1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call netif_poll_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/delay.h>
44 #include <linux/init.h>
45 #include <linux/errno.h>
46 #include <linux/pci.h>
47 #include <linux/netdevice.h>
48 #include <linux/etherdevice.h>
49 #include <linux/skbuff.h>
50 #include <linux/mii.h>
51 #include <linux/ethtool.h>
52 #include <linux/crc32.h>
53 #include <linux/random.h>
54 #include <linux/workqueue.h>
55 #include <linux/if_vlan.h>
56 #include <linux/bitops.h>
58 #include <asm/system.h>
60 #include <asm/byteorder.h>
61 #include <asm/uaccess.h>
65 #include <asm/idprom.h>
66 #include <asm/openprom.h>
67 #include <asm/oplib.h>
71 #ifdef CONFIG_PPC_PMAC
72 #include <asm/pci-bridge.h>
74 #include <asm/machdep.h>
75 #include <asm/pmac_feature.h>
78 #include "sungem_phy.h"
81 /* Stripping FCS is causing problems, disabled for now */
84 #define DEFAULT_MSG (NETIF_MSG_DRV | \
88 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
89 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
90 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
92 #define DRV_NAME "sungem"
93 #define DRV_VERSION "0.98"
94 #define DRV_RELDATE "8/24/03"
95 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
97 static char version
[] __devinitdata
=
98 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
100 MODULE_AUTHOR(DRV_AUTHOR
);
101 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
102 MODULE_LICENSE("GPL");
104 #define GEM_MODULE_NAME "gem"
105 #define PFX GEM_MODULE_NAME ": "
107 static struct pci_device_id gem_pci_tbl
[] = {
108 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
109 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
111 /* These models only differ from the original GEM in
112 * that their tx/rx fifos are of a different size and
113 * they only support 10/100 speeds. -DaveM
115 * Apple's GMAC does support gigabit on machines with
116 * the BCM54xx PHYs. -BenH
118 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
119 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
120 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
121 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
122 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
123 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
124 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
125 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
126 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_GMAC
,
127 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
128 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_SUNGEM
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
133 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
135 static u16
__phy_read(struct gem
*gp
, int phy_addr
, int reg
)
142 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
143 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
144 cmd
|= (MIF_FRAME_TAMSB
);
145 writel(cmd
, gp
->regs
+ MIF_FRAME
);
148 cmd
= readl(gp
->regs
+ MIF_FRAME
);
149 if (cmd
& MIF_FRAME_TALSB
)
158 return cmd
& MIF_FRAME_DATA
;
161 static inline int _phy_read(struct net_device
*dev
, int mii_id
, int reg
)
163 struct gem
*gp
= dev
->priv
;
164 return __phy_read(gp
, mii_id
, reg
);
167 static inline u16
phy_read(struct gem
*gp
, int reg
)
169 return __phy_read(gp
, gp
->mii_phy_addr
, reg
);
172 static void __phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
179 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
180 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
181 cmd
|= (MIF_FRAME_TAMSB
);
182 cmd
|= (val
& MIF_FRAME_DATA
);
183 writel(cmd
, gp
->regs
+ MIF_FRAME
);
186 cmd
= readl(gp
->regs
+ MIF_FRAME
);
187 if (cmd
& MIF_FRAME_TALSB
)
194 static inline void _phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
196 struct gem
*gp
= dev
->priv
;
197 __phy_write(gp
, mii_id
, reg
, val
& 0xffff);
200 static inline void phy_write(struct gem
*gp
, int reg
, u16 val
)
202 __phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
205 static inline void gem_enable_ints(struct gem
*gp
)
207 /* Enable all interrupts but TXDONE */
208 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
211 static inline void gem_disable_ints(struct gem
*gp
)
213 /* Disable all interrupts, including TXDONE */
214 writel(GREG_STAT_NAPI
| GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
217 static void gem_get_cell(struct gem
*gp
)
219 BUG_ON(gp
->cell_enabled
< 0);
221 #ifdef CONFIG_PPC_PMAC
222 if (gp
->cell_enabled
== 1) {
224 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
227 #endif /* CONFIG_PPC_PMAC */
230 /* Turn off the chip's clock */
231 static void gem_put_cell(struct gem
*gp
)
233 BUG_ON(gp
->cell_enabled
<= 0);
235 #ifdef CONFIG_PPC_PMAC
236 if (gp
->cell_enabled
== 0) {
238 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
241 #endif /* CONFIG_PPC_PMAC */
244 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
246 if (netif_msg_intr(gp
))
247 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
250 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
252 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
255 if (netif_msg_intr(gp
))
256 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
257 gp
->dev
->name
, pcs_istat
);
259 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
260 printk(KERN_ERR
"%s: PCS irq but no link status change???\n",
265 /* The link status bit latches on zero, so you must
266 * read it twice in such a case to see a transition
267 * to the link being up.
269 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
270 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
272 (readl(gp
->regs
+ PCS_MIISTAT
) &
275 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
276 /* The remote-fault indication is only valid
277 * when autoneg has completed.
279 if (pcs_miistat
& PCS_MIISTAT_RF
)
280 printk(KERN_INFO
"%s: PCS AutoNEG complete, "
281 "RemoteFault\n", dev
->name
);
283 printk(KERN_INFO
"%s: PCS AutoNEG complete.\n",
287 if (pcs_miistat
& PCS_MIISTAT_LS
) {
288 printk(KERN_INFO
"%s: PCS link is now up.\n",
290 netif_carrier_on(gp
->dev
);
292 printk(KERN_INFO
"%s: PCS link is now down.\n",
294 netif_carrier_off(gp
->dev
);
295 /* If this happens and the link timer is not running,
296 * reset so we re-negotiate.
298 if (!timer_pending(&gp
->link_timer
))
305 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
307 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
309 if (netif_msg_intr(gp
))
310 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
311 gp
->dev
->name
, txmac_stat
);
313 /* Defer timer expiration is quite normal,
314 * don't even log the event.
316 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
317 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
320 if (txmac_stat
& MAC_TXSTAT_URUN
) {
321 printk(KERN_ERR
"%s: TX MAC xmit underrun.\n",
323 gp
->net_stats
.tx_fifo_errors
++;
326 if (txmac_stat
& MAC_TXSTAT_MPE
) {
327 printk(KERN_ERR
"%s: TX MAC max packet size error.\n",
329 gp
->net_stats
.tx_errors
++;
332 /* The rest are all cases of one of the 16-bit TX
335 if (txmac_stat
& MAC_TXSTAT_NCE
)
336 gp
->net_stats
.collisions
+= 0x10000;
338 if (txmac_stat
& MAC_TXSTAT_ECE
) {
339 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
340 gp
->net_stats
.collisions
+= 0x10000;
343 if (txmac_stat
& MAC_TXSTAT_LCE
) {
344 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
345 gp
->net_stats
.collisions
+= 0x10000;
348 /* We do not keep track of MAC_TXSTAT_FCE and
349 * MAC_TXSTAT_PCE events.
354 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
355 * so we do the following.
357 * If any part of the reset goes wrong, we return 1 and that causes the
358 * whole chip to be reset.
360 static int gem_rxmac_reset(struct gem
*gp
)
362 struct net_device
*dev
= gp
->dev
;
367 /* First, reset & disable MAC RX. */
368 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
369 for (limit
= 0; limit
< 5000; limit
++) {
370 if (!(readl(gp
->regs
+ MAC_RXRST
) & MAC_RXRST_CMD
))
375 printk(KERN_ERR
"%s: RX MAC will not reset, resetting whole "
376 "chip.\n", dev
->name
);
380 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
381 gp
->regs
+ MAC_RXCFG
);
382 for (limit
= 0; limit
< 5000; limit
++) {
383 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
388 printk(KERN_ERR
"%s: RX MAC will not disable, resetting whole "
389 "chip.\n", dev
->name
);
393 /* Second, disable RX DMA. */
394 writel(0, gp
->regs
+ RXDMA_CFG
);
395 for (limit
= 0; limit
< 5000; limit
++) {
396 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
401 printk(KERN_ERR
"%s: RX DMA will not disable, resetting whole "
402 "chip.\n", dev
->name
);
408 /* Execute RX reset command. */
409 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
410 gp
->regs
+ GREG_SWRST
);
411 for (limit
= 0; limit
< 5000; limit
++) {
412 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
417 printk(KERN_ERR
"%s: RX reset command will not execute, resetting "
418 "whole chip.\n", dev
->name
);
422 /* Refresh the RX ring. */
423 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
424 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
426 if (gp
->rx_skbs
[i
] == NULL
) {
427 printk(KERN_ERR
"%s: Parts of RX ring empty, resetting "
428 "whole chip.\n", dev
->name
);
432 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
434 gp
->rx_new
= gp
->rx_old
= 0;
436 /* Now we must reprogram the rest of RX unit. */
437 desc_dma
= (u64
) gp
->gblock_dvma
;
438 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
439 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
440 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
441 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
442 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
443 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
444 writel(val
, gp
->regs
+ RXDMA_CFG
);
445 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
446 writel(((5 & RXDMA_BLANK_IPKTS
) |
447 ((8 << 12) & RXDMA_BLANK_ITIME
)),
448 gp
->regs
+ RXDMA_BLANK
);
450 writel(((5 & RXDMA_BLANK_IPKTS
) |
451 ((4 << 12) & RXDMA_BLANK_ITIME
)),
452 gp
->regs
+ RXDMA_BLANK
);
453 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
454 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
455 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
456 val
= readl(gp
->regs
+ RXDMA_CFG
);
457 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
458 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
459 val
= readl(gp
->regs
+ MAC_RXCFG
);
460 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
465 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
467 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
470 if (netif_msg_intr(gp
))
471 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
472 gp
->dev
->name
, rxmac_stat
);
474 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
475 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
477 printk(KERN_ERR
"%s: RX MAC fifo overflow smac[%08x].\n",
479 gp
->net_stats
.rx_over_errors
++;
480 gp
->net_stats
.rx_fifo_errors
++;
482 ret
= gem_rxmac_reset(gp
);
485 if (rxmac_stat
& MAC_RXSTAT_ACE
)
486 gp
->net_stats
.rx_frame_errors
+= 0x10000;
488 if (rxmac_stat
& MAC_RXSTAT_CCE
)
489 gp
->net_stats
.rx_crc_errors
+= 0x10000;
491 if (rxmac_stat
& MAC_RXSTAT_LCE
)
492 gp
->net_stats
.rx_length_errors
+= 0x10000;
494 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
500 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
502 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
504 if (netif_msg_intr(gp
))
505 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
506 gp
->dev
->name
, mac_cstat
);
508 /* This interrupt is just for pause frame and pause
509 * tracking. It is useful for diagnostics and debug
510 * but probably by default we will mask these events.
