usb: no locking for reading descriptors in sysfs
[linux/fpc-iii.git] / drivers / hv / hv.c
blob11bca51ef5ff9ea9a522c2f1a9bf9c5a682bb2cd
1 /*
2 * Copyright (c) 2009, Microsoft Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Authors:
18 * Haiyang Zhang <haiyangz@microsoft.com>
19 * Hank Janssen <hjanssen@microsoft.com>
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/hyperv.h>
29 #include <linux/version.h>
30 #include <linux/interrupt.h>
31 #include <linux/clockchips.h>
32 #include <asm/hyperv.h>
33 #include <asm/mshyperv.h>
34 #include "hyperv_vmbus.h"
36 /* The one and only */
37 struct hv_context hv_context = {
38 .synic_initialized = false,
39 .hypercall_page = NULL,
42 #define HV_TIMER_FREQUENCY (10 * 1000 * 1000) /* 100ns period */
43 #define HV_MAX_MAX_DELTA_TICKS 0xffffffff
44 #define HV_MIN_DELTA_TICKS 1
47 * query_hypervisor_info - Get version info of the windows hypervisor
49 unsigned int host_info_eax;
50 unsigned int host_info_ebx;
51 unsigned int host_info_ecx;
52 unsigned int host_info_edx;
54 static int query_hypervisor_info(void)
56 unsigned int eax;
57 unsigned int ebx;
58 unsigned int ecx;
59 unsigned int edx;
60 unsigned int max_leaf;
61 unsigned int op;
64 * Its assumed that this is called after confirming that Viridian
65 * is present. Query id and revision.
67 eax = 0;
68 ebx = 0;
69 ecx = 0;
70 edx = 0;
71 op = HVCPUID_VENDOR_MAXFUNCTION;
72 cpuid(op, &eax, &ebx, &ecx, &edx);
74 max_leaf = eax;
76 if (max_leaf >= HVCPUID_VERSION) {
77 eax = 0;
78 ebx = 0;
79 ecx = 0;
80 edx = 0;
81 op = HVCPUID_VERSION;
82 cpuid(op, &eax, &ebx, &ecx, &edx);
83 host_info_eax = eax;
84 host_info_ebx = ebx;
85 host_info_ecx = ecx;
86 host_info_edx = edx;
88 return max_leaf;
92 * hv_do_hypercall- Invoke the specified hypercall
94 u64 hv_do_hypercall(u64 control, void *input, void *output)
96 u64 input_address = (input) ? virt_to_phys(input) : 0;
97 u64 output_address = (output) ? virt_to_phys(output) : 0;
98 void *hypercall_page = hv_context.hypercall_page;
99 #ifdef CONFIG_X86_64
100 u64 hv_status = 0;
102 if (!hypercall_page)
103 return (u64)ULLONG_MAX;
105 __asm__ __volatile__("mov %0, %%r8" : : "r" (output_address) : "r8");
106 __asm__ __volatile__("call *%3" : "=a" (hv_status) :
107 "c" (control), "d" (input_address),
108 "m" (hypercall_page));
110 return hv_status;
112 #else
114 u32 control_hi = control >> 32;
115 u32 control_lo = control & 0xFFFFFFFF;
116 u32 hv_status_hi = 1;
117 u32 hv_status_lo = 1;
118 u32 input_address_hi = input_address >> 32;
119 u32 input_address_lo = input_address & 0xFFFFFFFF;
120 u32 output_address_hi = output_address >> 32;
121 u32 output_address_lo = output_address & 0xFFFFFFFF;
123 if (!hypercall_page)
124 return (u64)ULLONG_MAX;
126 __asm__ __volatile__ ("call *%8" : "=d"(hv_status_hi),
127 "=a"(hv_status_lo) : "d" (control_hi),
128 "a" (control_lo), "b" (input_address_hi),
129 "c" (input_address_lo), "D"(output_address_hi),
130 "S"(output_address_lo), "m" (hypercall_page));
132 return hv_status_lo | ((u64)hv_status_hi << 32);
133 #endif /* !x86_64 */
135 EXPORT_SYMBOL_GPL(hv_do_hypercall);
137 #ifdef CONFIG_X86_64
138 static cycle_t read_hv_clock_tsc(struct clocksource *arg)
140 cycle_t current_tick;
141 struct ms_hyperv_tsc_page *tsc_pg = hv_context.tsc_page;
143 if (tsc_pg->tsc_sequence != 0) {
145 * Use the tsc page to compute the value.
