ARM: mvebu: remove conflicting muxing on Armada 370 DB
[linux/fpc-iii.git] / fs / exec.c
blob7302b75a9820fa5c6342e098bb8757c31d884a4e
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
64 #include <trace/events/task.h>
65 #include "internal.h"
67 #include <trace/events/sched.h>
69 int suid_dumpable = 0;
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 BUG_ON(!fmt);
77 if (WARN_ON(!fmt->load_binary))
78 return;
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
85 EXPORT_SYMBOL(__register_binfmt);
87 void unregister_binfmt(struct linux_binfmt * fmt)
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
94 EXPORT_SYMBOL(unregister_binfmt);
96 static inline void put_binfmt(struct linux_binfmt * fmt)
98 module_put(fmt->module);
101 #ifdef CONFIG_USELIB
103 * Note that a shared library must be both readable and executable due to
104 * security reasons.
106 * Also note that we take the address to load from from the file itself.
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
110 struct linux_binfmt *fmt;
111 struct file *file;
112 struct filename *tmp = getname(library);
113 int error = PTR_ERR(tmp);
114 static const struct open_flags uselib_flags = {
115 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117 .intent = LOOKUP_OPEN,
118 .lookup_flags = LOOKUP_FOLLOW,
121 if (IS_ERR(tmp))
122 goto out;
124 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125 putname(tmp);
126 error = PTR_ERR(file);
127 if (IS_ERR(file))
128 goto out;
130 error = -EINVAL;
131 if (!S_ISREG(file_inode(file)->i_mode))
132 goto exit;
134 error = -EACCES;
135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 goto exit;
138 fsnotify_open(file);
140 error = -ENOEXEC;
142 read_lock(&binfmt_lock);
143 list_for_each_entry(fmt, &formats, lh) {
144 if (!fmt->load_shlib)
145 continue;
146 if (!try_module_get(fmt->module))
147 continue;
148 read_unlock(&binfmt_lock);
149 error = fmt->load_shlib(file);
150 read_lock(&binfmt_lock);
151 put_binfmt(fmt);
152 if (error != -ENOEXEC)
153 break;
155 read_unlock(&binfmt_lock);
156 exit:
157 fput(file);
158 out:
159 return error;
161 #endif /* #ifdef CONFIG_USELIB */
163 #ifdef CONFIG_MMU
165 * The nascent bprm->mm is not visible until exec_mmap() but it can
166 * use a lot of memory, account these pages in current->mm temporary
167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168 * change the counter back via acct_arg_size(0).
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
172 struct mm_struct *mm = current->mm;
173 long diff = (long)(pages - bprm->vma_pages);
175 if (!mm || !diff)
176 return;
178 bprm->vma_pages = pages;
179 add_mm_counter(mm, MM_ANONPAGES, diff);
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 int write)
185 struct page *page;
186 int ret;
188 #ifdef CONFIG_STACK_GROWSUP
189 if (write) {
190 ret = expand_downwards(bprm->vma, pos);
191 if (ret < 0)
192 return NULL;
194 #endif
195 ret = get_user_pages(current, bprm->mm, pos,
196 1, write, 1, &page, NULL);
197 if (ret <= 0)
198 return NULL;
200 if (write) {
201 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 struct rlimit *rlim;
204 acct_arg_size(bprm, size / PAGE_SIZE);
207 * We've historically supported up to 32 pages (ARG_MAX)
208 * of argument strings even with small stacks
210 if (size <= ARG_MAX)
211 return page;
214 * Limit to 1/4-th the stack size for the argv+env strings.
215 * This ensures that:
216 * - the remaining binfmt code will not run out of stack space,
217 * - the program will have a reasonable amount of stack left
218 * to work from.
220 rlim = current->signal->rlim;
221 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222 put_page(page);
223 return NULL;
227 return page;
230 static void put_arg_page(struct page *page)
232 put_page(page);
235 static void free_arg_page(struct linux_binprm *bprm, int i)
239 static void free_arg_pages(struct linux_binprm *bprm)
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 struct page *page)
246 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
249 static int __bprm_mm_init(struct linux_binprm *bprm)
251 int err;
252 struct vm_area_struct *vma = NULL;
253 struct mm_struct *mm = bprm->mm;
255 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256 if (!vma)
257 return -ENOMEM;
259 down_write(&mm->mmap_sem);
260 vma->vm_mm = mm;
263 * Place the stack at the largest stack address the architecture
264 * supports. Later, we'll move this to an appropriate place. We don't
265 * use STACK_TOP because that can depend on attributes which aren't
266 * configured yet.