512 if (mac_cstat
& MAC_CSTAT_PS
)
515 if (mac_cstat
& MAC_CSTAT_PRCV
)
516 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
521 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
523 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
524 u32 reg_val
, changed_bits
;
526 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
527 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
529 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
534 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
536 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
538 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
539 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
540 printk(KERN_ERR
"%s: PCI error [%04x] ",
541 dev
->name
, pci_estat
);
543 if (pci_estat
& GREG_PCIESTAT_BADACK
)
544 printk("<No ACK64# during ABS64 cycle> ");
545 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
546 printk("<Delayed transaction timeout> ");
547 if (pci_estat
& GREG_PCIESTAT_OTHER
)
551 pci_estat
|= GREG_PCIESTAT_OTHER
;
552 printk(KERN_ERR
"%s: PCI error\n", dev
->name
);
555 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
558 /* Interrogate PCI config space for the
561 pci_read_config_word(gp
->pdev
, PCI_STATUS
,
563 printk(KERN_ERR
"%s: Read PCI cfg space status [%04x]\n",
564 dev
->name
, pci_cfg_stat
);
565 if (pci_cfg_stat
& PCI_STATUS_PARITY
)
566 printk(KERN_ERR
"%s: PCI parity error detected.\n",
568 if (pci_cfg_stat
& PCI_STATUS_SIG_TARGET_ABORT
)
569 printk(KERN_ERR
"%s: PCI target abort.\n",
571 if (pci_cfg_stat
& PCI_STATUS_REC_TARGET_ABORT
)
572 printk(KERN_ERR
"%s: PCI master acks target abort.\n",
574 if (pci_cfg_stat
& PCI_STATUS_REC_MASTER_ABORT
)
575 printk(KERN_ERR
"%s: PCI master abort.\n",
577 if (pci_cfg_stat
& PCI_STATUS_SIG_SYSTEM_ERROR
)
578 printk(KERN_ERR
"%s: PCI system error SERR#.\n",
580 if (pci_cfg_stat
& PCI_STATUS_DETECTED_PARITY
)
581 printk(KERN_ERR
"%s: PCI parity error.\n",
584 /* Write the error bits back to clear them. */
585 pci_cfg_stat
&= (PCI_STATUS_PARITY
|
586 PCI_STATUS_SIG_TARGET_ABORT
|
587 PCI_STATUS_REC_TARGET_ABORT
|
588 PCI_STATUS_REC_MASTER_ABORT
|
589 PCI_STATUS_SIG_SYSTEM_ERROR
|
590 PCI_STATUS_DETECTED_PARITY
);
591 pci_write_config_word(gp
->pdev
,
592 PCI_STATUS
, pci_cfg_stat
);
595 /* For all PCI errors, we should reset the chip. */
599 /* All non-normal interrupt conditions get serviced here.
600 * Returns non-zero if we should just exit the interrupt
601 * handler right now (ie. if we reset the card which invalidates
602 * all of the other original irq status bits).
604 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
606 if (gem_status
& GREG_STAT_RXNOBUF
) {
607 /* Frame arrived, no free RX buffers available. */
608 if (netif_msg_rx_err(gp
))
609 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
611 gp
->net_stats
.rx_dropped
++;
614 if (gem_status
& GREG_STAT_RXTAGERR
) {
615 /* corrupt RX tag framing */
616 if (netif_msg_rx_err(gp
))
617 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
619 gp
->net_stats
.rx_errors
++;
624 if (gem_status
& GREG_STAT_PCS
) {
625 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
629 if (gem_status
& GREG_STAT_TXMAC
) {
630 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
634 if (gem_status
& GREG_STAT_RXMAC
) {
635 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
639 if (gem_status
& GREG_STAT_MAC
) {
640 if (gem_mac_interrupt(dev
, gp
, gem_status
))
644 if (gem_status
& GREG_STAT_MIF
) {
645 if (gem_mif_interrupt(dev
, gp
, gem_status
))
649 if (gem_status
& GREG_STAT_PCIERR
) {
650 if (gem_pci_interrupt(dev
, gp
, gem_status
))
657 gp
->reset_task_pending
= 1;
658 schedule_work(&gp
->reset_task
);
663 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
667 if (netif_msg_intr(gp
))
668 printk(KERN_DEBUG
"%s: tx interrupt, gem_status: 0x%x\n",
669 gp
->dev
->name
, gem_status
);
672 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
673 while (entry
!= limit
) {
680 if (netif_msg_tx_done(gp
))
681 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
682 gp
->dev
->name
, entry
);
683 skb
= gp
->tx_skbs
[entry
];
684 if (skb_shinfo(skb
)->nr_frags
) {
685 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
689 last
&= (TX_RING_SIZE
- 1);
691 walk
= NEXT_TX(walk
);
700 gp
->tx_skbs
[entry
] = NULL
;
701 gp
->net_stats
.tx_bytes
+= skb
->len
;
703 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
704 txd
= &gp
->init_block
->txd
[entry
];
706 dma_addr
= le64_to_cpu(txd
->buffer
);
707 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
709 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
710 entry
= NEXT_TX(entry
);
713 gp
->net_stats
.tx_packets
++;
714 dev_kfree_skb_irq(skb
);
718 if (netif_queue_stopped(dev
) &&
719 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
720 netif_wake_queue(dev
);
723 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
725 int cluster_start
, curr
, count
, kick
;
727 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
731 while (curr
!= limit
) {
732 curr
= NEXT_RX(curr
);
734 struct gem_rxd
*rxd
=
735 &gp
->init_block
->rxd
[cluster_start
];
737 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
739 cluster_start
= NEXT_RX(cluster_start
);
740 if (cluster_start
== curr
)
749 writel(kick
, gp
->regs
+ RXDMA_KICK
);
753 static int gem_rx(struct gem
*gp
, int work_to_do
)
755 int entry
, drops
, work_done
= 0;
758 if (netif_msg_rx_status(gp
))
759 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
760 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
764 done
= readl(gp
->regs
+ RXDMA_DONE
);
766 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
768 u64 status
= cpu_to_le64(rxd
->status_word
);
772 if ((status
& RXDCTRL_OWN
) != 0)
775 if (work_done
>= RX_RING_SIZE
|| work_done
>= work_to_do
)
778 /* When writing back RX descriptor, GEM writes status
779 * then buffer address, possibly in seperate transactions.
780 * If we don't wait for the chip to write both, we could
781 * post a new buffer to this descriptor then have GEM spam
782 * on the buffer address. We sync on the RX completion
783 * register to prevent this from happening.
786 done
= readl(gp
->regs
+ RXDMA_DONE
);
791 /* We can now account for the work we're about to do */
794 skb
= gp
->rx_skbs
[entry
];
796 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
797 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
798 gp
->net_stats
.rx_errors
++;
800 gp
->net_stats
.rx_length_errors
++;
801 if (len
& RXDCTRL_BAD
)
802 gp
->net_stats
.rx_crc_errors
++;
804 /* We'll just return it to GEM. */
806 gp
->net_stats
.rx_dropped
++;
810 dma_addr
= cpu_to_le64(rxd
->buffer
);
811 if (len
> RX_COPY_THRESHOLD
) {
812 struct sk_buff
*new_skb
;
814 new_skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
815 if (new_skb
== NULL
) {
819 pci_unmap_page(gp
->pdev
, dma_addr
,
820 RX_BUF_ALLOC_SIZE(gp
),
822 gp
->rx_skbs
[entry
] = new_skb
;
823 new_skb
->dev
= gp
->dev
;
824 skb_put(new_skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
825 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
826 virt_to_page(new_skb
->data
),
827 offset_in_page(new_skb
->data
),
828 RX_BUF_ALLOC_SIZE(gp
),
829 PCI_DMA_FROMDEVICE
));
830 skb_reserve(new_skb
, RX_OFFSET
);
832 /* Trim the original skb for the netif. */
835 struct sk_buff
*copy_skb
= dev_alloc_skb(len
+ 2);
837 if (copy_skb
== NULL
) {
842 copy_skb
->dev
= gp
->dev
;
843 skb_reserve(copy_skb
, 2);
844 skb_put(copy_skb
, len
);
845 pci_dma_sync_single_for_cpu(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
846 memcpy(copy_skb
->data
, skb
->data
, len
);
847 pci_dma_sync_single_for_device(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
849 /* We'll reuse the original ring buffer. */
853 skb
->csum
= ntohs((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
854 skb
->ip_summed
= CHECKSUM_HW
;
855 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
857 netif_receive_skb(skb
);
859 gp
->net_stats
.rx_packets
++;
860 gp
->net_stats
.rx_bytes
+= len
;
861 gp
->dev
->last_rx
= jiffies
;
864 entry
= NEXT_RX(entry
);
867 gem_post_rxds(gp
, entry
);
872 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n",
878 static int gem_poll(struct net_device
*dev
, int *budget
)
880 struct gem
*gp
= dev
->priv
;
884 * NAPI locking nightmare: See comment at head of driver
886 spin_lock_irqsave(&gp
->lock
, flags
);
889 int work_to_do
, work_done
;
891 /* Handle anomalies */
892 if (gp
->status
& GREG_STAT_ABNORMAL
) {
893 if (gem_abnormal_irq(dev
, gp
, gp
->status
))
897 /* Run TX completion thread */
898 spin_lock(&gp
->tx_lock
);
899 gem_tx(dev
, gp
, gp
->status
);
900 spin_unlock(&gp
->tx_lock
);
902 spin_unlock_irqrestore(&gp
->lock
, flags
);
904 /* Run RX thread. We don't use any locking here,
905 * code willing to do bad things - like cleaning the
906 * rx ring - must call netif_poll_disable(), which
907 * schedule_timeout()'s if polling is already disabled.