148 while (1) {
149 cycle_t tmp;
150 u32 sequence = tsc_pg->tsc_sequence;
151 u64 cur_tsc;
152 u64 scale = tsc_pg->tsc_scale;
153 s64 offset = tsc_pg->tsc_offset;
155 rdtscll(cur_tsc);
156 /* current_tick = ((cur_tsc *scale) >> 64) + offset */
157 asm("mulq %3"
158 : "=d" (current_tick), "=a" (tmp)
159 : "a" (cur_tsc), "r" (scale));
161 current_tick += offset;
162 if (tsc_pg->tsc_sequence == sequence)
163 return current_tick;
165 if (tsc_pg->tsc_sequence != 0)
166 continue;
168 * Fallback using MSR method.
170 break;
173 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
174 return current_tick;
177 static struct clocksource hyperv_cs_tsc = {
178 .name = "hyperv_clocksource_tsc_page",
179 .rating = 425,
180 .read = read_hv_clock_tsc,
181 .mask = CLOCKSOURCE_MASK(64),
182 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
184 #endif
188 * hv_init - Main initialization routine.
190 * This routine must be called before any other routines in here are called
192 int hv_init(void)
194 int max_leaf;
195 union hv_x64_msr_hypercall_contents hypercall_msr;
196 void *virtaddr = NULL;
198 memset(hv_context.synic_event_page, 0, sizeof(void *) * NR_CPUS);
199 memset(hv_context.synic_message_page, 0,
200 sizeof(void *) * NR_CPUS);
201 memset(hv_context.post_msg_page, 0,
202 sizeof(void *) * NR_CPUS);
203 memset(hv_context.vp_index, 0,
204 sizeof(int) * NR_CPUS);
205 memset(hv_context.event_dpc, 0,
206 sizeof(void *) * NR_CPUS);
207 memset(hv_context.clk_evt, 0,
208 sizeof(void *) * NR_CPUS);
210 max_leaf = query_hypervisor_info();
213 * Write our OS ID.
215 hv_context.guestid = generate_guest_id(0, LINUX_VERSION_CODE, 0);
216 wrmsrl(HV_X64_MSR_GUEST_OS_ID, hv_context.guestid);
218 /* See if the hypercall page is already set */
219 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
221 virtaddr = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_EXEC);
223 if (!virtaddr)
224 goto cleanup;
226 hypercall_msr.enable = 1;
228 hypercall_msr.guest_physical_address = vmalloc_to_pfn(virtaddr);
229 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
231 /* Confirm that hypercall page did get setup. */
232 hypercall_msr.as_uint64 = 0;
233 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
235 if (!hypercall_msr.enable)
236 goto cleanup;
238 hv_context.hypercall_page = virtaddr;
240 #ifdef CONFIG_X86_64
241 if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
242 union hv_x64_msr_hypercall_contents tsc_msr;
243 void *va_tsc;
245 va_tsc = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
246 if (!va_tsc)
247 goto cleanup;
248 hv_context.tsc_page = va_tsc;
250 rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
252 tsc_msr.enable = 1;
253 tsc_msr.guest_physical_address = vmalloc_to_pfn(va_tsc);
255 wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
256 clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
258 #endif
259 return 0;
261 cleanup:
262 if (virtaddr) {
263 if (hypercall_msr.enable) {
264 hypercall_msr.as_uint64 = 0;
265 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
268 vfree(virtaddr);
271 return -ENOTSUPP;
275 * hv_cleanup - Cleanup routine.
277 * This routine is called normally during driver unloading or exiting.
279 void hv_cleanup(void)
281 union hv_x64_msr_hypercall_contents hypercall_msr;
283 /* Reset our OS id */
284 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
286 if (hv_context.hypercall_page) {
287 hypercall_msr.as_uint64 = 0;
288 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
289 vfree(hv_context.hypercall_page);
290 hv_context.hypercall_page = NULL;
293 #ifdef CONFIG_X86_64
295 * Cleanup the TSC page based CS.
297 if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
298 clocksource_change_rating(&hyperv_cs_tsc, 10);
299 clocksource_unregister(&hyperv_cs_tsc);
301 hypercall_msr.as_uint64 = 0;
302 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
303 vfree(hv_context.tsc_page);
304 hv_context.tsc_page = NULL;
306 #endif
310 * hv_post_message - Post a message using the hypervisor message IPC.
312 * This involves a hypercall.