268 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269 vma->vm_end = STACK_TOP_MAX;
270 vma->vm_start = vma->vm_end - PAGE_SIZE;
271 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273 INIT_LIST_HEAD(&vma->anon_vma_chain);
275 err = insert_vm_struct(mm, vma);
276 if (err)
277 goto err;
279 mm->stack_vm = mm->total_vm = 1;
280 up_write(&mm->mmap_sem);
281 bprm->p = vma->vm_end - sizeof(void *);
282 return 0;
283 err:
284 up_write(&mm->mmap_sem);
285 bprm->vma = NULL;
286 kmem_cache_free(vm_area_cachep, vma);
287 return err;
290 static bool valid_arg_len(struct linux_binprm *bprm, long len)
292 return len <= MAX_ARG_STRLEN;
295 #else
297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302 int write)
304 struct page *page;
306 page = bprm->page[pos / PAGE_SIZE];
307 if (!page && write) {
308 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309 if (!page)
310 return NULL;
311 bprm->page[pos / PAGE_SIZE] = page;
314 return page;
317 static void put_arg_page(struct page *page)
321 static void free_arg_page(struct linux_binprm *bprm, int i)
323 if (bprm->page[i]) {
324 __free_page(bprm->page[i]);
325 bprm->page[i] = NULL;
329 static void free_arg_pages(struct linux_binprm *bprm)
331 int i;
333 for (i = 0; i < MAX_ARG_PAGES; i++)
334 free_arg_page(bprm, i);
337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338 struct page *page)
342 static int __bprm_mm_init(struct linux_binprm *bprm)
344 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345 return 0;
348 static bool valid_arg_len(struct linux_binprm *bprm, long len)
350 return len <= bprm->p;
353 #endif /* CONFIG_MMU */
356 * Create a new mm_struct and populate it with a temporary stack
357 * vm_area_struct. We don't have enough context at this point to set the stack
358 * flags, permissions, and offset, so we use temporary values. We'll update
359 * them later in setup_arg_pages().
361 static int bprm_mm_init(struct linux_binprm *bprm)
363 int err;
364 struct mm_struct *mm = NULL;
366 bprm->mm = mm = mm_alloc();
367 err = -ENOMEM;
368 if (!mm)
369 goto err;
371 err = __bprm_mm_init(bprm);
372 if (err)
373 goto err;
375 return 0;
377 err:
378 if (mm) {
379 bprm->mm = NULL;
380 mmdrop(mm);
383 return err;
386 struct user_arg_ptr {
387 #ifdef CONFIG_COMPAT
388 bool is_compat;
389 #endif
390 union {
391 const char __user *const __user *native;
392 #ifdef CONFIG_COMPAT
393 const compat_uptr_t __user *compat;
394 #endif
395 } ptr;
398 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 const char __user *native;
402 #ifdef CONFIG_COMPAT
403 if (unlikely(argv.is_compat)) {
404 compat_uptr_t compat;
406 if (get_user(compat, argv.ptr.compat + nr))
407 return ERR_PTR(-EFAULT);
409 return compat_ptr(compat);
411 #endif
413 if (get_user(native, argv.ptr.native + nr))
414 return ERR_PTR(-EFAULT);
416 return native;
420 * count() counts the number of strings in array ARGV.
422 static int count(struct user_arg_ptr argv, int max)
424 int i = 0;
426 if (argv.ptr.native != NULL) {
427 for (;;) {
428 const char __user *p = get_user_arg_ptr(argv, i);
430 if (!p)
431 break;
433 if (IS_ERR(p))
434 return -EFAULT;
436 if (i >= max)
437 return -E2BIG;
438 ++i;
440 if (fatal_signal_pending(current))
441 return -ERESTARTNOHAND;
442 cond_resched();
445 return i;
449 * 'copy_strings()' copies argument/environment strings from the old
450 * processes's memory to the new process's stack. The call to get_user_pages()
451 * ensures the destination page is created and not swapped out.
453 static int copy_strings(int argc, struct user_arg_ptr argv,
454 struct linux_binprm *bprm)
456 struct page *kmapped_page = NULL;
457 char *kaddr = NULL;
458 unsigned long kpos = 0;
459 int ret;
461 while (argc-- > 0) {
462 const char __user *str;
463 int len;
464 unsigned long pos;
466 ret = -EFAULT;
467 str = get_user_arg_ptr(argv, argc);
468 if (IS_ERR(str))
469 goto out;
471 len = strnlen_user(str, MAX_ARG_STRLEN);
472 if (!len)
473 goto out;
475 ret = -E2BIG;
476 if (!valid_arg_len(bprm, len))
477 goto out;
479 /* We're going to work our way backwords. */
480 pos = bprm->p;
481 str += len;
482 bprm->p -= len;
484 while (len > 0) {
485 int offset, bytes_to_copy;
487 if (fatal_signal_pending(current)) {
488 ret = -ERESTARTNOHAND;
489 goto out;
491 cond_resched();
493 offset = pos % PAGE_SIZE;
494 if (offset == 0)
495 offset = PAGE_SIZE;
497 bytes_to_copy = offset;
498 if (bytes_to_copy > len)
499 bytes_to_copy = len;
501 offset -= bytes_to_copy;
502 pos -= bytes_to_copy;
503 str -= bytes_to_copy;
504 len -= bytes_to_copy;
506 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
507 struct page *page;
509 page = get_arg_page(bprm, pos, 1);
510 if (!page) {
511 ret = -E2BIG;
512 goto out;
515 if (kmapped_page) {
516 flush_kernel_dcache_page(kmapped_page);
517 kunmap(kmapped_page);
518 put_arg_page(kmapped_page);
520 kmapped_page = page;
521 kaddr = kmap(kmapped_page);
522 kpos = pos & PAGE_MASK;
523 flush_arg_page(bprm, kpos, kmapped_page);
525 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
526 ret = -EFAULT;
527 goto out;
531 ret = 0;
532 out:
533 if (kmapped_page) {
534 flush_kernel_dcache_page(kmapped_page);
535 kunmap(kmapped_page);
536 put_arg_page(kmapped_page);
538 return ret;
542 * Like copy_strings, but get argv and its values from kernel memory.