909 work_to_do
= min(*budget
, dev
->quota
);
911 work_done
= gem_rx(gp
, work_to_do
);
913 *budget
-= work_done
;
914 dev
->quota
-= work_done
;
916 if (work_done
>= work_to_do
)
919 spin_lock_irqsave(&gp
->lock
, flags
);
921 gp
->status
= readl(gp
->regs
+ GREG_STAT
);
922 } while (gp
->status
& GREG_STAT_NAPI
);
924 __netif_rx_complete(dev
);
927 spin_unlock_irqrestore(&gp
->lock
, flags
);
931 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
933 struct net_device
*dev
= dev_id
;
934 struct gem
*gp
= dev
->priv
;
937 /* Swallow interrupts when shutting the chip down, though
938 * that shouldn't happen, we should have done free_irq() at
944 spin_lock_irqsave(&gp
->lock
, flags
);
946 if (netif_rx_schedule_prep(dev
)) {
947 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
949 if (gem_status
== 0) {
950 spin_unlock_irqrestore(&gp
->lock
, flags
);
953 gp
->status
= gem_status
;
954 gem_disable_ints(gp
);
955 __netif_rx_schedule(dev
);
958 spin_unlock_irqrestore(&gp
->lock
, flags
);
960 /* If polling was disabled at the time we received that
961 * interrupt, we may return IRQ_HANDLED here while we
962 * should return IRQ_NONE. No big deal...
967 #ifdef CONFIG_NET_POLL_CONTROLLER
968 static void gem_poll_controller(struct net_device
*dev
)
970 /* gem_interrupt is safe to reentrance so no need
971 * to disable_irq here.
973 gem_interrupt(dev
->irq
, dev
, NULL
);
977 static void gem_tx_timeout(struct net_device
*dev
)
979 struct gem
*gp
= dev
->priv
;
981 printk(KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
983 printk("%s: hrm.. hw not running !\n", dev
->name
);
986 printk(KERN_ERR
"%s: TX_STATE[%08x:%08x:%08x]\n",
988 readl(gp
->regs
+ TXDMA_CFG
),
989 readl(gp
->regs
+ MAC_TXSTAT
),
990 readl(gp
->regs
+ MAC_TXCFG
));
991 printk(KERN_ERR
"%s: RX_STATE[%08x:%08x:%08x]\n",
993 readl(gp
->regs
+ RXDMA_CFG
),
994 readl(gp
->regs
+ MAC_RXSTAT
),
995 readl(gp
->regs
+ MAC_RXCFG
));
997 spin_lock_irq(&gp
->lock
);
998 spin_lock(&gp
->tx_lock
);
1000 gp
->reset_task_pending
= 1;
1001 schedule_work(&gp
->reset_task
);
1003 spin_unlock(&gp
->tx_lock
);
1004 spin_unlock_irq(&gp
->lock
);
1007 static __inline__
int gem_intme(int entry
)
1009 /* Algorithm: IRQ every 1/2 of descriptors. */
1010 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
1016 static int gem_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1018 struct gem
*gp
= dev
->priv
;
1021 unsigned long flags
;
1024 if (skb
->ip_summed
== CHECKSUM_HW
) {
1025 u64 csum_start_off
, csum_stuff_off
;
1027 csum_start_off
= (u64
) (skb
->h
.raw
- skb
->data
);
1028 csum_stuff_off
= (u64
) ((skb
->h
.raw
+ skb
->csum
) - skb
->data
);
1030 ctrl
= (TXDCTRL_CENAB
|
1031 (csum_start_off
<< 15) |
1032 (csum_stuff_off
<< 21));
1035 local_irq_save(flags
);
1036 if (!spin_trylock(&gp
->tx_lock
)) {
1037 /* Tell upper layer to requeue */
1038 local_irq_restore(flags
);
1039 return NETDEV_TX_LOCKED
;
1041 /* We raced with gem_do_stop() */
1043 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1044 return NETDEV_TX_BUSY
;
1047 /* This is a hard error, log it. */
1048 if (TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
1049 netif_stop_queue(dev
);
1050 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1051 printk(KERN_ERR PFX
"%s: BUG! Tx Ring full when queue awake!\n",
1053 return NETDEV_TX_BUSY
;
1057 gp
->tx_skbs
[entry
] = skb
;
1059 if (skb_shinfo(skb
)->nr_frags
== 0) {
1060 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
1065 mapping
= pci_map_page(gp
->pdev
,
1066 virt_to_page(skb
->data
),
1067 offset_in_page(skb
->data
),
1068 len
, PCI_DMA_TODEVICE
);
1069 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
1070 if (gem_intme(entry
))
1071 ctrl
|= TXDCTRL_INTME
;
1072 txd
->buffer
= cpu_to_le64(mapping
);
1074 txd
->control_word
= cpu_to_le64(ctrl
);
1075 entry
= NEXT_TX(entry
);
1077 struct gem_txd
*txd
;
1080 dma_addr_t first_mapping
;
1081 int frag
, first_entry
= entry
;
1084 if (gem_intme(entry
))
1085 intme
|= TXDCTRL_INTME
;
1087 /* We must give this initial chunk to the device last.
1088 * Otherwise we could race with the device.
1090 first_len
= skb_headlen(skb
);
1091 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
1092 offset_in_page(skb
->data
),
1093 first_len
, PCI_DMA_TODEVICE
);
1094 entry
= NEXT_TX(entry
);
1096 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
1097 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
1102 len
= this_frag
->size
;
1103 mapping
= pci_map_page(gp
->pdev
,
1105 this_frag
->page_offset
,
1106 len
, PCI_DMA_TODEVICE
);
1108 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
1109 this_ctrl
|= TXDCTRL_EOF
;
1111 txd
= &gp
->init_block
->txd
[entry
];
1112 txd
->buffer
= cpu_to_le64(mapping
);
1114 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
1116 if (gem_intme(entry
))
1117 intme
|= TXDCTRL_INTME
;
1119 entry
= NEXT_TX(entry
);
1121 txd
= &gp
->init_block
->txd
[first_entry
];
1122 txd
->buffer
= cpu_to_le64(first_mapping
);
1125 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
1129 if (TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))
1130 netif_stop_queue(dev
);
1132 if (netif_msg_tx_queued(gp
))
1133 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
1134 dev
->name
, entry
, skb
->len
);
1136 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
1137 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1139 dev
->trans_start
= jiffies
;
1141 return NETDEV_TX_OK
;
1144 #define STOP_TRIES 32
1146 /* Must be invoked under gp->lock and gp->tx_lock. */
1147 static void gem_reset(struct gem
*gp
)
1152 /* Make sure we won't get any more interrupts */
1153 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1155 /* Reset the chip */
1156 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
1157 gp
->regs
+ GREG_SWRST
);
1163 val
= readl(gp
->regs
+ GREG_SWRST
);
1166 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1169 printk(KERN_ERR
"%s: SW reset is ghetto.\n", gp
->dev
->name
);
1172 /* Must be invoked under gp->lock and gp->tx_lock. */
1173 static void gem_start_dma(struct gem
*gp
)
1177 /* We are ready to rock, turn everything on. */
1178 val
= readl(gp
->regs
+ TXDMA_CFG
);
1179 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1180 val
= readl(gp
->regs
+ RXDMA_CFG
);
1181 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1182 val
= readl(gp
->regs
+ MAC_TXCFG
);
1183 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1184 val
= readl(gp
->regs
+ MAC_RXCFG
);
1185 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1187 (void) readl(gp
->regs
+ MAC_RXCFG
);
1190 gem_enable_ints(gp
);
1192 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1195 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1196 * actually stopped before about 4ms tho ...
1198 static void gem_stop_dma(struct gem
*gp
)
1202 /* We are done rocking, turn everything off. */
1203 val
= readl(gp
->regs
+ TXDMA_CFG
);
1204 writel(val
& ~TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1205 val
= readl(gp
->regs
+ RXDMA_CFG
);
1206 writel(val
& ~RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1207 val
= readl(gp
->regs
+ MAC_TXCFG
);
1208 writel(val
& ~MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1209 val
= readl(gp
->regs
+ MAC_RXCFG
);
1210 writel(val
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1212 (void) readl(gp
->regs
+ MAC_RXCFG
);
1214 /* Need to wait a bit ... done by the caller */
1218 /* Must be invoked under gp->lock and gp->tx_lock. */
1219 // XXX dbl check what that function should do when called on PCS PHY
1220 static void gem_begin_auto_negotiation(struct gem
*gp
, struct ethtool_cmd
*ep
)
1222 u32 advertise
, features
;
1227 if (gp
->phy_type
!= phy_mii_mdio0
&&
1228 gp
->phy_type
!= phy_mii_mdio1
)
1231 /* Setup advertise */
1232 if (found_mii_phy(gp
))
1233 features
= gp
->phy_mii
.def
->features
;
1237 advertise
= features
& ADVERTISE_MASK
;
1238 if (gp
->phy_mii
.advertising
!= 0)
1239 advertise
&= gp
->phy_mii
.advertising
;
1241 autoneg
= gp
->want_autoneg
;
1242 speed
= gp
->phy_mii
.speed
;
1243 duplex
= gp
->phy_mii
.duplex
;
1245 /* Setup link parameters */
1248 if (ep
->autoneg
== AUTONEG_ENABLE
) {
1249 advertise
= ep
->advertising
;
1254 duplex
= ep
->duplex
;
1258 /* Sanitize settings based on PHY capabilities */
1259 if ((features
& SUPPORTED_Autoneg
) == 0)
1261 if (speed
== SPEED_1000
&&
1262 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1264 if (speed
== SPEED_100
&&
1265 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1267 if (duplex
== DUPLEX_FULL
&&
1268 !(features
& (SUPPORTED_1000baseT_Full
|
1269 SUPPORTED_100baseT_Full
|
1270 SUPPORTED_10baseT_Full
)))
1271 duplex
= DUPLEX_HALF
;
1275 /* If we are asleep, we don't try to actually setup the PHY, we
1276 * just store the settings
1279 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1280 gp
->phy_mii
.speed
= speed
;
1281 gp
->phy_mii
.duplex
= duplex
;
1285 /* Configure PHY & start aneg */
1286 gp
->want_autoneg
= autoneg
;
1288 if (found_mii_phy(gp
))
1289 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1290 gp
->lstate
= link_aneg
;
1292 if (found_mii_phy(gp
))
1293 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1294 gp
->lstate
= link_force_ok
;
1298 gp
->timer_ticks
= 0;
1299 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1302 /* A link-up condition has occurred, initialize and enable the
1305 * Must be invoked under gp->lock and gp->tx_lock.
