer gets unlocked).
3089 * ll_rw_block sets b_end_io to simple completion handler that marks
3090 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3093 * All of the buffers must be for the same device, and must also be a
3094 * multiple of the current approved size for the device.
3096 void ll_rw_block(int rw
, int nr
, struct buffer_head
*bhs
[])
3100 for (i
= 0; i
< nr
; i
++) {
3101 struct buffer_head
*bh
= bhs
[i
];
3103 if (!trylock_buffer(bh
))
3106 if (test_clear_buffer_dirty(bh
)) {
3107 bh
->b_end_io
= end_buffer_write_sync
;
3109 submit_bh(WRITE
, bh
);
3113 if (!buffer_uptodate(bh
)) {
3114 bh
->b_end_io
= end_buffer_read_sync
;
3123 EXPORT_SYMBOL(ll_rw_block
);
3125 void write_dirty_buffer(struct buffer_head
*bh
, int rw
)
3128 if (!test_clear_buffer_dirty(bh
)) {
3132 bh
->b_end_io
= end_buffer_write_sync
;
3136 EXPORT_SYMBOL(write_dirty_buffer
);
3139 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3140 * and then start new I/O and then wait upon it. The caller must have a ref on
3143 int __sync_dirty_buffer(struct buffer_head
*bh
, int rw
)
3147 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3149 if (test_clear_buffer_dirty(bh
)) {
3151 bh
->b_end_io
= end_buffer_write_sync
;
3152 ret
= submit_bh(rw
, bh
);
3154 if (!ret
&& !buffer_uptodate(bh
))
3161 EXPORT_SYMBOL(__sync_dirty_buffer
);
3163 int sync_dirty_buffer(struct buffer_head
*bh
)
3165 return __sync_dirty_buffer(bh
, WRITE_SYNC
);
3167 EXPORT_SYMBOL(sync_dirty_buffer
);
3170 * try_to_free_buffers() checks if all the buffers on this particular page
3171 * are unused, and releases them if so.
3173 * Exclusion against try_to_free_buffers may be obtained by either
3174 * locking the page or by holding its mapping's private_lock.
3176 * If the page is dirty but all the buffers are clean then we need to
3177 * be sure to mark the page clean as well. This is because the page
3178 * may be against a block device, and a later reattachment of buffers
3179 * to a dirty page will set *all* buffers dirty. Which would corrupt
3180 * filesystem data on the same device.
3182 * The same applies to regular filesystem pages: if all the buffers are
3183 * clean then we set the page clean and proceed. To do that, we require
3184 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3187 * try_to_free_buffers() is non-blocking.
3189 static inline int buffer_busy(struct buffer_head
*bh
)
3191 return atomic_read(&bh
->b_count
) |
3192 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3196 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3198 struct buffer_head
*head
= page_buffers(page
);
3199 struct buffer_head
*bh
;
3203 if (buffer_write_io_error(bh
) && page
->mapping
)
3204 set_bit(AS_EIO
, &page
->mapping
->flags
);
3205 if (buffer_busy(bh
))
3207 bh
= bh
->b_this_page
;
3208 } while (bh
!= head
);
3211 struct buffer_head
*next
= bh
->b_this_page
;
3213 if (bh
->b_assoc_map
)
3214 __remove_assoc_queue(bh
);
3216 } while (bh
!= head
);
3217 *buffers_to_free
= head
;
3218 __clear_page_buffers(page
);
3224 int try_to_free_buffers(struct page
*page
)
3226 struct address_space
* const mapping
= page
->mapping
;
3227 struct buffer_head
*buffers_to_free
= NULL
;
3230 BUG_ON(!PageLocked(page
));
3231 if (PageWriteback(page
))
3234 if (mapping
== NULL
) { /* can this still happen? */
3235 ret
= drop_buffers(page
, &buffers_to_free
);
3239 spin_lock(&mapping
->private_lock
);
3240 ret
= drop_buffers(page
, &buffers_to_free
);
3243 * If the filesystem writes its buffers by hand (eg ext3)
3244 * then we can have clean buffers against a dirty page. We
3245 * clean the page here; otherwise the VM will never notice
3246 * that the filesystem did any IO at all.