544 int copy_strings_kernel(int argc, const char *const *__argv,
545 struct linux_binprm *bprm)
547 int r;
548 mm_segment_t oldfs = get_fs();
549 struct user_arg_ptr argv = {
550 .ptr.native = (const char __user *const __user *)__argv,
553 set_fs(KERNEL_DS);
554 r = copy_strings(argc, argv, bprm);
555 set_fs(oldfs);
557 return r;
559 EXPORT_SYMBOL(copy_strings_kernel);
561 #ifdef CONFIG_MMU
564 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
565 * the binfmt code determines where the new stack should reside, we shift it to
566 * its final location. The process proceeds as follows:
568 * 1) Use shift to calculate the new vma endpoints.
569 * 2) Extend vma to cover both the old and new ranges. This ensures the
570 * arguments passed to subsequent functions are consistent.
571 * 3) Move vma's page tables to the new range.
572 * 4) Free up any cleared pgd range.
573 * 5) Shrink the vma to cover only the new range.
575 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
577 struct mm_struct *mm = vma->vm_mm;
578 unsigned long old_start = vma->vm_start;
579 unsigned long old_end = vma->vm_end;
580 unsigned long length = old_end - old_start;
581 unsigned long new_start = old_start - shift;
582 unsigned long new_end = old_end - shift;
583 struct mmu_gather tlb;
585 BUG_ON(new_start > new_end);
588 * ensure there are no vmas between where we want to go
589 * and where we are
591 if (vma != find_vma(mm, new_start))
592 return -EFAULT;
595 * cover the whole range: [new_start, old_end)
597 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
598 return -ENOMEM;
601 * move the page tables downwards, on failure we rely on
602 * process cleanup to remove whatever mess we made.
604 if (length != move_page_tables(vma, old_start,
605 vma, new_start, length, false))
606 return -ENOMEM;
608 lru_add_drain();
609 tlb_gather_mmu(&tlb, mm, old_start, old_end);
610 if (new_end > old_start) {
612 * when the old and new regions overlap clear from new_end.
614 free_pgd_range(&tlb, new_end, old_end, new_end,
615 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
616 } else {
618 * otherwise, clean from old_start; this is done to not touch
619 * the address space in [new_end, old_start) some architectures
620 * have constraints on va-space that make this illegal (IA64) -
621 * for the others its just a little faster.
623 free_pgd_range(&tlb, old_start, old_end, new_end,
624 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
626 tlb_finish_mmu(&tlb, old_start, old_end);
629 * Shrink the vma to just the new range. Always succeeds.
631 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
633 return 0;
637 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
638 * the stack is optionally relocated, and some extra space is added.
640 int setup_arg_pages(struct linux_binprm *bprm,
641 unsigned long stack_top,
642 int executable_stack)
644 unsigned long ret;
645 unsigned long stack_shift;
646 struct mm_struct *mm = current->mm;
647 struct vm_area_struct *vma = bprm->vma;
648 struct vm_area_struct *prev = NULL;
649 unsigned long vm_flags;
650 unsigned long stack_base;
651 unsigned long stack_size;
652 unsigned long stack_expand;
653 unsigned long rlim_stack;
655 #ifdef CONFIG_STACK_GROWSUP
656 /* Limit stack size */
657 stack_base = rlimit_max(RLIMIT_STACK);
658 if (stack_base > STACK_SIZE_MAX)
659 stack_base = STACK_SIZE_MAX;
661 /* Make sure we didn't let the argument array grow too large. */
662 if (vma->vm_end - vma->vm_start > stack_base)
663 return -ENOMEM;
665 stack_base = PAGE_ALIGN(stack_top - stack_base);
667 stack_shift = vma->vm_start - stack_base;
668 mm->arg_start = bprm->p - stack_shift;
669 bprm->p = vma->vm_end - stack_shift;
670 #else
671 stack_top = arch_align_stack(stack_top);
672 stack_top = PAGE_ALIGN(stack_top);
674 if (unlikely(stack_top < mmap_min_addr) ||
675 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
676 return -ENOMEM;
678 stack_shift = vma->vm_end - stack_top;
680 bprm->p -= stack_shift;
681 mm->arg_start = bprm->p;
682 #endif
684 if (bprm->loader)
685 bprm->loader -= stack_shift;
686 bprm->exec -= stack_shift;
688 down_write(&mm->mmap_sem);
689 vm_flags = VM_STACK_FLAGS;
692 * Adjust stack execute permissions; explicitly enable for
693 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
694 * (arch default) otherwise.