1307 static int gem_set_link_modes(struct gem
*gp
)
1310 int full_duplex
, speed
, pause
;
1316 if (found_mii_phy(gp
)) {
1317 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1319 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1320 speed
= gp
->phy_mii
.speed
;
1321 pause
= gp
->phy_mii
.pause
;
1322 } else if (gp
->phy_type
== phy_serialink
||
1323 gp
->phy_type
== phy_serdes
) {
1324 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1326 if (pcs_lpa
& PCS_MIIADV_FD
)
1331 if (netif_msg_link(gp
))
1332 printk(KERN_INFO
"%s: Link is up at %d Mbps, %s-duplex.\n",
1333 gp
->dev
->name
, speed
, (full_duplex
? "full" : "half"));
1338 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1340 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1342 /* MAC_TXCFG_NBO must be zero. */
1344 writel(val
, gp
->regs
+ MAC_TXCFG
);
1346 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1348 (gp
->phy_type
== phy_mii_mdio0
||
1349 gp
->phy_type
== phy_mii_mdio1
)) {
1350 val
|= MAC_XIFCFG_DISE
;
1351 } else if (full_duplex
) {
1352 val
|= MAC_XIFCFG_FLED
;
1355 if (speed
== SPEED_1000
)
1356 val
|= (MAC_XIFCFG_GMII
);
1358 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1360 /* If gigabit and half-duplex, enable carrier extension
1361 * mode. Else, disable it.
1363 if (speed
== SPEED_1000
&& !full_duplex
) {
1364 val
= readl(gp
->regs
+ MAC_TXCFG
);
1365 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1367 val
= readl(gp
->regs
+ MAC_RXCFG
);
1368 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1370 val
= readl(gp
->regs
+ MAC_TXCFG
);
1371 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1373 val
= readl(gp
->regs
+ MAC_RXCFG
);
1374 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1377 if (gp
->phy_type
== phy_serialink
||
1378 gp
->phy_type
== phy_serdes
) {
1379 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1381 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1385 if (netif_msg_link(gp
)) {
1387 printk(KERN_INFO
"%s: Pause is enabled "
1388 "(rxfifo: %d off: %d on: %d)\n",
1394 printk(KERN_INFO
"%s: Pause is disabled\n",
1400 writel(512, gp
->regs
+ MAC_STIME
);
1402 writel(64, gp
->regs
+ MAC_STIME
);
1403 val
= readl(gp
->regs
+ MAC_MCCFG
);
1405 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1407 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1408 writel(val
, gp
->regs
+ MAC_MCCFG
);
1415 /* Must be invoked under gp->lock and gp->tx_lock. */
1416 static int gem_mdio_link_not_up(struct gem
*gp
)
1418 switch (gp
->lstate
) {
1419 case link_force_ret
:
1420 if (netif_msg_link(gp
))
1421 printk(KERN_INFO
"%s: Autoneg failed again, keeping"
1422 " forced mode\n", gp
->dev
->name
);
1423 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1424 gp
->last_forced_speed
, DUPLEX_HALF
);
1425 gp
->timer_ticks
= 5;
1426 gp
->lstate
= link_force_ok
;
1429 /* We try forced modes after a failed aneg only on PHYs that don't
1430 * have "magic_aneg" bit set, which means they internally do the
1431 * while forced-mode thingy. On these, we just restart aneg
1433 if (gp
->phy_mii
.def
->magic_aneg
)
1435 if (netif_msg_link(gp
))
1436 printk(KERN_INFO
"%s: switching to forced 100bt\n",
1438 /* Try forced modes. */
1439 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1441 gp
->timer_ticks
= 5;
1442 gp
->lstate
= link_force_try
;
1444 case link_force_try
:
1445 /* Downgrade from 100 to 10 Mbps if necessary.
1446 * If already at 10Mbps, warn user about the
1447 * situation every 10 ticks.
1449 if (gp
->phy_mii
.speed
== SPEED_100
) {
1450 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1452 gp
->timer_ticks
= 5;
1453 if (netif_msg_link(gp
))
1454 printk(KERN_INFO
"%s: switching to forced 10bt\n",
1464 static void gem_link_timer(unsigned long data
)
1466 struct gem
*gp
= (struct gem
*) data
;
1467 int restart_aneg
= 0;
1472 spin_lock_irq(&gp
->lock
);
1473 spin_lock(&gp
->tx_lock
);
1476 /* If the reset task is still pending, we just
1477 * reschedule the link timer
1479 if (gp
->reset_task_pending
)
1482 if (gp
->phy_type
== phy_serialink
||
1483 gp
->phy_type
== phy_serdes
) {
1484 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1486 if (!(val
& PCS_MIISTAT_LS
))
1487 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1489 if ((val
& PCS_MIISTAT_LS
) != 0) {
1490 gp
->lstate
= link_up
;
1491 netif_carrier_on(gp
->dev
);
1492 (void)gem_set_link_modes(gp
);
1496 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1497 /* Ok, here we got a link. If we had it due to a forced
1498 * fallback, and we were configured for autoneg, we do
1499 * retry a short autoneg pass. If you know your hub is
1500 * broken, use ethtool ;)
1502 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1503 gp
->lstate
= link_force_ret
;
1504 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1505 gp
->timer_ticks
= 5;
1506 if (netif_msg_link(gp
))
1507 printk(KERN_INFO
"%s: Got link after fallback, retrying"
1508 " autoneg once...\n", gp
->dev
->name
);
1509 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1510 } else if (gp
->lstate
!= link_up
) {
1511 gp
->lstate
= link_up
;
1512 netif_carrier_on(gp
->dev
);
1513 if (gem_set_link_modes(gp
))
1517 /* If the link was previously up, we restart the
1520 if (gp
->lstate
== link_up
) {
1521 gp
->lstate
= link_down
;
1522 if (netif_msg_link(gp
))
1523 printk(KERN_INFO
"%s: Link down\n",
1525 netif_carrier_off(gp
->dev
);
1526 gp
->reset_task_pending
= 1;
1527 schedule_work(&gp
->reset_task
);
1529 } else if (++gp
->timer_ticks
> 10) {
1530 if (found_mii_phy(gp
))
1531 restart_aneg
= gem_mdio_link_not_up(gp
);
1537 gem_begin_auto_negotiation(gp
, NULL
);
1541 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1544 spin_unlock(&gp
->tx_lock
);
1545 spin_unlock_irq(&gp
->lock
);
1548 /* Must be invoked under gp->lock and gp->tx_lock. */
1549 static void gem_clean_rings(struct gem
*gp
)
1551 struct gem_init_block
*gb
= gp
->init_block
;
1552 struct sk_buff
*skb
;
1554 dma_addr_t dma_addr
;
1556 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1557 struct gem_rxd
*rxd
;
1560 if (gp
->rx_skbs
[i
] != NULL
) {
1561 skb
= gp
->rx_skbs
[i
];
1562 dma_addr
= le64_to_cpu(rxd
->buffer
);
1563 pci_unmap_page(gp
->pdev
, dma_addr
,
1564 RX_BUF_ALLOC_SIZE(gp
),
1565 PCI_DMA_FROMDEVICE
);
1566 dev_kfree_skb_any(skb
);
1567 gp
->rx_skbs
[i
] = NULL
;
1569 rxd
->status_word
= 0;
1574 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1575 if (gp
->tx_skbs
[i
] != NULL
) {
1576 struct gem_txd
*txd
;
1579 skb
= gp
->tx_skbs
[i
];
1580 gp
->tx_skbs
[i
] = NULL
;
1582 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1583 int ent
= i
& (TX_RING_SIZE
- 1);
1585 txd
= &gb
->txd
[ent
];
1586 dma_addr
= le64_to_cpu(txd
->buffer
);
1587 pci_unmap_page(gp
->pdev
, dma_addr
,
1588 le64_to_cpu(txd
->control_word
) &
1589 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1591 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1594 dev_kfree_skb_any(skb
);
1599 /* Must be invoked under gp->lock and gp->tx_lock. */
1600 static void gem_init_rings(struct gem
*gp
)
1602 struct gem_init_block
*gb
= gp
->init_block
;
1603 struct net_device
*dev
= gp
->dev
;
1605 dma_addr_t dma_addr
;
1607 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1609 gem_clean_rings(gp
);
1611 gp
->rx_buf_sz
= max(dev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
,
1612 (unsigned)VLAN_ETH_FRAME_LEN
);
1614 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1615 struct sk_buff
*skb
;
1616 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1618 skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
1621 rxd
->status_word
= 0;
1625 gp
->rx_skbs
[i
] = skb
;
1627 skb_put(skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
1628 dma_addr
= pci_map_page(gp
->pdev
,
1629 virt_to_page(skb
->data
),
1630 offset_in_page(skb
->data
),
1631 RX_BUF_ALLOC_SIZE(gp
),
1632 PCI_DMA_FROMDEVICE
);
1633 rxd
->buffer
= cpu_to_le64(dma_addr
);
1635 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1636 skb_reserve(skb
, RX_OFFSET
);
1639 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1640 struct gem_txd
*txd
= &gb
->txd
[i
];
1642 txd
->control_word
= 0;
1649 /* Init PHY interface and start link poll state machine */
1650 static void gem_init_phy(struct gem
*gp
)
1654 /* Revert MIF CFG setting done on stop_phy */
1655 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1656 mifcfg
&= ~MIF_CFG_BBMODE
;
1657 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1659 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1662 /* Those delay sucks, the HW seem to love them though, I'll
1663 * serisouly consider breaking some locks here to be able
1664 * to schedule instead
1666 for (i
= 0; i
< 3; i
++) {
1667 #ifdef CONFIG_PPC_PMAC
1668 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1671 /* Some PHYs used by apple have problem getting back to us,
1672 * we do an additional reset here
1674 phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1676 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1679 printk(KERN_WARNING
"%s: GMAC PHY not responding !\n",
1684 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1685 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1688 /* Init datapath mode register. */
1689 if (gp
->phy_type
== phy_mii_mdio0
||
1690 gp
->phy_type
== phy_mii_mdio1
) {
1691 val
= PCS_DMODE_MGM
;
1692 } else if (gp
->phy_type
== phy_serialink
) {
1693 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1695 val
= PCS_DMODE_ESM
;
1698 writel(val
, gp
->regs
+ PCS_DMODE
);
1701 if (gp
->phy_type
== phy_mii_mdio0
||
1702 gp
->phy_type
== phy_mii_mdio1
) {
1703 // XXX check for errors
1704 mii_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1707 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1708 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1713 /* Reset PCS unit. */
1714 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1715 val
|= PCS_MIICTRL_RST
;
1716 writeb(val
, gp
->regs
+ PCS_MIICTRL
);
1719 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1725 printk(KERN_WARNING
"%s: PCS reset bit would not clear.\n",
1728 /* Make sure PCS is disabled while changing advertisement
1731 val
= readl(gp
->regs
+ PCS_CFG
);
1732 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1733 writel(val
, gp
->regs
+ PCS_CFG
);
1735 /* Advertise all capabilities except assymetric
1738 val
= readl(gp
->regs
+ PCS_MIIADV
);
1739 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1740 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1741 writel(val
, gp
->regs
+ PCS_MIIADV
);
1743 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1744 * and re-enable PCS.