314 int hv_post_message(union hv_connection_id connection_id,
315 enum hv_message_type message_type,
316 void *payload, size_t payload_size)
319 struct hv_input_post_message *aligned_msg;
320 u64 status;
322 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
323 return -EMSGSIZE;
325 aligned_msg = (struct hv_input_post_message *)
326 hv_context.post_msg_page[get_cpu()];
328 aligned_msg->connectionid = connection_id;
329 aligned_msg->reserved = 0;
330 aligned_msg->message_type = message_type;
331 aligned_msg->payload_size = payload_size;
332 memcpy((void *)aligned_msg->payload, payload, payload_size);
334 status = hv_do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL);
336 put_cpu();
337 return status & 0xFFFF;
342 * hv_signal_event -
343 * Signal an event on the specified connection using the hypervisor event IPC.
345 * This involves a hypercall.
347 int hv_signal_event(void *con_id)
349 u64 status;
351 status = hv_do_hypercall(HVCALL_SIGNAL_EVENT, con_id, NULL);
353 return status & 0xFFFF;
356 static int hv_ce_set_next_event(unsigned long delta,
357 struct clock_event_device *evt)
359 cycle_t current_tick;
361 WARN_ON(!clockevent_state_oneshot(evt));
363 rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
364 current_tick += delta;
365 wrmsrl(HV_X64_MSR_STIMER0_COUNT, current_tick);
366 return 0;
369 static int hv_ce_shutdown(struct clock_event_device *evt)
371 wrmsrl(HV_X64_MSR_STIMER0_COUNT, 0);
372 wrmsrl(HV_X64_MSR_STIMER0_CONFIG, 0);
374 return 0;
377 static int hv_ce_set_oneshot(struct clock_event_device *evt)
379 union hv_timer_config timer_cfg;
381 timer_cfg.enable = 1;
382 timer_cfg.auto_enable = 1;
383 timer_cfg.sintx = VMBUS_MESSAGE_SINT;
384 wrmsrl(HV_X64_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
386 return 0;
389 static void hv_init_clockevent_device(struct clock_event_device *dev, int cpu)
391 dev->name = "Hyper-V clockevent";
392 dev->features = CLOCK_EVT_FEAT_ONESHOT;
393 dev->cpumask = cpumask_of(cpu);
394 dev->rating = 1000;
396 * Avoid settint dev->owner = THIS_MODULE deliberately as doing so will
397 * result in clockevents_config_and_register() taking additional
398 * references to the hv_vmbus module making it impossible to unload.
401 dev->set_state_shutdown = hv_ce_shutdown;
402 dev->set_state_oneshot = hv_ce_set_oneshot;
403 dev->set_next_event = hv_ce_set_next_event;
407 int hv_synic_alloc(void)
409 size_t size = sizeof(struct tasklet_struct);
410 size_t ced_size = sizeof(struct clock_event_device);
411 int cpu;
413 hv_context.hv_numa_map = kzalloc(sizeof(struct cpumask) * nr_node_ids,
414 GFP_ATOMIC);
415 if (hv_context.hv_numa_map == NULL) {
416 pr_err("Unable to allocate NUMA map\n");
417 goto err;
420 for_each_online_cpu(cpu) {
421 hv_context.event_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
422 if (hv_context.event_dpc[cpu] == NULL) {
423 pr_err("Unable to allocate event dpc\n");
424 goto err;
426 tasklet_init(hv_context.event_dpc[cpu], vmbus_on_event, cpu);
428 hv_context.clk_evt[cpu] = kzalloc(ced_size, GFP_ATOMIC);
429 if (hv_context.clk_evt[cpu] == NULL) {
430 pr_err("Unable to allocate clock event device\n");
431 goto err;
434 hv_init_clockevent_device(hv_context.clk_evt[cpu], cpu);
436 hv_context.synic_message_page[cpu] =
437 (void *)get_zeroed_page(GFP_ATOMIC);
439 if (hv_context.synic_message_page[cpu] == NULL) {
440 pr_err("Unable to allocate SYNIC message page\n");
441 goto err;
444 hv_context.synic_event_page[cpu] =
445 (void *)get_zeroed_page(GFP_ATOMIC);
447 if (hv_context.synic_event_page[cpu] == NULL) {
448 pr_err("Unable to allocate SYNIC event page\n");
449 goto err;
452 hv_context.post_msg_page[cpu] =
453 (void *)get_zeroed_page(GFP_ATOMIC);
455 if (hv_context.post_msg_page[cpu] == NULL) {
456 pr_err("Unable to allocate post msg page\n");
457 goto err;
461 return 0;
462 err:
463 return -ENOMEM;
466 static void hv_synic_free_cpu(int cpu)
468 kfree(hv_context.event_dpc[cpu]);
469 kfree(hv_context.clk_evt[cpu]);
470 if (hv_context.synic_event_page[cpu])
471 free_page((unsigned long)hv_context.synic_event_page[cpu]);
472 if (hv_context.synic_message_page[cpu])
473 free_page((unsigned long)hv_context.synic_message_page[cpu]);
474 if (hv_context.post_msg_page[cpu])
475 free_page((unsigned long)hv_context.post_msg_page[cpu]);
478 void hv_synic_free(void)
480 int cpu;
482 kfree(hv_context.hv_numa_map);
483 for_each_online_cpu(cpu)
484 hv_synic_free_cpu(cpu);
488 * hv_synic_init - Initialize the Synthethic Interrupt Controller.