696 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
697 vm_flags |= VM_EXEC;
698 else if (executable_stack == EXSTACK_DISABLE_X)
699 vm_flags &= ~VM_EXEC;
700 vm_flags |= mm->def_flags;
701 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
703 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
704 vm_flags);
705 if (ret)
706 goto out_unlock;
707 BUG_ON(prev != vma);
709 /* Move stack pages down in memory. */
710 if (stack_shift) {
711 ret = shift_arg_pages(vma, stack_shift);
712 if (ret)
713 goto out_unlock;
716 /* mprotect_fixup is overkill to remove the temporary stack flags */
717 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
719 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
720 stack_size = vma->vm_end - vma->vm_start;
722 * Align this down to a page boundary as expand_stack
723 * will align it up.
725 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
726 #ifdef CONFIG_STACK_GROWSUP
727 if (stack_size + stack_expand > rlim_stack)
728 stack_base = vma->vm_start + rlim_stack;
729 else
730 stack_base = vma->vm_end + stack_expand;
731 #else
732 if (stack_size + stack_expand > rlim_stack)
733 stack_base = vma->vm_end - rlim_stack;
734 else
735 stack_base = vma->vm_start - stack_expand;
736 #endif
737 current->mm->start_stack = bprm->p;
738 ret = expand_stack(vma, stack_base);
739 if (ret)
740 ret = -EFAULT;
742 out_unlock:
743 up_write(&mm->mmap_sem);
744 return ret;
746 EXPORT_SYMBOL(setup_arg_pages);
748 #endif /* CONFIG_MMU */
750 static struct file *do_open_exec(struct filename *name)
752 struct file *file;
753 int err;
754 static const struct open_flags open_exec_flags = {
755 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
756 .acc_mode = MAY_EXEC | MAY_OPEN,
757 .intent = LOOKUP_OPEN,
758 .lookup_flags = LOOKUP_FOLLOW,
761 file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
762 if (IS_ERR(file))
763 goto out;
765 err = -EACCES;
766 if (!S_ISREG(file_inode(file)->i_mode))
767 goto exit;
769 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
770 goto exit;
772 fsnotify_open(file);
774 err = deny_write_access(file);
775 if (err)
776 goto exit;
778 out:
779 return file;
781 exit:
782 fput(file);
783 return ERR_PTR(err);
786 struct file *open_exec(const char *name)
788 struct filename tmp = { .name = name };
789 return do_open_exec(&tmp);
791 EXPORT_SYMBOL(open_exec);
793 int kernel_read(struct file *file, loff_t offset,
794 char *addr, unsigned long count)
796 mm_segment_t old_fs;
797 loff_t pos = offset;
798 int result;
800 old_fs = get_fs();
801 set_fs(get_ds());
802 /* The cast to a user pointer is valid due to the set_fs() */
803 result = vfs_read(file, (void __user *)addr, count, &pos);
804 set_fs(old_fs);
805 return result;
808 EXPORT_SYMBOL(kernel_read);
810 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
812 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
813 if (res > 0)
814 flush_icache_range(addr, addr + len);
815 return res;
817 EXPORT_SYMBOL(read_code);
819 static int exec_mmap(struct mm_struct *mm)
821 struct task_struct *tsk;
822 struct mm_struct *old_mm, *active_mm;
824 /* Notify parent that we're no longer interested in the old VM */
825 tsk = current;
826 old_mm = current->mm;
827 mm_release(tsk, old_mm);
829 if (old_mm) {
830 sync_mm_rss(old_mm);
832 * Make sure that if there is a core dump in progress
833 * for the old mm, we get out and die instead of going
834 * through with the exec. We must hold mmap_sem around
835 * checking core_state and changing tsk->mm.
837 down_read(&old_mm->mmap_sem);
838 if (unlikely(old_mm->core_state)) {
839 up_read(&old_mm->mmap_sem);
840 return -EINTR;
843 task_lock(tsk);
844 active_mm = tsk->active_mm;
845 tsk->mm = mm;
846 tsk->active_mm = mm;
847 activate_mm(active_mm, mm);
848 tsk->mm->vmacache_seqnum = 0;
849 vmacache_flush(tsk);
850 task_unlock(tsk);
851 if (old_mm) {
852 up_read(&old_mm->mmap_sem);
853 BUG_ON(active_mm != old_mm);
854 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
855 mm_update_next_owner(old_mm);
856 mmput(old_mm);
857 return 0;
859 mmdrop(active_mm);
860 return 0;
864 * This function makes sure the current process has its own signal table,
865 * so that flush_signal_handlers can later reset the handlers without
866 * disturbing other processes. (Other processes might share the signal
867 * table via the CLONE_SIGHAND option to clone().)
869 static int de_thread(struct task_struct *tsk)
871 struct signal_struct *sig = tsk->signal;
872 struct sighand_struct *oldsighand = tsk->sighand;
873 spinlock_t *lock = &oldsighand->siglock;
875 if (thread_group_empty(tsk))
876 goto no_thread_group;
879 * Kill all other threads in the thread group.
881 spin_lock_irq(lock);
882 if (signal_group_exit(sig)) {
884 * Another group action in progress, just
885 * return so that the signal is processed.