1746 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1747 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1748 val
&= ~PCS_MIICTRL_WB
;
1749 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1751 val
= readl(gp
->regs
+ PCS_CFG
);
1752 val
|= PCS_CFG_ENABLE
;
1753 writel(val
, gp
->regs
+ PCS_CFG
);
1755 /* Make sure serialink loopback is off. The meaning
1756 * of this bit is logically inverted based upon whether
1757 * you are in Serialink or SERDES mode.
1759 val
= readl(gp
->regs
+ PCS_SCTRL
);
1760 if (gp
->phy_type
== phy_serialink
)
1761 val
&= ~PCS_SCTRL_LOOP
;
1763 val
|= PCS_SCTRL_LOOP
;
1764 writel(val
, gp
->regs
+ PCS_SCTRL
);
1767 /* Default aneg parameters */
1768 gp
->timer_ticks
= 0;
1769 gp
->lstate
= link_down
;
1770 netif_carrier_off(gp
->dev
);
1772 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1773 spin_lock_irq(&gp
->lock
);
1774 gem_begin_auto_negotiation(gp
, NULL
);
1775 spin_unlock_irq(&gp
->lock
);
1778 /* Must be invoked under gp->lock and gp->tx_lock. */
1779 static void gem_init_dma(struct gem
*gp
)
1781 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1784 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1785 writel(val
, gp
->regs
+ TXDMA_CFG
);
1787 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1788 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1789 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1791 writel(0, gp
->regs
+ TXDMA_KICK
);
1793 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1794 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
1795 writel(val
, gp
->regs
+ RXDMA_CFG
);
1797 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1798 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1800 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1802 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1803 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1804 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1806 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1807 writel(((5 & RXDMA_BLANK_IPKTS
) |
1808 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1809 gp
->regs
+ RXDMA_BLANK
);
1811 writel(((5 & RXDMA_BLANK_IPKTS
) |
1812 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1813 gp
->regs
+ RXDMA_BLANK
);
1816 /* Must be invoked under gp->lock and gp->tx_lock. */
1817 static u32
gem_setup_multicast(struct gem
*gp
)
1822 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1823 (gp
->dev
->mc_count
> 256)) {
1824 for (i
=0; i
<16; i
++)
1825 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1826 rxcfg
|= MAC_RXCFG_HFE
;
1827 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1828 rxcfg
|= MAC_RXCFG_PROM
;
1832 struct dev_mc_list
*dmi
= gp
->dev
->mc_list
;
1835 for (i
= 0; i
< 16; i
++)
1838 for (i
= 0; i
< gp
->dev
->mc_count
; i
++) {
1839 char *addrs
= dmi
->dmi_addr
;
1846 crc
= ether_crc_le(6, addrs
);
1848 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1850 for (i
=0; i
<16; i
++)
1851 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1852 rxcfg
|= MAC_RXCFG_HFE
;
1858 /* Must be invoked under gp->lock and gp->tx_lock. */
1859 static void gem_init_mac(struct gem
*gp
)
1861 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1863 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1865 writel(0x00, gp
->regs
+ MAC_IPG0
);
1866 writel(0x08, gp
->regs
+ MAC_IPG1
);
1867 writel(0x04, gp
->regs
+ MAC_IPG2
);
1868 writel(0x40, gp
->regs
+ MAC_STIME
);
1869 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1871 /* Ethernet payload + header + FCS + optional VLAN tag. */
1872 writel(0x20000000 | (gp
->rx_buf_sz
+ 4), gp
->regs
+ MAC_MAXFSZ
);
1874 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1875 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1876 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1877 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1879 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1881 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1882 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1883 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1885 writel(0, gp
->regs
+ MAC_ADDR3
);
1886 writel(0, gp
->regs
+ MAC_ADDR4
);
1887 writel(0, gp
->regs
+ MAC_ADDR5
);
1889 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1890 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1891 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1893 writel(0, gp
->regs
+ MAC_AFILT0
);
1894 writel(0, gp
->regs
+ MAC_AFILT1
);
1895 writel(0, gp
->regs
+ MAC_AFILT2
);
1896 writel(0, gp
->regs
+ MAC_AF21MSK
);
1897 writel(0, gp
->regs
+ MAC_AF0MSK
);
1899 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1901 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1903 writel(0, gp
->regs
+ MAC_NCOLL
);
1904 writel(0, gp
->regs
+ MAC_FASUCC
);
1905 writel(0, gp
->regs
+ MAC_ECOLL
);
1906 writel(0, gp
->regs
+ MAC_LCOLL
);
1907 writel(0, gp
->regs
+ MAC_DTIMER
);
1908 writel(0, gp
->regs
+ MAC_PATMPS
);
1909 writel(0, gp
->regs
+ MAC_RFCTR
);
1910 writel(0, gp
->regs
+ MAC_LERR
);
1911 writel(0, gp
->regs
+ MAC_AERR
);
1912 writel(0, gp
->regs
+ MAC_FCSERR
);
1913 writel(0, gp
->regs
+ MAC_RXCVERR
);
1915 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1916 * them once a link is established.
1918 writel(0, gp
->regs
+ MAC_TXCFG
);
1919 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1920 writel(0, gp
->regs
+ MAC_MCCFG
);
1921 writel(0, gp
->regs
+ MAC_XIFCFG
);
1923 /* Setup MAC interrupts. We want to get all of the interesting
1924 * counter expiration events, but we do not want to hear about
1925 * normal rx/tx as the DMA engine tells us that.
1927 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1928 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1930 /* Don't enable even the PAUSE interrupts for now, we
1931 * make no use of those events other than to record them.
1933 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1935 /* Don't enable GEM's WOL in normal operations
1938 writel(0, gp
->regs
+ WOL_WAKECSR
);
1941 /* Must be invoked under gp->lock and gp->tx_lock. */
1942 static void gem_init_pause_thresholds(struct gem
*gp
)
1946 /* Calculate pause thresholds. Setting the OFF threshold to the
1947 * full RX fifo size effectively disables PAUSE generation which
1948 * is what we do for 10/100 only GEMs which have FIFOs too small
1949 * to make real gains from PAUSE.
1951 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1952 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1954 int max_frame
= (gp
->rx_buf_sz
+ 4 + 64) & ~63;
1955 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1956 int on
= off
- max_frame
;
1958 gp
->rx_pause_off
= off
;
1959 gp
->rx_pause_on
= on
;
1963 /* Configure the chip "burst" DMA mode & enable some
1964 * HW bug fixes on Apple version
1967 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
1968 cfg
|= GREG_CFG_RONPAULBIT
| GREG_CFG_ENBUG2FIX
;
1969 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1970 cfg
|= GREG_CFG_IBURST
;
1972 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1973 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1974 writel(cfg
, gp
->regs
+ GREG_CFG
);
1976 /* If Infinite Burst didn't stick, then use different
1977 * thresholds (and Apple bug fixes don't exist)
1979 if (!(readl(gp
->regs
+ GREG_CFG
) & GREG_CFG_IBURST
)) {
1980 cfg
= ((2 << 1) & GREG_CFG_TXDMALIM
);
1981 cfg
|= ((8 << 6) & GREG_CFG_RXDMALIM
);
1982 writel(cfg
, gp
->regs
+ GREG_CFG
);
1986 static int gem_check_invariants(struct gem
*gp
)
1988 struct pci_dev
*pdev
= gp
->pdev
;
1991 /* On Apple's sungem, we can't rely on registers as the chip
1992 * was been powered down by the firmware. The PHY is looked
1995 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1996 gp
->phy_type
= phy_mii_mdio0
;
1997 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
1998 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2001 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
2002 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
2003 mif_cfg
|= MIF_CFG_MDI0
;
2004 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2005 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
2006 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
2008 /* We hard-code the PHY address so we can properly bring it out of
2009 * reset later on, we can't really probe it at this point, though
2010 * that isn't an issue.
2012 if (gp
->pdev
->device
== PCI_DEVICE_ID_APPLE_K2_GMAC
)
2013 gp
->mii_phy_addr
= 1;
2015 gp
->mii_phy_addr
= 0;
2020 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
2022 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2023 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
2024 /* One of the MII PHYs _must_ be present
2025 * as this chip has no gigabit PHY.
2027 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
2028 printk(KERN_ERR PFX
"RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2034 /* Determine initial PHY interface type guess. MDIO1 is the
2035 * external PHY and thus takes precedence over MDIO0.