3248 * Also, during truncate, discard_buffer will have marked all
3249 * the page's buffers clean. We discover that here and clean
3252 * private_lock must be held over this entire operation in order
3253 * to synchronise against __set_page_dirty_buffers and prevent the
3254 * dirty bit from being lost.
3257 cancel_dirty_page(page
, PAGE_CACHE_SIZE
);
3258 spin_unlock(&mapping
->private_lock
);
3260 if (buffers_to_free
) {
3261 struct buffer_head
*bh
= buffers_to_free
;
3264 struct buffer_head
*next
= bh
->b_this_page
;
3265 free_buffer_head(bh
);
3267 } while (bh
!= buffers_to_free
);
3271 EXPORT_SYMBOL(try_to_free_buffers
);
3274 * There are no bdflush tunables left. But distributions are
3275 * still running obsolete flush daemons, so we terminate them here.
3277 * Use of bdflush() is deprecated and will be removed in a future kernel.
3278 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3280 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3282 static int msg_count
;
3284 if (!capable(CAP_SYS_ADMIN
))
3287 if (msg_count
< 5) {
3290 "warning: process `%s' used the obsolete bdflush"
3291 " system call\n", current
->comm
);
3292 printk(KERN_INFO
"Fix your initscripts?\n");
3301 * Buffer-head allocation
3303 static struct kmem_cache
*bh_cachep __read_mostly
;
3306 * Once the number of bh's in the machine exceeds this level, we start
3307 * stripping them in writeback.
3309 static unsigned long max_buffer_heads
;
3311 int buffer_heads_over_limit
;
3313 struct bh_accounting
{
3314 int nr
; /* Number of live bh's */
3315 int ratelimit
; /* Limit cacheline bouncing */
3318 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3320 static void recalc_bh_state(void)
3325 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3327 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3328 for_each_online_cpu(i
)
3329 tot
+= per_cpu(bh_accounting
, i
).nr
;
3330 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3333 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3335 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3337 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3339 __this_cpu_inc(bh_accounting
.nr
);
3345 EXPORT_SYMBOL(alloc_buffer_head
);
3347 void free_buffer_head(struct buffer_head
*bh
)
3349 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3350 kmem_cache_free(bh_cachep
, bh
);
3352 __this_cpu_dec(bh_accounting
.nr
);
3356 EXPORT_SYMBOL(free_buffer_head
);
3358 static void buffer_exit_cpu(int cpu
)
3361 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3363 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3367 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3368 per_cpu(bh_accounting
, cpu
).nr
= 0;
3371 static int buffer_cpu_notify(struct notifier_block
*self
,
3372 unsigned long action
, void *hcpu
)
3374 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
3375 buffer_exit_cpu((unsigned long)hcpu
);
3380 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3381 * @bh: struct buffer_head
3383 * Return true if the buffer is up-to-date and false,
3384 * with the buffer locked, if not.
3386 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3388 if (!buffer_uptodate(bh
)) {
3390 if (!buffer_uptodate(bh
))
3396 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3399 * bh_submit_read - Submit a locked buffer for reading
3400 * @bh: struct buffer_head
3402 * Returns zero on success and -EIO on error.
3404 int bh_submit_read(struct buffer_head
*bh
)
3406 BUG_ON(!buffer_locked(bh
));
3408 if (buffer_uptodate(bh
)) {
3414 bh
->b_end_io
= end_buffer_read_sync
;
3415 submit_bh(READ
, bh
);
3417 if (buffer_uptodate(bh
))
3421 EXPORT_SYMBOL(bh_submit_read
);
3423 void __init
buffer_init(void)
3425 unsigned long nrpages
;
3427 bh_cachep
= kmem_cache_create("buffer_head",
3428 sizeof(struct buffer_head
), 0,
3429 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3434 * Limit the bh occupancy to 10% of ZONE_NORMAL
3436 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3437 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3438 hotcpu_notifier(buffer_cpu_notify
, 0);