887 spin_unlock_irq(lock);
888 return -EAGAIN;
891 sig->group_exit_task = tsk;
892 sig->notify_count = zap_other_threads(tsk);
893 if (!thread_group_leader(tsk))
894 sig->notify_count--;
896 while (sig->notify_count) {
897 __set_current_state(TASK_KILLABLE);
898 spin_unlock_irq(lock);
899 schedule();
900 if (unlikely(__fatal_signal_pending(tsk)))
901 goto killed;
902 spin_lock_irq(lock);
904 spin_unlock_irq(lock);
907 * At this point all other threads have exited, all we have to
908 * do is to wait for the thread group leader to become inactive,
909 * and to assume its PID:
911 if (!thread_group_leader(tsk)) {
912 struct task_struct *leader = tsk->group_leader;
914 sig->notify_count = -1; /* for exit_notify() */
915 for (;;) {
916 threadgroup_change_begin(tsk);
917 write_lock_irq(&tasklist_lock);
918 if (likely(leader->exit_state))
919 break;
920 __set_current_state(TASK_KILLABLE);
921 write_unlock_irq(&tasklist_lock);
922 threadgroup_change_end(tsk);
923 schedule();
924 if (unlikely(__fatal_signal_pending(tsk)))
925 goto killed;
929 * The only record we have of the real-time age of a
930 * process, regardless of execs it's done, is start_time.
931 * All the past CPU time is accumulated in signal_struct
932 * from sister threads now dead. But in this non-leader
933 * exec, nothing survives from the original leader thread,
934 * whose birth marks the true age of this process now.
935 * When we take on its identity by switching to its PID, we
936 * also take its birthdate (always earlier than our own).
938 tsk->start_time = leader->start_time;
939 tsk->real_start_time = leader->real_start_time;
941 BUG_ON(!same_thread_group(leader, tsk));
942 BUG_ON(has_group_leader_pid(tsk));
944 * An exec() starts a new thread group with the
945 * TGID of the previous thread group. Rehash the
946 * two threads with a switched PID, and release
947 * the former thread group leader:
950 /* Become a process group leader with the old leader's pid.
951 * The old leader becomes a thread of the this thread group.
952 * Note: The old leader also uses this pid until release_task
953 * is called. Odd but simple and correct.
955 tsk->pid = leader->pid;
956 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
957 transfer_pid(leader, tsk, PIDTYPE_PGID);
958 transfer_pid(leader, tsk, PIDTYPE_SID);
960 list_replace_rcu(&leader->tasks, &tsk->tasks);
961 list_replace_init(&leader->sibling, &tsk->sibling);
963 tsk->group_leader = tsk;
964 leader->group_leader = tsk;
966 tsk->exit_signal = SIGCHLD;
967 leader->exit_signal = -1;
969 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
970 leader->exit_state = EXIT_DEAD;
973 * We are going to release_task()->ptrace_unlink() silently,
974 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
975 * the tracer wont't block again waiting for this thread.
977 if (unlikely(leader->ptrace))
978 __wake_up_parent(leader, leader->parent);
979 write_unlock_irq(&tasklist_lock);
980 threadgroup_change_end(tsk);
982 release_task(leader);
985 sig->group_exit_task = NULL;
986 sig->notify_count = 0;
988 no_thread_group:
989 /* we have changed execution domain */
990 tsk->exit_signal = SIGCHLD;
992 exit_itimers(sig);
993 flush_itimer_signals();
995 if (atomic_read(&oldsighand->count) != 1) {
996 struct sighand_struct *newsighand;
998 * This ->sighand is shared with the CLONE_SIGHAND
999 * but not CLONE_THREAD task, switch to the new one.
1001 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1002 if (!newsighand)
1003 return -ENOMEM;
1005 atomic_set(&newsighand->count, 1);
1006 memcpy(newsighand->action, oldsighand->action,
1007 sizeof(newsighand->action));
1009 write_lock_irq(&tasklist_lock);
1010 spin_lock(&oldsighand->siglock);
1011 rcu_assign_pointer(tsk->sighand, newsighand);
1012 spin_unlock(&oldsighand->siglock);
1013 write_unlock_irq(&tasklist_lock);
1015 __cleanup_sighand(oldsighand);
1018 BUG_ON(!thread_group_leader(tsk));
1019 return 0;
1021 killed:
1022 /* protects against exit_notify() and __exit_signal() */
1023 read_lock(&tasklist_lock);
1024 sig->group_exit_task = NULL;
1025 sig->notify_count = 0;
1026 read_unlock(&tasklist_lock);
1027 return -EAGAIN;
1030 char *get_task_comm(char *buf, struct task_struct *tsk)
1032 /* buf must be at least sizeof(tsk->comm) in size */
1033 task_lock(tsk);
1034 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1035 task_unlock(tsk);
1036 return buf;
1038 EXPORT_SYMBOL_GPL(get_task_comm);
1041 * These functions flushes out all traces of the currently running executable
1042 * so that a new one can be started
1045 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1047 task_lock(tsk);
1048 trace_task_rename(tsk, buf);
1049 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1050 task_unlock(tsk);
1051 perf_event_comm(tsk, exec);
1054 int flush_old_exec(struct linux_binprm * bprm)
1056 int retval;
1059 * Make sure we have a private signal table and that
1060 * we are unassociated from the previous thread group.