2038 if (mif_cfg
& MIF_CFG_MDI1
) {
2039 gp
->phy_type
= phy_mii_mdio1
;
2040 mif_cfg
|= MIF_CFG_PSELECT
;
2041 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2042 } else if (mif_cfg
& MIF_CFG_MDI0
) {
2043 gp
->phy_type
= phy_mii_mdio0
;
2044 mif_cfg
&= ~MIF_CFG_PSELECT
;
2045 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2047 gp
->phy_type
= phy_serialink
;
2049 if (gp
->phy_type
== phy_mii_mdio1
||
2050 gp
->phy_type
== phy_mii_mdio0
) {
2053 for (i
= 0; i
< 32; i
++) {
2054 gp
->mii_phy_addr
= i
;
2055 if (phy_read(gp
, MII_BMCR
) != 0xffff)
2059 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
2060 printk(KERN_ERR PFX
"RIO MII phy will not respond.\n");
2063 gp
->phy_type
= phy_serdes
;
2067 /* Fetch the FIFO configurations now too. */
2068 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2069 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2071 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
2072 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
2073 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
2074 gp
->rx_fifo_sz
!= (20 * 1024)) {
2075 printk(KERN_ERR PFX
"GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2076 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2081 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
2082 gp
->rx_fifo_sz
!= (2 * 1024)) {
2083 printk(KERN_ERR PFX
"RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2084 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2087 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
2094 /* Must be invoked under gp->lock and gp->tx_lock. */
2095 static void gem_reinit_chip(struct gem
*gp
)
2097 /* Reset the chip */
2100 /* Make sure ints are disabled */
2101 gem_disable_ints(gp
);
2103 /* Allocate & setup ring buffers */
2106 /* Configure pause thresholds */
2107 gem_init_pause_thresholds(gp
);
2109 /* Init DMA & MAC engines */
2115 /* Must be invoked with no lock held. */
2116 static void gem_stop_phy(struct gem
*gp
, int wol
)
2119 unsigned long flags
;
2121 /* Let the chip settle down a bit, it seems that helps
2122 * for sleep mode on some models
2126 /* Make sure we aren't polling PHY status change. We
2127 * don't currently use that feature though
2129 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
2130 mifcfg
&= ~MIF_CFG_POLL
;
2131 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
2133 if (wol
&& gp
->has_wol
) {
2134 unsigned char *e
= &gp
->dev
->dev_addr
[0];
2137 /* Setup wake-on-lan for MAGIC packet */
2138 writel(MAC_RXCFG_HFE
| MAC_RXCFG_SFCS
| MAC_RXCFG_ENAB
,
2139 gp
->regs
+ MAC_RXCFG
);
2140 writel((e
[4] << 8) | e
[5], gp
->regs
+ WOL_MATCH0
);
2141 writel((e
[2] << 8) | e
[3], gp
->regs
+ WOL_MATCH1
);
2142 writel((e
[0] << 8) | e
[1], gp
->regs
+ WOL_MATCH2
);
2144 writel(WOL_MCOUNT_N
| WOL_MCOUNT_M
, gp
->regs
+ WOL_MCOUNT
);
2145 csr
= WOL_WAKECSR_ENABLE
;
2146 if ((readl(gp
->regs
+ MAC_XIFCFG
) & MAC_XIFCFG_GMII
) == 0)
2147 csr
|= WOL_WAKECSR_MII
;
2148 writel(csr
, gp
->regs
+ WOL_WAKECSR
);
2150 writel(0, gp
->regs
+ MAC_RXCFG
);
2151 (void)readl(gp
->regs
+ MAC_RXCFG
);
2152 /* Machine sleep will die in strange ways if we
2153 * dont wait a bit here, looks like the chip takes
2154 * some time to really shut down
2159 writel(0, gp
->regs
+ MAC_TXCFG
);
2160 writel(0, gp
->regs
+ MAC_XIFCFG
);
2161 writel(0, gp
->regs
+ TXDMA_CFG
);
2162 writel(0, gp
->regs
+ RXDMA_CFG
);
2165 spin_lock_irqsave(&gp
->lock
, flags
);
2166 spin_lock(&gp
->tx_lock
);
2168 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
2169 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
2170 spin_unlock(&gp
->tx_lock
);
2171 spin_unlock_irqrestore(&gp
->lock
, flags
);
2173 /* No need to take the lock here */
2175 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
2176 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
);
2178 /* According to Apple, we must set the MDIO pins to this begnign
2179 * state or we may 1) eat more current, 2) damage some PHYs
2181 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2182 writel(0, gp
->regs
+ MIF_BBCLK
);
2183 writel(0, gp
->regs
+ MIF_BBDATA
);
2184 writel(0, gp
->regs
+ MIF_BBOENAB
);
2185 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2186 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2191 static int gem_do_start(struct net_device
*dev
)
2193 struct gem
*gp
= dev
->priv
;
2194 unsigned long flags
;
2196 spin_lock_irqsave(&gp
->lock
, flags
);
2197 spin_lock(&gp
->tx_lock
);
2199 /* Enable the cell */
2202 /* Init & setup chip hardware */
2203 gem_reinit_chip(gp
);
2207 if (gp
->lstate
== link_up
) {
2208 netif_carrier_on(gp
->dev
);
2209 gem_set_link_modes(gp
);
2212 netif_wake_queue(gp
->dev
);
2214 spin_unlock(&gp
->tx_lock
);
2215 spin_unlock_irqrestore(&gp
->lock
, flags
);
2217 if (request_irq(gp
->pdev
->irq
, gem_interrupt
,
2218 SA_SHIRQ
, dev
->name
, (void *)dev
)) {
2219 printk(KERN_ERR
"%s: failed to request irq !\n", gp
->dev
->name
);
2221 spin_lock_irqsave(&gp
->lock
, flags
);
2222 spin_lock(&gp
->tx_lock
);
2226 gem_clean_rings(gp
);
2229 spin_unlock(&gp
->tx_lock
);
2230 spin_unlock_irqrestore(&gp
->lock
, flags
);
2238 static void gem_do_stop(struct net_device
*dev
, int wol
)
2240 struct gem
*gp
= dev
->priv
;
2241 unsigned long flags
;
2243 spin_lock_irqsave(&gp
->lock
, flags
);
2244 spin_lock(&gp
->tx_lock
);
2248 /* Stop netif queue */
2249 netif_stop_queue(dev
);
2251 /* Make sure ints are disabled */
2252 gem_disable_ints(gp
);
2254 /* We can drop the lock now */
2255 spin_unlock(&gp
->tx_lock
);
2256 spin_unlock_irqrestore(&gp
->lock
, flags
);
2258 /* If we are going to sleep with WOL */
2265 /* Get rid of rings */
2266 gem_clean_rings(gp
);
2268 /* No irq needed anymore */
2269 free_irq(gp
->pdev
->irq
, (void *) dev
);
2271 /* Cell not needed neither if no WOL */
2273 spin_lock_irqsave(&gp
->lock
, flags
);
2275 spin_unlock_irqrestore(&gp
->lock
, flags
);
2279 static void gem_reset_task(void *data
)
2281 struct gem
*gp
= (struct gem
*) data
;
2285 netif_poll_disable(gp
->dev
);
2287 spin_lock_irq(&gp
->lock
);
2288 spin_lock(&gp
->tx_lock
);
2290 if (gp
->running
== 0)
2294 netif_stop_queue(gp
->dev
);
2296 /* Reset the chip & rings */
2297 gem_reinit_chip(gp
);
2298 if (gp
->lstate
== link_up
)
2299 gem_set_link_modes(gp
);
2300 netif_wake_queue(gp
->dev
);
2303 gp
->reset_task_pending
= 0;
2305 spin_unlock(&gp
->tx_lock
);
2306 spin_unlock_irq(&gp
->lock
);
2308 netif_poll_enable(gp
->dev
);
2314 static int gem_open(struct net_device
*dev
)
2316 struct gem
*gp
= dev
->priv
;
2321 /* We need the cell enabled */
2323 rc
= gem_do_start(dev
);
2324 gp
->opened
= (rc
== 0);
2331 static int gem_close(struct net_device
*dev
)
2333 struct gem
*gp
= dev
->priv
;
2335 /* Note: we don't need to call netif_poll_disable() here because
2336 * our caller (dev_close) already did it for us
2343 gem_do_stop(dev
, 0);
2351 static int gem_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2353 struct net_device
*dev
= pci_get_drvdata(pdev
);
2354 struct gem
*gp
= dev
->priv
;
2355 unsigned long flags
;
2359 netif_poll_disable(dev
);
2361 printk(KERN_INFO
"%s: suspending, WakeOnLan %s\n",
2363 (gp
->wake_on_lan
&& gp
->opened
) ? "enabled" : "disabled");
2365 /* Keep the cell enabled during the entire operation */
2366 spin_lock_irqsave(&gp
->lock
, flags
);
2367 spin_lock(&gp
->tx_lock
);
2369 spin_unlock(&gp
->tx_lock
);
2370 spin_unlock_irqrestore(&gp
->lock
, flags
);
2372 /* If the driver is opened, we stop the MAC */
2374 /* Stop traffic, mark us closed */
2375 netif_device_detach(dev
);
2377 /* Switch off MAC, remember WOL setting */
2378 gp
->asleep_wol
= gp
->wake_on_lan
;
2379 gem_do_stop(dev
, gp
->asleep_wol
);
2383 /* Mark us asleep */
2387 /* Stop the link timer */
2388 del_timer_sync(&gp
->link_timer
);
2390 /* Now we release the semaphore to not block the reset task who
2391 * can take it too. We are marked asleep, so there will be no
2396 /* Wait for a pending reset task to complete */
2397 while (gp
->reset_task_pending
)
2399 flush_scheduled_work();
2401 /* Shut the PHY down eventually and setup WOL */
2402 gem_stop_phy(gp
, gp
->asleep_wol
);
2404 /* Make sure bus master is disabled */
2405 pci_disable_device(gp
->pdev
);
2407 /* Release the cell, no need to take a lock at this point since
2408 * nothing else can happen now
2415 static int gem_resume(struct pci_dev
*pdev
)
2417 struct net_device
*dev
= pci_get_drvdata(pdev
);
2418 struct gem
*gp
= dev
->priv
;
2419 unsigned long flags
;
2421 printk(KERN_INFO
"%s: resuming\n", dev
->name
);
2425 /* Keep the cell enabled during the entire operation, no need to
2426 * take a lock here tho since nothing else can happen while we are
2431 /* Make sure PCI access and bus master are enabled */
2432 if (pci_enable_device(gp
->pdev
)) {
2433 printk(KERN_ERR
"%s: Can't re-enable chip !\n",
2435 /* Put cell and forget it for now, it will be considered as
2436 * still asleep, a new sleep cycle may bring it back
2442 pci_set_master(gp
->pdev
);
2444 /* Reset everything */
2447 /* Mark us woken up */
2451 /* Bring the PHY back. Again, lock is useless at this point as
2452 * nothing can be happening until we restart the whole thing
2456 /* If we were opened, bring everything back */
2461 /* Re-attach net device */
2462 netif_device_attach(dev
);
2466 spin_lock_irqsave(&gp
->lock
, flags
);
2467 spin_lock(&gp
->tx_lock
);
2469 /* If we had WOL enabled, the cell clock was never turned off during
2470 * sleep, so we end up beeing unbalanced. Fix that here
2475 /* This function doesn't need to hold the cell, it will be held if the
2476 * driver is open by gem_do_start().