490 * If it is already initialized by another entity (ie x2v shim), we need to
491 * retrieve the initialized message and event pages. Otherwise, we create and
492 * initialize the message and event pages.
494 void hv_synic_init(void *arg)
496 u64 version;
497 union hv_synic_simp simp;
498 union hv_synic_siefp siefp;
499 union hv_synic_sint shared_sint;
500 union hv_synic_scontrol sctrl;
501 u64 vp_index;
503 int cpu = smp_processor_id();
505 if (!hv_context.hypercall_page)
506 return;
508 /* Check the version */
509 rdmsrl(HV_X64_MSR_SVERSION, version);
511 /* Setup the Synic's message page */
512 rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
513 simp.simp_enabled = 1;
514 simp.base_simp_gpa = virt_to_phys(hv_context.synic_message_page[cpu])
515 >> PAGE_SHIFT;
517 wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
519 /* Setup the Synic's event page */
520 rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
521 siefp.siefp_enabled = 1;
522 siefp.base_siefp_gpa = virt_to_phys(hv_context.synic_event_page[cpu])
523 >> PAGE_SHIFT;
525 wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
527 /* Setup the shared SINT. */
528 rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
530 shared_sint.as_uint64 = 0;
531 shared_sint.vector = HYPERVISOR_CALLBACK_VECTOR;
532 shared_sint.masked = false;
533 shared_sint.auto_eoi = true;
535 wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
537 /* Enable the global synic bit */
538 rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
539 sctrl.enable = 1;
541 wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
543 hv_context.synic_initialized = true;
546 * Setup the mapping between Hyper-V's notion
547 * of cpuid and Linux' notion of cpuid.
548 * This array will be indexed using Linux cpuid.
550 rdmsrl(HV_X64_MSR_VP_INDEX, vp_index);
551 hv_context.vp_index[cpu] = (u32)vp_index;
553 INIT_LIST_HEAD(&hv_context.percpu_list[cpu]);
556 * Register the per-cpu clockevent source.
558 if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)
559 clockevents_config_and_register(hv_context.clk_evt[cpu],
560 HV_TIMER_FREQUENCY,
561 HV_MIN_DELTA_TICKS,
562 HV_MAX_MAX_DELTA_TICKS);
563 return;
567 * hv_synic_clockevents_cleanup - Cleanup clockevent devices
569 void hv_synic_clockevents_cleanup(void)
571 int cpu;
573 if (!(ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE))
574 return;
576 for_each_online_cpu(cpu)
577 clockevents_unbind_device(hv_context.clk_evt[cpu], cpu);
581 * hv_synic_cleanup - Cleanup routine for hv_synic_init().
583 void hv_synic_cleanup(void *arg)
585 union hv_synic_sint shared_sint;
586 union hv_synic_simp simp;
587 union hv_synic_siefp siefp;
588 union hv_synic_scontrol sctrl;
589 int cpu = smp_processor_id();
591 if (!hv_context.synic_initialized)
592 return;
594 /* Turn off clockevent device */
595 if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)
596 hv_ce_shutdown(hv_context.clk_evt[cpu]);
598 rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
600 shared_sint.masked = 1;
602 /* Need to correctly cleanup in the case of SMP!!! */
603 /* Disable the interrupt */
604 wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
606 rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
607 simp.simp_enabled = 0;
608 simp.base_simp_gpa = 0;
610 wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
612 rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
613 siefp.siefp_enabled = 0;
614 siefp.base_siefp_gpa = 0;
616 wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
618 /* Disable the global synic bit */
619 rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
620 sctrl.enable = 0;
621 wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);