1062 retval = de_thread(current);
1063 if (retval)
1064 goto out;
1066 set_mm_exe_file(bprm->mm, bprm->file);
1068 * Release all of the old mmap stuff
1070 acct_arg_size(bprm, 0);
1071 retval = exec_mmap(bprm->mm);
1072 if (retval)
1073 goto out;
1075 bprm->mm = NULL; /* We're using it now */
1077 set_fs(USER_DS);
1078 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1079 PF_NOFREEZE | PF_NO_SETAFFINITY);
1080 flush_thread();
1081 current->personality &= ~bprm->per_clear;
1083 return 0;
1085 out:
1086 return retval;
1088 EXPORT_SYMBOL(flush_old_exec);
1090 void would_dump(struct linux_binprm *bprm, struct file *file)
1092 if (inode_permission(file_inode(file), MAY_READ) < 0)
1093 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1095 EXPORT_SYMBOL(would_dump);
1097 void setup_new_exec(struct linux_binprm * bprm)
1099 arch_pick_mmap_layout(current->mm);
1101 /* This is the point of no return */
1102 current->sas_ss_sp = current->sas_ss_size = 0;
1104 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1105 set_dumpable(current->mm, SUID_DUMP_USER);
1106 else
1107 set_dumpable(current->mm, suid_dumpable);
1109 perf_event_exec();
1110 __set_task_comm(current, kbasename(bprm->filename), true);
1112 /* Set the new mm task size. We have to do that late because it may
1113 * depend on TIF_32BIT which is only updated in flush_thread() on
1114 * some architectures like powerpc
1116 current->mm->task_size = TASK_SIZE;
1118 /* install the new credentials */
1119 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1120 !gid_eq(bprm->cred->gid, current_egid())) {
1121 current->pdeath_signal = 0;
1122 } else {
1123 would_dump(bprm, bprm->file);
1124 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1125 set_dumpable(current->mm, suid_dumpable);
1128 /* An exec changes our domain. We are no longer part of the thread
1129 group */
1130 current->self_exec_id++;
1131 flush_signal_handlers(current, 0);
1132 do_close_on_exec(current->files);
1134 EXPORT_SYMBOL(setup_new_exec);
1137 * Prepare credentials and lock ->cred_guard_mutex.
1138 * install_exec_creds() commits the new creds and drops the lock.
1139 * Or, if exec fails before, free_bprm() should release ->cred and
1140 * and unlock.
1142 int prepare_bprm_creds(struct linux_binprm *bprm)
1144 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1145 return -ERESTARTNOINTR;
1147 bprm->cred = prepare_exec_creds();
1148 if (likely(bprm->cred))
1149 return 0;
1151 mutex_unlock(&current->signal->cred_guard_mutex);
1152 return -ENOMEM;
1155 static void free_bprm(struct linux_binprm *bprm)
1157 free_arg_pages(bprm);
1158 if (bprm->cred) {
1159 mutex_unlock(&current->signal->cred_guard_mutex);
1160 abort_creds(bprm->cred);
1162 if (bprm->file) {
1163 allow_write_access(bprm->file);
1164 fput(bprm->file);
1166 /* If a binfmt changed the interp, free it. */
1167 if (bprm->interp != bprm->filename)
1168 kfree(bprm->interp);
1169 kfree(bprm);
1172 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1174 /* If a binfmt changed the interp, free it first. */
1175 if (bprm->interp != bprm->filename)
1176 kfree(bprm->interp);
1177 bprm->interp = kstrdup(interp, GFP_KERNEL);
1178 if (!bprm->interp)
1179 return -ENOMEM;
1180 return 0;
1182 EXPORT_SYMBOL(bprm_change_interp);
1185 * install the new credentials for this executable
1187 void install_exec_creds(struct linux_binprm *bprm)
1189 security_bprm_committing_creds(bprm);
1191 commit_creds(bprm->cred);
1192 bprm->cred = NULL;
1195 * Disable monitoring for regular users
1196 * when executing setuid binaries. Must
1197 * wait until new credentials are committed
1198 * by commit_creds() above
1200 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1201 perf_event_exit_task(current);
1203 * cred_guard_mutex must be held at least to this point to prevent
1204 * ptrace_attach() from altering our determination of the task's
1205 * credentials; any time after this it may be unlocked.
1207 security_bprm_committed_creds(bprm);
1208 mutex_unlock(&current->signal->cred_guard_mutex);
1210 EXPORT_SYMBOL(install_exec_creds);
1213 * determine how safe it is to execute the proposed program
1214 * - the caller must hold ->cred_guard_mutex to protect against
1215 * PTRACE_ATTACH or seccomp thread-sync
1217 static void check_unsafe_exec(struct linux_binprm *bprm)
1219 struct task_struct *p = current, *t;
1220 unsigned n_fs;
1222 if (p->ptrace) {
1223 if (p->ptrace & PT_PTRACE_CAP)
1224 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1225 else
1226 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1230 * This isn't strictly necessary, but it makes it harder for LSMs to
1231 * mess up.