2480 spin_unlock(&gp
->tx_lock
);
2481 spin_unlock_irqrestore(&gp
->lock
, flags
);
2483 netif_poll_enable(dev
);
2489 #endif /* CONFIG_PM */
2491 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2493 struct gem
*gp
= dev
->priv
;
2494 struct net_device_stats
*stats
= &gp
->net_stats
;
2496 spin_lock_irq(&gp
->lock
);
2497 spin_lock(&gp
->tx_lock
);
2499 /* I have seen this being called while the PM was in progress,
2500 * so we shield against this
2503 stats
->rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2504 writel(0, gp
->regs
+ MAC_FCSERR
);
2506 stats
->rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2507 writel(0, gp
->regs
+ MAC_AERR
);
2509 stats
->rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2510 writel(0, gp
->regs
+ MAC_LERR
);
2512 stats
->tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2513 stats
->collisions
+=
2514 (readl(gp
->regs
+ MAC_ECOLL
) +
2515 readl(gp
->regs
+ MAC_LCOLL
));
2516 writel(0, gp
->regs
+ MAC_ECOLL
);
2517 writel(0, gp
->regs
+ MAC_LCOLL
);
2520 spin_unlock(&gp
->tx_lock
);
2521 spin_unlock_irq(&gp
->lock
);
2523 return &gp
->net_stats
;
2526 static void gem_set_multicast(struct net_device
*dev
)
2528 struct gem
*gp
= dev
->priv
;
2529 u32 rxcfg
, rxcfg_new
;
2533 spin_lock_irq(&gp
->lock
);
2534 spin_lock(&gp
->tx_lock
);
2539 netif_stop_queue(dev
);
2541 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2542 rxcfg_new
= gem_setup_multicast(gp
);
2544 rxcfg_new
|= MAC_RXCFG_SFCS
;
2546 gp
->mac_rx_cfg
= rxcfg_new
;
2548 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2549 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2555 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2558 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2560 netif_wake_queue(dev
);
2563 spin_unlock(&gp
->tx_lock
);
2564 spin_unlock_irq(&gp
->lock
);
2567 /* Jumbo-grams don't seem to work :-( */
2568 #define GEM_MIN_MTU 68
2570 #define GEM_MAX_MTU 1500
2572 #define GEM_MAX_MTU 9000
2575 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
2577 struct gem
*gp
= dev
->priv
;
2579 if (new_mtu
< GEM_MIN_MTU
|| new_mtu
> GEM_MAX_MTU
)
2582 if (!netif_running(dev
) || !netif_device_present(dev
)) {
2583 /* We'll just catch it later when the
2584 * device is up'd or resumed.
2591 spin_lock_irq(&gp
->lock
);
2592 spin_lock(&gp
->tx_lock
);
2595 gem_reinit_chip(gp
);
2596 if (gp
->lstate
== link_up
)
2597 gem_set_link_modes(gp
);
2599 spin_unlock(&gp
->tx_lock
);
2600 spin_unlock_irq(&gp
->lock
);
2606 static void gem_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2608 struct gem
*gp
= dev
->priv
;
2610 strcpy(info
->driver
, DRV_NAME
);
2611 strcpy(info
->version
, DRV_VERSION
);
2612 strcpy(info
->bus_info
, pci_name(gp
->pdev
));
2615 static int gem_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2617 struct gem
*gp
= dev
->priv
;
2619 if (gp
->phy_type
== phy_mii_mdio0
||
2620 gp
->phy_type
== phy_mii_mdio1
) {
2621 if (gp
->phy_mii
.def
)
2622 cmd
->supported
= gp
->phy_mii
.def
->features
;
2624 cmd
->supported
= (SUPPORTED_10baseT_Half
|
2625 SUPPORTED_10baseT_Full
);
2627 /* XXX hardcoded stuff for now */
2628 cmd
->port
= PORT_MII
;
2629 cmd
->transceiver
= XCVR_EXTERNAL
;
2630 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2632 /* Return current PHY settings */
2633 spin_lock_irq(&gp
->lock
);
2634 cmd
->autoneg
= gp
->want_autoneg
;
2635 cmd
->speed
= gp
->phy_mii
.speed
;
2636 cmd
->duplex
= gp
->phy_mii
.duplex
;
2637 cmd
->advertising
= gp
->phy_mii
.advertising
;
2639 /* If we started with a forced mode, we don't have a default
2640 * advertise set, we need to return something sensible so
2641 * userland can re-enable autoneg properly.
2643 if (cmd
->advertising
== 0)
2644 cmd
->advertising
= cmd
->supported
;
2645 spin_unlock_irq(&gp
->lock
);
2646 } else { // XXX PCS ?
2648 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2649 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2651 cmd
->advertising
= cmd
->supported
;
2653 cmd
->duplex
= cmd
->port
= cmd
->phy_address
=
2654 cmd
->transceiver
= cmd
->autoneg
= 0;
2656 cmd
->maxtxpkt
= cmd
->maxrxpkt
= 0;
2661 static int gem_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2663 struct gem
*gp
= dev
->priv
;
2665 /* Verify the settings we care about. */
2666 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2667 cmd
->autoneg
!= AUTONEG_DISABLE
)
2670 if (cmd
->autoneg
== AUTONEG_ENABLE
&&
2671 cmd
->advertising
== 0)
2674 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2675 ((cmd
->speed
!= SPEED_1000
&&
2676 cmd
->speed
!= SPEED_100
&&
2677 cmd
->speed
!= SPEED_10
) ||
2678 (cmd
->duplex
!= DUPLEX_HALF
&&
2679 cmd
->duplex
!= DUPLEX_FULL
)))
2682 /* Apply settings and restart link process. */
2683 spin_lock_irq(&gp
->lock
);
2685 gem_begin_auto_negotiation(gp
, cmd
);
2687 spin_unlock_irq(&gp
->lock
);
2692 static int gem_nway_reset(struct net_device
*dev
)
2694 struct gem
*gp
= dev
->priv
;
2696 if (!gp
->want_autoneg
)
2699 /* Restart link process. */
2700 spin_lock_irq(&gp
->lock
);
2702 gem_begin_auto_negotiation(gp
, NULL
);
2704 spin_unlock_irq(&gp
->lock
);
2709 static u32
gem_get_msglevel(struct net_device
*dev
)
2711 struct gem
*gp
= dev
->priv
;
2712 return gp
->msg_enable
;
2715 static void gem_set_msglevel(struct net_device
*dev
, u32 value
)
2717 struct gem
*gp
= dev
->priv
;
2718 gp
->msg_enable
= value
;
2722 /* Add more when I understand how to program the chip */
2723 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2725 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2727 static void gem_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2729 struct gem
*gp
= dev
->priv
;
2731 /* Add more when I understand how to program the chip */
2733 wol
->supported
= WOL_SUPPORTED_MASK
;
2734 wol
->wolopts
= gp
->wake_on_lan
;
2741 static int gem_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2743 struct gem
*gp
= dev
->priv
;
2747 gp
->wake_on_lan
= wol
->wolopts
& WOL_SUPPORTED_MASK
;
2751 static struct ethtool_ops gem_ethtool_ops
= {
2752 .get_drvinfo
= gem_get_drvinfo
,
2753 .get_link
= ethtool_op_get_link
,
2754 .get_settings
= gem_get_settings
,
2755 .set_settings
= gem_set_settings
,
2756 .nway_reset
= gem_nway_reset
,
2757 .get_msglevel
= gem_get_msglevel
,
2758 .set_msglevel
= gem_set_msglevel
,
2759 .get_wol
= gem_get_wol
,
2760 .set_wol
= gem_set_wol
,
2763 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2765 struct gem
*gp
= dev
->priv
;
2766 struct mii_ioctl_data
*data
= if_mii(ifr
);
2767 int rc
= -EOPNOTSUPP
;
2768 unsigned long flags
;
2770 /* Hold the PM semaphore while doing ioctl's or we may collide
2771 * with power management.