1233 if (task_no_new_privs(current))
1234 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1236 t = p;
1237 n_fs = 1;
1238 spin_lock(&p->fs->lock);
1239 rcu_read_lock();
1240 while_each_thread(p, t) {
1241 if (t->fs == p->fs)
1242 n_fs++;
1244 rcu_read_unlock();
1246 if (p->fs->users > n_fs)
1247 bprm->unsafe |= LSM_UNSAFE_SHARE;
1248 else
1249 p->fs->in_exec = 1;
1250 spin_unlock(&p->fs->lock);
1254 * Fill the binprm structure from the inode.
1255 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1257 * This may be called multiple times for binary chains (scripts for example).
1259 int prepare_binprm(struct linux_binprm *bprm)
1261 struct inode *inode = file_inode(bprm->file);
1262 umode_t mode = inode->i_mode;
1263 int retval;
1266 /* clear any previous set[ug]id data from a previous binary */
1267 bprm->cred->euid = current_euid();
1268 bprm->cred->egid = current_egid();
1270 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1271 !task_no_new_privs(current) &&
1272 kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1273 kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1274 /* Set-uid? */
1275 if (mode & S_ISUID) {
1276 bprm->per_clear |= PER_CLEAR_ON_SETID;
1277 bprm->cred->euid = inode->i_uid;
1280 /* Set-gid? */
1282 * If setgid is set but no group execute bit then this
1283 * is a candidate for mandatory locking, not a setgid
1284 * executable.
1286 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1287 bprm->per_clear |= PER_CLEAR_ON_SETID;
1288 bprm->cred->egid = inode->i_gid;
1292 /* fill in binprm security blob */
1293 retval = security_bprm_set_creds(bprm);
1294 if (retval)
1295 return retval;
1296 bprm->cred_prepared = 1;
1298 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1299 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1302 EXPORT_SYMBOL(prepare_binprm);
1305 * Arguments are '\0' separated strings found at the location bprm->p
1306 * points to; chop off the first by relocating brpm->p to right after
1307 * the first '\0' encountered.
1309 int remove_arg_zero(struct linux_binprm *bprm)
1311 int ret = 0;
1312 unsigned long offset;
1313 char *kaddr;
1314 struct page *page;
1316 if (!bprm->argc)
1317 return 0;
1319 do {
1320 offset = bprm->p & ~PAGE_MASK;
1321 page = get_arg_page(bprm, bprm->p, 0);
1322 if (!page) {
1323 ret = -EFAULT;
1324 goto out;
1326 kaddr = kmap_atomic(page);
1328 for (; offset < PAGE_SIZE && kaddr[offset];
1329 offset++, bprm->p++)
1332 kunmap_atomic(kaddr);
1333 put_arg_page(page);
1335 if (offset == PAGE_SIZE)
1336 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1337 } while (offset == PAGE_SIZE);
1339 bprm->p++;
1340 bprm->argc--;
1341 ret = 0;
1343 out:
1344 return ret;
1346 EXPORT_SYMBOL(remove_arg_zero);
1348 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1350 * cycle the list of binary formats handler, until one recognizes the image
1352 int search_binary_handler(struct linux_binprm *bprm)
1354 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1355 struct linux_binfmt *fmt;
1356 int retval;
1358 /* This allows 4 levels of binfmt rewrites before failing hard. */
1359 if (bprm->recursion_depth > 5)
1360 return -ELOOP;
1362 retval = security_bprm_check(bprm);
1363 if (retval)
1364 return retval;
1366 retval = -ENOENT;
1367 retry:
1368 read_lock(&binfmt_lock);
1369 list_for_each_entry(fmt, &formats, lh) {
1370 if (!try_module_get(fmt->module))
1371 continue;
1372 read_unlock(&binfmt_lock);
1373 bprm->recursion_depth++;
1374 retval = fmt->load_binary(bprm);
1375 read_lock(&binfmt_lock);
1376 put_binfmt(fmt);
1377 bprm->recursion_depth--;
1378 if (retval < 0 && !bprm->mm) {
1379 /* we got to flush_old_exec() and failed after it */
1380 read_unlock(&binfmt_lock);
1381 force_sigsegv(SIGSEGV, current);
1382 return retval;
1384 if (retval != -ENOEXEC || !bprm->file) {
1385 read_unlock(&binfmt_lock);
1386 return retval;
1389 read_unlock(&binfmt_lock);
1391 if (need_retry) {
1392 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1393 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1394 return retval;
1395 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1396 return retval;
1397 need_retry = false;
1398 goto retry;
1401 return retval;
1403 EXPORT_SYMBOL(search_binary_handler);
1405 static int exec_binprm(struct linux_binprm *bprm)
1407 pid_t old_pid, old_vpid;
1408 int ret;
1410 /* Need to fetch pid before load_binary changes it */
1411 old_pid = current->pid;
1412 rcu_read_lock();
1413 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1414 rcu_read_unlock();
1416 ret = search_binary_handler(bprm);
1417 if (ret >= 0) {
1418 audit_bprm(bprm);
1419 trace_sched_process_exec(current, old_pid, bprm);
1420 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1421 proc_exec_connector(current);
1424 return ret;
1428 * sys_execve() executes a new program.
1430 static int do_execve_common(struct filename *filename,
1431 struct user_arg_ptr argv,
1432 struct user_arg_ptr envp)
1434 struct linux_binprm *bprm;
1435 struct file *file;
1436 struct files_struct *displaced;
1437 int retval;
1439 if (IS_ERR(filename))
1440 return PTR_ERR(filename);
1443 * We move the actual failure in case of RLIMIT_NPROC excess from
1444 * set*uid() to execve() because too many poorly written programs
1445 * don't check setuid() return code. Here we additionally recheck
1446 * whether NPROC limit is still exceeded.
1448 if ((current->flags & PF_NPROC_EXCEEDED) &&
1449 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1450 retval = -EAGAIN;
1451 goto out_ret;
1454 /* We're below the limit (still or again), so we don't want to make
1455 * further execve() calls fail. */
1456 current->flags &= ~PF_NPROC_EXCEEDED;
1458 retval = unshare_files(&displaced);
1459 if (retval)
1460 goto out_ret;
1462 retval = -ENOMEM;
1463 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1464 if (!bprm)
1465 goto out_files;
1467 retval = prepare_bprm_creds(bprm);
1468 if (retval)
1469 goto out_free;
1471 check_unsafe_exec(bprm);
1472 current->in_execve = 1;
1474 file = do_open_exec(filename);
1475 retval = PTR_ERR(file);
1476 if (IS_ERR(file))
1477 goto out_unmark;
1479 sched_exec();
1481 bprm->file = file;
1482 bprm->filename = bprm->interp = filename->name;
1484 retval = bprm_mm_init(bprm);
1485 if (retval)
1486 goto out_unmark;
1488 bprm->argc = count(argv, MAX_ARG_STRINGS);
1489 if ((retval = bprm->argc) < 0)
1490 goto out;
1492 bprm->envc = count(envp, MAX_ARG_STRINGS);
1493 if ((retval = bprm->envc) < 0)
1494 goto out;
1496 retval = prepare_binprm(bprm);
1497 if (retval < 0)
1498 goto out;
1500 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1501 if (retval < 0)
1502 goto out;
1504 bprm->exec = bprm->p;
1505 retval = copy_strings(bprm->envc, envp, bprm);
1506 if (retval < 0)
1507 goto out;
1509 retval = copy_strings(bprm->argc, argv, bprm);
1510 if (retval < 0)
1511 goto out;
1513 retval = exec_binprm(bprm);
1514 if (retval < 0)
1515 goto out;
1517 /* execve succeeded */
1518 current->fs->in_exec = 0;
1519 current->in_execve = 0;
1520 acct_update_integrals(current);
1521 task_numa_free(current);
1522 free_bprm(bprm);
1523 putname(filename);
1524 if (displaced)
1525 put_files_struct(displaced);
1526 return retval;
1528 out:
1529 if (bprm->mm) {
1530 acct_arg_size(bprm, 0);
1531 mmput(bprm->mm);
1534 out_unmark:
1535 current->fs->in_exec = 0;
1536 current->in_execve = 0;
1538 out_free:
1539 free_bprm(bprm);
1541 out_files:
1542 if (displaced)
1543 reset_files_struct(displaced);
1544 out_ret:
1545 putname(filename);
1546 return retval;
1549 int do_execve(struct filename *filename,
1550 const char __user *const __user *__argv,
1551 const char __user *const __user *__envp)
1553 struct user_arg_ptr argv = { .ptr.native = __argv };
1554 struct user_arg_ptr envp = { .ptr.native = __envp };
1555 return do_execve_common(filename, argv, envp);
1558 #ifdef CONFIG_COMPAT
1559 static int compat_do_execve(struct filename *filename,
1560 const compat_uptr_t __user *__argv,
1561 const compat_uptr_t __user *__envp)
1563 struct user_arg_ptr argv = {
1564 .is_compat = true,
1565 .ptr.compat = __argv,
1567 struct user_arg_ptr envp = {
1568 .is_compat = true,
1569 .ptr.compat = __envp,
1571 return do_execve_common(filename, argv, envp);
1573 #endif
1575 void set_binfmt(struct linux_binfmt *new)
1577 struct mm_struct *mm = current->mm;
1579 if (mm->binfmt)
1580 module_put(mm->binfmt->module);
1582 mm->binfmt = new;
1583 if (new)
1584 __module_get(new->module);
1586 EXPORT_SYMBOL(set_binfmt);
1589 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1591 void set_dumpable(struct mm_struct *mm, int value)
1593 unsigned long old, new;
1595 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1596 return;
1598 do {
1599 old = ACCESS_ONCE(mm->flags);
1600 new = (old & ~MMF_DUMPABLE_MASK) | value;
1601 } while (cmpxchg(&mm->flags, old, new) != old);
1604 SYSCALL_DEFINE3(execve,
1605 const char __user *, filename,
1606 const char __user *const __user *, argv,
1607 const char __user *const __user *, envp)
1609 return do_execve(getname(filename), argv, envp);
1611 #ifdef CONFIG_COMPAT
1612 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1613 const compat_uptr_t __user *, argv,
1614 const compat_uptr_t __user *, envp)
1616 return compat_do_execve(getname(filename), argv, envp);
1618 #endif