2775 spin_lock_irqsave(&gp
->lock
, flags
);
2777 spin_unlock_irqrestore(&gp
->lock
, flags
);
2780 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2781 data
->phy_id
= gp
->mii_phy_addr
;
2782 /* Fallthrough... */
2784 case SIOCGMIIREG
: /* Read MII PHY register. */
2788 data
->val_out
= __phy_read(gp
, data
->phy_id
& 0x1f,
2789 data
->reg_num
& 0x1f);
2794 case SIOCSMIIREG
: /* Write MII PHY register. */
2795 if (!capable(CAP_NET_ADMIN
))
2797 else if (!gp
->running
)
2800 __phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f,
2807 spin_lock_irqsave(&gp
->lock
, flags
);
2809 spin_unlock_irqrestore(&gp
->lock
, flags
);
2816 #if (!defined(__sparc__) && !defined(CONFIG_PPC_PMAC))
2817 /* Fetch MAC address from vital product data of PCI ROM. */
2818 static void find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, unsigned char *dev_addr
)
2822 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2823 void __iomem
*p
= rom_base
+ this_offset
;
2826 if (readb(p
+ 0) != 0x90 ||
2827 readb(p
+ 1) != 0x00 ||
2828 readb(p
+ 2) != 0x09 ||
2829 readb(p
+ 3) != 0x4e ||
2830 readb(p
+ 4) != 0x41 ||
2831 readb(p
+ 5) != 0x06)
2837 for (i
= 0; i
< 6; i
++)
2838 dev_addr
[i
] = readb(p
+ i
);
2843 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2848 if (pdev
->resource
[PCI_ROM_RESOURCE
].parent
== NULL
) {
2849 if (pci_assign_resource(pdev
, PCI_ROM_RESOURCE
) < 0)
2853 pci_read_config_dword(pdev
, pdev
->rom_base_reg
, &rom_reg_orig
);
2854 pci_write_config_dword(pdev
, pdev
->rom_base_reg
,
2855 rom_reg_orig
| PCI_ROM_ADDRESS_ENABLE
);
2857 p
= ioremap(pci_resource_start(pdev
, PCI_ROM_RESOURCE
), (64 * 1024));
2858 if (p
!= NULL
&& readb(p
) == 0x55 && readb(p
+ 1) == 0xaa)
2859 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2864 pci_write_config_dword(pdev
, pdev
->rom_base_reg
, rom_reg_orig
);
2868 /* Sun MAC prefix then 3 random bytes. */
2872 get_random_bytes(dev_addr
+ 3, 3);
2875 #endif /* not Sparc and not PPC */
2877 static int __devinit
gem_get_device_address(struct gem
*gp
)
2879 #if defined(__sparc__) || defined(CONFIG_PPC_PMAC)
2880 struct net_device
*dev
= gp
->dev
;
2883 #if defined(__sparc__)
2884 struct pci_dev
*pdev
= gp
->pdev
;
2885 struct pcidev_cookie
*pcp
= pdev
->sysdata
;
2889 node
= pcp
->prom_node
;
2890 if (prom_getproplen(node
, "local-mac-address") == 6)
2891 prom_getproperty(node
, "local-mac-address",
2897 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, 6);
2898 #elif defined(CONFIG_PPC_PMAC)
2899 unsigned char *addr
;
2901 addr
= get_property(gp
->of_node
, "local-mac-address", NULL
);
2904 printk(KERN_ERR
"%s: can't get mac-address\n", dev
->name
);
2907 memcpy(dev
->dev_addr
, addr
, 6);
2909 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2914 static void __devexit
gem_remove_one(struct pci_dev
*pdev
)
2916 struct net_device
*dev
= pci_get_drvdata(pdev
);
2919 struct gem
*gp
= dev
->priv
;
2921 unregister_netdev(dev
);
2923 /* Stop the link timer */
2924 del_timer_sync(&gp
->link_timer
);
2926 /* We shouldn't need any locking here */
2929 /* Wait for a pending reset task to complete */
2930 while (gp
->reset_task_pending
)
2932 flush_scheduled_work();
2934 /* Shut the PHY down */
2935 gem_stop_phy(gp
, 0);
2939 /* Make sure bus master is disabled */
2940 pci_disable_device(gp
->pdev
);
2942 /* Free resources */
2943 pci_free_consistent(pdev
,
2944 sizeof(struct gem_init_block
),
2948 pci_release_regions(pdev
);
2951 pci_set_drvdata(pdev
, NULL
);
2955 static int __devinit
gem_init_one(struct pci_dev
*pdev
,
2956 const struct pci_device_id
*ent
)
2958 static int gem_version_printed
= 0;
2959 unsigned long gemreg_base
, gemreg_len
;
2960 struct net_device
*dev
;
2962 int i
, err
, pci_using_dac
;
2964 if (gem_version_printed
++ == 0)
2965 printk(KERN_INFO
"%s", version
);
2967 /* Apple gmac note: during probe, the chip is powered up by
2968 * the arch code to allow the code below to work (and to let
2969 * the chip be probed on the config space. It won't stay powered
2970 * up until the interface is brought up however, so we can't rely
2971 * on register configuration done at this point.
2973 err
= pci_enable_device(pdev
);
2975 printk(KERN_ERR PFX
"Cannot enable MMIO operation, "
2979 pci_set_master(pdev
);
2981 /* Configure DMA attributes. */
2983 /* All of the GEM documentation states that 64-bit DMA addressing
2984 * is fully supported and should work just fine. However the
2985 * front end for RIO based GEMs is different and only supports
2986 * 32-bit addressing.
2988 * For now we assume the various PPC GEMs are 32-bit only as well.
2990 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2991 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
2992 !pci_set_dma_mask(pdev
, (u64
) 0xffffffffffffffffULL
)) {
2995 err
= pci_set_dma_mask(pdev
, (u64
) 0xffffffff);
2997 printk(KERN_ERR PFX
"No usable DMA configuration, "
2999 goto err_disable_device
;
3004 gemreg_base
= pci_resource_start(pdev
, 0);
3005 gemreg_len
= pci_resource_len(pdev
, 0);
3007 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
3008 printk(KERN_ERR PFX
"Cannot find proper PCI device "
3009 "base address, aborting.\n");
3011 goto err_disable_device
;
3014 dev
= alloc_etherdev(sizeof(*gp
));
3016 printk(KERN_ERR PFX
"Etherdev alloc failed, aborting.\n");
3018 goto err_disable_device
;
3020 SET_MODULE_OWNER(dev
);
3021 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3025 err
= pci_request_regions(pdev
, DRV_NAME
);
3027 printk(KERN_ERR PFX
"Cannot obtain PCI resources, "
3029 goto err_out_free_netdev
;
3033 dev
->base_addr
= (long) pdev
;
3036 gp
->msg_enable
= DEFAULT_MSG
;
3038 spin_lock_init(&gp
->lock
);
3039 spin_lock_init(&gp
->tx_lock
);
3040 init_MUTEX(&gp
->pm_sem
);
3042 init_timer(&gp
->link_timer
);
3043 gp
->link_timer
.function
= gem_link_timer
;
3044 gp
->link_timer
.data
= (unsigned long) gp
;
3046 INIT_WORK(&gp
->reset_task
, gem_reset_task
, gp
);
3048 gp
->lstate
= link_down
;
3049 gp
->timer_ticks
= 0;
3050 netif_carrier_off(dev
);
3052 gp
->regs
= ioremap(gemreg_base
, gemreg_len
);
3053 if (gp
->regs
== 0UL) {
3054 printk(KERN_ERR PFX
"Cannot map device registers, "
3057 goto err_out_free_res
;
3060 /* On Apple, we want a reference to the Open Firmware device-tree
3061 * node. We use it for clock control.
3063 #ifdef CONFIG_PPC_PMAC
3064 gp
->of_node
= pci_device_to_OF_node(pdev
);
3067 /* Only Apple version supports WOL afaik */
3068 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
3071 /* Make sure cell is enabled */
3074 /* Make sure everything is stopped and in init state */
3077 /* Fill up the mii_phy structure (even if we won't use it) */
3078 gp
->phy_mii
.dev
= dev
;
3079 gp
->phy_mii
.mdio_read
= _phy_read
;
3080 gp
->phy_mii
.mdio_write
= _phy_write
;
3082 /* By default, we start with autoneg */
3083 gp
->want_autoneg
= 1;
3085 /* Check fifo sizes, PHY type, etc... */
3086 if (gem_check_invariants(gp
)) {
3088 goto err_out_iounmap
;
3091 /* It is guaranteed that the returned buffer will be at least
3092 * PAGE_SIZE aligned.
3094 gp
->init_block
= (struct gem_init_block
*)
3095 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
3097 if (!gp
->init_block
) {
3098 printk(KERN_ERR PFX
"Cannot allocate init block, "
3101 goto err_out_iounmap
;
3104 if (gem_get_device_address(gp
))
3105 goto err_out_free_consistent
;
3107 dev
->open
= gem_open
;
3108 dev
->stop
= gem_close
;
3109 dev
->hard_start_xmit
= gem_start_xmit
;
3110 dev
->get_stats
= gem_get_stats
;
3111 dev
->set_multicast_list
= gem_set_multicast
;
3112 dev
->do_ioctl
= gem_ioctl
;
3113 dev
->poll
= gem_poll
;
3115 dev
->ethtool_ops
= &gem_ethtool_ops
;
3116 dev
->tx_timeout
= gem_tx_timeout
;
3117 dev
->watchdog_timeo
= 5 * HZ
;
3118 dev
->change_mtu
= gem_change_mtu
;
3119 dev
->irq
= pdev
->irq
;
3121 #ifdef CONFIG_NET_POLL_CONTROLLER
3122 dev
->poll_controller
= gem_poll_controller
;
3125 /* Set that now, in case PM kicks in now */
3126 pci_set_drvdata(pdev
, dev
);
3128 /* Detect & init PHY, start autoneg, we release the cell now
3129 * too, it will be managed by whoever needs it
3133 spin_lock_irq(&gp
->lock
);
3135 spin_unlock_irq(&gp
->lock
);
3137 /* Register with kernel */
3138 if (register_netdev(dev
)) {
3139 printk(KERN_ERR PFX
"Cannot register net device, "
3142 goto err_out_free_consistent
;
3145 printk(KERN_INFO
"%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
3147 for (i
= 0; i
< 6; i
++)
3148 printk("%2.2x%c", dev
->dev_addr
[i
],
3149 i
== 5 ? ' ' : ':');
3152 if (gp
->phy_type
== phy_mii_mdio0
||
3153 gp
->phy_type
== phy_mii_mdio1
)
3154 printk(KERN_INFO
"%s: Found %s PHY\n", dev
->name
,
3155 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
3157 /* GEM can do it all... */
3158 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
| NETIF_F_LLTX
;
3160 dev
->features
|= NETIF_F_HIGHDMA
;
3164 err_out_free_consistent
:
3165 gem_remove_one(pdev
);
3171 pci_release_regions(pdev
);
3173 err_out_free_netdev
:
3176 pci_disable_device(pdev
);
3182 static struct pci_driver gem_driver
= {
3183 .name
= GEM_MODULE_NAME
,
3184 .id_table
= gem_pci_tbl
,
3185 .probe
= gem_init_one
,
3186 .remove
= __devexit_p(gem_remove_one
),
3188 .suspend
= gem_suspend
,
3189 .resume
= gem_resume
,
3190 #endif /* CONFIG_PM */
3193 static int __init
gem_init(void)
3195 return pci_module_init(&gem_driver
);
3198 static void __exit
gem_cleanup(void)
3200 pci_unregister_driver(&gem_driver
);
3203 module_init(gem_init
);
3204 module_exit(gem_cleanup
);